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Stratification of the moduli space of four–gonal curves

Michela Brundu - Gianni Sacchiero

Abstract

Let X be a smooth irreducible projective curve of genus g and gonality 4. We show that the canonical model of X is contained in a

uniquely defined surface, ruled by conics, whose geometry is deeply related to that ofX . This surface allows us to define four invariants

of X and hence to stratify the moduli space of four–gonal curves by means of closed irreducible subvarieties whose dimensions we

compute.

AMS subject classification: 14H10, 14N05

Contents

0. Preliminaries
1. The surface S of minimum degree, ruled by conics and containing XK

2. Birational models of XK ⊂ S
3. Singularities of a birational model X0

4. “Standard” birational models of S and XK

5. Bounds of the invariants λ and t
6. Geometric meaning of the invariant λ
7. Bounds of the invariants a and b
8. Existence of curves with given invariants λ, a, b in the case t = 0
9. Proof of the key–lemma
10. Moduli spaces of 4-gonal curves with t = 0
11. Moduli spaces of 4-gonal curves with t ≥ 1

Introduction

Let X be a smooth irreducible curve of genus g and gonality γ, i.e. γ is the minimal degree of a
base–point–free linear series on X . Let Mg denote the moduli space of curves of genus g and Mg,γ ⊂ Mg

denote the variety parametrizing the γ-gonal curves; it is well–known that Mg,γ is an irreducible variety of
dimension 2g + 2γ − 5, as far as 2 ≤ γ ≤ g

2 + 1 (see [13] and [1]).
The structure of Mg,γ is completely understood in the cases γ = 2 (hyperelliptic curves) and γ = 3

(trigonal curves). In this paper we are interested in the study of four–gonal curves. Let us briefly recall the
setting in the trigonal case.

Let K denote the canonical divisor on X and XK ⊂ P
g−1 be the canonical model of X . From the

Geometric Riemann–Roch Theorem, any trigonal divisor spans a line in P
g−1, therefore XK is contained in

a rational normal ruled surface, R say. It is clear that R is of the form P(O(m)⊕O(g − 2−m)); assuming
m ≤ g − 2−m, the integer m is uniquely determined and it is called the Maroni invariant of X .

Set Mg,3(m) the variety parametrizing the trigonal curves of Maroni invariant not bigger than m. The
following fact holds:

Theorem. If g−4
3 ≤ m < g−2

2 (resp. m = g−2
2 ) then Mg,3(m) is a locally closed subset of Mg,3 of

dimension g + 2m+ 4 (resp. 2g + 1).

(See [14], Proposition 1.2).

One can see that for each curve of genus g ≥ 5 of Maroni invariant m there exists a unique linear series
g1λ, where λ is the minimum integer bigger than 3 and λ = g−m− 1. Hence λ is uniquely determined by m
and the above filtration of Mg,3 given by the varieties Mg,3(m) can be rewritten in terms of λ.

In general, it seems interesting to find “good invariants” arising from the geometric properties of γ–gonal
canonical curves, in order to obtain an analogous stratification of the moduli space Mg,γ .

As in the trigonal case, one can introduce the rational normal scroll V , whose fibres are the (γ−2)–planes
spanned by the γ–gonal divisor onX . Clearly V = P(O(a1)⊕· · ·⊕O(aγ−1)), where a1+· · ·+aγ−1 = g−γ+1;
in this way the integers a1, . . . , aγ−2 play the role of the Maroni invariant m in the trigonal case.
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In this paper we focus on 4–gonal curves. We show that in the volume V = P(O(a)⊕O(b)⊕O(c)) there
exists an (almost always) uniquely determined “minimal” surface, ruled by conics, containing XK .
Such a surface S gives rise to other two invariants: on one hand, one defines the number t which is the
uniquely determined invariant of a suitable geometrically ruled surface birationally equivalent to S. On the
other hand, analyzing the embedding of X in S, we obtain another number λ > 4 which turns out to be the
minimum degree of a linear series on X different from the gonal one.
Comparing the configuration XK ⊂ S ⊂ V in the 4–gonal case with the analougous situation XK ⊂ R of the
trigonal case, it is clear that the invariant m has been replaced, in some sense, by a, b and t. Finally, one
can prove that λ is now independent of a, b and t; so a four–gonal curve is determined by the four invariants
a, b, λ, t.

In Section 6 we describe the geometric meaning of λ, while, in Sections 5 and 7, we find the ranges for
the above invariants λ, t and a, b, respectively.

If t = 0 the cited ranges become:
g + 3

3
≤ λ ≤

g + 3

2
(R1)

amin ≤ a ≤
g − 3

3
(R2)

g − λ− 1 ≤ a+ b ≤
2(g − 3)

3
(R3)

where

amin =





⌈λ− 4

2

⌉
if λ ≥ 2g+6

5

g − 2λ+ 1 if λ ≤ 2g+6
5

In Section 8 (see Theorem 8.5) we then show that, if (R1), (R2), (R3) are satisfied, there exists a 4–gonal
curve of genus g and invariants a, b, λ and t = 0.

Finally, in Section 10 we study the moduli spaces Mg,4 of 4–gonal curves with t = 0. Set Mλ
g ⊂ Mg,4 be

the variety parametrizing the 4–gonal curves of invariant λ and Mλ
g (a, b) ⊂ Mλ

g the subvariety parametrizing
the curves of further invariants a and b. We prove the following:

Main Theorem. Let g, λ, a, b be positive integers satisfying (R1), (R2), (R3) and g ≥ 10. Then:
i) There exists a stratification of the moduli space Mg,4 of 4–gonal curves given by:

Mg,4 = M
⌈ g+2

2 ⌉
g ⊃ M

⌈ g
2⌉

g ⊃ · · · ⊃ M
λ

g ⊃ · · · ⊃ M
⌈ g+3

3 ⌉
g

and M
λ

g are irreducible locally closed subsets of dimension g + 2λ+ 1, if λ <
⌈
g+2
2

⌉
.

ii) For each admissible λ, we can write:

M
λ

g =
⋃

a,b

M
λ

g (a, b)

where M
λ

g (a, b) is a non–empty, irreducible subvariety whose dimension is :

dim(Mλ
g (a, b)) =





2(2a+ b + λ) + 10− g − ǫ− τ − ξ, if a ≥ g−λ−1
2

2(a+ b) + λ+ 8− ǫ− ξ, if a < g−λ−1
2

where

ǫ :=

{
0, if b < c
1, if a < b = c
2, if a = b = c

, τ :=

{
0, if a < b
1, if a = b

and ξ :=

{
1, if λ = g+3

2
0, otherwise

.

In Section 11 we briefly describe the moduli space of four–gonal curves of invariant t ≥ 1.

We would like to thank Valentina Beorchia for many helpful discussions and suggestions and Gianfranco
Casnati for several interesting remarks. We are also grateful to Simon Brain and Giovanni Landi for the
warm support.
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0. Preliminaries

We say that a curve is 4–gonal if it has a linear series g14 but no g1d, for any d ≤ 3. We also assume that
such curve is not bi–hyperelliptic (i.e. the degree four map on P

1 does not factorize through a hyperelliptic
curve), in particular that is not bielliptic.

Let X be a 4–gonal curve of genus g. In order to have a unique g14 on X , we assume g ≥ 10.
Denote by ϕK : X → XK ⊂ P

g−1 the canonical map associated to X and by XK the canonical model of
X . In general, if Y is a variety and D is a divisor on Y , we denote by ϕD : Y → ϕD(Y ) ⊂ P(H0(Y,OY (D)))
the morphism associated to D.

If Φ ∈ g14 is a 4–gonal divisor, by the Geometric Riemann–Roch Theorem (see [2], Ch. I, Sect. 2) we
have that: dim〈ϕK(Φ)〉 = deg(Φ)− h0(OX(Φ)) = 2; therefore

V :=
⋃

Φ∈g1
4

〈ϕK(Φ)〉 ⊂ P
g−1

is a scroll, ruled by planes on P
1, containing XK . Denote π : V −→ P

1 the natural projection.

Recall that a non degenerate variety W ⊂ P
r is said to be projectively normal if it is normal and, for

any k ∈ N, the homomorphism

H0(Pr,OPr(k)) −→ H0(W,OW (k))

induced by the exact sequence of sheaves

0 −→ IW −→ OPr −→ OW −→ 0

is surjective.
We say that W is linearly normal if the homomorphism above is surjective for k = 1. In particular, if W is
a non degenerate curve, then it is linearly normal if and only if h0(W,OW (1)) = h0(Pr,OPr(1)) = r + 1.

It is well–known that XK is projectively normal; so V is a rational normal scroll (hence projectively
normal as well). We then set V = P(F), where F is a vector bundle of rank 3 on P

1 i.e.

F = O(a)⊕O(b) ⊕O(c),

for suitable non–negative integers a ≤ b ≤ c. It is also well–known that, for any k, it holds:

h0(V,OV (k)) = h0(P1, π∗OV (k)) = h0(P1, SymkF) (1)

and that the Riemann – Roch Theorem for any vector bundle G on P
1 with non–negative splitting type gives:

h0(P1,G) = deg(G) + rk(G). (RR)

From the two above relations, since a, b, c ≥ 0, we then have: h0(V,OV (1)) = h0(P1,F) = deg(F) + rk(F).
Taking into account that h0(V,OV (1)) = g, we finally obtain:

a+ b+ c = g − 3. (2)

In the following we will need some basic notations and facts about ruled surfaces.
We denote by Ft (where t ≥ 0) the Hirzebruch surface of invariant t, i.e. the P

1–bundle over P1 associated
to the sheaf O(−t)⊕O (here O means OP1).

If 1 ≤ a ≤ b, a rational ruled surface Ra,b is P(O(a) ⊕ O(b)), naturally embedded in P
a+b+1. Clearly,

setting t := b− a, we have Ra,b
∼= Ft, so t is the invariant of Ra,b.

Let us recall the following well–known facts (see [11], Ch. V, 2.9, 2.17 and 2.3):
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Lemma 0.1. Let Ft be as before, f its generic fibre and C0 = P(O(−t)) ⊂ Ft. Then:
i) C2

0 = −t;
ii) if U is any directrix (i.e. an irreducible unisecant curve) of Ft, different from C0, then U

2 ≥ t;
iii) if there exists a directrix U of R such that U2 = 0 then t = 0, i.e. F0

∼= P
1 × P

1.
Moreover, t > 0 if and only if Ft has exactly one unisecant curve (namely C0) having negative self–
intersection.

iv) Num(Ft) = Z〈C0〉 × Z〈f〉.

Finally let us recall three classical formulas concerning ruled surfaces and scrolls, due to C. Segre.

Unisecants Formula. Let R ⊂ P
r+1 be a ruled surface R of degree r and invariant t and let Und(R) be the

variety of the unisecant curves on R having degree d and self–intersection bigger than t. Then the general
element of Und(R) is irreducible and

dim(Und(R)) = 2d+ 1− r. (UF )

Proof. Recall that, if U ∼ C0 + nf is a unisecant curve on R, where U2 > t, then

h0(R,OR(U)) = 2n− t+ 2 (3)

(see [11], Ch. V, 2.19). By appliying the equality (3) to the hyperplane sectionH of R, we getH ∼ C0+
r+t
2 f .

Take D ∈ Und(R); since D ·H = d, then D ∼ C0 + (d− r−t
2 )f . Therefore, since D2 > t by assumption, we

can apply (3) and obtain the required formula. ⋄

The following Genus Formula (GF ) is a consequence of the Adjuction Formula.

