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Abstract

Hybrid automata are a natural model for both representing and analyzing
systems that exhibit a mixed discrete continuous behaviours. However, the
assumption of being able of performing infinite precision measurements over
them soon leads to undecidability results and, sometimes, produces evolu-
tions that are artifacts of the model and do not correspond to any observable
phenomena. A class of finite precision semantics, named ε-semantics, is a
way to handle these problems by formally representing noise, partial infor-
mation, and finite precision instruments. This paper extends the classical
reachability algorithm based on these semantics. Moreover, it reduces the
computation of two specific ε-semantics to the decidability of a first-order
theory and suggests how to decrease the complexity of the involved formulæ.
Finally, it provides two practical applications of the proposed techniques to
the biological domain.
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1. Introduction

The growing area of systems biology requires the development of tech-
niques and formal models suitable for the description of biological systems.
Often, such class of natural phenomena, can be captured through an ab-
straction process that involves hybrid systems, i.e., systems consisting of
interactions between discrete and continuous components. Hybrid automata
are mathematical models particularly suitable to the description of hybrid
systems. Therefore, the study and the analysis of biological systems can
be reduced to the resolution of reachability problems of hybrid automata.
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Unfortunately, due to the undecidability of such problem, there are no algo-
rithms able to compute, in a finite amount of time, the reachability set of a
hybrid automaton.

Several techniques tackling the undecidability of the reachability problem
have been proposed in recent years. One of the most studied approaches con-
sists in the approximation of the original reachability set of hybrid automata.
Such approximations can be performed in different manners: numerical cal-
culation, symbolic computation or geometrical analysis are just few examples
between all the approximation techniques offered in the literature. The most
important factors to be considered are the quality of the approximation with
respect to the original reachability set and the relationship between the ap-
proximated automaton and the behaviors of the modeled system.

ε-Semantics is a class of semantics that obviate the undecidability of the
reachability problem over hybrid automata with bounded invariants. They
were not originally meant to be proper approximations of the standard one,
but, on the contrary, they were introduced to better mime the behaviors of
real systems by adopting some natural-inspired constraints. Due to their
peculiarity, these semantics are able to capture some indeterminacy which
is intrinsic in the real word and, because of that, their use appears to be
particularly useful in the study of biological systems.

In our framework, ε-semantics affect polynomial dynamics that are part
of hybrid automata. Specifically, the ε-semantics evaluation of a formula
can be attributed to the standard evaluation of a formula that is the re-
sult of a particular translation applied to the starting one. Such translated
formula characterizes exactly in the standard semantics the ε-semantics of
the considered formula. Unfortunately, this translation process increases
the formulæ complexities, introducing an enlarged number of variables and
quantifier operators. This aspect causes a prolongation of the computational
times required to calculate the reachability set, operation which is performed
exploiting tools for the quantifiers elimination.

Part of this work is to identify approximation semantics of particular
interest for which the complexity of the evaluation can be contained. We
will identify some simplification applicable to the translated formulæ to both
decrease the number of the quantifier operators and reduce the complexity
of the ε-semantics evaluations. These optimizations will be exploited in the
analysis of two real biological cases, demonstrating the fact the ε-semantics
represent a valid tool in the the study of biological systems.

The paper is organized as follows. Section 2 introduces notation and de-
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fines hybrid automata. In Section 3, we present the notion of ε-semantics
and provide a reachability algorithm for hybrid automata based on it that
extends the applicability of the classical algorithm to a wider class of hy-
brid automata. Section 4 describes two examples of ε-semantics, it shows
that these two semantics are definable in the standard theory, and builds the
formulæ that define them. As suggested by Section 5, in some specific, but
frequent, cases, the complexity of these formulæ can be decreased. In Sec-
tion 6 we study two real biological cases, a neural oscillator and a glycemic
control system, exploiting all the techniques presented in the previous sec-
tions and, finally, Section 7 makes some concluding remarks and suggests
future work.

2. Hybrid Automata

We first need to introduce some basic notions and conventions. Capital
letters X, Xi, Y , Yi, W , and Wi, denote variables ranging over the reals,
while bolded letters X, Xi, Y, Yi, W, and Wi, denote tuples of real vari-
ables. We assume that all those variables that occur bound in a formula
do not occur free, and vice versa. This enables us to label variables, rather
than occurrences, as free or bound. We write ϕ[X1, . . . ,Xm] to stress the
fact that the set of free variables of the formula ϕ is a subset of the set of
variables {X1, . . . ,Xm}. By extension, ϕ[X1, . . . ,Xn] indicates that the vari-
ables of tuples X1, . . . ,Xn are free in ϕ. We denote the formula obtained from
ϕ[X1, . . . ,Xn] by simultaneously replacing all the variables X1, . . . ,Xn by
s1, . . . , sn, where si is either a constant or a variable, by writing ϕJs1, . . . , snK.

The notions of first-order formula, models, and theory are defined in the
standard way (see [1, 2]). A formula without free variables is called a sen-
tence. A theory T is a set of sentences such that if ϕ is a logical consequence
of T , then ϕ ∈ T . A theory T admits the elimination of quantifiers if, for
any formula ϕ, there exists in T a quantifier free formula % such that ϕ is
equivalent to % with respect to T . A theory T is decidable if there exists an
algorithm for deciding whether a sentence ϕ belongs to T or not.

Example 1. Consider the formula ϕ
def= ∃X (a ∗X2 + b ∗X + c = 0). It is

well known that ϕ is in the theory of reals with +, ∗, and ≥ if and only if the
unquantified formula b2 − 4ac ≥ 0 holds.

In this work we refer to the first-order theory of ⟨R,+,∗,=,<⟩, also known
as the Tarski’s theory or the theory of semi-algebraic sets, which is decidable
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and admits quantifier elimination. Even if we will implicitly refer to Tarski’s
theory, all our results hold for any decidable theory over the reals.

Given a language L, a semantics of it is a function [⋅] from the set
of formalæ of L to the power set of R∗ such that [ϕ[X1, . . . ,Xn]] ⊆ Rn.

Any theory T over a language L induces the semantics [ϕ[X1, . . . ,Xn]]
def=

{⟨s1, . . . , sn⟩ ∣ ϕJp1, . . . , pnK ∈ T }. The formula S[X] represents (also defines)
in [⋅] the set [S[X]]. If there exists a formula S[X] such that [S[X]] = S,
then the set S is said definable in [⋅]. In the case of the first-order language
⟨R,+,∗,=,<⟩, the semantics induced by the Tarski’s theory is also called stan-
dard semantics and we denote it by using the notation {∣⋅∣}. Whenever we do
not explicitly mention any semantics, we are referring to the standard one.

We also use some standard notions from topological and metric spaces
(see [3]). Given a set S ⊆ Rn, conv(S) denotes the convex hull of S, while,
with the symbol δ, we refer to the standard euclidean metric over Rn. From
now on, although we implicitly refer to δ, our results can be generalized to
any metric definable in Tarski’s theory. With the notation B(p, ε) we indicate
the set of points at distance smaller than ε from p, i.e., the open sphere of
radius ε centered in p ∈ Rn. By extension, B(S, ε), where S is a subset of Rn,
denotes the Minkowski sum of B(0, ε) and S.

2.1. Syntax, Semantics, and Reachability

In this section we give the formal definition of hybrid automata. In the
literature there are many different definitions of hybrid automata. Even if
the most common differences between those formalisms reside in the descrip-
tions of continuous and discrete transitions, the semantics attributed to the
transitions are almost the same. Here we define hybrid automata through
first-order formulæ over the reals and, in particular, semi-algebraic formulæ.

