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ABSTRACT
We present the first systematic application of the integral equation implementation of the replica method to the study of arrested states
in fluids with microscopic competing interactions (short-range attractive and long-range repulsive, SALR), as exemplified by the prototype
Lennard-Jones–Yukawa model. Using a wide set of potential parameters, we provide as many as 11 different phase diagrams on the den-
sity (ρ)–temperature (T) plane, embodying both the cluster-phase boundary, TC(ρ), and the locus below which arrest takes place, TD(ρ).
We describe how the interplay between TC and TD—with the former falling on top of the other, or the other way around, depending on
thermodynamic conditions and potential parameters—gives rise to a rich variety of non-ergodic states interspersed with ergodic ones, of
which both the building blocks are clusters or single particles. In a few cases, we find that the TD locus does not extend all over the density
range subtended by the TC envelope; under these conditions, the λ-line is within reach of the cluster fluid, with the ensuing possibility to
develop ordered microphases. Whenever a comparison is possible, our predictions favorably agree with previous numerical results. Thereby,
we demonstrate the reliability and effectiveness of our scheme to provide a unified theoretical framework for the study of arrested states in
SALR fluids, irrespective of their nature.

I. INTRODUCTION

Past decades have witnessed a growing interest in the role
played by the interparticle interactions in controlling the structure
and dynamics of colloidal dispersions—see Refs. 1 and 2 for exten-
sive reviews. Despite being very complex in nature and number of
components, such fluids can often be described by means of simple
effective, one-component microscopic models.3,4 In this respect, it
has been well established since the work of van der Waals that fluids
interacting via excluded volume plus an isotropic attractive contri-
bution of not too narrow range undergo, at low-enough tempera-
tures, a gas–liquid phase separation.5,6 When a further long-range
repulsion is added, the situation may change: gas–liquid separation
can be preempted by the onset of a microphase separation7 in which
the system organizes itself into finite-size domains, thus forming a

density-modulated phase. Indeed, experiments, theory, and simula-
tion have demonstrated that, when spherical particles are endowed
with a short-range attraction (SA) and a screened electrostatic repul-
sion at larger distances (LR), various aggregates are formed, whose
size and shape crucially depend on the balance between attraction
and repulsion.

SALR fluids exhibit a rich variety of phases and microphases
not observed in simple fluids governed by Lennard-Jones-like inter-
actions. In particular, one of the most interesting features of SALR
fluids is the existence of a cluster microphase, emerging at a suffi-
ciently low temperature, TC, generally depending on the density ρ.
This microphase—resulting from the competition between attrac-
tion and repulsion over distinct length scales—has been observed in
experiments, as well as in molecular simulations; see, for instance,
Refs. 8 and 9. In addition, the cluster microphase of various SALR
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models has been the subject of a number of theoretical studies
aiming to assess integral equation predictions against numerical
simulations; see, for example, Refs. 7 and 10–17.

Eventually, at a temperature lower than the onset of the cluster
phase, dynamically arrest may supersede a thermodynamic transi-
tion, along the so-called λ-line, between the cluster fluid and a cluster
crystal.18

At the structural level, the ubiquitous signature of the presence
of aggregates is the appearance of a low-q peak in the structure fac-
tor S(q), located at a wavevector qc much smaller than the location
of the main peak, in turn corresponding to the nearest-neighbor
distance. Initially, at the very onset of the low-q peak, the fluid
is said to experience an intermediate-range order, IRO.19 As the
temperature goes down and S(qc) becomes progressively larger,
Godfrin et al.20 proposed that the equilibrium cluster phase forms
when S(qc) attains the threshold value ≈2.7. This heuristic crite-
rion recalls the well-known Hansen–Verlet freezing rule for simple
fluids.21 In parallel, Bollinger and Truskett16 considered the width,
rather than the height, of S(qc), proposing that clusters form when
the thermal correlation length ξT exceeds the Debye screening length
ξD; usually, the latter criterion performs well, at least for large
enough screening lengths. More recently, two of us showed that
also local, real space correlations—beside the commonly studied
structure factor—convey precise information about the clustering
process.22–24

In recent years, dynamical arrest in colloidal and, more gen-
erally, in soft matter fluids has gained increasing attention.9 As for
SALR models, much effort has been devoted to clarify the dynami-
cal behavior at high densities,2,8 where dynamical arrest, commonly
identified as a glass transition, takes place. In addition, there is a
special kind of low-density arrested state that is uniquely found
in SALR models, below TC(ρ): the “Wigner glass of clusters,”25

originating from the dominant role of the electrostatic repulsion.
In this case, clusters become themselves the building blocks of
the arrested state. A Wigner glass of clusters has been found in
simulations26,27 and experiments28 and also confirmed by mode
coupling theory29 in the two-Yukawa SALR model.30 At interme-
diate densities, in between these two glassy states, SALR systems are
known to exhibit, as most colloidal systems do, a gel phase charac-
terized by a network-like structure. Such percolating states have as
constituting units either clusters (as in the Wigner glass, and, there-
fore, they are referred to as cluster-percolated states) or particles
(random-percolated states), according to whether thermodynamic
conditions fall within the TC(ρ) envelope or not.20 Recently, the
description of dynamical arrest processes in SALR models has been
tackled31,32 in the framework of the non-equilibrium SCGLE (self-
consistent generalized Langevin equation) theory.33 This approach
aims to distinguish between ergodic and non-ergodic states and has
been already applied to different fluids with discrete interactions like
hard-sphere,34 square-well,35 or the Yukawa potential.36,37 It is based
on the calculation of a so-called localization length, γ(ρ, T); ergodic
and non-ergodic states are identified according to whether γ exhibits
a diverging or a finite value, respectively.

Notwithstanding progress in the field, dynamical arrest in
SALR fluids is still a challenging testbed for theory and experiments.
In particular, it is not clear whether arrested states like a Wigner glass
or a gel can be described in a unified theoretical framework together
with ordinary glasses.

An elegant way, proposed long ago by Franz and Parisi,38–40

to detect at large packing fractions the onset of an arrested state
in standard fluids is the “Replica Method,” which has since then
given rise to many studies—see Refs. 41 and 42 for extensive reviews.
The “annealed” version of the method consists in monitoring the
evolution of a particle system, weakly coupled to one copy of
it, as the temperature is lowered.43–45 Recently, some of us have
explored in different directions the integral equation implemen-
tation of the replica formalism.46–53 Briefly speaking, the integral
equations connecting pair correlation functions and pair potentials
are implemented for a homogeneous mixture of clones (replicas) of
the same system. The inter-replica pair correlation function g′(r)
leads directly to the overlap (or similarity) Q between the copies. The
quantities g′(0) and Q represent order parameters of the Random
First Order Transition (RFOT) theory: upon lowering the temper-
ature, g′(0) and Q may undergo a discontinuous jump (dj) at a
critical temperature Tdj(ρ), signaling a broken translational symme-
try of the two-replica system. Such a scenario points to the existence
of a liquid (L) phase and an “ideal” glass phase (G2), in agreement
with the original replica method formulation. In addition, also an
additional branch of glass solutions (G1) is found.46

The common highest temperature at which G1 and G2 phases
survive is the so-called dynamical transition temperature TD, above
which the system is in the L phase. More recently, to make contact
with the Mézard–Parisi results,54 following the Monasson prescrip-
tion,55 we have adapted our search protocol, previously applied to
the case of m = 2 replicas, to a continuously varying number m of
weakly coupled replicas (with m possibly lower than 1) within the
framework of the hypernetted chain (HNC) integral equation.52 The
equilibrium properties of the original, i.e., non-replicated, system are
obtained in the m→ 1 limit.