Genus Formula. If Y is a q-secant curve on a ruled surface R ⊂ P
r, then

pa(Y ) =
q − 1

2

[
2(deg(Y )− 1)− q deg(R)

]
. (GF )

The following relation (IF ), generalizing the analogous property for ruled surfaces, comes from the
Intersection Law on a scroll ([8], 8.3.14):

Intersection Formula. Let W be a rational scroll ruled by n–planes and let C1 and C2 be two subschemes
of W meeting properly and such that Ci is mi–secant, for i = 1, 2 (i.e. Ci meets the general fibre of W in a
variety of degree mi). Then the following equality holds:

deg(C1 · C2) = m1 deg(C2) +m2 deg(C1)−m1m2 deg(W ). (IF )

Let us also recall the following notions:

Definition. Let D be a very ample bisecant divisor on a Hirzebruch surface F; then the surface S0 := ϕD(F)
is said geometrically ruled by conics (over P1). Equivalently, a projective surface S0 ⊂ P

N is geometrically
ruled by conics if there exists a surjective morphism π : S0 −→ P

1 such that the fibre π−1(y) is a smooth
rational curve of degree 2 for every point y ∈ P

1 and π admits a section.
We say that a projective surface S ⊂ P

N is ruled by conics (over P1) if it is birational to a surface geometrically
ruled by conics. Equivalently, if there exists a surjective morphism π : S −→ P

1 and an open subset U ⊆ P
1

such that:
- the fibre π−1(y) is a curve of degree 2 and arithmetic genus 0 for every point y ∈ P

1;
- the fibre π−1(y) is smooth for every point y ∈ U ;
- π admits a section.

The following classification of the degenerate fibres of a surface ruled by conics is Thm. 2.4 (see also
1.13), [6].
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Theorem 0.2. Let S ⊂ P
N be a projective surface ruled by conics over a smooth irreducible curve. Then

the degenerate fibres of S are of one of the following types (where n is an integer ≥ 3 in the last two
statements):

- F1 is the union of two distinct lines and S is smooth along F1;
- F2(A) is the union of two distinct lines, whose common point is an ordinary double point of S;
- F2(D) is the union of two coincident lines, containing exactly two ordinary double points of S;
- Fn(A) is the union of two distinct lines, whose common point is a rational double point of type (An−1);
- Fn(D) is the union of two coincident lines, containing exactly one rational double points of S; in
particular, this point is of type (A3), if n = 3, and of type (Dn), if n ≥ 4.

Since any surface S ruled by conics is birational to a surface S0, geometrically ruled by conics, then
S can be obtained from a suitable S0 by a finite number of monoidal transformations. In particular, each
singular fibre of S (as described in 0.2) arises in this way. Again in [6] we have studied this situation, as
summarized below.

Let F and D be as before and S0 = ϕD(F) be a surface geometrically ruled by conics via the morphism
π : S0 −→ P

1. Consider a point P1 ∈ S0 and let f0 := π−1(y) be the fibre of S0 containing P1. Consider the
blow–up σP1of S0 at P1 and the corresponding projection on P

1, π1 say:

BlP1(S0) := S1
σP1−−−−→ S0yπ1

yπ

P
1

P
1

Denote also by f1 := π−1
1 (y) the total transform of f0 via σP1 .

Take now P2 ∈ f1 and consider the corresponding blow–up σP2 : S2 −→ S1. With obvious notations, we
can iterate this construction and obtain a sequence of blow–ups:

S̃0 := Sn
σPn−−−−→ · · · −→ S2

σP2−−−−→ S1
σP1−−−−→ S0

∪ ∪ ∪ ∪
f̃0 := fn f2 P2 ∈ f1 P1 ∈ f0

where, for any i = 1, . . . , n, we define Pi ∈ fi−1, fi := π−1
i (y) and πi : Si := BlPi

(Si−1) −→ P
1 is the natural

projection.

Definition. With the above notation, we say that fn = f̃0 ⊂ S̃0 is a fibre of level n over f0.

Denoting by σ the sequence of blowing–ups of S0 defined above, setting D̃ to be the strict transform of D
(very ample bisecant divisor on S0) via σ and B the base locus of D̃, then S can be obtained in this way:

S̃0
σ

−−−−→ S0

ϕ
D̃−B

y րρ

S

where ρ is defined as the birational map such that the diagram is commutative.

Definition. We say that the fibre f ⊂ S is an embedded fibre of level n if

n = min
i

{there exists a blow–up σ : S̃0 → S0 and a fibre fi ⊂ S̃0 of level i such that f = ϕ
D̃−B

(fi)}.

Again in [6], we noted that each fibre f ⊂ S of type Fn(A) or Fn(D) is an embedded fibre of level n. There
we also gave the following:

Definition. Let f (1), . . . , f (p) be the degenerate fibres of S and let li be the level of f (i), for i = 1, . . . , p. If∑p
i=1 li = L, we say that S is of level L.
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Moreover, we proved that all the surfaces geometrically ruled by conics (briefly g.r.c.) and giving rise –
by a minimal number of elementary transformations – to a surface S ruled by conics of level L, are exactly
the elements of the following set:

GRCL(S) :={S0 | S0 is a g.r.c. surface and S can be obtained from it

by a sequence of L blow–ups and contractions}.

1. The surface S of minimum degree, ruled by conics and containing XK

Starting from the situation XK ⊂ V ⊂ P
g−1, described at the beginning of the previous section, we will try

to “canonically” define a surface (ruled by conics) containing XK and contained in V .

Notation. As usual, if n is a rational number, [n] denotes the greatest integer smaller or equal than n,
while ⌈n⌉ denotes the smallest integer bigger or equal than n.

Theorem 1.1. There exists a surface S ruled by conics such that XK ⊂ S ⊂ V and deg(S) ≤

⌈
3g − 8

2

⌉
.

Moreover, S is unique unless deg(S) =
3g − 7

2
; in this case, S varies in a pencil.

Proof. Let us consider the vector space H := H0(Pg−1, IXK
(2))/H0(Pg−1, IV (2)) and set N := dim(H);

clearly, Σ := P(H) parametrizes the hyperquadrics of Pg−1 containing XK but not containing V .
Let us recall that, if W is a projectively normal subvariety of Pg−1, then we get the cohomology exact
sequence (see Section 0)

0 −→ H0(IW (2)) −→ H0(OPg−1(2)) −→ H0(OW (2)) −→ 0

hence h0(OPg−1(2)) = h0(IW (2)) + h0(OW (2)). Rewriting this equality for both XK and V , we get
h0(IXK

(2)) + h0(OXK
(2)) = h0(OPg−1(2)) = h0(IV (2)) + h0(OV (2)), so

N = h0(IXK
(2))− h0(IV (2)) = h0(OV (2))− h0(OXK

(2)).

In order to compute N , recall the relations (1) and (RR) on the scroll V = P(F):

h0(V,OV (2)) = h0(P1, Sym2(F)) = deg(Sym2(F)) + rk(Sym2(F)).

Clearly, Sym2(F) is a free bundle of degree 4(a+ b+ c) and rank 6; therefore, from (2) we get: h0(OV (2)) =
4g − 6.
On the other hand, by the Riemann–Roch Theorem h0(OXK

(2)) = 3(g − 1). Hence the above space Σ of
hyperquadrics is a projective space of dimension

N − 1 = h0(OV (2))− h0(OXK
(2))− 1 = g − 4.

For each Q ∈ Σ ∼= P
g−4, consider the scheme–theoretic intersection

Q · V =
( ⋃

i=1,...,hQ

Fi

)
∪ SQ

where the Fi’s are the fibres of V entirely contained in Q, hQ ≥ 0 and SQ is a surface, which is ruled in
conics (since Q intersects the general fibre F of V in a conic passing through the four points of the divisor
Φ ⊂ F ) and contains XK .
Note that SQ is irreducible; if not SQ = S1 ∪ S2, where the Si’s were ruled surfaces; but XK ⊂ SQ and it
cannot be contained in a ruled surface since each 4–gonal divisor spans a plane.
In order to find a quadric Q ∈ Σ such that deg(SQ) is minimum, it is enough to require that the number hQ
is maximum. Note that a fibre F is contained in a quadric Q ∈ Σ if Q contains two points, say P1 and P2,
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belonging to F and such that the 0-cycle of V of degree 6 given by Φ + P1 + P2 does not lie on a conic.
Since dim(Σ) = g − 4, we can impose that the space Σ contains

[
g−4
2

]
pairs of points. If each such a pair of

points belongs to the same fibre (and satisfies the above conditions), then we can find a Q ∈ Σ containing[
g−4
2

]
fibres.

Clearly Q could contain further fibres, hence

deg(SQ) ≤ deg(Q ∩ V )−

[
g − 4

2

]
≤ 2(g − 3)−

[
g − 4

2

]
=

⌈
3g − 8

2

⌉
.

This proves the existence of the required surface S := SQ.
Concerning the uniqueness, let us assume that there are two such surfaces, say S1 and S2.
Since XK ⊂ (S1 ∩ S2), from (IF ) we get:

2g − 2 = deg(XK) ≤

∫
(S1 · S2) = 2 deg(S1) + 2 deg(S2)− 4 deg(V ).

This relation is verified if and only if deg(S1) = deg(S2) = (3g − 7)/2. To complete the proof, just observe
that the linear system of the quadrics Q ∈ Σ containing

[
g−4
2

]
fibres has dimension

dimΣ− 2

[
g − 4

2

]
= g − 4− 2

(
g − 5

2

)
= 1

therefore there is a pencil of distinct surfaces SQ. ⋄

The existence of such surface S has been proved, using a different method, also by Schreyer in [12],
Sect.6.

Notation. From now on, f will denote the general fibre of S, so f is a conic lying on a plane F = 〈f〉.
Moreover, if T is a surface ruled by conics, we will denote by VT the scroll whose fibres are the planes spanned
by these conics. For example, if S is the surface defined in 1.1, the scroll VS is exactly V .

Remark 1.2. The fibres of the ruled surface S defined in 1.1 cannot be all singular. Otherwise, from 1.2,
[5], the surface S would be ruled by lines on a hyperelliptic curve, Y say, via α : S → Y and the ruling
π : S → P

1 would factorize through α.
Hence, taking into account that the restriction XK → Y of α has degree two, we obtain that XK is bi-
hyperelliptic, contrary to the assumption made before on X .

Remark 1.3. The surface S introduced in 1.1 is then ruled by conics in the sense of the preliminary Section.

2. Birational models of XK ⊂ S

In this section we shall study a surface S (not necessarily of minimum degree as that one defined in 1.1)
such that S is ruled by conics and XK ⊂ S ⊂ V , where V denotes as usual the 3–dimensional scroll spanned
by the four–gonal divisors on XK .
Note that, since XK is linearly normal, then S ⊂ P

g−1 is linearly normal. Moreover the scroll V = VS is
not a cone (see the forthcoming Corollary 7.9), then 0.2 holds, so the classification of the degenerate fibres
of the surface S is the one described there.
In Section 0 we have also summarized the results (contained in [6]) which allow us to associate to a surface
S, ruled by conics and of a certain level L, the set GRCL(S) consisting of all the g.r.c. surfaces linked to S
via a sequence of L monoidal transformations.
Here we are looking for the inverse procedure: how to recover the surface S (and the curve XK) starting
from a g.r.c. surface S0 ∈ GRCL(S).