Definition 1 (Hybrid Automata - Syntax). A hybrid automaton H of di-
mension d(H) ∈ N is a tuple H = ⟨X,X′, T,V,E, Inv ,Dyn,Act ,Res⟩ where:

• X = ⟨X1, . . ., Xd(H)⟩ and X′ = ⟨X ′

1, . . ., X
′

d(H)
⟩ are two tuples of vari-

ables ranging over the reals R;

• T is a variable ranging over R≥0;

• ⟨V, E⟩ is a finite directed graph. Each element of V will be dubbed
location;
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• each location v ∈ V is labeled by the two first-order formulæ Inv (v)[X]
and Dyn(v)[X,X′, T ] such that if Inv (v)JpK is true then Dyn(v)Jp, q,0K
is true if and only if p = q;

• each edge e ∈ E is labeled by the formulæ Act (e)[X] and Res(e)[X,X′]
which are called activation and reset, respectively.

Intuitively, the formula Dyn(v)[X,X′, T ] characterizes the dynamics as-
sociated to the location v, while Inv (v)[X] denotes the set of the values
admitted during the continuous evolution of the automaton inside v. The
formulæ Act (e)[X] and Res(e)[X,X′] identifies the set of continuous values
from which the automaton can jump over the edge e and a map that should
be applied to the continuous values from which the automaton crosses the
edge e. The following section details the formal meaning of these formulæ
and describes the semantics of hybrid automata.

Hybrid automaton dynamics are usually described by using differential
equations (see, e.g., [4, 5]). However, in many cases, solutions or approxi-
mated solutions of the differential equations are computed before proceeding
with any reasoning on the automata (see, e.g., [5]). Whenever such solutions
are polynomials, we obtain automata which fall under our definition.

Differently from [6], we require that Dyn(v)Jp, q,0K implies p = q. Intu-
itively, this means that if we are in p at time 0, we can reach a point different
from p through a continuous dynamic only if we let time flow. This assump-
tion allows us to both get flow continuity at time 0 and slightly simplify the
reachability formulæ with respect to the ones defined in [6].

2.2. Hybrid Automaton Semantics

Intuitively, the formula Dyn(v)[X,X′, T ] holds if there exists a contin-
uous flow going from X to X′ in time T . Our semantics admits an infinite
number of continuous flows which can also be self-intersecting.

Definition 2 (Hybrid Automata - Semantics). A state ` of H is a pair ⟨v, r⟩,
where v ∈ V is a location and s = ⟨s1, . . . , sd(H)⟩ ∈ Rd(H) is an assignment of
values for the variables of X. A state ⟨v, s⟩ is admissible if Inv (v)JsK is true.
We have two kind of transitions:

• the continuous transition relation
tÐ→C:

⟨v, s⟩ tÐ→C ⟨v, r⟩ ⇐⇒ there exists f ∶ R≥0 → Rd(H) continuous function
such that s = f(0), there exists t ≥ 0 such that r = f(t), and for each
t′ ∈ [0, t], both Inv (v)Jf(t′)K and Dyn(v)Js, f(t′), t′K hold;
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• the discrete transition relation
(v,u)ÐÐ→D:

⟨v, s⟩ (v,u)ÐÐ→D ⟨u, r⟩ ⇐⇒ (v, u) ∈ E and both the formulæ Act ((v, u))JsK
and Res((v, u))Js, rK holds.

A trace is a sequence of continuous and discrete transitions. A point r
is reachable from a point s if there is a trace starting from s and ending in
r. We write ` →C `′ and ` →D `′ to mean that there exists a t ∈ R≥0 such

that `
tÐ→C `′ and that there exists an e ∈ E such that `

eÐ→D `′, respectively.
Moreover, we write `→ `′ to denote either `→C `′ or `→D `′.

Definition 3 (Hybrid Automata - Reachability). A trace of length n of H
is a sequence of admissible states `0, `1, . . . , `n, with n ∈ N>0, such that:

• for each j ∈ [1, n] it holds `j−1 → `j;

• for each j ∈ [1, n − 1] if `j−1 /→D `j, then `j →D `j+1.

In H, s ∈ Rd(H) reaches r ∈ Rd(H) if there exists a trace `0, . . . , `n of H
such that `0 = ⟨v, s⟩ and `n = ⟨u, r⟩, for some v, u ∈ V. A set I ⊆ Rd(H) reaches
F ⊆ Rd(H) if there exists s ∈ I which reaches r ∈ F.

Notice that we impose a condition such that, in a trace, two continuous
transitions do not occur consecutively. In all those hybrid automata whose
flows are solutions of autonomous differential equations, the continuous tran-
sition relation is transitive, which means that different consecutive continuous
transitions can be reduced to a single continuous one. Definition 1 allows also
automata whose continuous transition relation is not transitive. For instance,
if the solution of the differential-based dynamics is ⟨X0 +T,X1 +T 2⟩, the set
of points reachable from ⟨0,0⟩ is R = {⟨t, t2⟩∣t ∈ R≥0}. However, for every
r ∈ R, there exists a tuple ⟨t, r ∗ t⟩ in R. It follows that, if the semantics
admitted two or more successive continuous transitions, the reachability set
would have been R2 which is not the expected one.

Let us notice that the definition of →C requires the existence of a con-
tinuous function f which satisfies both the formuæ Inv and Dyn. If we
consider only functional automata (i.e., automata whose dynamics have the

form Dyn(v)[X,X′, T ] def= X′ = fv(X, T )) such an existence can be expressed
by an opportune first-order language. However, there exist non functional au-
tomata for which this is not the case. Hybrid automata in Michael’s form [6]
generalize functional automata still admitting a reduction of the continuous
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reachability problem over them to a satisfiability problem. On the one hand,
they allow to express dynamics involving unknown parameters, which may
be useful in many practical applications (e.g., systems biology). On the other
hand, they enable us to both over-approximate and under-approximate the
reachable set by exploiting the techniques presented in [7] and [8].

3. ε-Semantics

The ability of characterizing dense regions of arbitrarily small size, is the
main cause of the undecidability of the reachability problem over hybrid au-
tomata. As noticed in [8], such ability may be misleading in some cases. The
continuous quantities used in hybrid automata are very often abstractions of
large, but discrete, quantities. For instance, in the study of biological sys-
tems, the ability of handling values with infinite precision is a model artifact
rather than a real property of the original system.

Theorem 1 ([8]). Let T be a decidable first-order theory over reals and H be
a T -hybrid automaton with bounded invariants. If there exists ε ∈ R>0 such
that, for each I ⊆ Rd(H) and for each i ∈ N, either RSet i+1H (I) = RSet iH(I) or
there exists a ai ∈ Rd(H) such that B (ai, ε) ⊆ RSet i+1H (I)∖RSet iH(I), then there
exists j ∈ N such that RSet iH(I) = RSet jH(I) and the reachability problem over
H is decidable.

Since our hybrid automata characterization is based on first-order fro-
mulæ, it is reasonable to reinterpret the semantics of semi-algebraic automata
by giving each formula a “dimension of at least ε”. ε-semantics [8] are a class
of approximated semantics, which guarantee the decidability of reachability
in the case of hybrid automata with bounded invariants.