In this paper, we use our simplified replica formalism in the
annealed version to search for the existence of arrested states in
SALR fluids. To this purpose, we use the prototype LJY potential,
formed by a generalized (2α, α) Lennard-Jones potential,56 account-
ing for the short-range attraction, plus a repulsive screened electro-
static Yukawa term, with strength A and decay length ξD. For a wide
set of (α, A, ξD) parameters, we map out the cluster phase boundary
TC(ρ)—as identified by S(qc) ≈ 2.720—together with the dynamical
arrest locus TD(ρ). In this way, we present a systematic exploration
of how the combination of attraction and repulsion in the micro-
scopic interaction influences the interplay between clustering and
arrested states. The present study demonstrates the reliability of our
implementation of the integral equation approach to the replica the-
ory as a tool to identify the onset of arrested states in SALR models,
whatever their nature.

The rest of this paper is organized as follows: In Sec. II, we
review the essentials of our implementation of the replica method.
In Secs. III–V, we present our results. Specifically, attention is paid
to the role played by the amplitude A of the Yukawa tail in Sec. III.
In Sec. IV, we analyze and compare the phase diagrams obtained
by systematically increasing the exponent α in the LJY potential; in
Sec. IV B, we pursue a further validation of our approach against
molecular dynamics results available from previous studies.9,27 To
make connection with experiments, we study in Sec. V a LJY param-
eterization suitable to model a realistic colloidal solution;57 again, we
compare our predictions with previous simulation data.31,58 Finally,
in Sec. VI, we present our conclusions. The Appendix is devoted to a
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further validation of our approach against the glass phase of the stan-
dard Lennard-Jones fluid, as calculated within the more complex
formalism of Ref. 59.

II. MODEL AND THEORETICAL BACKGROUND
We model the SALR interaction as a combination of the gen-

eralized (2α, α) Lennard-Jones potential and a screened Coulomb
interaction, accounted for by a repulsive Yukawa potential. Hence,
the LJY pair potential reads

vLJY(r) = 4ε[(σ
r
)

2α
− (σ

r
)

α
] + A

exp [−r/ξD]
r/ξD

, (1)

where r is the interparticle distance, σ is the particle diameter, ε is the
strength of the short-range attraction, and A is the strength of the
long-range repulsion, related to the square of the effective electric
charge of a colloidal particle;60,61 finally, ξD is the electrostatic Debye
screening length in units of σ. In reduced units, the temperature is
expressed as T∗ = kBT/ε, where kB is the Boltzmann constant, while
the reduced density is defined as ρ∗ = ρσ3 with ρ being the number
density of the system.

For clarity, the interaction potential will be indicated as
LJY(α, A, ξD), where it is implied that A and ξD are given in units of ε
and σ, respectively. The set of all [α, A, ξD] values considered in this
work, amounting to a total of 11 different LJY models, is reported in
Table I.

In our theoretical framework, we consider a system of m iden-
tical replicas of the original LJY fluid. Atoms belonging to the same
replica interact through vLJY(r), but at the effective temperature
T∗eff = T∗/m [equivalently, vLJY(r) is replaced by mvLJY(r)], while
atoms belonging to different replicas are weakly coupled to each
other through a short-range inter-replica attraction of the following
form:62

v′(r) = −ε′[ c2

r2 + c2 ]
6

= −ε′w(r). (2)

The parameter c is chosen to be 0.3σ, to ensure that an atom of a
given replica can at most interact with one single atom of another
replica. Notice that the exact form of v′(r) is irrelevant since we shall
eventually be interested in the limit ε′ → 0. Such a symmetric m-
component “mixture” is characterized by only two pair correlation
functions: the intra-replica g(r) and the inter-replica g′(r), regard-
less of the value of m. Given that h(r) = g(r) − 1 and h′(r) = g′(r)
− 1, the pair correlation functions are related to the corresponding
direct correlation functions c(r) and c′(r) via the Ornstein–Zernike
relations as follows:5,6

h(r) = c(r) + ρc(r)⊗ h(r) + (m − 1)ρc′(r)⊗ h′(r), (3a)

h′(r) = c′(r) + c(r)⊗ h′(r) + ρc′(r)⊗ h(r)
+ (m − 2)ρc′(r)⊗ h′(r), (3b)

where ⊗ denotes a three-dimensional convolution product. These
relations must be supplemented by closure relations, which, in the
HNC approximation, read5,6

g(r) = exp [−βeffv(r) + h(r) − c(r)], (4a)

g′(r) = exp [−βeffv
′(r) + h′(r) − c′(r)], (4b)

with βeff = 1/T∗eff. Equations (3) and (4) hold for any m, including
non-integer values and m < 1.

Among simple closures, HNC combines a good overall accu-
racy and the automatic fulfillment of the virial-energy thermody-
namic consistency, a property not shared by other schemes, for
instance, Percus–Yevick and mean spherical approximation.6 Its
good performances in predicting the structural properties of SALR
fluids were demonstrated in several previous studies.11,15,18,63–65

Moreover, HNC is the theory more extensively tested for the replica
method at issue, with a positive comparison with more sophisticated
integral-equation approaches.47–49

The structural properties of the liquid phase are computed by
considering fully decoupled replicas [i.e., by setting ε′ = 0 in Eq. (2)],
which, in turn, implies h′(r) = c′(r) = 0. Meanwhile, for finite values
of ε′, the attraction between atoms of different replicas favors con-
figurations corresponding to the same local free energy minimum.
This tendency can be quantified by the order parameter

Q = 4πρ∫
∞

0
g′(r)mw(r)r2dr. (5)

A complementary order parameter is provided by g′(r = 0): upon
lowering T∗eff, in the absence of inter-replica coupling [ε′ = 0], we
get g′(0) = 1, while, for finite ε′, a central peak in g′(r) is expected
to build up at r = 0.47

At a given temperature T∗eff, our search protocol consists in solv-
ing the set of HNC equations (3) and (4) for g(r) and g′(r), starting
from an initial finite value of the inter-replica coupling ε′. Then, we
follow the evolution of the order parameters Q and g′(0) upon grad-
ually reducing ε′. If, in the limit ε′ → 0, the order parameters take
their “random” (or uncorrelated) values Qran [as calculated from
Eq. (5) with g′(r) = 1] and h′(0) = 0, then the thermodynamic state
at T∗eff corresponds to the L phase. Meanwhile, if in the same limit
“non-trivial” Q≫ Qran and g′(0)≫ 1 are recorded, then the system
is in an arrested state, where replicas are, a priori, all equally trapped
within the same minimum of the free energy landscape. Taking the
limit m→ 1 (i.e., T∗eff → T∗) allows us to recover the properties of
the non-replicated system at the real reduced temperature T∗.55

This process can be repeated for any number of thermodynamic
states.

We recall that our earlier calculations46,47,49,52 pointed to the
existence of two glass-like solutions, namely the “ideal” glass phase
G2, and the previously undetected branch of solutions G1. While
replicas remain trapped in the same free-energy minimum in the
G2 phase, the G1 solution still lacks a precise identification. We
may say, however, that the presence of two glassy phases is justified
by the fact that—in the standard picture coming from mean field
models—the glass transition is related to the appearance of many
metastable glassy states in addition to the “ideal” one.66 In particular,
there are two “types” of metastability: the first one is the metasta-
bility of both G1 and G2 phases with respect to crystallization. The
second type is provided by the existence of G1 glassy states, which
have higher excess free energy compared to the glassy state of the
lowest excess free energy (the “ideal” one), and, consequently, the
former states are metastable with respect to the latter. Indeed, for
both soft spheres47–49 and Lennard-Jones atoms,51 G1 and G2 solu-
tions have been shown to coexist over identical ranges of densities
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TABLE I. Plan of the [α, A, ξD] sets studied in this work. Models LJY(6, A, 2), LJY(α, 0.2, 2), and LJY(18, A, 0.5) are
analyzed in Secs. III, IV and V, respectively. The model LJY(18, 8, 0.5) is named LJYE in Sec. V. The pure LJ is studied in
the Appendix. For quick reference, in the last column, we indicate the figures in the text relative to each model.