Notation. Since each surface S0 ∈ GRCL(S) is geometrically ruled by conics, it admits an invariant
τ0 := t(S0), in the sense that S0

∼= Fτ0 . We denote by Xτ0 ⊂ Fτ0
∼= S0 the corresponding model of XK ⊂ S.

Since Xτ0 ⊂ Fτ0 is a four–secant curve, then

Xτ0 ∼ 4C0 + (λ0 + τ0)f (4)

7



where C0 and f are the generators of Num(Fτ0) (see 0.1) and λ0 is a suitable integer. Moreover, denoting
by pa(C) the arithmetic genus of a curve C, we set

δτ0 := pa(Xτ0)− g.

Note that, if all the singularities of Xτ0 are ordinary double points, then δτ0 = deg(Sing(Xτ0)).

Remark 2.1. Let us recall the Adjunction Formula for the dualizing sheaf ωXR
of a curve XR on a smooth

surface R (see [7], Ch.1, (1.5))

ωXR
= KR ⊗OR(XR)|XR

(5)

where KR = OR(KR) denotes the canonical sheaf of R. Taking the degrees we then obtain:

2pa(XR)− 2 = XR · (XR +KR). (6)

In our situation R = Fτ0 and XR = Xτ0 . Then KFτ0
= OFτ0

(−2C0 − (τ0 + 2)f), so using (4) we obtain

KFτ0
⊗OFτ0

(Xτ0) = OFτ0
(2C0 + (λ0 − 2)f).

Hence from (5) we can obtain the dualizing sheaf of the curve Xτ0 as:

ωXτ0
= OFτ0

(2C0 + (λ0 − 2)f)|Xτ0
.

Finally, taking into account that KFτ0
∼ −2C0 − (τ0 + 2)f , from (6) and (4) we obtain

2pa(Xτ0)− 2 = 6λ0 − 6τ0 − 8.

Proposition 2.2. The following properties hold:
i) the arithmetic genus of Xτ0 is pa(Xτ0) = 3(λ0 − τ0 − 1);
ii) λ0 ≥ max {3τ0, τ0 + 5};

iii) δτ0 = 3(λ0 − τ0 − 1)− g.

Proof. i) Immediate from the last relation of 2.1.
ii) From [11], Ch. V, 2.18, since Xτ0 is irreducible, then λ0 + τ0 ≥ 4τ0. Therefore λ0 ≥ 3τ0. On the other
hand, pa(Xτ0) ≥ g ≥ 10 by assumption. Then, using (i), we obtain λ0 ≥ τ0 + 5.
iii) It follows from δτ0 = pa(Xτ0)− g and from (i). ⋄

We wish to describe how to recover the canonical model XK starting from the chosen birational model
Xτ0 ⊂ Fτ0

∼= S0 ∈ GRCL(S).
Since X0 is the embedded model of Xτ0 obtained via the dualizing sheaf ωXτ0

(described before), then, in
order to obtain X0, we have to embed Fτ0 by the sheaf OFτ0

(2C0 + (λ0 − 2)f) (see 2.1). Finally, we will
project the obtained curve X0 from its singular points.

Remark 2.3. Note first that λ0 − 2 > 2τ0. In fact, if τ0 ≤ 2 then λ0 > τ0 + 4 ≥ 2τ0 + 2. If τ0 ≥ 3, then
λ0 ≥ 3τ0 > 2τ0 + 2 (both arguments follow from 2.2, (ii)).
Therefore (using [11], Ch. V, 2.18) the linear system |2C0+(λ0− 2)f | is very ample on Fτ0 . Moreover, from
[4], Prop.1.8, and from 2.2, (iii) we get that

h0
(
Fτ0 ,OFτ0

(2C0 + (λ0 − 2)f)
)
= g + δτ0 .

Hence there is an isomorphism

ϕ : Fτ0

∼=
−−−→ S0 ⊂ P

g−1+δτ0 , where ϕ = ϕ2C0+(λ0−2)f and S0 := ϕ(Fτ0).

8



Clearly S0 is a projective ruled surface, whose fibers are all smooth conics and X0 = ϕ(Xτ0) ⊂ S0, so
we have the commutative diagrams:

Fτ0

ϕ
∼=−−−−→ S0 ⊂ P

g−1+δτ0

ρ

x
yπ

yπ

S ⊂ P
g−1

and

Xτ0

ϕ|Xτ0
∼=−−−−→ X0 ⊂ S0

ρ

x
yπ

yπ

XK ⊂ S

where π (which is the inverse of the map ρ) is exactly the desingularization morphism of X0 or, equivalently,
the linear projection centered in 〈Σ〉 is generated by the singular points of X0 (possibly infinitely near).

Remark 2.4. Since there are at most two singular points on each fibre, then 〈Σ〉 meets S0 in a zero–
dimensional variety of degree δτ0 . It is then clear that δτ0 = L and deg(S) = deg(S0)− δτ0 .

3. Singularities of a birational model X0

The purpose of this section is to describe all the possible singularities of X0.
Recall that, from 2.3, the projection π : X0 ⊂ S0 −→ XK ⊂ S is centered in the singular points of X0 and
the singular fibres of S correspond to the fibres of S0 containing the singular points of X0. Therefore it is
enough to examine the singular fibres of S and the four–gonal divisor on each of them.
In order to do this, let us focus on one singular fibre f of S and the corresponding fibre f0 ⊂ S0.

Remark 3.1. Note that the curve XK ⊂ S intersects each fibre of S in four points (the 4–gonal divisor
Φ ∈ g14). In particular, XK meets also each singular fibre f in four points. If f = l ∪m and l 6= m then two
of them belong to the line l and two are on the other line m (possibly coinciding); where this not the case,
XK would have a trisecant line, hence a trigonal series (from the Geometric Riemann–Roch Theorem). On
the other hand, if l = m, then the support of Φ = XK ∩ f consists of two points, possibly coinciding.

Example 3.2. Let f ⊂ S be an embedded fibre of level 1. Then π is the projection centered at the point
P0 ∈ f0, where P0 ∈ Sing(X0). Clearly, f = f0 + E, where E is the exceptional divisor and f0 still denotes
the other component of f . Setting A := f0 · E, Pi ∈ f0 and Qi ∈ E (where Pi 6= A 6= Qi and Pi 6= Qi, for
i = 1, 2), the possible cases are the following:

(a) Φ = P1 + P2 +Q1 +Q2

(b) Φ = P1 + P2 + 2Q1

(c) Φ = 2P1 +Q1 +Q2

(d) Φ = 2P1 + 2Q1

(e) Φ = P1 + 2A+Q1

(f) Φ = P1 + 3A (where XK · f0 = P1 +A and XK ·E = 2A)

(g) Φ = 3A+Q1 (where XK · f0 = 2A and XK ·E = A+Q1).

The picture below illustrates the corresponding singularities of X0.

f
0

X0

f
0E

XK

f
0

X0

f
0E

XK

π

S0

S

f
0

X0

f
0E

XK

f
0

f
0E

XK

X0

f
0

X0

f
0E

XK

P0

f
0

f
0E

XK

0X

f
0

f
0E

X0

X
K

(a) (g)(f)(e)(d)(c)(b)

Figure 1
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It is clear that, in all the cases above, X0 has a double point: more precisely, either a node, in cases
(a), (c), (e), (g), or an ordinary cusp, in cases (b), (d), (f).

A description of the double points of an algebraic curve can be found, for instance, in [10], Lect. 20.
Here let us just recall that a node of n-th kind is a double point analitically equivalent to y2 − x2n = 0. In
particular, if n = 1, 2, 3, it is called (ordinary) node, tacnode, oscnode, respectively.
Moreover, a cusp of n-th kind is a double point analitically equivalent to y2 − x2n+1 = 0. In particular, if
n = 1, 2, it is called (ordinary) cusp or ramphoid cusp, respectively.

Definition. We say for short that a double point P0 of X0 is transversal if the tangent line to the fibre f0
at P0 does not coincide with any of the tangent lines to X0 at P0; it is tangent otherwise.

Example 3.3. Assume that S is a surface ruled by conics having a fibre f of type (2A), as defined in 0.2.
Clearly (see [6], Sect. 3) this fibre arises from a fibre f0 ⊂ S0 by projecting it from two points. More precisely,
the projection π : S0 −→ S can be factorized by π = πP1◦πP0 , where P0 ∈ f0 and P1 ∈ f1 := f0+E ⊂ πP0(S0)
and P1 6= f0 · E. There are two possibilities: either P1 ∈ f0 or P1 ∈ E.
In the first case, f = E+E(1), while in the second one, where P1 is infinitely near to P0, we have f = f0+E

(1)

(in both cases E(1) denotes the exceptional divisor of the blowing–up centered at P1). Moreover, in both
configurations, f turns out to be a union of two lines meeting in an ordinary double point for the surface S.
Let us start by scketching the situations corresponding to the configuration (a) (in both cases f = E +E(1)

and f = f0 + E(1)) and the configurations (b) and (d) (both in the case f = f0 + E(1)).

f

S

S0

1

S

P0

0

X0

f0

E

(1)E

KX

πP1

πP0

P0

0

X0

f0

E

(1)E

KX

πP1

πP0

P0

0

X0

f0

E

(1)E

πP1

πP0

f f f

P1 P1 1P

f f
0 0

f
0

XK

P0

0

X0

P

f0

1E

E

(1)E

KX

πP1

πP0

(Ia) (IIa) (IIb) (IId)

Figure 2

The construction (Ia) gives X0 to have two nodes on the fibre f0; in (IIa) the curve X0 has a tacnode,
while in (IIb) and (IId) it has a ramphoid cusp. Finally, one can easily see that the cases related to
(e), (f), (g) do not occur.

Remark 3.4. The two examples above lead us to a general pattern. If X0 has only one singular point
P0 ∈ f0 and f is of type (nA), then:

- f = f0 + E(n−1) and π can be factorized by π = πPn−1 ◦ · · · ◦ πP1 ◦ πP0 , where Pi+1 ∈ E(i) for all i;

- the type of the singularity of P0 depends only on the intersection XK · E(n−1) on S, so we can always
assume that the two points given by XK · f0 on S are distinct.

We can now complete 3.3: if X0 has one singular point on f0, then the significant cases are (IIa) and (IIb),
where X0 has a transversal tacnode or a transversal ramphoid cusp. Note that the difference between these
two cases is that XK is tangent (resp. transversal) to E(1) on S.

Example 3.5. In the same way, we get the possible singularities in the case F3(A), as this picture shows:
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f0

E

KX

πP

P0

0

X0
πP0

f

πP

f
0

P1

1

E(1)

2
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f
0
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E

oscnode
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f0

E

KX

πP

P

0

0

X0
πP0

f

πP

P1

E
f
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2
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P order
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Figure 3

The above study can be easily generalized, obtaining the following result:

Proposition 3.6. The possible singularities of X0 ⊂ S0 arising from a fibre of S of type Fn(A), where
n ≥ 2, are the following points on the same fibre f0 ⊂ S0:
(•) if n = 2 there is either one double point of second kind (either a transversal tacnode or a transversal

ramphoid cusp) or two double points of first kind (either node or cusp);
(•) if n ≥ 3 there is either one double point of n−th kind (transv.) or two double points of lower kind. ⋄

Note that in the case of two double points on f0, these two points are of kind h and k, where h+ k = n.