Definition 4. Let T be a first-order theory and let ε ∈ R>0. For each formula
ψ ∈ T with d free variables, let {∣ψ∣}ε be a subset of Rd such that:

(ε)either {∣ψ∣}ε = ∅ or there exists p ∈ Rd such that B (p, ε) ⊆ {∣ψ∣}ε
(∩){∣φ ∧ ϕ∣}ε ⊆ {∣φ∣}ε ∩ {∣ϕ∣}ε (∪){∣φ ∨ ϕ∣}ε = {∣φ∣}ε ∪ {∣ϕ∣}ε
(∀){∣∀Xψ[X,X]∣}ε = {∣⋀r∈RψJr,XK∣}ε (∃){∣∃Xψ[X,X]∣}ε = {∣⋁r∈RψJr,XK∣}ε
(¬){∣ψ∣}ε ∩ {∣¬ψ∣}ε = ∅

Any semantics satisfying the above conditions is an ε-semantics for T .
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There is no ε-semantics over-approximating {∣⋅∣}, i.e., there is no {∣⋅∣}ε such
that {∣ψ∣}ε ⊃ {∣ψ∣} for any formula ψ. As a matter of fact, by rule (¬), {∣ψ∣}ε ∩
{∣¬ψ∣}ε = ∅. Hence, if {∣ψ∣}ε ⊃ {∣ψ∣}, then {∣¬ψ∣}ε should be a subset of {∣¬ψ∣}.

It is well known that, in the standard semantics, the reachability prob-
lem over hybrid automata with bounded invariants is not decidable. This
is not the case if we use ε-semantics in place of the standard one and, in
particular, [8] introduced an algorithm that, provided the computability of
the ε-semantics, evaluates the reachable set of functional automata having
transitive dynamics. These constraints imposed on the dynamics were not
related to the applicability of the suggested strategy to more general au-
tomata, but they were due to the focus of interest of the original article.
Indeed, Algorithm 1 supports any hybrid automata in Michael’s form, even
those whose dynamics are not transitive.

The while loop of Algorithm 1 is repeated until the set of active locations
is exhausted. This happens when the set {∣N(v′)[X] ∧ ¬R(v′)[X]∣}ε becomes
empty for all the active locations v′ (line 14), i.e., set of states reached for the
first time during the last iteration is smaller than an ε-sphere. Since all the
sets {∣Inv(v)∣}ε are bounded by hypothesis, we conclude from Theorem 1 that
soon or later such a condition will be reached and Algorithm 1 eventually
terminates. The correctness of it easily follows from the same arguments that
were used for the original algorithm.

4. Two Relevant ε-Semantics

This section presents two computable instances of ε-semantics: the sphere
semantics and the dilated erosion semantics.

Definition 5 (Sphere semantics). Let T be a first-order theory over the re-
als and let ε > 0. The sphere semantics of ψ, (∣ψ∣)ε, is defined by structural
induction on ψ as follows:

● (∣t1 ○ t2∣)ε
def= B ({∣t1 ○ t2∣}, ε), for ○ ∈ {=,<}

● (∣ψ1 ∧ ψ2∣)ε
def= ⋃B(p,ε)⊆(∣ψ1∣)ε∩(∣ψ2∣)ε

B (p, ε) ● (∣ψ1 ∨ ψ2∣)ε
def= (∣ψ1∣)ε ∪ (∣ψ2∣)ε

● (∣∀Xψ[X,X]∣)ε
def= (∣⋀r∈RψJr,XK∣)ε ● (∣∃Xψ[X,X]∣)ε

def= (∣⋁r∈RψJr,XK∣)ε
● (∣¬ψ∣)ε

def= ⋃B(p,ε)∩(∣ψ∣)ε=∅B (p, ε)

It is known that the sphere semantics is an ε-semantics [8]. This se-
mantics is neither an over-approximation nor an under-approximation of the
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Algorithm 1 Reachability(H,I(⋅)[X],{∣⋅∣}ε)
Require: {∣Inv(v)∣}ε is bounded for all v ∈ V, cReach(v)Jp, qK holds iff

⟨v, p⟩ Ð→C ⟨v′, q⟩, dcReach(e)Jp, qK holds iff e = (v, v′) and there exists

a s ∈ R∗ such that ⟨v, p⟩ eÐ→D ⟨v′, s⟩ Ð→C ⟨v′, q⟩
Ensure: At the end of the computation R(v)JpK holds off ⟨v, p⟩ is reachable

1: for v ∈ V do
2: R(v)[X] ← ∃X′(cReach(v)JX′,XK ∧ I(v)JX′K)
3: N(v)[X] ← �
4: end for
5: active V← V

6: while active V ≠ ∅ do
7: new active ← ∅
8: for v ∈ active V do
9: R(v)[X] ← R(v)[X] ∨N(v)[X]

10: N(v)[X] ← �
11: end for
12: for (v, v′) ∈ E such that v ∈ active V do
13: N(v′)[X] ← N(v′)[X] ∨ ∃X′(dcReach(⟨v, v′⟩)JX′,XK ∧RJX′K)
14: if {∣N(v′)[X] ∧ ¬R(v′)[X]∣}ε ≠ ∅ then
15: new active ← new active ∪ {v′}
16: end if
17: end for
18: active V← new active
19: end while
20: return R(⋅)[X]
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standard semantics and, for instance, {∣X < 3∣} ⊂ (∣X < 3∣)ε and (∣¬(X < 3)∣)ε ⊂
{∣¬(X < 3)∣}.

Definition 6 (Erosion and DE Semantics). Let ψ be a formula and ε ∈ R>0.
The erosion semantics of ψ is the set oψjε defined by structural induction on
ψ itself as follows:

●ot1 ○ t2jε= ⋃B(p,ε)⊆{∣t1○t2∣}{p}
●oψ1 ∧ ψ2jε=oψ1jε∩oψ2jε ●oψ1 ∨ ψ2jε=oψ1jε∪oψ2jε
●o∀Xψ[X,X]jε= ⋂r∈RoψJr,XKjε ●o∃Xψ[X,X]jε= ⋃r∈RoψJr,XKjε
●o¬ψjε= ⋃B(p,ε)∩{∣ψ∣}=∅{p}

The dilated erosion semantics, or simply, DE semantics, of ψ is the set

⟫ψ⟪ε
def= ⋃p∈oψjε B (p, ε).

As oδ(X,0) < εjε does not contain a sphere of radius ε, but it is not empty,
the erosion semantics is not an ε-semantics. However, the DE semantics is
an ε-semantics and it under-approximates the standard semantics.

Lemma 1. For any first-order formula ψ and ε ∈ R>0, ⟫ψ⟪ε⊆ {∣ψ∣}. Moreover,
the DE semantics ⟫⋅⟪ε is an ε-semantics.

Proof. First, we demonstrate that the DE semantics is an under-approximated
semantics, i.e., for any first-order formula ψ and ε ∈ R>0, ⟫ψ⟪ε⊆ {∣ψ∣}. The
proof is given by structural induction on ψ itself.

t1○t2, for ○ ∈ {=,<}. By definition of DE semantics, ⟫t1 ○ t2⟪ε= B (ot1 ○ t2jε, ε)
= B (⋃B(p,ε)⊆{∣t1○t2∣}{p}, ε) = ⋃B(p,ε)⊆{∣t1○t2∣}B (p, ε) ⊆ {∣t1 ○ t2∣}.