Model α A/ε ξD/σ Figures

LJY(6, A, 2) 6
⎧⎪⎪⎨⎪⎪⎩

0.20

0.65
2.0 1–5

1 and 5

LJY(α, 0.2, 2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

12

18

24

100

0.20 2.0

6
6
6

6–9 and 11

LJY(18, A, 0.5) 18

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8.00

7.80

7.30

6.70

6.30

0.5

9, 11, and 12
10
10
10
10

Pure LJ 6 0.00 0.0 13 and 14

and temperatures. The common highest temperature at which G1
and G2 still survive is identified as the dynamical transition tem-
perature TD, above which the system switches from the glass phase
to the L phase. In the rest of this paper, in order to distinguish the
inter-replica pair correlation functions corresponding to G1 and G2
phases, non-trivial solutions g′(r) are accordingly renamed as g′1(r)
and g′2(r).

We have solved numerically the coupled HNC equations for
h(r) and h′(r), using the very efficient Gillan iterative algorithm.67

We verified the robustness of our predictions against several resolu-
tions Δr of the spatial grid and a corresponding total number Ng of
grid points, so as to keep the overall range in direct and reciprocal
space large enough and the grid spacing small enough, to minimize
truncation and discretization errors. In practice, Ng has never been
smaller than 4097 and Δr has never been larger than 0.01σ.

III. LJY MODELS WITH FIXED LJ ATTRACTION
A. General aspects

To assess our predictions for TD against those available from
the more complex formalism of Ref. 59, we have initially exam-
ined the standard Lennard-Jones fluid [i.e., Eq. (1) with α = 6 and
A = 0] at high densities. The results of this analysis are reported in
the Appendix, where, moreover, we take the opportunity to present
several peculiar aspects of our formalism in detail.

Turning to the full LJY interaction, we begin to leave α = 6
unchanged in Eq. (1), with parameters of the repulsive Yukawa tail
A = 0.2ε and ξD = 2σ. The corresponding LJY(6, 0.2, 2) potential is
displayed in Fig. 1 (black line).

First, we compute the temperature TC(ρ) corresponding to
S(qc) ≈ 2.7.20 Next, we apply our search protocol for TD(ρ) with m
= 0.8, ε′0 = 0.1ε, and c = 0.3σ at the fixed density ρ∗ = 1. By lowering

FIG. 1. LJY(6, 0.2, 2) (black) and LJY(6, 0.65, 2) (blue) potentials.

the temperature, the arrested scenario for LJY is found to be iden-
tical to LJ, with two successive discontinuous jumps at the effective
temperatures T∗dj1 = 0.18 and T∗dj2 = 0.155. Taking the limits ε′ → 0
and m = 1 allows us to obtain both g′1(r) and g′2(r) solutions. In
order to obtain the dynamical transition locus TD(ρ), the density
and temperature are varied within each arrested phase.

The T∗C (ρ∗) and T∗D(ρ∗) loci are displayed in Fig. 2. We see that
the former exhibits a re-entrant concave shape with a maximum
located at [ρ∗C,max ≈ 0.23, T∗C,max ≈ 0.68], above which the fluid is in
the IRO state. For temperatures below T∗C,max, for increasing density,
the fluid moves from an initial IRO state to the cluster phase and
then again to the IRO state, indicating that upon compression, the
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FIG. 2. LJY(6, 0.2, 2) model. TC(ρ) (triangles), TD(ρ) (circles), and the λ-line
(crosses). The top of the first locus, falling at [ρ∗C,max ≈ 0.23, T∗C,max ≈ 0.68], and
the bottom of the second locus, at [ρ∗D,min ≈ 0.9, T∗D,min ≈ 0.095], are explicitly
indicated; the locus TD(ρ) ends on the lower side at ρ∗G,min ≈ 0.31, equally shown.

fluid needs to be progressively cooled in order to attain the cluster
phase.

At variance with TC(ρ), due to its convex shape, TD(ρ) exhibits
a minimum located at [ρ∗D,min ≈ 0.9, T∗D,min ≈ 0.095] and these two
lines cross at (ρ∗×, T∗×), a point which, in the present case, almost
coincides with [ρ∗D,min, T∗D,min].

On opposite sides of T∗D,min, different behaviors occur. In par-
ticular, the convex shape of TD(ρ) implies, for T∗ > T∗D,min, the
existence of two successive re-entrant arrested states upon compres-
sion, intercalated by the liquid phase. This is detailed in Fig. 3, where
the evolution of g′1(r = 0) and g′2(r = 0) is reported for two tem-
peratures encompassing T∗D,min. In both cases, starting from ρ∗ = 1,
the density is decreased down to ρ∗ = 0.8. Along the isotherm T∗

= 0.10 (i.e., above T∗D,min), g′1(r = 0) and g′2(r = 0) (red lines in Fig. 3)
are found to, respectively, increase and decrease, until dropping to
their L value 1 at ρ∗ = 0.94; coherently with the re-entrant behavior
just discussed, the opposite trend is observed below ρ∗ = 0.88. The
situation changes along the isotherm T∗ = 0.09 (i.e., below T∗D,min,
blue lines): here, g′2(0) initially decreases until it reaches a minimum
around ρ∗ = 0.92 and then increases, while g′1(0) symmetrically
exhibits the opposite trend. This feature suggests—together with the
crossing with TC(ρ)—the existence, within the arrested state, of two
behaviors of a different nature: one due to particles within the IRO
(for ρ∗ ≳ 0.92), and the other being, instead, specific of the cluster
phase (for ρ∗ < 0.92).

Now, we turn to the structural and thermodynamic properties
of clustered states below TD. Figure 4 shows S(qc) as a function
of density along the isotherm T∗ = 0.219. Upon expansion, S(qc)
increases up to a maximum, then it slightly bends downward, this
way following a trend reminiscent of the convex shape of TC(ρ). As
the density is further decreased, S(qc) exhibits a steep rise to much
higher values. This signals the transition from a disordered-pattern
to an ordered-pattern cluster fluid, with the ensuing divergence of

FIG. 3. LJY(6, 0.2, 2) model. Order parameters g′1(0) (dashed lines) and g′2(0)
(solid lines), plotted as a function of density, at T∗ = 0.10 (red) and T∗ = 0.09
(blue), respectively, falling closely above and below T∗D,min = 0.095.

S(qc), indicating that the λ-line is reached. In this state, the sys-
tem minimizes the energy associated with the long-range repulsion
by the formation of domains of high density, thus giving rise to
mesoscopic patterns. The corresponding shift of qc toward lower
values (not shown) testifies how such domains become more com-
pact as the density decreases. As for the q→ 0 limit of the structure
factor, directly related to the compressibility, this property is also
shown in Fig. 4. We see that S(0) increases with decreasing den-
sity and exhibits a steep rise to much higher values as the λ-line
is approached. This suggests a competition between a loss of avail-
able space within the domains and a gain in between them, overall
giving rise to a fluid with enhanced compressibility. The excess inter-
nal energy per particle βUex/N, also shown in Fig. 6, decreases
monotonically with decreasing density. It keeps positive until
ρ∗ ≈ 0.56—witnessing how repulsive forces dominate in the
fluid—and then turns negative, indicating that particles become, on
average, more and more sensitive to the attractive part of the poten-
tial; this induces the creation of an increasing number of bonds,
again preparing the occurrence of the λ-line.