Example 3.7. Assume now that S is a surface ruled by conics having a fibre f of type (2D). Clearly
(see [6], Sect. 3) this fibre arises from a fibre f0 ⊂ S0 by projecting it from two infinitely near points.
More precisely, if π : S0 −→ S is the considered projection, then π = πP1 ◦ πP0 , where P0 ∈ f0 and, if
f1 := f0 + E ⊂ πP0(S0), then P1 := f0 · E. As noted in [6], the fibre of S corresponding to f0 is given by
f = 2E(2): it is a totally degenerate conic containing two singular points of S, which correspond to the lines
f0 and E. Since f consists of a double line, the four–gonal divisor can be either 2A+2B (where A,B ∈ E(2)

are distinct points non singular for S) or 4A, as the following picture describes:

0

πP0
πP0

f

πP πP

f
0

P1

1

P1

EE
f
0

1

S

S

S0

1

P0

X0

(2)
E

XK

f
0

P0

X0

E (2) XK
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Figure 4

It is clear that the first configuration leads to a tangential tacnode and the second one gives a tangential
ramphoid cusp of first order. With the same argument as before, we easily get the following result:

Proposition 3.8. The possible singularities of X0 ⊂ S0 arising from a fibre of S of type Fn(D), where
n ≥ 2, consist of a unique singular point of the corresponding fibre f0 ⊂ S0 as follows:
(•) if n = 2 then there is either a tangential tacnode or a tangential ramphoid cusp;
(•) if n ≥ 3 then there is a tangential double point of n-th kind.

Collecting 3.2, 3.6, 3.8, we obtain the following complete description of the possible singularities of X0.

Theorem 3.9. Let S be a surface ruled by conics containing XK and let X0 ⊂ S0 be birational models of
XK and S respectively, where S0 is a g.r.c. surface. Let π : S0 −→ S be the usual projection. Assume that
f is the unique singular fibre of S and set f0 the corresponding fibre of S0.
Then the singular points of X0 belong to f0 and are, as far as f is of type F1, of one of the following types,
Fn(A), Fn(D), for n ≥ 2:

F1 - one singular point: either a node or a cusp, both of them either tangential or transversal;
Fn(A) - only transversal singular points and precisely:

(a) one double point of n-th kind;
(b) two double points of orders h, k < n, where h+ k = n;

Fn(D) - only one tangential double point of n-th kind;

In particular, all the singular points of X0 are double points. ⋄

4. “Standard” birational models of XK ⊂ S

In Section 2 we studied the set GRCL(S) consisting of the g.r.c. surfaces S0 such that S can be obtained
from S0 by a sequence of L monoidal transformations (here L is the level of S). In this section we are going
to determine one of such surfaces in a sort of “canonical” way: this will be called “standard” birational
model of S.

Proposition 4.1. Let X0 ⊂ S0 ∈ GRCL(S) be as usual. Then

GRCL(S) = {elmΣ(S0) | Σ ⊆ Sing(X0)}

i.e. each S′
0 ∈ GRCL(S) can be obtained from S0 by a sequence of elementary transformations centered in

singular points of X0 (or infinitely near to them) and conversely.

Proof. Consider a surface S′
0 ∈ GRCL(S) and the corresponding model of XK , say X ′

0 ⊂ S′
0. As in 2.2,

denote by π and π′ the projections centered in the singular points (possibly infinitely near) of X0 and X ′
0,

respectively. We get then the diagram

S0 −−− → S′
0

π ց ւπ′

S

where the horizontal arrow denotes a suitable sequence of elementary transformations centered in (some of)
the singular points of X0.
Conversely, note that each elementary transformation of S0 can be obtained by considering an embedded
model of S0 which is ruled by lines and projecting it from a finite number of points. In this way, we get
a birational model S′

0 of S which is a geometrically ruled surface. If X ′
0 ⊂ S′

0 is the corresponding curve,
it is clear that δ(X ′

0) = δ(X0) if and only if the above projection is centered in singular points of X0 (this
is due to the fact that the singular points of X0 are double points for 3.9). Therefore, if S′

0 = elmΣ(S0),
where Σ ⊆ Sing(X0), using 2.4, the level of S′

0 coincides with δ(X ′
0) = δ(X0) = L, hence S′

0 ∈ GRCL(S), as
requested. ⋄

12



Among the surfaces S0 geometrically ruled by conics belonging to GRCL(S) (and the corresponding
curves X0), we are going to establish a way for choosing one particular model of S (and hence of XK). In
order to do this, we give the following notion.

Definition. Given a surface S ruled by conics, we say that a surface S0 ∈ GRCL(S) is a standard model of
S if its invariant is

t := min{τ0 = t(S0) | S0 ∈ GRCL(S)}.

Let us consider now the curve XK ⊂ S and the corresponding birational model, say X0 := ρ(XK) ⊂ S0,
where S0 is a standard model of S. We say also that X0 is a standard model of XK .
Finally, if S0 is a standard model of S, we denote the corresponding invariant λ0 by λ.

Theorem 4.2. Let S be as before, L be its level, S0 ∈ GRCL(S) be a birational model of S of invariant τ0
and X0 be the model of XK on S0. If we assume that t > 0, then the following facts hold:
i) if S0 is a standard model, then the singular points of X0 belong to the minimum unisecant C0 of S0;
ii) there is exactly one standard model S0 of S;
iii) if the singular points of X0 belong to the minimum unisecant C0 of S0, then S0 = S0.

Proof. Consider first the model X ′ ⊂ R1,τ0+1
∼= S0. We know that X ′ ∼ 4C0 + (λ0 + τ0)f and δ(X ′) =

3(λ0 − τ0 − 1)− g by 2.2. In particular, the level of S is L = 3(λ0 − τ0 − 1)− g.
Consider a singular point T ofX ′ and the projection πT from T . From 4.1, πT (R1,τ0+1) belongs to GRCL(S).
(i) If S0 is a standard model, then τ0 = t. Assume that the point T does not belong to C0. Then the invariant
of πT (R1,t+1) is t− 1, while t is the minimum invariant of the surfaces belonging to GRCL(S).
(ii) Let S0

∼= R1,t+1 be a standard model and let S′
0 be another surface in GRCL(S). From 4.1, we know

that S′
0 = elmΣ(S0), where Σ ⊆ Sing(X0). For simplicity, assume that Σ = {T }, where T is a singular

point of X0. From (i), we have that T ∈ C0 and, from 3.9, we know that T is a double point of X0, so
T = A1 +A2, where Φ := A1 +A2 +A3 +A4 is the four–gonal divisor on the fibre f0 containing T .

Clearly, S′
0 = πT (R1,t+1), so the curve X ′

0 has a double point on the fibre f
′

0 given by A3 + A4 and such
point does not belong to the unisecant curve C′

0 of S′
0. Therefore we get from (i) that S′

0 is not a standard
model of S.
(iii) An analogous argument. ⋄

Proposition 4.3. With the above notation, if t > 0 then the singular points of X0 belong to distinct fibres.

Proof. Also in this case consider the model X ′ ⊂ R1,t+1
∼= S0 and assume that there exists a fibre containing

two distinct singular points of X ′, P1 and P2, say . Clearly, one of them, P1 say, does not belong to C0. So,
by projecting R1,t+1 from P1 we get a contraddiction with the argument used in 4.2. ⋄

Theorem 4.4. With the notation above, the surface S has degree

deg(S) = 4(λ− t− 2)− δt = g + λ− t− 5.

Proof. Since S0 = ϕ2C0+(λ−2)f (Ft) and C
2
0 = −t, then

deg(S0 ) = (2C0 + (λ− 2)f)2 = 4(λ− t− 2).

Moreover, from 2.4 we have that deg(S) = deg(S0 ) − δt, so the first equality holds. The second equality
follows immediately from δt = 3(λ− t− 1)− g (see 2.2, (iii)). ⋄

5. Bounds on the invariants λ and t

Let us come back to the global description of the four–gonal curve X of genus g whose canonical model
is XK ⊂ S ⊂ V = P(O(a) ⊕ O(b) ⊕ O(c)) ⊂ P

g−1 and the surface S is (as in 1.1) the surface of minimum
degree.
We have chosen X0 ⊂ S0

∼= Ft as a pair of standard models of XK ⊂ S respectively. Since the model
Xt ⊂ Ft is again a four–secant curve, it is of the type Xt ∼ 4C0 + (λ+ t)f .
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So far we have defined a set of integers, a, b, c, t, δ, λ (here, for simplicity, δ := δt), that are invariants of
the curve X . All of them will be useful to describe its geometry.

Let us start with the dependence of the first three invariants a, b, c on the others t, δ, λ.

Remark 5.1. Consider the isomorphism

ϕ2C0+(λ−2)f : Ft −→ S0 ⊂ P
g−1+δ

and the volume VS0
⊂ P

g−1+δ generated by S0. From 1.8, [4], we have that

VS0
= P(O(λ − 2− 2t)⊕O(λ − 2− t)⊕O(λ− 2)).

If we consider the projection π : P
g−1+δ → P

g−1 centered at the singular locus of X0, it is clear that
π(VS0

) = VS .

Using 4.2 (i), if t > 0 then the singular points of X0 are contained in the unisecant of minimum degree of
S0 and hence of VS0

. Moreover, if these points are all distinct, then VS has the form:

VS = P(O(λ − 2− 2t− δ)⊕O(λ− 2− t)⊕O(λ − 2)).

On the other hand, taking into account that c = g − 3− a− b, the scroll above is:

VS = P(O(a)⊕O(b)⊕O(g − 3− a− b)).

Hence, comparing the two expressions of VS and using the equality δ = 3(λ − t − 1) − g (see 2.2 (iii)), we
obtain:

a = g + t− 2λ+ 1 and b = λ− t− 2.

Note that, if t > 0 but the δ double points of X0 are not all distinct, then a ≥ g + t− 2λ+ 1.

Proposition 5.2. With the above notation, if V = P(O(a)⊕O(b)⊕O(c)), then

a+ b ≥
g − 5

2
.

Proof. Let us consider the curve XK ⊂ V and the ruled surface Ra,b = P(O(a) ⊕ O(b)) ⊂ V . In order to
apply the Intersection Formula (IF ) in Section 0, we observe first that Ra,b and XK meet properly on V ,
i.e.

dim(Ra,b ∩XK) = dim(Ra,b) + dim(XK)− dim(V ) = 0.

To see this note that XK cannot be contained in Ra,b, otherwise the general 4–gonal divisor on XK would
span a line instead of a plane, against the Geometric Riemann–Roch Theorem.
Hence dim(Ra,b∩XK) = 0 and we can apply (IF ), which gives the (non–negative) degree of the intersection:

0 ≤ degV (Ra,b ·XK) = 4(a+ b) + 2g − 2− 4(g − 3) = 2(a+ b)− g + 5

and this proves the requested inequality. ⋄

The lower bound of λ in terms of t given in the previous section can be improved. Namely, we saw that
λ ≥ max{3t, t+ 5} (see 2.2).

Remark 5.3. Assume that t ≥ 1 and the δ singular points of Xt are distinct. Clearly

2δ ≤

∫
C0 ·Xt =

∫
C0 · (4C0 + (λ+ t)f) = λ− 3t

hence
λ ≥ 2δ + 3t.