ψ1 ∧ ψ2. ⟫ψ1 ∧ ψ2⟪ε= B (oψ1 ∧ ψ2jε, ε) = B (oψ1jε∩oψ2jε, ε) ⊆ B (oψ1jε, ε) ∩
B (oψ2jε, ε) =⟫ψ1⟪ε∩⟫ψ2⟪ε. By inductive hypothesis, ⟫ψ1⟪ε⊆ {∣ψ1∣} and
⟫ψ2⟪ε⊆ {∣ψ2∣}, hence ⟫ψ1⟪ε∩⟫ψ2⟪ε⊆ {∣ψ1∣} ∩ {∣ψ2∣} = {∣ψ1 ∧ ψ2∣}.

ψ1 ∨ ψ2. By definition, ⟫ψ1 ∨ ψ2⟪ε= B (oψ1 ∨ ψ2jε, ε) = B (oψ1jε∪oψ2jε, ε) =
B (oψ1jε, ε) ∪B (oψ2jε, ε) =⟫ψ1⟪ε∪⟫ψ2⟪ε. Now, by inductive hypothesis
we know that ⟫ψ1⟪ε⊆ {∣ψ1∣} and ⟫ψ2⟪ε⊆ {∣ψ2∣}, thus ⟫ψ1⟪ε∪⟫ψ2⟪ε⊆ {∣ψ1∣}∪
{∣ψ2∣} = {∣ψ1 ∨ ψ2∣}.

∀Xψ[X,X]. By the definition of DE semantics and inductive hypoth-
esis, ⟫∀Xψ[X,X]⟪ε= B (o∀Xψ[X,X]jε, ε) = B (⋂r∈RoψJr,XKjε, ε) =
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B (o⋀r∈RψJr,XKjε, ε) =⟫⋀r∈RψJr,XK⟪ε. Applying the inductive step
demonstrated in the conjunction case, we can state that ⟫⋀r∈RψJr,XK⟪ε
⊆ {∣⋀r∈RψJr,XK∣} which in terms of the standard semantics corresponds
to the formula {∣∀Xψ[X,X]∣}.

∃Xψ[X,X]. By the definition of DE semantics and inductive hypothesis,
⟫∃Xψ[X,X]⟪ε= B (o∃Xψ[X,X]jε, ε) = B (⋃r∈RoψJr,XKjε, ε), which is
equal to B (o⋁r∈RψJr,XKjε, ε) =⟫⋁r∈RψJr,XK⟪ε⊆ {∣⋁r∈RψJr,XK∣}, that,
by the standard semantics, corresponds to {∣∃Xψ[X,X]∣}.

¬ψ. ⟫¬ψ⟪ε= B (⋃B(p,ε)∩{∣ψ∣}=∅{p}, ε) = ⋃B(p,ε)∩{∣ψ∣}=∅B (p, ε) ⊆ {∣¬ψ∣}.

Let us now demonstrate that the DE semantics is effectively an ε-semantics,
i.e., that it satisfies all the requirements of Definition 4.

Requirement (ε) is trivially satisfied since any DE semantics evaluation
is performed applying an ε-expansion. This means that a formula is ei-
ther empty or large at least as an ε-sphere. Let ψ = ψ1 ∧ ψ2 be a con-
junction. By definition, ⟫ψ1 ∧ ψ2⟪ε= B (oψ1 ∧ ψ2jε, ε) = B (oψ1jε∩oψ2jε, ε) ⊆
B (oψ1jε, ε) ∩B (oψ2jε, ε) =⟫ψ1⟪ε∩⟫ψ2⟪ε. Thus, requirement (∩) is satisfied.
Similarly, if ψ = ψ1 ∨ ψ2 is a disjunction, then ⟫ψ1 ∨ ψ2⟪ε= B (oψ1 ∨ ψ2jε, ε) =
B (oψ1jε∪oψ2jε, ε) = B (oψ1jε, ε) ∪ B (oψ2jε, ε) =⟫ψ1⟪ε∪⟫ψ2⟪ε, which means
that also the requirement (∪) is satisfied. Let ψ = ∀Xψ[X,X] be a quantified
formula. Thus, ⟫∀Xψ[X,X]⟪ε= B (o∀Xψ[X,X]jε, ε) = B (⋂r∈RoψJr,XKjε, ε)
= B (o⋀r∈RψJr,XKjε, ε) =⟫⋀r∈RψJr,XK⟪ε. The case of formulæ closed by the
existential quantifier operator is symmetrical to the universal one, where
the unions and disjunctions play the roles of intersections and conjunctions,
respectively. Hence, also requirements (∀) and (∃) are satisfied. Finally,
since the DE semantics is an under-approximation semantics, we know that
⟫ψ⟪ε⊆ {∣ψ∣} and ⟫¬ψ⟪ε⊆ {∣¬ψ∣}. Moreover, by the standard semantics, since
it holds that {∣ψ∣} ∩ {∣¬ψ∣} = ∅, then ⟫ψ⟪ε∩⟫¬ψ⟪ε= ∅ must hold too. Hence,
requirement (¬) is always satisfied.

The evaluation of both (∣⋅∣)ε and ⟫⋅⟪ε can be reduced to the evaluation of
the standard semantics. For any first-order theory T such that B (p, ε) is

T -definable and any φ ∈ T , we can build two first-order formulæ, (̂φ)ε and

(φ̃)ε, in T , such that (∣φ∣)ε = {∣(̂φ)ε∣} and ⟫φ⟪ε= {∣(φ̃)ε∣}. This means that,

whenever T is decidable, both (∣⋅∣)ε and ⟫⋅⟪ε are symbolically computable.
We need to distinguish two kind of variables: the variables of the original

formula (named W , Wi, W and Wi), whose evaluations are perturbed by

12



the sphere semantics, and the auxiliary variables (named Y , Yi, Y and Yi)
introduced to translate the sphere semantics into the standard one. It is
possible to see the later as symbolic constants, even if they will be quantified
in the translated formula. We will use them to characterize the ε-semantics
of the formulæ ⋀r∈RϕJr,WK and ⋁r∈RϕJr,WK in the standard semantics.

4.1. From sphere into standard semantics
Let T be a first-order theory over the reals, ϕ[Y,W] be any first-order

formula T -definable, and ε ∈ R>0. We define (̂ϕ)ε[Y,W] by structural induc-
tion on ϕ[Y,W] itself.

• ̂
((t1 ○ t2)[Y,W])ε

def
= ∃W0((t1 ○ t2)JY,W0K ∧ δ(W0,W) < ε), ○ ∈ {=,<};

• ̂
(φ[Y,W] ∧ ψ[Y,W])ε

def
= ∃W0(∀W1(δ(W0,W1) < ε _

(
̂
(φ)ε ∧

̂
(ψ)ε)JY,W1K) ∧ δ(W0,W) < ε);

• ̂
(φ ∨ ψ)ε

def
=

̂
(φ)ε ∨

̂
(ψ)ε;

• ̂
(∀Wφ[Y,W,W])ε

def
= ∃W0(∀W1(δ(W0,W1) < ε _

∀Y ̂
(φJY, Y,W1K)ε) ∧ δ(W0,W) < ε);

• ̂
(∃Wφ[Y,W,W])ε

def
= ∃Y ̂

(φJY, Y,WK)ε;

• ̂
(¬φ[Y,W])ε

def
= ∃W0(∀W1(δ(W0,W1) < ε _

¬
̂

(φJY,W1K)ε) ∧ δ(W0,W) < ε).

We now prove that the sphere semantics of ϕ and standard semantics of
(̂ϕ)ε are the same and that, provided the decidability of ϕ, we can symboli-
cally compute the sphere semantics of it.