The above calculations can be repeated for a number of
isotherms, so as to map out the whole λ-line. This line is shown in
Fig. 2 together with TC(ρ) and TD(ρ). We see that the high-density
segment of the λ-line falls below TD, and, therefore, the possibility
for it to be attained by the fluid on cooling is preempted by dynam-
ical arrest. Meanwhile, TD(ρ) does not extend over the whole range
of densities, rather terminating on the lower side at ρ∗G,min ≈ 0.31,
where it crosses the λ-line. The reason is that, since TD(ρ) increases
with decreasing density, we would attain a too high temperature
and/or a too low density for a glass state to exist. Under these con-
ditions, the approach to the λ-line is not preempted by arrest, and,
therefore, it is within the reach of the clustered fluid; indeed, we can
see from Fig. 2 that the temperature at which the λ-line is located
rapidly increases as the density is lowered, until it matches the TC(ρ)
locus at ρ∗ ≈ 0.1. In turn, this implies the possibility for the cluster
fluid to evolve toward some form of ordered microphases.
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FIG. 4. LJY(6, 0.2, 2) model. S(qc) and S(0) (black and red lines, respectively; scale on the left) and βUex/N (blue, right scale) vs ρ∗ at T∗ = 0.219.

To conclude, the attainment of the λ-line is signaled in our
framework only indirectly, by the numerical evidence of lack of
physical solution of the HNC equations (indeed, the HNC is unable
to capture a true divergence).68 This implies that a characteriza-
tion of ordered patterns developing below the λ-line is precluded
to our theoretical framework. In addition, it necessarily follows that
the λ-line invariably falls at temperatures lower than TD(ρ) under
all thermodynamic conditions for which the existence of an arrest
line is predicted by our scheme. As we shall see in the rest of this
paper, the present LYJ(6, 0.2, 2) parameterization is the only one,
among those analyzed in this study, for which dynamical arrest
does not occur over the whole density range. Another exception is
provided by the LJY(12, 0.2, 2)—discussed in Sec. IV—for which,
however, the density range whereupon dynamical arrest does not
take place is restricted to a narrow low-density interval. All this
considered—all the more so taking into account the “extrapolated”
nature of our localization—we limit to the parameterization at issue
the only case for which we discuss, by way of example, the behavior
of the λ-line.

B. Strengthening the repulsive tail
We investigate how the general scenario presented above

changes as the LJY repulsive tail is strengthened and/or the attrac-
tion becomes sufficiently short-ranged. As for the first point, we
examine the fate of TD(ρ) as the parameter A is increased from 0.2ε
to 0.65ε, while keeping α = 6 and ξD = 2σ fixed. As can be seen from
Fig. 1, this change leads to a shorter and shallower attractive well
in the LJY interaction, as well as to a higher and longer repulsive
tail.

The phase diagram of LJY(6, 0.65, 2) is shown in Fig. 5, where
previous results concerning LJY(6, 0.2, 2) are also shown. Compared
to LJY(6, 0.2, 2), TC(ρ) now shifts to much lower temperatures,

with T∗C,max = 0.26, while ρ∗C,max ≈ 0.23 keeps almost unchanged.
This results in a cluster phase that extends less toward the high-
density side, ending at ρ∗ ≈ 0.8, to be compared with ρ∗ ≈ 0.95
for LJY(6, 0.2, 2). Within the cluster phase, also the locus TD(ρ)
involves lower temperatures and crosses TC(ρ) at [ρ∗× ≈ 0.75, T∗×
≈ 0.063]; therefore, at variance with the previous case, this crossing
point no longer coincides with [ρ∗D,min ≈ 0.8, T∗D,min ≈ 0.06]. Interest-
ingly, the TD(ρ) locus turns out to be barely affected by the increase
of A in the high density domain ρ∗ > 0.9, where the fluid experiences
IRO conditions. The most important impact on the phase diagram
is observed on the low-density side, where, indeed, TD(ρ) flattens
and extends down to ρ∗ = 0.1. Therefore, increasing A promotes the
existence of low-density arrested states, as signaled by the G1 and G2
types of solutions.

C. Discussion
The phase behaviors reported in Figs. 2 and 5 reveal a rich pic-

ture, with TC(ρ) and TD(ρ) alternatively falling one on top of the
other, in such a way that the LJY fluid visits a variety of different
phases, depending on the relative position of such loci.

All along the density range, the arrested states involve struc-
tures in which the building blocks are provided either by clus-
ters (below TC) or by single particles (as under IRO conditions),
and we are able to discriminate between these two structures by
studying the interplay between the TC and TD loci. When the
temperature–density region where clustering occurs is not fully tra-
versed by the arrested line, the cluster fluid is under favorable
conditions for an ordered microphase to develop below the λ-line.

According to the generalized phase behavior of Ref. 20, we
can reasonably surmise that—once the TD(ρ) locus extends over
the whole density range subtended by TC(ρ)—a Wigner glass of
clusters forming at a low density gives way, somewhere at a higher
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FIG. 5. LJY(6, 0.65, 2) model. T∗C (ρ∗) (blue triangles) and T∗D (ρ∗) (blue circles).
For the sake of comparison, these curves are plotted together with those relative
to LJY(6, 0.2, 2) (black symbols), as redrawn from Fig. 2.

density, to a cluster-percolated network. In this case, we have not
been able to find useful indications—neither in terms of structural
properties nor in terms of specific features of order parameters—to
discriminate between these two different situations. Such difficul-
ties possibly stem from the known similarity of the static properties
characterizing both the cluster phase and the gel.9,28

Finally, our scheme captures the features of high-density glassy
states, as shown for the standard Lennard-Jones in the Appendix.

In summary, the arrested states of different nature can be
gratifyingly predicted within our unified theoretical framework. Sec-
tions IV and V will be devoted to a systematic analysis, as different
LJY shapes are considered; particular features, concerning specific
modelizations and partly departing from the general scenario illus-
trated above, will be discussed. This survey will provide the occasion
for a further assessment of our method against available simulation
results.

To conclude, it would be highly desirable to find a “universal”
scheme to determine the general properties of SALR phase dia-
grams. As far as TC(ρ) is concerned, we recall that—inspired by
the so-called extended law of corresponding states (ELCS), formu-
lated by Noro and Frenkel72 in the context of short-range attractive
models—Godfrin et al.20 proposed a similar sort of universal behav-
ior and then validated for a number of different SALR interactions.9
Their idea was to consider the attractive part of a given SALR inter-
action (as obtained by cutting off the repulsive tail) as a “reference”
potential and to compute the corresponding gas–liquid coexistence.
Then, these authors showed that such a binodal line is a reasonably
accurate indicator for the onset of the cluster phase in the original
SALR interaction. Admittedly, this result does not ensure the validity
of a fully generalized ELCS for systems with competing interactions.
Indeed, as for the ELCS of Ref. 72 and for the original van der Waals
law in simple liquids, the corresponding states should imply identi-
cal thermodynamic and structural properties, but this is not always
the case for SALR potentials.9 Nevertheless, it would be intriguing

FIG. 6. LJY models with A = 0.2ε, ξD = 2σ, and different α, in the legend (a) and
corresponding phase diagrams [(b), same color code], in terms of T∗C (ρ

∗) (tri-
angles) and T∗D (ρ

∗) (circles). The dashed line in (b) indicates the isotherm T∗

= 0.125.

to look for a similar kind of generalized behavior also for the TD(ρ)
line.

IV. LJY MODELS WITH FIXED YUKAWA TAIL
A. Properties for progressively shorter attraction

To examine the influence of the LJ exponent α on the location
of arrested states, we fix A = 0.2ε and ξD = 2σ, as in Sec. III, while α
is progressively increased from 6 to 12, 18, 24, and 100. In this way,
the attractive well is progressively shortened, as shown in Fig. 6(a).
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TABLE II. Coordination number, ⟨n⟩, and location of the first minimum of g(r), rmin,
reported as a function of α, at the relative state [ρ∗ = 0.1, T∗C (ρ

∗ = 0.1)].