Since δ = 3(λ− t− 1)− g (see 2.2 (iii)), we easily obtain:

λ ≤
2g + 3t+ 6

5
. (7)
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Proposition 5.4. The following properties hold :
(i) for any t:

λ ≥
g

3
+ t+ 1;

(ii) if t = 0 then

λ ≤
g + 3

2
;

(iii) if t ≥ 1 then

λ ≤ t+
g + 3

2
and t ≤

g + 3

4
;

(iv) if t ≥ 1 and the double points of X are all distinct, then

λ ≤
g + 3

2
and t ≤

g + 3

6
.

Proof. (i) It comes from 2.2 (i), since pa(X0) = 3(λ− t− 1) ≥ g.
(ii)− (iii) Using 1.1 and 4.4 we have

g + λ− t− 5 = deg(S) ≤

⌈
3g − 8

2

⌉
⇒ λ− t ≤

⌈
3g − 8

2

⌉
− g + 5 =

⌈
g + 2

2

⌉

hence, we obtain the required bounds either if t = 0 or if t ≥ 1. Moreover, from 2.2 we have λ ≥ 3t; so, using
the previous bound of λ in (iii), we finally get t ≤ λ/3 ≤ t/3 + g+3

6 and this concludes the proof.
(iv) In this case, we can apply 5.3. Using 3(λ− t− 1)− g = δ ≥ 0 followed by (7), we get:

t ≤ λ−
g + 3

3
≤

2g + 3t+ 6

5
−
g + 3

3
⇒ t ≤

g + 3

6
.

Using this bound and (7) we finally get λ ≤
g + 3

2
. ⋄

6. Geometric meaning of the invariant λ

Let us keep the notation of the previous section: S is a surface ruled by conics such thatXK ⊂ S ⊂ V and
L denotes its level. Take a standard model S0 ∈ GRCL(S) and consider its embedded model R1,t+1 ⊂ P

t+3.
Let us denote as usual by X ′ ⊂ R1,t+1 the corresponding model of XK , where X ′ ∼ 4C0 + (λ+ t)f .

Remark 6.1. Note that such X ′ has only double points as singularities (see 3.9).

Remark 6.2. Denote by HX′ the hyperplane section of X ′ ⊂ R := R1,t+1 ⊂ P
t+3.

Since HR ∼ C0 + (t+ 1)f then

HX′ = HR ·X ′ ∼ Φ+∆, where Φ ∈ g14 and ∆ ∈ g1+t
λ+t.

In particular
deg(HX′) = λ+ t+ 4

and one can easily verify that X ′ is the embedding of minimum degree of the curve XK .

Definition. A linear system |D| on a curve X is called primitive if, for each point P ∈ X , the linear system
|D + P | has P as base point. Equivalently, dim |D + P | = dim |D|.

It is not difficult to see that the following property of X ′ ⊂ P
t+3, here stated for a standard model S0,

holds also for any birational model S0 ∈ GRCL(S).

Proposition 6.3. Let S0
∼= R1,t+1 ⊂ P

t+3 be a standard model of S. Let Φ and ∆ be as before and
X ′ = XΦ+∆ ⊂ R1,t+1 be as usual. If g > 13 then the following facts hold:
(i) the divisor Φ+∆ is a special divisor on X ; in particular K − Φ−∆ is an effective divisor.
(ii) The curve X ′ ⊂ P

t+3 is linearly normal.

15



Proof. (i) It is enough to show that h0(O(K − Φ − ∆)) > 0 or, equivalently by Riemann–Roch Theorem,
that λ < g − 1. If t = 0, it follows immediately from 5.4 (ii).
If t ≥ 1, still from 5.4 (iii), we have:

λ ≤ t+
g + 3

2
and t ≤

g + 3

4
⇒ λ ≤

3g + 9

4
< g − 1

where the last inequality is true since g > 13 by assumption. Finally, observe that Φ + ∆ special implies
that K − Φ−∆ is an effective divisor.
(ii) Let us recall that (as in 5.1) the surface S0 is naturally embedded, via the isomorphism ϕ2C0+(λ−2)f , in

a projective space: namely S0 ⊂ VS0
⊂ P

g−1+δ, where

VS0
= P(O(λ− 2− 2t)⊕O(λ− 2− t)⊕O(λ − 2))

and t ≥ 0. If t > 0, denoting by M := 〈ϕ2C0+(λ−2)f ((λ − 3− t)Φ)〉, it is clear that

πM : VS0
−→ P(O(1)⊕O(t + 1)) = R1,t+1.

This map can be factorized as follows: setting Σ the divisor of the singular points of X0 and taking into
account that K − Φ−∆ is an effective divisor on X from (i), put:

L := 〈ϕ2C0+(λ−2)f (Σ)〉, N := 〈ϕK(K − Φ−∆)〉.

Then we have the following diagram:

X0 ⊂ S0 ⊂ VS0
⊂ P

g−1+δ

ϕ ր ↓ ↓ ↓
yπL

Ft ⊃ Xt
ϕK

−−−−→ XK ⊂ S ⊂ V ⊂ P
g−1

ϕ′ ց ↓ ց ↓
yπN

X ′ ⊂ R1,t+1 ⊂ P
t+3

(8)

where ϕ := ϕ2C0+(λ−2)f , ϕ
′ = ϕΦ+∆ and

πN ◦ πL = πM .

Note that X0 is not linearly normal. Namely, X0 is not special; if it was linearly normal, then dim〈Φ〉 = 3
in P

g−1+δ, while X0 is contained in the scroll VS0
which is ruled by planes.

Hence we have to consider its normalization X̃ ⊂ P
g−1+2δ, and the corresponding scroll

W :=
⋃

Φ∈g1
4

〈Φ〉 ⊂ P
g−1+2δ.

It is easy to see that W is ruled by planes. Setting L̃ := 〈Σ〉 ⊂ P
g−1+2δ, the projection π

L̃
factorizes through

the normalization map, say Π, as follows:

X̃ ⊂ W ⊂ P
g−1+2δ

↓ ↓
yΠ

X0 ⊂ VS0
⊂ P

g−1+δ

↓ ↓
yπL

XK ⊂ V ⊂ P
g−1

(9)

and
πL ◦Π = π

L̃
.

16



Setting
M̃ := 〈(λ− 3− t)Φ〉 ⊂ P

g−1+2δ

and keeping into account (8) and (9) we finally obtain:

X̃ ⊂ W ⊂ P
g−1+2δ

↓ ↓
yπ

L̃

XK ⊂ V ⊂ P
g−1

↓ ↓
yπN

X ′ ⊂ R1,t+1 ⊂ P
t+3

where
πN ◦ π

L̃
= π

M̃
.

Since π
M̃

: X̃ −→ X ′ and X̃ is linearly normal, than also X ′ is linearly normal.
If t = 0, the proof runs in a similar way. ⋄

Proposition 6.4. Let S0
∼= R1,t+1 ⊂ P

t+3, Φ, ∆ and X ′ = XΦ+∆ be as usual. If g > 13 then the following
facts hold:
i) The linear system |∆| defined before is primitive;
ii) if B ⊂ ∆ is a divisor on X ′ such that B ∈ g1β 6= g14 , then B ∼ ∆−A1−· · ·−At, for suitable Ai ∈ X ′ \C0

for all i. In particular, β = λ.

Proof. i) Assume that there exists P ∈ X ′ such that ∆ + P ∈ g2+t
λ+t+1 and consider the model of XK given

by X∆+P ⊂ P
t+2. Keeping into account 6.3, we have that X ′ = XΦ+∆ is linearly normal in P

t+3. Hence we
can consider the following diagram:

XΦ+∆ ⊂ R1,t+1 ⊂ P
t+3

ր
y

yπ〈Φ−P〉

X −→ X∆+P ⊂ P
t+2

ց
y

yπP

X∆ ⊂ P
t+1

therefore Φ− P is a triple point of X ′ = XΦ+∆, in contrast with 6.1.
ii) The result is obvious for t = 0, so we can assume that t > 0.
Since 〈Φ〉 is a fibre of R1,t+1, then the projection centered in the line 〈Φ〉 maps R1,t+1 onto a cone:

π〈Φ〉 : P
t+3 −→ P

t+1

R1,t+1 7→ R0,t.

Moreover, recalling that HX′ ∼ Φ+∆, we have π〈Φ〉(X
′) = X∆ = ϕ∆(X) ⊂ R0,t. Since all the singularities

of X ′ belong to C0 (see 4.2), then necessarily X∆ has only one singular point in C := π〈Φ〉(C0), which is the
vertex of the cone R0,t.
In order to obtain a linear series of dimension 1 on X∆ ⊂ P

t+1, it is necessary to project it from t points,
say A1, . . . , At, of X∆. If each of these points if different from C, then we get the required B ∈ g1β, where

β = deg(∆) − t = λ. If, for some i, it occurs that Ai = C, then πC(R0,t) = C ⊂ P
t, where C is a rational

normal curve of degree t: in this case B ∈ g14 , in contrast with the assumption g1β 6= g14 . ⋄

Definition. A linear system |∆| on the curve X is called minimal if it satisfies the conditions i) and ii) of
6.4.
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Remark 6.5. Note that, if we perform the previous construction with respect to a birational model S0 ∈
GRCL(S) which is not a standard model, then the corresponding series |∆| is primitive but not minimal.

Remark 6.6. If t = 0, i.e. |∆| = g1λ, then |∆| is minimal if and only if is primitive.

We have seen in 6.4 that, if R1,t+1 is isomorphic to a standard model, then the associated series |∆| on
X ′ is minimal. The converse is also true, as the following result shows.

Proposition 6.7. Let X be as usual and consider two divisors Φ ∈ g14 and ∆ ∈ g1+t
λ+t. If the linear series

|∆| is minimal on X , then XΦ+∆ ⊂ R1,t+1 is isomorphic to a standard model of XK ⊂ S.

Proof. We have to consider two cases: either dim〈ϕΦ+∆(Φ)〉 = 1 or dim〈ϕΦ+∆(Φ)〉 = 2.
(1) In this case, since deg(Φ) = 4, then XΦ+∆ is contained in a geometrically ruled surface as a four–secant
curve. Moreover, since dim |∆| = t+1, then the invariant of such ruled surface is t. ThereforeXΦ+∆ ⊂ Rh,t+h

for a suitable h ≥ 1.
Assume first that h ≥ 2. With a construction as in the proof of 6.4 (ii), consider the projection

π〈Φ〉 : Rh,t+h −→ Rh−1,t+h−1

where π〈Φ〉(XΦ+∆) = X∆.
Note that HR ∼ U + hf , where U is a unisecant curve of degree t+ h. Therefore, as noted in 6.2,

Φ +∆ = HR ·XΦ+∆ ∼ hΦ+ U ·XΦ+∆.

Since h ≥ 2, it follows that ∆ ∼ (h − 1)Φ + U ·XΦ+∆, so Φ ⊂ ∆. Hence ∆ − Φ ∈ gt−1
λ+t−4. Therefore there

exist t− 2 points, say A1, . . . , At−2, such that ∆−Φ−A1 − · · · −At−2 ∈ g1λ−2. But this is impossible since
|∆| is minimal, hence it satisfies (ii) of 6.4. This proves that h = 1, so XΦ+∆ ⊂ R1,t+1.
If XΦ+∆ has a multiple point P not belonging to C0, then we can project it from P and t− 1 general points
of the curve, obtaining a divisor B ⊂ ∆ such that B ∈ g1

λ
and λ < λ. Therefore all the singular points of

XΦ+∆ ⊂ R1,t+1 belong to C0 and this implies (from 4.2) that R1,t+1 is a standard model.