Theorem 2 (Semantics Equivalence [9]). Let T be any first-order theory and
δ be a T -definable distance. The sphere semantics (∣.∣)ε of T is T -definable

in the standard semantics and, in particular, (∣ϕ[X]∣)ε = {∣(̂ϕ)ε[X]∣} for any

formula ϕ[X] ∈ T and all ε ∈ R>0.

Example 2. Let us consider the formula ϕ[X] def= X > 0 ∧X < 2. We have

that ̂(X > 0)ε ≡ ∃X0(X0 > 0∧δ(X0,X) < ε) ≡X0+ε > 0. By applying the same

rule, ̂(X < 2)ε ≡ ∃X0(X0 < 2 ∧ δ(X0,X) < ε) ≡ X − 2 − ε < 0. Finally, since

ε is a positive real, ̂(X > 0 ∧X < 2)ε ≡ ∃X0(∀X1(δ(X0,X1) < ε _ X1 + ε >
0 ∧X1 − 2 − ε < 0) ∧ δ(X0,X) < ε) ≡X > −ε ∧X ≤ 2 + ε.

Let us notice that the formula (̂ψ)ε is syntactically more complex than ψ.
This is mainly due to the possible introduction of new quantifier alternations.
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4.2. From DE into standard semantics

Both erosion semantics and DE semantics are definable in the Tarski’s
theory, i.e., if ψ is a formula of the first-order language of the reals equipped
of sum, product and comparison relations, then there exist two formulæ
ψ̃ε and ψε such that ⟫ψ⟪ε= {∣ψ̃ε∣} and oψjε= {∣ψε∣}. Moreover, we can com-

pute both of them. As a matter of fact, it is easy to prove that ψ̃ε[X] =
∃X0 (δ(X,X0) < ε ∧ ψεJX0K).

As concern the formula (ψ[Y,W])ε, we define it by structural induction
on ψ as follows:

• ((t1 ○ t2)[Y,W])ε
def= ∀Y1(δ(Y1,W) < ε_ (t1 ○ t2)JY,Y1K);

• ((ψ1 ∧ ψ2)[Y,W])ε
def= (ψ1[Y,W])ε ∧ (ψ2[Y,W])ε;

• ((ψ1 ∨ ψ2)[Y,W])ε
def= (ψ1[Y,W])ε ∨ (ψ2[Y,W])ε;

• (∀Wψ1[Y,W,W])ε
def= ∀Y (ψ1JY, Y,WK)ε;

• (∃Wψ1[Y,W,W])ε
def= ∃Y (ψ1JY, Y,WK)ε;

• (¬ψ[Y,W])ε
def= ¬∃Y0(δ(Y0,W) < ε ∧ ψJY,Y0K).

As done for the sphere semantics, we reduce the computation of oϕjε to
the evaluation of the standard semantics of ϕε.

Theorem 3. Let T be any first-order theory and δ be a T -definable distance.
The erosion semantics o⋅jε of T is T -definable in the standard Tarski’s se-

mantics and, in particular, oψ[X]jε= {∣(ψ[X])ε∣} for any formula ψ[X] ∈ T
and all ε ∈ R>0.

Proof. By structural induction on ψ.

ψ[Y,W] is atomic.
By the definition of the erosion semantics, ot1 ○ t2jε= ⋃B(p,ε)⊆{∣t1○t2∣}{p},
for ○ ∈ {=,<}. The righter term of the last equation is the union of the
centers of all the ε-spheres entirely included into the standard semantics
of (t1 ○ t2). Any point y⃗ is included in such a union if and only if all the
points belonging to the ε-sphere centered in y⃗ satisfy (t1 ○ t2). By the
standard semantics, the later sentence holds if and only if the formula
∀Y1(δ(Y1,W) < ε_ (t1 ○ t2)JY,Y1K) does the same.
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ψ[Y,W] has the form (ψ1 ∧ ψ2)[Y,W].
By definition, oψ1 ∧ ψ2jε

def= oψ1jε∩oψ2jε, while, by inductive hypothesis

both oψ1jε≡ {∣(ψ1)ε∣} and oψ2jε≡ {∣(ψ2)ε∣} hold. From the standard

semantics and the definition of (⋅)ε, we deduce the thesis.

ψ[Y,W] has the form (ψ1 ∨ ψ2)[Y,W].
Similarly to the previous case, since oψ1 ∨ ψ2jε

def= oψ1jε∪oψ2jε and by

inductive hypothesis both oψ1jε≡ {∣(ψ1)ε∣} and oψ2jε≡ {∣(ψ2)ε∣} hold,
we can deduce the thesis directly from the standard semantics and the
definition of (⋅)ε.

ψ[Y,W] has the form ∀Wψ1[Y,W,W].
By definition, o∀Wψ1[Y,W,W]jε

def= ⋂r∈Roψ1JY, r,WKjε. By inductive

hypothesis oψ1[Y, r,W]jε≡ (ψ1[Y, r,W])ε holds, while by the standard

semantics ⋂r∈Roψ1[Y, r,W]jε≡ ∀Y (ψ1[Y, Y,W])ε holds too. Hence,
from the definition of erosion semantics, we can conclude that the set

{∣∀Y (ψ1[Y, Y,W])ε∣} is equivalent to the set o∀Wψ1[Y,W,W]jε.

ψ[Y,W] has the form ∃Wψ1[Y,W,W].
Using the same argument of the previous case, it is easy to see that the

equivalence o∃Wψ1[Y,W,W]jε
def= ⋃r∈Roψ1JY, r,WKjε≡ {∣∃Y (ψ1[Y, Y,W])ε∣}

holds.

ψ[Y,W] has the form ¬ψ1[Y,W].
By definition, o¬ψjε

def= ⋃B(p,ε)∩{∣ψ1∣}=∅
{p}. The righter term of the last

equation is the union of the centers of all the ε-spheres which do not
intersect the standard semantics of ψ1. Any point y⃗ is belongs to such
union if and only if all the points included into the ε-sphere centered
in y⃗ do not satisfy ψ. By the standard semantics, the later sentence
holds if and only if the formula ¬∃Y0(δ(Y0,W) < ε ∧ ψJY,Y0K) does
the same.

Since ⟫ϕ⟪ε is empty if and only if oϕjε is empty too, we can use o⋅jε in
place of ⟫⋅⟪ε to evaluate Algorithm 1 and, in particular, the line 14 of it.
This replacement does not affect the result of the computation, but decrease
the complexity of the formulæ whose satisfiability should be tested by the
algorithm.
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5. Formulæ Simplifications

If the formalæ produced by the above described process assume a very
specific, but quite frequent, form, then we can syntactically simplify them
preserving their semantics. Such simplifications may decrease the complexity
of decision procedures of the emptiness test on line 14 of Algorithm 1.

Lemma 2. Let S ⊆ Rn be a closed and convex set, ε ∈ R>0, and p ∈ Rn. If
∀X0(δ(p,X0) < ε_ ∃X1(X1 ∈ S ∧ δ(X0,X1) < ε)) holds, then p ∈ S.

Proof. The proof is given by contradiction. Let p ∈ (Rn ∖ S) satisfying the
assumption of the lemma. By letting X0 = p we get ∃X1(X1 ∈ S∧ δ(p,X1) <
ε), therefore B (p, ε) ∩ S ≠ ∅, and δ(p,S) < ε.