α T∗C(0.1) rmin ⟨n⟩

12 0.2895 1.47 2.885
18 0.2288 1.32 2.609
24 0.2015 1.24 2.515
100 0.1314 1.07 2.422

The phase diagrams of pure Lennard-Jones fluids with α = 12
and 18 were studied in Ref. 56, demonstrating how they exhibit a
rather flat gas–liquid coexistence, in sharp contrast with the case
α = 6. Moreover, the cluster ground-state properties of LJY(α, 0.2, 2)
were shown to be almost insensitive to α for α ≥ 18.26,69 For such
values, a micro-phase separation into clusters exists (see Fig. 9 of
Ref. 69).

As for the cluster phase, the shape of TC(ρ) for all the
LJY(α, 0.2, 2) models in Fig. 6(b) remains qualitatively unchanged,
although T∗C,max decreases with increasing α, while the opposite
trend is observed for ρ∗C,max. To assess our predictions, we observe
that particles within a cluster, since being caged by many neigh-
bors, are likely to have a local glassy structure (i.e., amorphous
with limited mobility), which needs to be sustained by a minimum
average coordination number ⟨n0⟩ = 2.4.70,71 In Table II, we report
⟨n⟩—as computed by integrating ρ∗g(r) from 0 to its first minimum
rmin—as a function of α at T∗C(ρ∗ = 0.1). We find that ⟨n⟩ exceeds
the threshold ⟨n0⟩ in all cases, the shorter-range the LJY potential,
the closer these two values.

As for the arrested states, we have generally obtained both
g′1(r) and g′2(r) solutions, except for α > 28, where we have only
found G1-type solutions, the G2 branch being inaccessible to our
approach. However, this is not a serious drawback for the pursuit
of our investigation since, as documented before, both G1 and G2
types of solutions independently predict, for a given density, the
same dynamical-transition temperature. Therefore, TD(ρ) can be
obtained solely from the knowledge of G1, as exemplified in Fig. 7
for two specific cases involving low and high densities. The analo-
gies with the features of the dotted-dashed lines in Fig. 13(b) are
apparent, and the same discussion applies.

The loci TD(ρ) corresponding to the LJY(α, 0.2, 2) models are
shown in Fig. 6(b) as well. We see that using a progressively shorter
LJY attraction deeply influences the shape of such a locus. On the
high-density side, the minimum at [ρ∗D,min, T∗D,min] becomes less and
less marked until, for α = 100, TD becomes practically flat below
TC, lying around T∗ = 0.125 independently of the density. At the
same time, on the low-density end, TD(ρ) progressively extends
toward lower and lower densities, until covering the whole inves-
tigated range for α > 12. Moreover, opposite trends are predicted
for TD(ρ) across ρ∗×. Indeed, for ρ∗ ≤ ρ∗×, this locus sinks at lower
and lower temperatures as α increases, while the opposite occurs at
higher densities (at least for α ≤ 24).

In summary, shortening the LJY attraction hinders the appear-
ance of arrested states made of clusters (Wigner glass or cluster-
percolated network) in two complementary ways: first, the density
range where TD < TC progressively shrinks toward lower and lower
densities [ρ∗× moves to the left in Fig. 8(b)]. Second, increasing
cooling is required. Meanwhile, the density range over which a
random-percolated state exists is correspondingly extended further
with increasing α.

FIG. 7. LJY(100, 0.2, 2) model. Order parameter g′1(0) at ρ∗ = 0.2 (a) and ρ∗ = 1.1 (b), under conditions m = 0.8, ε′0 = 0.1ε, and c = 0.3σ.
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FIG. 8. Low-density phase diagram of the LJY(100, 0.2, 2) model, displaying
T∗C (ρ

∗) (triangles) and T∗D (ρ
∗) (green circles). For comparison, MD data from

Ref. 27 are also shown: fluid phase (black circles), cluster phase (diamonds), and
iso-diffusivity D/D0 = 0.1 line (stars).

B. Comparison with previous simulation studies
Here, we discuss in more detail the features of the LJY model

with α = 100 and, as before, A = 0.2ε and ξD = 2σ. The study of
LJY(100, 0.2, 2) is particularly worth to pursue, since it allows for
further validation of our simplified approach against molecular
dynamics results available from previous studies.9,27

As for the cluster phase, we recall that a way to establish
TC(ρ), independently of the structural information, consists in
computing the cluster size distribution (CSD). Indeed, upon low-
ering the temperature at fixed density, the point at which the
system passes from an IRO to a clustered state is signaled by
the appearance of a local maximum in the CSD, indicating the
onset of a preferential size of aggregates. In Ref. 9, the CSD cal-
culated for the LJY(100, 0.2, 2) model at the packing fraction ϕ
= 0.08—corresponding to the reduced density ρ∗ ≈ 0.153—displays
a maximum for T∗ ≤ 0.14 [see Fig. 2(c-ii) therein]. Gratifyingly,
our prediction under the same conditions, reported in Fig. 6(b),
practically coincides with the simulation datum. A more extended
comparison with other CSD results27 is presented in Fig. 8.

As for the arrested states, the approach to these conditions from
the equilibrium side was studied by molecular dynamics in Ref. 27.
Therein, the authors computed the so-called iso-diffusivity lines, i.e.,
loci in the phase diagram characterized by a fixed value of the diffu-
sion coefficient. Now, it is known that the shape of iso-diffusivity
lines does not change much as the D→ 0 limit is approached, fixing
an end point that can be identified with the ideal arrest transition.
Therefore, the arrested states are usually thought to develop more
or less in parallel to the low-D iso-lines. For the LJY(100, 0.2, 2)
model at issue, the D vs T curve has been shown to display a
rapid decrease below T∗ = 0.2, followed by a slower decrease for
T∗ ≤ 0.125, which might be considered as the finite-T arrest line,27

also propagating at larger densities. Moreover, at low densities and
temperatures, non-percolating states undergo a dynamical arrest

that is realized—because of the cluster–cluster interactions dom-
inating in this regime—through the formation of a Wigner glass
of clusters.27

Our predictions for T∗D(ρ∗), as obtained from G1-type solu-
tions, are shown in Fig. 6(b). As already mentioned, this locus turns
out to be almost flat below T∗C(ρ∗), with an approximately constant
value close to 0.125, an outcome again in quantitative agreement
with the simulation datum just discussed.

In Fig. 8, we replot our predictions for T∗C (ρ∗) and T∗D(ρ∗) of
the LJY(100, 0.2, 2) model, with a magnification of the low-density
portion (ρ ≲ 0.3), where the study of Ref. 27 was focused. We see
that our T∗C(ρ∗) line reasonably follows at low packing fractions
the shape of the cluster-phase boundary determined via CSD. For
completeness, also our prediction T∗D(ρ∗) ≈ 0.125 is shown, together
with the iso-diffusivity line D/D0 = 0.1, with D0 being the bare
diffusion coefficient.

V. REALISTIC LJY COLLOIDAL MODEL
A. Phase diagram

We turn to the study of another widely used LJY parameteri-
zation, with α = 18, A = 8ε, and ξD = 0.5σ. The model, referred to in
the following as LJYE, was shown58 to closely reproduce the behavior
of an experimental charged colloidal solution with added depletion
interactions.57

In Fig. 9(a), we compare the shapes of LJYE and
LJY(100, 0.2, 2): we see that the attractive well of the former is
wider; moreover, if the height of the repulsive barrier is similar, the
speed of decay differs, due to the difference in the Debye length ξD
[the repulsive part of the LJY(100, 0.2, 2) is substantially longer].
Therefore, by comparing the behavior of these two models, we
have the opportunity to examine the role played by the electrostatic
contribution to the arrested states.