(2) In this case the curve is contained in the scroll V , ruled by planes, whose fibers are 〈ϕΦ+∆(Φ)〉, Φ ∈ g14 .
So we set, for suitable a ≤ b ≤ c:

XΦ+∆ ⊂ V = P(O(a) ⊕O(b)⊕O(c)).

Clearly, among the unisecant curves U b of degree b such that U b ⊂ Ra,b ⊂ V , we can choose one of them, say
U , which does not meet XΦ+∆ (otherwise XΦ+∆ would be contained in the ruled surface Ra,b ⊂ V , against
the assumption). Therefore, if we consider the projection

π〈U〉 : V −→ Ra,c

it is clear that π〈U〉(XΦ+∆) is again a curve, say XΦ+∆, whose hyperplane divisor is still Φ + ∆, but

XΦ+∆ ⊂ Ra,c, contrary to the assumption as well. ⋄

The remaining part of this Section is devoted to the case t = 0. Here the linear series |∆| will be denoted
by |Λ|, since its degree is λ, as noted in 6.6.
We will show that this linear series is, in general, not unique. In order to determine all such series g1λ, let us
describe the situation and notation.

Let XK ⊂ S ⊂ V be as usual and assume that t(S) = 0. Let Φ ∈ g14 , Λ
′ ∈ g1λ′ (where λ′ > 4) and

XΦ+Λ′ := ϕΦ+Λ′ (X) ⊂ R1,1. Denote by |l| and |l′| the two rulings of R1,1.

Notation. If P ∈ R1,1, denote by lP and l′P the lines of the two rulings passing through P . Moreover, if
A is a double point of XΦ+Λ′ , denote by A1 and A2 the corresponding points on the canonical model of the
curve, i.e. A1, A2 ∈ XK are such that ϕΦ+Λ′ (A1) = ϕΦ+Λ′(A2) = A.
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Proposition 6.8. In the above situation, each pair of double points, A and B say, of XΦ+Λ′ such that

lA 6= lB and l′A 6= l′B, determines a linear series |Λ
′
| 6= |Λ′| of degree λ′.

Proof. Consider the four–gonal divisors and the λ′-gonal divisors of |Λ′| containing, respectively, the two
double points, i.e.

A1 +A2 +A′
1 +A′

2 ∈ g14 , A1 +A2 + P1 + · · ·+ Pλ′−2 ∈ |Λ′|

B1 +B2 +B′
1 +B′

2 ∈ g14 , B1 +B2 +Q1 + · · ·+Qλ′−2 ∈ |Λ′|
.

Consider the divisor Λ
′
= Φ + Λ′ − (A1 + A2 + B1 + B2); it is clear that |Λ

′
| is a linear series of degree λ′

which is distinct from |Λ′|. ⋄

Remark 6.9. Let XK ⊂ S be as usual and assume that t = 0 and λ are the invariants of S. Let Φ ∈ g14 ,
Λ ∈ g1λ be two divisors on X . In the general case, the δ double points of X ′ = XΦ+Λ ⊂ R1,1 belong to

different lines of the two rulings |l| and |l′|. Therefore from the above result it is clear that there are
(
δ
2

)

linear series |Λ| of degree λ; to each of them we can associate a model of X lying on R1,1. In particular, if
|Λ| is one of these series, the corresponding model XΦ+Λ still has δ double points since the pair (A,B) has
been replaced by (A′, B′), where A′ := ϕΦ+Λ(A

′
1) = ϕΦ+Λ(A

′
2) and B

′ := ϕΦ+Λ(B
′
1) = ϕΦ+Λ(B

′
2), following

the notation in 6.8.

Theorem 6.10. Let XK ⊂ S ⊂ V and let S be a surface ruled by conics of minimum degree. Let t and λ
be the invariants of S defined before. If t = 0 then the invariant λ is the minimum degree of a linear series
distinct from the g14, i.e.

λ = min{r | X has a complete and base–point–free linear series g1r and r > 4}.

Moreover, assume that |Λ| and |Λ′| are two distinct linear series of degree λ and let S and S′ be the associated
surfaces. Then the following facts hold:
(i) if λ 6= g+3

2 , then S = S′;

(ii) if λ = g+3
2 , then S and S′ are not necessarely coincident but belong to a pencil of surfaces, ruled by

conics, each of them associated to a linear series of degree λ and has degree 3g−7
2 .

Proof. Recall that λ is defined at the beginning of this Section as the invariant of X such that a standard
model of X is a divisor of type (4, λ) on R1,1. Consider a linear series g1λ′ 6= g1λ; we need to show that λ′ ≥ λ.
Suppose that λ′ < λ.
If g1λ′ is minimal, consider Λ′ ∈ g1λ′ . Clearly, XΦ+Λ′ ⊂ R1,1 is a standard model.
If g1λ′ is not minimal, then it is not primitive (from 6.6); so there exist t′ points, say A1, . . . , At′ such that
∆ := Λ′ + A1 + · · · + At′ is both primitive and minimal. Therefore XΦ+∆ ⊂ R1,t′+1 is a standard model.
Hence the corresponding surface S′ ruled by conics is such that XK ⊂ S′ ⊂ V and deg(S′) = g+ λ′ − t′ − 5.
Assume that S′ 6= S; since XK ⊆ S ∩ S′, by (IF ) we have:

deg(XK) ≤

∫

V

S · S′ = 2 deg(S) + 2 deg(S′)− 4 deg(V )

hence
2g − 2 ≤ 2(2g + λ+ λ′ − t− t′ − 10)− 4(g − 3) ⇒ λ+ λ′ ≥ t+ t′ + g + 3.

Since λ′ < λ then the above relation gives:

λ >
g + 3

2
+
t+ t′

2
=
g + 3

2
+
t′

2

where the last equality comes from the assumption t = 0.
On the other hand, λ ≤ g+3

2 from 5.4. Hence t′ < 0 and this is impossible.
Therefore we have proved that, if S′ 6= S then λ′ ≥ λ.
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Assume now that S′ = S. Clearly, t′ = t = 0 and deg(S) = deg(S′). Hence, from 4.4, it follows that λ = λ′.
In this way, we have proved the first part of the statement.

(i) Assume now that λ 6= g+3
2 and S 6= S′. Then we can use the (IF ) as before and, from the assumption

λ = λ′, we obtain

λ ≥
g + 3

2
+
t′

2
.

Again we apply 5.4 to S, so:

λ ≤
g + 3

2
.

Comparing these inequalities, we obtain:

t′ = 0 hence λ =
g + 3

2

contrary to the assumption.
(ii) Suppose now that λ = (g + 3)/2. In this case, from 4.4,

deg(S) = g + λ− 5 =
3g − 7

2
.

Therefore
deg(S′) = g − λ− t′ − 5 ≤ deg(S)

and this implies t′ = 0 and

deg(S′) = deg(S) =
3g − 7

2
.

So, by 1.1, the result follows. ⋄

7. Bounds for the invariants a and b

In this section we determine the range of the invariants a and b of the four–gonal curve X .
Let us keep the notation of Section 5, where X0 ⊂ S0 ⊂ V are standard models of XK ⊂ S ⊂ V and
π : Pg−1+δ −→ P

g−1 is the projection centered on the singular locus of X0.
Recall also that V = P(O(a) ⊕ O(b) ⊕ O(c)) and V = VS = P(O(λ − 2 − 2t) ⊕ O(λ − 2 − t) ⊕ O(λ − 2)).
Moreover, from 2.2 (iii), we have δ = 3(λ − t − 1) − g and, from 5.4, we obtain the following range of the
invariant λ:

g + 3

3
≤ λ− t ≤

g + 3

2
. (10)

Remark 7.1. Note that, from the above expression of V , it follows that a ≤ λ − 2 − 2t, b ≤ λ − 2 − t,
c ≤ λ− 2. Moreover, since a+ b+ c = g − 3, there are only two independent invariants, a and b say.

Notation. Clearly, if a < b, there exists a unique directrix on V having degree a. In this case, let us denote
by A such directrix of V , by A ⊂ V the preimage of A via π, by δA the number of the double points (possibly
infinitely near) of X0 lying on A and by a the degree of A. Then

a = a− δA. (11)

Proposition 7.2. Let t > 0 and U be a directrix on S0. If deg(U) < λ− 2, then U = C0.

Proof. It is enough to consider the isomorphism

ϕ2C0+(λ−2)f : Ft −→ S0

and the unisecant irreducible curves C0 and U = C0 + αf on Ft.
If U 6= C0, then α ≥ t from 0.1. So

degS0
(U) =

∫

S0

(C0 + αf) · (2C0 + (λ − 2)f) = λ− 2 + 2α− 2t ≥ λ− 2

and the result follows. ⋄
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Proposition 7.3. Let t ≥ 0. Then the directrix A of V is contained in S0

Proof. Assume that A 6⊂ S0. Then, taking into account that deg(S0) = 4(λ− t− 2) as computed in 4.4 and
deg(V ) = 3(λ− t− 2), using the Intersection Formula we have:

∫

V

X0 ·A ≤

∫

V

S0 · A = deg(S0) + 2 deg(A)− 2 deg(V ) = 2a− 2λ+ 2t+ 4.

Therefore, if the δA singular points are distinct, it follows that:

δA ≤
1

2

∫

V

X0 · A = a− λ+ t+ 2.

In the case of infinitely near points, it is not so difficult to show that the same relation holds.
In this way, from (11), we have the following bound of a:

a = a− δA ≥ λ− t− 2,

which is the minimum degree of a directrix of V .
Consider the directrix π(C0) ⊂ V . Since degV (C0) = λ − 2t − 2 and the center of π contains at least one
point of C0, then degV (π(C0)) ≤ λ− 2t− 3 < λ− t− 2; this concludes the proof. ⋄

Next we determine bounds for the invariant a.

Remark 7.4. Consider the unisecant A ⊂ S0
∼= Ft. Clearly, from 0.1, we have:

A ∼ C0 + αf, for some α ≥ t or α = 0.

Therefore, as computed in the proof of 7.2, we have:

a = degS0
(A) = λ− 2t+ 2α− 2 (12)

A ·X0 =

∫

S0

(C0 + αf)(4C0 + (λ + t)f) = λ− 3t+ 4α

δA ≤
A ·X0

2
=
λ− 3t+ 4α

2
. (13)

It is immediate to see that, from (11), (12) and (13):

a = a− δA ≥
λ− t− 4

2
. (14)

Note that this bound of a does not depend on α.

Remark 7.5. Note that, since δA ≤ δ, from (11) we have:

a = a− δA ≥ a− δ

so, taking into account that δ = 3(λ− t− 1)− g, from (12) we immediately obtain

a ≥ λ− 2t+ 2α− 2− 3(λ− 1− t) + g = g − 2λ+ t+ 2α+ 1 ≥ g − 2λ+ t+ 1. (15)

Remark 7.6. In order to compare the two bounds of a given by (14) and (15), just note that

λ− t− 4

2
< g − 2λ+ t+ 1 ⇔ λ <

2g + 3t+ 6

5
.

This leads us to consider the best lower bound of a in each of the two ranges of λ.

Keeping into account the previous remarks, we have immediately:
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Proposition 7.7. The invariant a has the following lower bound:

amin := amin(g, λ, t) =





⌈λ− t− 4

2

⌉
if λ ≥ 2g+3t+6

5

g − 2λ+ t+ 1 if λ ≤ 2g+3t+6
5

and these bounds are attained if and only if A = C0. ⋄

Remark 7.8. We can also obtain an “absolute” lower bound of a, just observing that amin can be realized
when δA = δ hence when λ−t−4

2 = g − 2λ+ t+ 1 or, equivalently (from 7.6) when λ = 2g+3t+6
5 .