Then the distance δ(p, conv(S)) is a nonzero number d < ε, since S =
conv(S) is closed. Let q ∈ S be such a point that δ(q, p) = d. We can use the
linear separability theorem: because p = conv(p) and S = conv(S) are two
disjoint convex sets, there exists a separating hyperplane perpendicular to
the line through q and p.

Let us now consider a point v ∈ B (p, ε) on the line going through p and
q such that δ(v, p) = ε − d/2 and δ(v, q) = ε + d/2. Then δ(v,S) ≥ δ(v, q) > ε,
which is a contradiction with the assumption ∀X0(δ(p,X0) < ε_ ∃X1(X1 ∈
S ∧ δ(X0,X1) < ε)), if d > 0. Therefore δ(p,S) = 0, and because S is closed,
p ∈ S.

Theorem 4. Let T be a first-order theory over the reals, ϕ1[X], . . . , ϕk[X]
be k first-order formulæ T -definable, such that sets {∣ϕ1∣} , . . . ,{∣ϕk∣} ⊆ Rn are
convex and closed, and let ε ∈ R>0. Then the formula

ψ[X] def= ∃X0(∀X1(δ(X0,X1) < ε_
⋀ki=1 ∃Xi+1(ϕiJXi+1K ∧ δ(Xi+1,X1) < ε)) ∧ δ(X,X0) < ε)

is equivalent to the formula

θ[X] def= ∃X0((⋀ki=1ϕiJX0K) ∧ δ(X,X0) < ε).

Proof. (⇒) Let ψJqK hold for a point q ∈ Rn. That is equivalent to the formula
∃X0(∀X1(X1 ∈ B (X0, ε) _ ⋀ki=1 ∃Xi+1(Xi+1 ∈ {∣ϕi∣} ∩ B (X1, ε))) ∧ X0 ∈
B (q, ε)).

Now we can use Lemma 2, letting p = X0,S = {∣ϕi∣} ) and get for any
choice of i ∈ {1, . . . , k} that X0 ∈ {∣ϕi∣} . Then, θJqK = ∃X0(X0 ∈ (⋂ki=1 {∣ϕ1∣}) ∧
δ(q,X0) < ε) is true for the given point q ∈ Rn.
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(⇐) Let θJqK hold for a point q ∈ Rn. That means the same as the formula
∃X0(X0 ∈ (⋂ki=1 {∣ϕi∣}) ∩B (q, ε)), which implies ∃X0(∀X1(δ(X0,X1) < ε _
X0 ∈ ⋂ki=1 {∣ϕi∣})∧δ(X0,X1) < ε), that in turn implies ∃X0(∀X1(δ(X0,X1) <
ε _ ⋀ki=1 ∃Xi+1(Xi+1 ∈ {∣ϕi∣} ∧ δ(Xi+1,X1) < ε))), because from above there
exists at least X2 = X0,X3 = X0, . . .Xk+1 = X0 for every X1 ∈ B (X0, ε) .
Which means ψJqK holds.

Theorem 5. Let T be a first-order theory over the reals, ϕ1[X], . . . , ϕk[X] be
k first-order formulæ T -definable, such that the union of sets {∣ϕ1∣} , . . . ,{∣ϕk∣} ⊆
Rn is a convex and closed subset of Rn, and let ε ∈ R>0.

Then the formula

ψ[X] def= ∃X0(∀X1(δ(X0,X1) < ε_
⋁ki=1 ∃Xi+1(ϕiJXi+1K ∧ δ(Xi+1,X1) < ε)) ∧ δ(X,X0) < ε)

is equivalent to the formula

θ[X] def= ∃X0((⋁ki=1ϕiJX0K) ∧ δ(X,X0) < ε).

Proof. (⇒) Let ψJqK hold for a point q ∈ Rn. That is equivalent to the
formula ∃X0(∀X1(X1 ∈ B (X0, ε) _ ⋁ki=1 ∃Xi+1(Xi+1 ∈ {∣ϕi∣} ∩B (X1, ε))) ∧
X0 ∈ B (q, ε)), which is equivalent to ∃X0(∀X1(X1 ∈ B (X0, ε) _ ∃X2(X2 ∈
(⋃ki=1 {∣ϕi∣}) ∩B (X1, ε))) ∧X0 ∈ B (q, ε)).

Now we can use Lemma 2, letting p = X0,S = ⋃ki=1 {∣ϕi∣}, and get X0 ∈
⋃ki=1 {∣ϕi[X]∣} = {∣⋁ki=1ϕi[X]∣} . Then θJqK = ∃X0((⋁ki=1ϕi[X0]) ∧ δ(q,X0) < ε)
is true for the given point q ∈ Rn.

(⇐) Let θJqK hold for a point q ∈ Rn. That means the same as the formula
∃X0(X0 ∈ (⋃ki=1 {∣ϕi∣}) ∩B (q, ε)), which implies ∃X0(∀X1(δ(X0,X1) < ε _
X0 ∈ ⋃ki=1 {∣ϕi∣})∧δ(X0,X1) < ε), that in turn implies ∃X0(∀X1(δ(X0,X1) <
ε _ ⋁ki=1 ∃Xi+1(Xi+1 ∈ {∣ϕi∣} ∧ δ(Xi+1,X1) < ε))), because from above, there
exists i ∈ {1,2, . . . , k} satisfying X0 ∈ {∣ϕi∣} , which means ψJqK holds.

Theorem 6. If ϕ is a formula without free variables, then ⟫ϕ⟪ε=oϕjε= {∣ϕ∣}.

Proof. As first thing, let notice that the standard evaluation of a formula
ψ without free variables is a truth value which can be true (⊺) or false (�).
Hence, the standard semantics of a formula without free variables is either
{∣ψ∣} = R∗ or {∣ψ∣} = ∅. Moreover, the ε-expansions of such kind of sets,
correspond to the sets themselves, i.e., B (R∗, ε) = R∗ and B (∅, ε) = ∅.
Let first demonstrate by structural induction on a formula ψ without free
variables that oψjε= {∣ψ∣}.
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t1 ○ t2, for ○ ∈ {=,<}. ot1 ○ t2jε is defined as the union of all the centers of the
ε-spheres entirely included into {∣t1 ○ t2∣}. Since (t1 ○ t2) is without free
variables, either {∣t1 ○ t2∣} = R∗ or {∣t1 ○ t2∣} = ∅. Let notice that both

⋃B(p,ε)⊆R∗{p} = R∗ and ⋃B(p,ε)⊆∅{p} = ∅ hold. But this means that if
(t1 ○ t2) is true, then {∣t1 ○ t2∣} = R∗ =ot1 ○ t2jε, while if (t1 ○ t2) is false,
then {∣t1 ○ t2∣} = ∅ =ot1 ○ t2jε. Then we can state that {∣t1 ○ t2∣} =ot1 ○ t2jε.

ψ1 ∧ ψ2. By the definition of erosion semantics oψ1 ∧ ψ2jε
def= oψ1jε∩oψ2jε.

Moreover, by inductive hypothesis we know that oψ1jε= {∣ψ1∣} and oψ2jε=
{∣ψ2∣}. Hence, {∣ψ1 ∧ ψ2∣} = {∣ψ1∣} ∩ {∣ψ2∣} =oψ1jε∩oψ2jε=oψ1 ∧ ψ2jε holds.