The phase behaviors of LJYE and LJY(100, 0.2, 2) are shown
in Fig. 9(b). As for the clustered state, the shape of TC(ρ) for
LJYE differs from that observed for previous models, suggesting a
more complex cluster phase behavior. Indeed, even though TC(ρ)
shows a maximum, located at [ρ∗C,max ≈ 0.3, T∗C,max ≈ 0.121], it also
exhibits a clear minimum at [ρ∗C,min ≈ 0.125, T∗C,min ≈ 0.113]. As a
result, this locus can be split into two distinct portions, referred to as
regime I for ρ∗ < ρ∗C,min and regime II otherwise. In regime II, TC(ρ)
behaves similarly as other LJY models, while regime I, featured by
the decrease of TC with the density, seems to be specific of the LJYE
model.

To perform a further assessment of our HNC predictions, we
have calculated T∗C also within the accurate self-consistent HMSA
theoretical approach,73 by adopting the Weeks–Chandler–Andersen
scheme to split the interaction potential.74 It turns out that HMSA
and HNC predictions substantially agree. We are, moreover, con-
fident about the accuracy of TC(ρ) within regime II, since we have
the opportunity to compare with CSD curves:9 at ϕ = 0.08 (i.e., ρ∗
= 0.153), the CSD starts to exhibit a clear maximum at T∗ ≤ 0.12, in
agreement with our HNC prediction T∗C(0.153) = 0.116. Moreover,
the S(qc) obtained from simulation for ϕ = 0.125 and 0.16 (with ρ∗
= 0.239 and 0.305, respectively) at T∗ = 0.12 exceeds the threshold
value 2.7,58 again in agreement with our predictions. Notice, how-
ever, that, within regime I, the CSD suggests at ϕ = 0.04 (ρ∗ = 0.076)
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FIG. 9. (a) The LJYE potential (orange), as compared with LJY(100, 0.2, 2)
(black). (b) Corresponding phase diagrams with the same color code, displaying
T∗C (ρ

∗) (triangles) and T∗D (ρ
∗) (circles).

a cluster phase at T∗ = 0.10,58 a temperature much lower than that
predicted by HNC.

Therefore, since we are confident that our HNC prediction for
the height S(qc) is reasonably accurate, we are left with the sus-
pect that for LJYE, the correspondence TC ⇔ S(qc) ≈ 2.720 is flawed
in the low-density regime I, all the more so because the opposite
implies questioning the well-established proximity between TC and
the liquid–vapor binodal of the corresponding reference fluid, dis-
cussed in Sec. III C. While deserving further investigation, this issue
cannot be solved within our theoretical approach and is, therefore,
deferred to future studies. Before concluding, we anticipate two con-
siderations, which are to be detailed in the next paragraphs. First,
the upward bending of TC in regime I is also present, even more
pronounced, for a whole family of LJYE parameterizations, obtained
from the original one by decreasing A; this again calls for a deeper
understanding of the whole topic. Second, even if we regard S(qc)
≈ 2.7 as signaling the highest temperature for the existence of the
clustered state, we shall see that, in the low-density regime I, TD falls

TABLE III. Coordination number ⟨n⟩ vs ρ∗ ≤ ρ∗×1 along T∗D (ρ
∗) for LJYE.

ρ∗ T∗D(ρ∗) ⟨n⟩

0.080 0.1231 2.459
0.090 0.1221 2.620
0.100 0.1213 2.765
0.125 0.1196 3.110
0.150 0.1184 3.422
0.180 0.1173 3.759

invariably above this threshold, with implications on the nature of
the arrested state for the LJYE family under scrutiny.

We now drive our attention to the dynamical arrest transition.
Contrary to LJY(100, 0.2, 2), for LJYE, we have found both G1 and
G2 solutions. Noticeably, TD(ρ) differs from the previous ones in
that it crosses TC(ρ) twice, at ρ∗×1 ≈ 0.18 and ρ∗×2 ≈ 0.45; see Fig. 9(b).
As a result, the area subtended by the two loci turns out to be very
narrow, with the density range within which clusters may exhibit
arrested states narrowed accordingly. Under these conditions, there-
fore, once clusters have formed, a feeble decrease in temperature is
sufficient to let them arrest, the more so the larger is the deviation of
the density from ρ∗D,min ≈ 0.31.

As far as a comparison with previous numerical studies of the
LJYE model is concerned, recent molecular dynamics simulations
coupled with SCGLE31 determined a rather flat arrest line, located
at T∗ ≈ 0.1 for low and moderate densities, and then slightly ris-
ing for ϕ ≳ 0.3. This datum (cf. Fig. 15 of Ref. 31) turns out to be
in a satisfying qualitative agreement with the shape of the TD(ρ)
locus below TC in Fig. 9(b); in particular, T∗D,min ≈ 0.115. Cluster-
percolated states were also found at ϕ = 0.125 (ρ ≈ 0.24) and ϕ
= 0.16 (ρ ≈ 0.30),58 both states falling within the ρ∗×1–ρ∗×2 interval.
Moreover, the experimental percolation line falls at ρ ≈ 0.19 in the
temperature range around T∗D,min ≈ 0.115,57 again in close agreement
with our threshold ρ∗×1 ≈ 0.18. However, in Ref. 58, percolation is
found at ϕ = 0.125 both at T∗ = 0.2 and at T∗ = 0.05, with an inter-
mediate temperature range where the system does not percolate,
while for ϕ = 0.16, percolation is found already at a temperature as
high as T∗ = 0.3, well above our TC locus. We have found no evi-
dence of such a re-entrant behavior or high-temperature arrested
states. With the theoretical tool in use, we are not able to further
inquiry into the discrepancies emerging with Ref. 58.

As for the properties of LJYE within regime I (i.e., for densities
lower than ρ∗×1), we see in Fig. 9(b) that TD(ρ) turns to be sys-
tematically higher than TC(ρ) or—to be more conservative—higher
than the temperature for which S(qc) ≈ 2.7. Therefore, as the
fluid is cooled down in this dilute regime, clustering is pre-
empted by dynamical arrest. The calculation of ⟨n⟩ along T∗D(ρ∗)
for ρ∗ ≤ ρ∗×1, reported in Table III, demonstrates how this quan-
tity is systematically higher than ⟨n0⟩ = 2.4, thus confirming our
prediction.

Our evidence points to the existence of an unexpected low-
density arrested state made of particles, i.e., possibly a glass in which
clusters are not the building blocks. Now, it is well recognized that,
at a very low density, the fluid is unable to stabilize a cluster fluid,
and, therefore, a homogeneous vapor phase persists;20 under these

J. Chem. Phys. 160, 214504 (2024); doi: 10.1063/5.0208117 160, 214504-10

Published under an exclusive license by AIP Publishing

 11 June 2024 08:18:56

10

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

conditions, it is clear that, whatever the fate of the fluid at low tem-
peratures (attaining either an ergodic or a non-ergodic state),28 its
building blocks are represented by single particles. The novelty of
our finding is that such an arrested state may take place even upon
conditions favorable to clustering.

To summarize, at variance with all models investigated in
sections III and IV, the LJYE exhibits a more complex phase por-
trait. For example, if we compress the fluid at constant temperature
slightly below T∗C,max, we see in Fig. 9(b) that it successively passes
from the low-density arrested phase to an IRO state and then to a
disordered cluster phase, to fall again in the IRO before eventually
entering, at much higher densities, a glassy phase made of parti-
cles. In addition, over a narrow temperature range slightly above
T∗C,max, there are isotherms along which the fluid first falls into the
low-density arrested phase and then traverses a large density inter-
val where clustering is inhibited, to finally end in high-density glass
phase.