It is immediate to see that, on this line of the plane (t, λ) the two functions giving amin(g, λ, t) coincide and
are equal to

amin(g, t) =
g − t− 7

5
. (16)

Clearly, the minimum value of a is obtained for the maximum value of t (if t > 0). Therefore, keeping into
account that λ ≥ 3t (by 2.2), it is clear that the minimum value of a corresponds to the common point of
the lines λ = 2g+3t+6

5 and λ = 3t. We finish the argument by observing that

2g + 3t+ 6

5
= 3t ⇔ t =

g + 3

6

and substituting this value in (16) we obtain:

amin(g) =
g − 9

6
.

Note that, in this case, λ = 3t = g+3
2 . Summing up we have proved that:

if t > 0 then amin(g) =
g − 9

6
, for t =

g + 3

6
and λ =

g + 3

2
.

Note also that, if t = 0, the value of amin of (16) can be realized for λ = 2g+6
5 and we immediately have:

if t = 0 then amin(g) =
g − 7

5
, for λ =

2g + 6

5
.

Therefore, from 7.8, we obtain:

Corollary 7.9. With the notation above we have:

for all t ≥ 0, a ≥
g − 9

6
while, if t = 0, a ≥

g − 7

5
.

In particular, VS is not a cone for t ≥ 0 and g ≥ 10 or t = 0 and g ≥ 8.

⋄

Proposition 7.10. Keeping the notation above, the invariants a and b can vary in the following two ranges:

amin ≤ a ≤
g − 3

3
(R2)

g − λ− 1 ≤ a+ b ≤
2(g − 3)

3
. (R3)

Proof. The two inequalities on the right in (R2) and (R3) follow from a ≤ b ≤ c and a+ b + c = g − 3. For
the left inequality of (R3), note that c ≤ λ− 2 by 7.1, hence a+ b = g− 3− c ≥ g− 3− (λ− 2), as requested.
⋄

Remark 7.11. If a < g−λ−1
2 then a < b, hence A is unique.
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8. Existence of curves of given invariants λ, a, b when t = 0.

Remark 8.1. Let us examine the situation corresponding to t = 0. Here a standard model S0 of S is
isomorphic to the quadric F0 via

ϕ2l+(λ−2)l′ : F0 −→ S0 ⊂ P
3λ−4

and X0 ∼ 4l + λl′ on S0. Moreover, the projection from V to V is π : P3λ−4 −→ P
g−1, V = P(O(λ− 2)⊕3)

and the previous 2.2 (iii), (10), (R2), (R3) become, respectively:

δ = 3(λ− 1)− g (17)

g + 3

3
≤ λ ≤

g + 3

2
. (R1)

amin ≤ a ≤
g − 3

3
(R2)

g − λ− 1 ≤ a+ b ≤
2(g − 3)

3
(R3)

where

amin =





⌈λ− 4

2

⌉
if λ ≥ 2g+6

5

g − 2λ+ 1 if λ ≤ 2g+6
5

.

Note that 2g+6
5 belongs to the range of λ given in (R1). Moreover, λ = 2g+6

5 if and only if δ = λ
2 .

At this point, beside the map ϕ := ϕ2l+(λ−2)l′ defined before, it is useful to introduce a further model
of S given by the following isomorphism

ψ := ϕ4l+λl′ : F0 −→ S′ ⊂ P
5λ+4.

Notation. From now on, we denote a geometrically ruled surface ϕnl+ml′ (F0) ⊂ P
(n+1)(m+1)−1 by Sn,m.

In this way, S′ = S4,λ and we set f : S′ −→ S0 the isomorphism being given by ϕ = f ◦ ψ.

Remark 8.2. A hyperplane section H · S′ of S′ ⊂ P
5λ+4 corresponds, via the morphism ψ, to a curve

XH ⊂ F0 of type (4, λ). It is not difficult to show, using 3.9, that P ∈ F0 is a double point of XH if and
only if H contains the tangent plane TP (S

′) (here P means ψ(P ) ∈ S′).

Remark 8.3. Let S := Sn,m ⊂ P
(n+1)(m+1)−1 and Y ⊂ S be a divisor whose decomposition into irreducible

and reduced components is Y = Y1 ∪ . . . ∪ Ys. Let P1, . . . , Pδ be points of Y and denote by δi the number
of these points belonging to the component Yi. Let

L :=

〈
TP1(S), . . . , TPδ

(S)

〉

be the linear space spanned by the δ tangent planes. Clearly, if H is any hyperplane containing L, then H
intersects Yi in at least 2δi points. Therefore, if 2δi > deg(Yi), then H contains Yi.

The above observation leads to the following:

Definition. We say that P1, . . . , Pδ trivially degenerate the component Yi if 2δi > deg(Yi). Moreover, we
say that P1, . . . , Pδ trivially degenerate the curve Y if this occurs for at least one component of Y .

Remark 8.4. Let S′ = S4,λ be as before. Assume that a ≤ b ≤ c fulfil the relations (R1), (R2), (R3).
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(a) Let M ∼ l be a divisor of S′. Clearly deg(M) = H ·M = λ. Let us consider λ− 2− a distinct points of
M , say P1, . . . , Pλ−2−a. Clearly P1, . . . , Pλ−2−a do not trivially degenerate M if and only if

2(λ− 2− a) ≤ deg(M) = λ ⇔ a ≥
λ− 4

2

and this is true by (R2).
(b) In the same way, if N ∼ l is a divisor of S′ and P1, . . . , Pλ−2−b are distinct points of N , then

2(λ− 2− b) ≤ 2(λ− 2− a) ≤ deg(N) = λ

again by (R2). So P1, . . . , Pλ−2−b do not trivially degenerate N .
(c) Consider now a divisor Q ∼ (λ − 2 − c)l′ consisting of λ − 2 − c distinct components and a set of

distinct points P1, . . . , Pλ−2−c, one on each component of Q. Obviously P1, . . . , Pλ−2−c do not trivially
degenerate Q.

Theorem 8.5. Let g, a, b, λ be positive integers, with g ≥ 10, and consider the following inequalities:

g + 3

3
≤ λ ≤

g + 3

2
(R1)

amin ≤ a ≤
g − 3

3
(R2)

g − λ− 1 ≤ a+ b ≤
2(g − 3)

3
(R3)

where

amin =





⌈λ− 4

2

⌉
if λ ≥ 2g+6

5

g − 2λ+ 1 if λ < 2g+6
5

.

Then there exists a 4–gonal curve of genus g and invariants a, b, λ if and only if (R1), (R2), (R3) are verified.

Proof. If there exists a 4–gonal curve of genus g and invariants a, b, λ then (R1), (R2), (R3) come from 8.1.
Conversely, let us choose g, λ, a, b satisfying the inequalities (R1), (R2), (R3). Using 8.2, it is enough to show
that there exists an irreducibile hyperplane section H · S′ of S′ = S4,λ, i.e. a curve XH ∼ 4l+ λl′ on F0, of
genus g and invariants a, b.
Take the following three divisors of S′: M , N , Q, where M ∼ l ∼ N (M 6= N) and Q ∼ (λ− 2− c)l′ consists
of distinct lines; moreover consider λ− 2−a distinct points ofM , λ− 2− b distinct points of N and λ− 2− c
distinct points of Q, one on each line and none belonging to M or N .
Note that M +N +Q ∈ |2l+ (λ− 2− c)l′| and the equality (λ− 2− a) + (λ− 2− b) + (λ− 2− c) = δ holds
from (17).
Therefore, taking into account also 8.4, it is immediate to see that the hypotesis of the forthcoming lemma
9.4 are verified; then we can deduce that the linear space L spanned by the tangent planes to S′ at the above
δ points does not contain any further point of S′. In particular, a general hyperplane H ⊃ L corresponds to
an irreducible curve XH ∼ 4l + λl′ having exactly δ nodes; so its genus is g(XH) = 3(λ− 1)− δ = g.
Consider the isomorphism f : S′ −→ S0 defined before and set A := f(M), B := f(N). Clearly

deg(A) = deg(B) = λ− 2.

Set X0 := ϕ(XH) ⊂ S0 and denote by δA and δB the number of the double points of X0 lying on A and on
B, respectively. From the construction, it is clear that:

δA = λ− 2− a and δB = λ− 2− b.

Setting A,B ⊂ S ⊂ V the projections of A and B, respectively, via π〈∆〉 : S0 → S, from (11) we have that

deg(A) = deg(A)− δA = λ− 2− δA = a and deg(B) = deg(B)− δB = λ− 2− δB = b.
In this way one can easily deduce that V = VS = P(O(a) ⊕ O(b) ⊕ O(c)), so a and b are the other two
invariants of X . ⋄

In order to complete the proof of the Theorem above, we need to prove the “Key–lemma” stated in 9.4.
Next section will be devoted to this purpose.
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9. Proof of the Key–lemma

In order to prove the Key–lemma 9.4, we need some preliminary technical results.

Lemma 9.1. Let S := Sn,m and D ∼ hl+ kl′ ⊂ S be a divisor, where h ≤ n+ 1 and k ≤ m+ 1. Then the
following facts hold:
i)

dim〈D〉 = h(m+ 1) + k(n+ 1)− hk − 1.

Moreover, if D is irreducible:
ii) D is a non–special curve;
iii) D is a linearly normal curve in 〈D〉.

Proof.
i) Assume first that h ≤ n and k ≤ m. It is clear that, setting S′ := Sn−h,m−k, we have dim〈D〉 =
h0(OS(1))− h0(OS′(1))− 1 and this proves the above relation.
The remaining cases are: h = n + 1 and k ≤ m + 1 or h ≤ n + 1 and k = m + 1. In both of them,
D ∼ hl + kl′ cannot be contained in any hyperplane section H · S ∼ nl +ml′ of S. Hence 〈D〉 = 〈S〉,
so dim〈D〉 = dim〈S〉 = (n+ 1)(m+ 1)− 1 and this gives the formula in the statement when h = n+ 1
or k = m+ 1.

ii) It is enough to show that deg(D) > 2pa(D) − 2. Taking into account that deg(D) = hm + kn and
pa(D) = hk − h− k + 1, and using the assumption n ≥ h− 1 and m ≥ k − 1, we obtain:

deg(D) = hm+ kn ≥ h(k − 1) + (h− 1)k > 2hk − 2h− 2k = 2pa(D)− 2.

iii) It is enough to prove that h0(D,OD(1)) = dim〈D〉+ 1.
Since D is non–special, as proved before, applying the Riemann–Roch Theorem, we obtain

h0(OD(1)) = deg(D)− pa(D) + 1

and this coincides with dim〈D〉+ 1, as one can easily verify. Hence D is linearly normal in 〈D〉. ⋄

Lemma 9.2. Let S := S2,k, where k ≥ 2, and consider d distinct points: P1, . . . , Pd ∈ S, where d ≤
2k + 1. Setting J := 〈P1, . . . , Pd〉, if dim(J) < d − 1, then there exists a unisecant curve U on S such that
#(U ∩ {P1, . . . , Pd}) ≥ deg(U) + 1. In particular, U ⊂ S ∩ J .