ψ1 ∨ ψ2. Similarly to the previous case, exploiting the erosion semantics’
definition and the inductive hypothesis, we have that the equalities
{∣ψ1 ∨ ψ2∣} = {∣ψ1∣} ∪ {∣ψ2∣} =oψ1jε∪oψ2jε=oψ1 ∨ ψ2jε hold.

∀Wψ[W ]. In this case, o∀Wψ[W ]jε
def= ⋂r∈RoψJrKjε. By inductive hypoth-

esis it holds that oψ[r]jε= {∣ψ[r]∣}. Thus, by the standard semantics it
follows that o∀Wψ[W ]jε= ⋂r∈RoψJrKjε= ⋂r∈R {∣ψJrK∣} = {∣∀Wψ[W ]∣}.

∃Wψ[W ]. Similarly to the previous case, exploiting the erosion semantics’
definition and the inductive hypothesis, we have that the equalities
o∃Wψ[W ]jε= ⋃r∈RoψJrKjε= ⋃r∈R {∣ψJrK∣} = {∣∃Wψ[W ]∣} hold.

¬ψ. By the definition of erosion semantics o¬ψjε= ⋃B(p,ε)∩{∣ψ∣}=∅{p}. Note
that if ψ is true, then o¬ψjε= ⋃B(p,ε)∩R∗=∅{p} = ∅ = {∣¬ψ∣}, while if ψ
is false, then o¬ψjε= ⋃B(p,ε)∩∅=∅{p} = R∗ = {∣¬ψ∣}, which means that
o¬ψjε= {∣¬ψ∣}.

Finally, the DE semantics ⟫⋅⟪ε of a formula ψ is defined as B (oψjε, ε). If ψ
is without free variables, we know that B (oψjε, ε) = B ({∣ψ∣}, ε). Moreover,
since in this case {∣ψ∣} is either R∗ or ∅, it holds that B ({∣ψ∣}, ε) = {∣ψ∣}, which
in turn means that ⟫ψ⟪ε= B ({∣ψ∣}, ε) = {∣ψ∣}. In conclusion we can state that
if a formula ψ is without free variables, then ⟫ψ⟪ε=oψjε= {∣ψ∣}.

6. Analysis of Two Biological Hybrid Models

Oscillatory electrical stimuli have been considered central for the activities
of several brain regions since the ’80s. It was shown that they play an impor-
tant role in the olfactory information processing [10] and they were observed
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in the hippocampus [11], in the thalamus [12], and in the cortex [13]. Many
studies suggested that, in the mammalian visual system, neurons signals may
be group together through in-phase oscillations [14]. Hence, the development
and analysis of models representing oscillatory phenomena assume a great
importance in understanding the neurophysiological activities.

A simple continuous model of a single oscillator has been proposed in [15].
The model describes the evolutions of one excitatory neuron (Ne) and one
inhibitory neuron (Ni) by mean of the ordinary differential system.

f(τ, λ) ∶ { Ẋe = −Xeτ + tanh (λ ∗Xe) − tanh (λ ∗Xe)
Ẋi = −Xiτ + tanh (λ ∗Xi) + tanh (λ ∗Xi)

, (1)

where Xe and Xi are the output of Ne and Ni, respectively, τ is a character-
istic time constant, and λ > 0 is the amplification gain.

We approximated the not linear part of the System (1) (i.e., tanh (λ ∗X))
by the piecewise function hλ,α(z) defined as follow:

hλ,α(z) def=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1 if z < −αλ
λ
α ∗ z if − α

λ ≤ z < α
λ

1 if z ≥ α
λ

, (2)

where α is the approximation coefficient which determines the slope of the
central segment (see Figure 1). This leads to the hybrid automaton Hf̃ is
depicted in Figure 2.

0

−1

−0.5

0

0.5

1

X = α
λX = −αλ

tanh (λ ∗X)
hλ,α(X)

Figure 1: hλ,α(X) approximating tanh (λ ∗X)

We intend to study Hf̃ behavior through sphere semantics, exploiting
cylindrical algebraic decomposition tools to automatically compute it. In
particular, we want to prove that each point in the space reaches a bounded
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Xe = −αλ Xe = α
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Xi = −αλ

Xi = α
λ

Ẋe = τ∗λ−α
τ∗α Xe − λ

αXi

Ẋi = λ
αXe + τ∗λ−α

τ∗α Xi

v0

Ẋe = −Xeτ − λ
αXi − 1

Ẋi = τ∗λ−α
τ∗α Xi − 1

v1

Ẋe = −Xeτ
Ẋi = −Xiτ − 2

v2

Ẋe = τ∗λ−α
τ∗α Xe + 1

Ẋi = λ
αXe − Xi

τ − 1

v3

Ẋe = −Xeτ + 2

Ẋi = −Xiτ

v4

Ẋe = −Xeτ − λ
αXi + 1

Ẋi = τ∗λ−α
τ∗α Xi + 1

v5

Ẋe = −Xeτ
Ẋi = −Xiτ + 2

v6

Ẋe = τ∗λ−α
τ∗α Xe − 1

Ẋi = λ
αXe − Xi

τ + 1

v7

Ẋe = −Xeτ − 2

Ẋi = −Xiτ

v8

Figure 2: A graphical representation of the hybrid automaton Hf̃ associated to the func-

tion f̃α(τ, λ)

region which includes the limit cycle. Notice that in this example our au-
tomata have unbounded invariants, hence the termination of sphere seman-
tics reachability algorithm is not guaranteed.

First of all, we replace the differential equations with the corresponding
first-degree Taylor polynomials. In order to keep the presentation simple, in
this section we fix the parameters as follows τ = 3, λ = 1, α = 2. Hence, the
activations correspond to the axis Xi = ±2 and Xe = ±2.

We start computing the intersections of the limit cycle with the activation
regions. Consider for instance the intersection Q0 = ⟨xQ0 ,2⟩ of the limit cycle
with Xi = 2 and Xe > 0. We have that xQ0 is the unique solution of the
equation which describes the intersection of the diamond-like limit cycle with
Xi = 2. Similarly, consider point Q1 = ⟨2, yQ1⟩ that in turn corresponds to the
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intersection of the limit cycle with Xe = 2 and Xi > 0. Let us now consider
a point P0 located on Xi = 2 such that its distance d0 from Q0 is at least
2ε, i.e., P0 = ⟨xP0 ,2⟩ and δ(Q0, P0) = d0 > 2ε. Consider now any point P1

on Xe = 2 resulting from the sphere semantics evaluation of the continuous
evolution which starts in P0 inside location v6. Thus, let denote with d1 the
distance between such P1 and Q1, i.e., δ(Q1, P1) = d1. If we could prove that
d1 is always smaller than d0, then we would be able to conclude that all the
points which start from a distance of at least 2ε from the limit cycle converge
to a flow tube having diameter 2ε that includes the limit cycle. Of course,
to obtain such conclusion, we need to prove this property on all locations.

We can formalize this concept through a first-order formula. We denote
with r and s the straight lines Xi = 2 and Xe = 2, respectively, and with the
notation Q0 ∈ r ∩ C ∩ Xe > 0 the membership of Q0 to the intersection of
straight line r with limit cycle C and positive Xe semi-plane. Moreover, with
the notation (∣P0 →C P1∣)ε we denote the continuous transition from point
P0 to point P1 performed exploiting sphere semantics. Thus, our desired
property can be expressed as:

∀Q0Q1∀P0P1((Q0 ∈ r ∩C ∩Xe > 0 ∧Q1 ∈ s ∩C ∩Xi > 0 ∧ P0 ∈ r ∩Xe > 0∧
P1 ∈ s ∩Xe > 0 ∧ δ(Q0, P0) > 2ε ∧ (∣P0 →C P1∣)ε) _ δ(Q1, P1) < δ(Q0, P0))

(3)

stating the convergence to the limit flow tube in location v6. Such property
can be easily rewritten for each location of the hybrid automaton, changing
the roles of activation border lines r and s.