B. Weakening the repulsive tail
To further elucidate the relationship between phase equilibria

and LJYE features, we study the interplay between TC(ρ) and TD(ρ),
as the strength of the repulsive Yukawa tail is progressively decreased
from A = 8ε, with fixed α = 18 and ξD = 0.5σ. The four potentials
obtained from the original LJYE with A/ε = 7.8, 7.3, 6.7, and 6.5
are shown in Fig. 10(a). We see that the decrease in A within that
range has just a moderate effect on the overall shape of the inter-
action potential: both the attraction depth and the repulsive barrier
are slightly reduced, while the range of both contributions remains
practically the same.

The phase diagrams are displayed in Fig. 10(b). As for the locus
S(qc) ≈ 2.7 vs ρ, we see that the bending toward high temperatures
in regime I—already discussed for the original LJYE in Fig. 9(b)—is
progressively enhanced as A decreases, until, at A = 6.7ε, T∗C,min dis-
appears in favor of a broad plateau. Therefore, upon compression
from very dilute conditions, T∗C initially decreases, then flattens, and
finally decreases again. Eventually, for the even lower A = 6.5ε, the
observed plateau gives way to a monotonic decrease, possibly indi-
cating that compressing the fluid is detrimental to clustering. As
for TD(ρ), this locus follows the same trend observed for LJYE,
regardless of the value of A, but for a constant shift toward higher
temperatures as A decreases. At the same time, ρ∗D,min moves toward
higher densities.

The density of the intersection point between TC(ρ) and
TD(ρ) on the low-density side, ρ×1, turns out to be remarkably
constant with A, signaling the existence of a minimum density
threshold for the existence of arrested states made of clusters, prac-
tically independent of the specific LJY parameterization. In the
range ρ < ρ×1, the differences between TD(ρ) and TC(ρ) get pro-
gressively thinner, until the two loci practically stick together for
A ≤ 6.7ε.

The most important observation is that for ρ < ρ×1, TD(ρ)
remains systematically higher than TC(ρ). This evidence corrob-
orates our predictions concerning the original LJYE model: an
arrested state made of particles is likely to characterize the low-
density behavior of a whole family of LJY potentials, preempting the
existence of a clustered state.

FIG. 10. (a) LJY models with α = 18, ξD = 0.5σ, and different strength A (reported
in the legend in units of ε). We recall that in the original LJYE, A = 8ε. (b) Cor-
responding phase diagram, in terms of T∗C (ρ

∗) (triangles) and T∗D (ρ
∗) (circles);

the vertical dashed line indicates ρ∗
×1.

C. Structural properties
The proximity of the TD(ρ) loci for the LJYE and

LJY(100, 0.2, 2) models offers the opportunity to discuss and
compare the structural properties of both models for selected state
points.

In Fig. 11, we show the low-q portion of the structure factors
calculated for three different densities, namely ρ∗ = 0.2, 0.3, and
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FIG. 11. Structure factors calculated at ρ∗ = 0.2 (black), 0.3 (blue), and 0.4 (red)
and fixed T∗ = 0.11. (a) LJY(100, 0.2, 2) and (b) LJYE. The horizontal dashed
lines indicate the threshold S(qc) = 2.7; the arrow in (a) points toward increasing
densities.

0.4, and fixed T∗ = 0.11, all conditions for which both LJYE and
LJY(100, 0.2, 2) fall deeply within their respective arrested phases;
see Fig. 9(b). The presence of a low-q peak in all cases testifies
the tendency of particles to aggregate. As seen in (a) [concerning
LJY(100, 0.2, 2)], both S(qc) and qc increase with density, indicat-
ing that—if the inverse of qc is assumed to be a measure of the
inter-cluster correlation distance—clusters are more disconnected at
low densities. The position of the main scattering peak in S(q) (not
shown), corresponding to nearest-neighbor correlations, remains
unchanged. In (b) (concerning LJYE), the same trend is observed for
qc but not for S(qc), showing a maximum at ρ∗ = 0.3, reminiscent of
the concave shape exhibited by T∗C(ρ∗); see Fig. 9(b).

Even if LJY(100, 0.2, 2) and LJYE exhibit arrested states in close
ranges of temperature, the nature of such states differs. For instance,
S(qc) is systematically higher for the former model, while the peak
locations qc are nearly the same. This indicates that clusters corre-
late over similar distances in both fluids, but interact more strongly
when the LJY(100, 0.2, 2) is considered. As for S(q→ 0), the low
values attained for LJY(100, 0.2, 2) even at the lowest density indi-
cate that the corresponding arrested states are hardly compressible.
Meanwhile, a striking feature characterizes S(q) for LJYE, for which
substantially higher values are observed. This evidence is notewor-
thy, given the typically low compressibility observed in glasses.
This propensity originates from the choice α = 18 in LJYE: indeed,
low-density state points described through the bare Lennard-Jones
potential with the same α are characterized by structure factors with
high S(q = 0) values.

To conclude, we show in Fig. 12(a) the evolution of the LJYE
pair correlation function, as the density increases from ρ∗ = 0.1 to
0.15 and finally to 0.18 (with the latter corresponding to ρ∗×1), along
the isotherm T∗ = 0.117. As visible from Fig. 9(b), all conditions
fall within the low-density arrested phase. At ρ∗ = 0.1, the first peak
is sharply defined, and followed by three well distinct coordina-
tion shells, testifying that this state point is already ordered at long

FIG. 12. (a) LJYE g(r) at ρ∗ = 0.1 (blue), 0.15 (red), and 0.18 (black), and T∗

= 0.117. (b) Behavior of the second peak of g(r) vs ρ∗ at the same temperature.

distances. We recall that, for classical fluids, the amplitude of suc-
cessive peaks of g(r) is known to increase upon compression, but
this is not the case for the present model. In fact, if the amplitude
of the first, third, and fourth peaks is seen to grow with the den-
sity, the behavior of the second peak of g(r)—denoted as g(r(2)max),
falling at r(2)max = 2.05σ independently of ρ—contrasts with this trend.
As seen in Fig. 12(b), upon compression, g(r(2)max) first decreases
and then increases, with a minimum exactly falling at ρ∗×1 = 0.18,
where, by our definition, the threshold S(qc) = 2.7 is reached. In
other words, the observed reversal of trend of g(r(2)max) (concerning
local, real-space correlations) and the criterion of Ref. 20 (concern-
ing long-range correlations in the reciprocal space) perfectly agree
in indicating the onset of clustering at the state point [T∗C = 0.117,
ρ∗ = 0.18]. This observation confirms, for the LJYE model at issue,
the quality of our local-correlation criterion to identify the clustering
threshold,22–24 initially proposed for the two-Yukawa SALR model,
and therein assessed in a substantially higher density regime.
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VI. CONCLUSIONS
The motivation for the present work was twofold: On the one

hand, we have been inspired by numerical evidence that systems
interacting through very short-range potentials with competing
contributions (SALR fluids) may exhibit, at low temperatures and
densities, arrested states made of clusters.26,27 On the other hand, we
wanted to apply for the first time our integral equation implementa-
tion of the replica method49,52 to detect the arrested states arising in
SALR fluids.

The SALR interaction we have used for our purposes is
composed of a generalized (2α, α) Lennard-Jones potential and a
screened Coulomb potential, accounted for by a repulsive (A, ξD)
Yukawa term, with A and ξD being the strength and the Debye
screening length, respectively, whence the name LJY(α, A, ξD).

We have studied a number of different [α, A, ξD] sets, resulting
in the determination of the low-temperature phase diagrams of as
many as 11 LJY models. Each temperature–density phase diagram
is composed of the cluster–phase boundary, identified by the locus
TC(ρ) and the arrested-state locus TD(ρ). Along an isochore, the
onset of the cluster phase is signaled by the heuristic criterion S(qc)
= 2.7,20 where qc is the position of the low-q peak in the structure
factor. The dynamical-transition temperature TD is obtained as the
highest temperature at which non-trivial solutions of Eqs. (3) and
(4) exist. Before tackling the study of LJY models, we have posi-
tively assessed our predictions for the standard Lennard-Jones fluid
against the more complex implementation of the replica formalism
of Ref. 59.

The interplay between TC(ρ) and TD(ρ), with these two loci
falling alternatively one on top of the other, depending on ther-
modynamic conditions and interaction parameters, gives rise to a
rich variety of arrested states interspersed with non-arrested states,
of which either clusters or single particles provide the building
blocks.

As for the locus TC(ρ), this generally exhibits a re-entrant con-
cave shape, with a maximum located at [ρC,max, TC,max]; increasing
α from 6 to 100, with fixed A and ξD, leads to shorter and shorter
LJY attractions, with the ensuing decrease of TC,max. As for the locus
TD(ρ), the corresponding arrested states are found all over the range
of fluid densities, but for α = 6 and 12, for which this locus does
not extend to the low-density regime (see e.g., Fig. 2). In this case,
the cluster fluid can reach the λ-line, heralding favorable condi-
tions for the development of ordered microphases. Due to its convex
shape, TD(ρ) exhibits a minimum located at [ρD,min, TD,min]; how-
ever, TD(ρ) gradually flattens with increasing α, until a slope close
to zero is eventually reached for α = 100; see Fig. 6(b). At interme-
diate densities, TC(ρ) and TD(ρ) cross each other at [ρ×, T×], in
such a way that for ρ < ρ×, TD falls below TC, and vice versa for
ρ > ρ×; see again Fig. 6(b). Therefore, below TD, the system is in
the (disordered or percolated) cluster phase for ρ < ρ×, while it is
in a (disordered or percolated) arrested phase made of particles at
higher densities. Above TD,min, the fluid undergoes successive phase
transitions upon compression, alternating arrested and non-arrested
states of different nature.

As far as the comparison with simulation results available from
other sources is concerned, our predictions for TD(ρ) in the low-
density regime for the set [α = 100, A = 0.2ε, ξD = 2σ] turn out to
be in gratifying agreement with the finite-T arrest line derived

in Ref. 27. Moreover, we have analyzed a realistic LJY colloidal
model,57,58 with [α = 18, A = 8ε, ξD = 0.5σ], referred to as LJYE in the
text. Again, in agreement with recent numerical results,31 arrested
states arise all over the fluid density range.

In conclusion, we are confident about the effectiveness of our
simplified static replica approach in providing a unified framework
for the study of arrested states occurring in the prototype LJY fluid,
irrespective of their nature.

Different possible developments can be foreseen. On the one
side, we hope that our theoretical framework will serve as a use-
ful guide for future numerical studies concerning arrested states in
SALR fluids. As for our projects, we plan to apply our theoreti-
cal approach to predict the arrest properties of other SALR fluids.
Moreover, we are lively searching, within our scheme, for possible
indicators useful to discriminate between different clustered arrested
states. Finally, several outcomes emerging from the present study
call for further investigations. For instance, the LJYE phase diagram
in Fig. 9(b) reveals a couple of unexpected features: at low densities,
TD(ρ) falls above TC(ρ), suggesting the occurrence of a previously
undetected arrested phase made of particles, which preempts in this
regime the existence of a clustered state. In addition, the S(qc) ≈ 2.7
threshold apparently displays a minimum as a function of the den-
sity in the same dilute regime. This outcome could represent a
breach in the “universal,” roughly parabolic shape of TC(ρ), well
recognized in the literature. Both features certainly deserve a careful
numerical assessment, especially because we have found that they
affect a whole family of LJYE models, as obtained from the orig-
inal one by systematically decreasing the repulsive strength of the
Yukawa tail.
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FIG. 13. Standard LJ fluid. (a) Order parameters g′(0) (circles, left scale) and Q (squares, right scale) vs T∗eff at fixed ρ∗ = 1.20, for m = 0.8, ε′0 = 0.1ε, and c = 0.3σ. The two
temperatures at which both order parameters change discontinuously, T∗dj1 = 0.30 and T∗dj2 = 0.25, are also indicated. (b) Order parameters g′1(0) within G1 (dotted-dashed
lines), g′2(0) within G2 (solid lines), and both within the liquid phase (horizontal lines) as a function of temperature, for three densities, in the limits ε′ → 0 and m→ 1. The
corresponding T∗D values are indicated by the vertical lines.
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APPENDIX: DYNAMICAL TRANSITION LINE
OF THE STANDARD LENNARD-JONES FLUID

We have solved the HNC equations for g(r) and g′(r) with
m = 0.8 and ε′0 = 0.1ε along three isochores, ρ∗ = 1.20, 1.27, and
1.40. In the work of Mézard and Parisi,54,59 the motivation for using
m < 1 is to allow using a liquid state theory like HNC to describe the
molecular fluid at m < 1, avoiding the transition at the Kauzmann
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FIG. 14. Dynamical arrest line of LJ fluid (black), as compared with predictions
from Ref. 59 (crosses). For completeness, liquid–vapor (circles) and fluid–solid
(squares) coexistence points are also shown,78 with the dotted line indicating the
triple-point temperature.

temperature TK, where the configurational entropy vanishes. There-
fore, we can use the free energy of the molecular liquid to deduce the
free energy of the glass phase at m = 1. We refer the interested reader
to the cited references for full details.

Figure 13(a) illustrates the essential features of the complex
Lennard-Jones glassy free energy landscape made of basins and
barriers.75–77 At the effective temperature T∗dj1 = 0.30, for ρ∗ = 1.20,
both order parameters g′(0) and Q undergo a first discontinuous
jump to much higher values. Going deeper in the glass phase, a sec-
ond branch of solutions appears discontinuously, at a lower effective
temperature T∗dj2 = 0.25. These jumps signal a broken replica sym-
metry of the system, a feature that represents the very foundation
of the replica method.54 Since g′(0) and Q decrease for T∗dj2 < T∗eff

< T∗dj1, the first jump is specific to the G1 solution. Meanwhile, since
g′(0) and Q increase for T∗eff < T∗dj2, the second jump is specific to
the “ideal” glass phase G2.

To recover the properties of the original system, ε′0 is progres-
sively switched off within G1 and G2 solutions and the limit m→ 1
is taken thereafter. In this way, non-trivial solutions g′1(r) and g′2(r)
within G1 and G2 phases are obtained and then used to calculate
the corresponding overlaps. We remark that, should ε′0 be switched
off too hastily—i.e., at T∗eff > T∗dj1—initially paired atoms would drift
away from each other in the liquid phase. To investigate the iso-
chores ρ∗ = 1.27 and 1.40, we do not need to repeat our search
protocol in full, since non-trivial solutions for these two states can
simply be obtained by compressing the system at constant tempera-
ture from ρ∗ = 1.20. The search for TD(ρ) has been carried out for
each of the three studied densities. To this aim, each glassy state
(ρ∗, T∗) was annealed.

Figure 13(b) shows the variation of g′1(0) and g′2(0) with
increasing T∗ for each density. As is clear, the order parameter
increases along the G1 branch and, vice versa, it decreases along G2.
For each density, G1 and G2 solutions coexist over the same range

of temperatures and end up at the same temperature T∗D(ρ∗). Above
T∗D, both order parameters drop to their L values g′1(0) = g′2(0) = 1.
The benchmark of the previously undetected G1-type solutions is
that they are able to predict TD in the same manner as G2-type solu-
tions do. No “glassy” solutions of the HNC equations exist above this
temperature, which coincides with the dynamical transition point
obtained by Franz et al.59 for the same model (cf. Table II therein),
using a much more elaborate approach.

Finally, we have extended our calculations of the dynamical
transition line all over the density range [1.0–1.4]. In Fig. 14, our
predictions are embodied in the equilibrium phase diagram of the
Lennard-Jones fluid;78 therein, the perfect consistency with previous
results59 can be visually appraised.
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