We implemented a Python package that encodes the ε-semantics frame-
work together with the simplifications presented in Section 5. Moreover, this
package provides easy-to-use interfaces to REDLOG and allow us to test the
satisfiability of a formula. We used it to both evaluate (∣P0 →C P1∣)ε and prove
our conjectures (the result is computed within few seconds).

As far as ⟨0,0⟩ is concerned, it is immediate to prove that it reaches points
different from itself and, hence, it reaches the limit flow tube.

Other interesting properties that automatically verified express, for in-
stance, the fact that applying the sphere semantics there are points that
cross the limit cycle (in both directions). This is quite natural since points
closer than ε to the limit cycle get expanded and cross it.

In order to investigate the effectiveness of our methods, we performed
further analysis on a different biological system: the glycemic control in

21



diabetic patients. Such control task consists in monitoring and correcting
the blood glucose level of a patient affected by diabetes. Since it is well
known that a good glycemic control plays an important role in the diabetes
care, it is important to develop and study models that may result useful in
the design of insulin infusion devices.

The investigated hybrid automaton is based on the continuos model pre-
sented in [16]. The overall system is depicted by the following system.

dG

dt
= − p1G −X(G +GB) + g(t)

dX

dt
= − p2X + p3I

dI

dt
= − n(I + IB) +

1

VI
i(t)

where the functions g(t) and i(t) directly depend on G and t, respectively,
and are piecewise defined as:

i(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

25
3 G(t) ≤ 4
25
3 (G(t) − 3) G(t) ∈ [4,8]
125
3 G(t) ≥ 8

g(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t
60 t ≤ 30
120−t
180 t ∈ [30,120]

0 t ≥ 120

.

The variable G characterizes the plasma glucose concentration, X the insulin
concentration in the remote compartment, while I is the free plasma insulin
concentration. The constants GB and IB represent the basal reference values
of plasma glucose and insulin, respectively, while i(t) and g(t) describe the
infusion evolution of glucose and insulin into the bloodstream of the patient.

First of all, we dived the space into nine different sectors, accordingly
with the combination between the different evolutions of the functions g(t)
and i(t). Since the phases of g(t) directly depend on time, we added a
further variable to our model: the time variable T that measure the time
since the begin of the simulation. We approximate the differential equations
with the corresponding first-degree Taylor polynomials. The resultant hybrid
automaton is depicted in Figure 3, where all the activations are satisfied when
the variables G and T assume the values that lie on the dashed straight lines,
while the resets are simply identity functions.

Given our model, we may want to test whether the glucose concentration
grows too fast or not. This behavior can be identified by testing the reach-
ability of a half-space above a given line: the higher the slope of the line,
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t

G

T = 30 T = 120

G = 4

G = 8

Ġ = −p1G −X(G +GB) + t
60

Ẋ = −p2X + p3I
İ = −n(I + Ib) + 125

3VI

v0

Ġ = −p1G −X(G +GB) + 120−t
180

Ẋ = −p2X + p3I
İ = −n(I + Ib) + 125

3VI

v1

Ġ = −p1G −X(G +GB)
Ẋ = −p2X + p3I
İ = −n(I + Ib) + 125

3VI

v2

Ġ = −p1G −X(G +GB) + t
60

Ẋ = −p2X + p3I
İ = −n(I + Ib) + 25

3VI
(G − 3)

v3

Ġ = −p1G −X(G +GB) + 120−t
180

Ẋ = −p2X + p3I
İ = −n(I + Ib) + 25

3VI
(G − 3)

v4

Ġ = −p1G −X(G +GB)
Ẋ = −p2X + p3I
İ = −n(I + Ib) + 25

3VI
(G − 3)

v5

Ġ = −p1G −X(G +GB) + t
60

Ẋ = −p2X + p3I
İ = −n(I + Ib) + 25

3VI

v6

Ġ = −p1G −X(G +GB) + 120−t
180

Ẋ = −p2X + p3I
İ = −n(I + Ib) + 25

3VI

v7

Ġ = −p1G −X(G +GB)
Ẋ = −p2X + p3I
İ = −n(I + Ib) + 25

3VI

v8

Figure 3: A graphical representation of the glycemic control hybrid automaton.
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the greater the growth of the glucose concentration. We chose the half-space
6 ∗ (t + 105) ≤ 135G and we automatically checked that this region is not
reachable from G ∈ [−2,2] ∧X = 0 ∧ I ∈ [−0.1,0.1] ∧ T = 0. Such verification
was performed exploiting both the ε-semantics presented in Section 3. The
sphere semantics was used inside the Algorithm 1 in order to obtain a halting
criterion that takes into account the indeterminism intrinsic in the nature of
the system. We evaluated the formula returned by the algorithm in the di-
lated erosion semantics, with the purpose of establishing whether the states
taken into account are robustly reachable. Note the using the dilated ero-
sion semantics directly inside the Algorithm 1, the result of the computation
would have been the formula characterizing the empty set. This is mainly
due to the fact that activation formulæ, which regulate the discrete jumps
between the locations, are defined to be satisfied just by a single point.

7. Conclusions

This work is ideally organized into two parts. The first part is theoretical:
it recalls the notions of ε-semantics and hybrid automaton, it describes a new
reachability algorithm based on ε-semantics and enables us to analyze any
hybrid automaton in Michael’s form, it introduces two ε-semantics whose
evaluations can be reduced to the decidability of a first-order formula, and,
finally, it shows how to simplify this formula. The second part deals with
two biological applications: a neural oscillator whose components derive from
the approximation of the continuous model presented in [15], and a glycemic
control in diabetic patients based on the continuous model provided in [16].

After the formalization of the models through hybrid automata, we ana-
lyzed their behaviours considering the approach based on the ε-semantics.

In the neural oscillator, the simulation on the application of the ε-semantics
has revealed the any point which begins its evolution from a distance of at
least 2ε from the limit cycle, converges to a flow tube which possesses a
diameter equal to 2ε and that includes the limit cycle. Due to size of the for-
mulæ which compose the hybrid automaton and the growth of such formalæ
introduced by the translation of the ε-semantics evaluations, a direct compu-
tation of the reachable set would have high complexity and eventually returns
results of difficult interpretation. For this reason, we have reformulated the
problem in form of a closed property which guarantees the convergence of
any point towards the limit cycle of the modeled system.
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In the study of the glycemic control we performed a decisional reachability
test wondering whether a certain configuration of the system was reachable.
A combination of two different ε-semantics was exploited in order to obtain
both a valid halting criterion and an overview on the robustness of the system
dynamics. The evaluation of the reachability formula, performed with an
under-approximation ε-semantics, returns an empty set, it may the evidence
of a slow growth of the glucose concentration under some specific parameters.

As future work, in order to analyze the behaviour of a group of neu-
ral oscillators, we plan to combine several hybrid automata and to study
their evolutions always adopting the approximation approach based on the
ε-semantics. Moreover, it is in our interest to extend the study of the glycemic
control to the computation of the whole reachability set, eventually defining
new ε-semantics and formulæ simplifications that make the computation of
the reachability set more efficient.
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