Proof. Assume for simplicity that the considered points belong to distinct fibres of S′.
Since dim |l + kl′| = 2k + 1 ≥ d, there exists a unisecant curve linearly equivalent to l + kl′ containing
P1, . . . , Pd. Therefore we can find a unisecant, U ′ say, of minimum degree containing P1, . . . , Pd. Clearly,
U ′ ∼ l + ǫl′, where ǫ ≤ k; moreover U ′ = U + l′1 + · · · + l′α, where U is irreducible, P1, . . . , Pd−α ∈ U and
Pd−α+i ∈ l′i \U , for i = 1, . . . , α. Let us show that U is the required unisecant curve. Were this not the case,
setting

β := deg(U) + 1− (d− α)

it follows that β > 0. Consider the linear space T := 〈J,A1, . . . , Aβ〉, where Aj ∈ U . Clearly U ⊂ T , hence
T meets each fiber l′i in two points: Pd−α+i and U ∩ l′i. Since the fibers are conics then, choosing Bi ∈ l′i,
the linear space

Σ := 〈J,A1, . . . , Aβ , B1, . . . , Bα〉

contains 〈U ′〉. Therefore dim〈U ′〉 ≤ dim(Σ) ≤ dim(J) + α + β = dim(J) + deg(U) + 1 − d + 2α. On the
other hand, using 9.1, dim〈U ′〉 = deg(U ′) = deg(U) + 2α, so dim(J) ≥ d− 1, against the assumption.
It is not difficult to generalize this proof to the case where at most two of the d points belong to the same
fibre. ⋄

Lemma 9.3. Let S := S4,λ, where λ ≥ 4, and D̃ ∈ |2l+ ǫl′| be a bisecant curve on S such that D̃ does not

contain any fiber of S. Consider d+1 points P, P1, . . . , Pd as follows: P ∈ S, P1, . . . , Pd ∈ D̃ such that they
do not trivially degenerate D̃ and at most two of them belong to the same fibre. Assume that P1, . . . , Pm

are double points of D̃ (for 0 ≤ m ≤ d) and Pm+1, . . . , Pd are simple points of D̃. Let

T := 〈P, TP1(S), . . . , TPm
(S), tPm+1(D̃), . . . , tPd

(D̃)〉

where TPi
(S) and tPi

(D̃) denote the tangent plane to S and the tangent line to D̃, respectively, at Pi.
If ǫ ≤ λ and d ≤ λ, then dim(T ) = 2d+m.
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Proof. For simplicity, assume that P ∈ D̃ and P1, . . . , Pd belong to distinct fibres of S. In this situation,
T ⊆ 〈D̃〉 and m ≤ d ≤ ǫ.

Claim: T is a proper subspace of 〈D̃〉.
In order to prove this, observe that, by 9.1 and the assumption d ≤ λ, we have

dim〈D̃〉 = 2λ+ 3ǫ+ 1 ≥ 2d+ 3ǫ+ 1.

As noted at the beginning, m ≤ ǫ hence dim〈D̃〉 ≥ 2d + 3m + 1 > 2d + m ≥ dim(T ) and this proves the
claim.
Let N := dim〈D̃〉 and consider the projection πT : PN → P

n with center T , for a suitable n. Clearly, by the
claim above, n > 0.
Let R := R(D̃) be the ruled surface generated by D̃ via the ruling on S. Since T is a multisecant space of
this ruled surface and P1, . . . , Pd belong to distinct fibers, then T ∩ R contains a unisecant curve (see [4],

1.5), Y say. Therefore πT (R) = πT (D̃) is a rational normal curve of degree n in P
n. In particular:

N − n = dim〈D̃〉 − dim〈πT (D̃)〉 = dim(T ) + 1. (18)

In order to prove the statement, observe that it holds that dim(T ) ≤ 2d+m.

First case: D̃ is irreducible.
Since π

T |D̃
is a map of degree two, then

n = deg(πT (D̃)) =
deg(D̃)−

∫
T · D̃

2
. (19)

Moreover, from 9.1 (iii) we have that:

N = dim〈D̃〉 = h0(O
D̃
(1))− 1 = deg(D̃)− pa(D̃)

so, using (18) we finally obtain:

dim(T ) = N − n− 1 = deg(D̃)− pa(D̃)−
deg(D̃)−

∫
T · D̃

2
− 1 =

deg(D̃) +
∫
T · D̃

2
− pa(D̃)− 1.

Note that deg(D̃) = 4ǫ + 2λ and pa(D̃) = ǫ − 1; moreover, by the definition of T ,
∫
T · D̃ ≥ 2d + 2m+ 1.

Hence we obtain
dim(T ) ≥ ǫ+ λ+ d+m+ 1/2.

Thus, if we assume dim(T ) < 2d+m, we get

ǫ + λ+ d+m+ 1/2 < 2d+m ⇒ d > λ+ ǫ+ 1/2

contrary to the assumption d ≤ λ.
Second case: D̃ is reducible.
Let D̃ = U1+U2, where Ui are irreducible unisecant curves. Let di be the number of points among P1, . . . , Pd

belonging to Ui. Clearly, P1, . . . , Pm belong to U1 ∩ U2, so d = d1 + d2 −m. Moreover, we have

dim〈D̃〉 = dim〈U1〉+ dim〈U2〉 −

∫
U1 · U2 + 1. (20)

Since T is a proper subspace of 〈D̃〉 as proved in the previous claim, then D̃ 6⊂ T ; therefore only two cases
can occur: either Ui 6⊂ T for i = 1, 2 or (for instance) U1 ⊂ T and U2 6⊂ T .

If Ui 6⊂ T for i = 1, 2, then πT (D̃) = πT (U1) = πT (U2) so

n = dim〈πT (D̃)〉 = dim〈πT (Ui)〉 = deg(πT (Ui)) = deg(Ui)−

∫
T · Ui for i = 1, 2. (21)
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Adding the previous relations (21) for i = 1 and i = 2, we obtain that 2n = deg(U1 + U2)−
∫
T · (U1 + U2),

so this equality coincides with (19) and we conclude the proof as in the first case.
We are left to study the case U1 ⊂ T , i.e. U1 = Y . Since T contains the tangent lines to U2 at all the d2
points defined before and since U1 ⊂ T and the m double points of D̃ belong to U1 ∩ U2, then

∫
T · U2 = 2d2 +

∫
U1 · U2 −m.

In this case (21) holds only for U2, so it becomes:

dim〈πT (D̃)〉 = deg(U2)−

(
2d2 +

∫
U1 · U2 −m

)
.

Therefore, using the relation above and (20), and taking into account that dim〈Ui〉 = deg(Ui), we obtain:

dim〈D̃〉 − dim〈πT (D̃)〉 = deg(U1) + 2d2 −m+ 1.

Now we substitute d2 = d+m− d1 and use (18), obtaining

dim(T ) + 1 = deg(U1) + 2d+ 2m− 2d1 −m+ 1.

Finally recall that the Pi’s do not trivially degenerate D̃, hence 2d1 ≤ deg(U1); so we obtain

dim(T ) + 1 ≥ 2d+m+ 1

as required. In the general case, the proof runs in a similar way. ⋄

Notation. Since we will consider, in the following result, both S′ := S4,λand S2,c+2, we denote the divisors

on these surfaces by: D4, D̃4, . . . and D2, D̃2, . . ., respectively.

Key–Lemma 9.4. Let g, a, b, c, λ be positive integers satisfying (2), (R1), (R2), (R3).
Let S′ := S4,λ ⊂ P

5λ+4 and D4 ∈ |2l + (λ− 2− c)l′| be a curve on S′ of type

D4 = D̃4 +
α∑

i=1

l′i

where α is an integer such that 0 ≤ α ≤ λ − 2 − c and D̃4 is a suitable bisecant divisor not containing any
irreducible component linearly equivalent to l′.
Let us take δ = 3(λ− 1)− g distinct points on D4 which do not trivially degenerate D4 and set

P1, . . . , Pδ−α ∈ D̃4 and P ′
1, . . . , P

′
α ∈

α∑

i=1

l′i

such that P ′
i ∈ l′i \ D̃4 for i = 1, . . . , α. Consider the linear space

L :=
〈
TP1(S

′), . . . , TPδ−α
(S′), TP ′

1
(S′), . . . , TP ′

α
(S′)

〉

spanned by the tangent planes to S′ at these δ points.
If P ∈ S′ is any further point such that P 6∈ L and L′ := 〈P,L〉, then:

dim(L′) = 3δ.

In particular, dim(L) = 3δ − 1, i.e. L is of maximum dimension and the intersection of L and S′ consists
only of the points P1, . . . , Pδ−α, P

′
1, . . . , P

′
α.

Proof. Note first that dim(L′) ≤ 3δ and dim(L) ≤ 3δ − 1. So it is enough to show that dim(L′) ≥ 3δ.

Assume first that P 6∈ D̃4.
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Step 1. Computation of the dimension of Σ := 〈L′, D4〉.

Among the choosen points P1, . . . , Pδ−α ∈ D̃4, consider those which are singular points of D̃4, say P1, . . . , Pm,
for some 0 ≤ m ≤ δ − α.

P1
P2 Pm

Pm+1 Pδ−α

P’ P’ P’
21

α

l’ l’ l’
1 2

α...

Figure 5

Clearly, since they are double points of D̃4, the tangent plane at each of them is contained in 〈D̃4〉. On the

other hand, the tangent plane at the remaining δ −m points intersects 〈D4〉 in a line (either tangent to D̃4

for Pm+1, . . . , Pδ−α, or tangent to l
′
i for the points of type P ′

i ). Briefly:

TPi
(S′) ⊂ 〈D̃4〉, for i = 1, . . . ,m

TPi
(S′) ∩ 〈D4〉 = tPi

(D4) = tPi
(D̃4), for i = m+ 1, . . . , δ − α

TP ′
j
(S′) ∩ 〈D4〉 = tP ′

j
(D4) = tP ′

j
(l′j), for j = 1, . . . , α.

(22)

Consider now the projection
π := π〈D4〉 : S

′ = S4,λ −→ S2,c+2

and set
J := π(Σ) = 〈P , Pm+1, . . . , P δ−α, P

′

1, . . . , P
′

α〉

where

P := π(P ), P i := π(TPi
(S′)), for i = m+ 1, . . . , δ − α, and P

′

j := π(TP ′
j
(S′)), for j = 1, . . . , α.

By the definition of J , we clearly have:

dim(Σ) = dim(J) + dim〈D4〉+ 1. (23)

Step 2. Computation of the dimension of J .

Observe that the isomorphisms ϕ4l+λl′ and ϕ2l+(c+2)l′ induce a canonical isomorphism, say χ, as follows

F0
ϕ4l+λl′ ւ ցϕ2l+(c+2)l′

S4,λ
χ

−−−−→ S2,c+2

and χ coincides with π on S4,λ \D4.

Therefore, setting D2 := χ(D4) ⊂ S2,c+2, the points Pm+1, . . . , P δ−α, P
′

1, . . . , P
′

α belong to D2.
Clearly, dim(J) ≤ δ −m. We want to show that dim(J) = δ −m.
Assume that dim(J) < δ −m. In order to apply 9.2, we need to compare the number of points spanning J
with the integer c.
On one hand, from (17) and (R1) we have:

δ = 3(λ− 1)− g ≤
g + 3

2
.
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On the other hand, from (R3), we get c ≥ g−3
3 , i.e. g ≤ 3c+ 3. Therefore we obtain:

δ −m ≤ δ ≤
g + 3

2
≤

3c+ 6

2
< 2c+ 5 ⇒ δ −m+ 1 ≤ 2(c+ 2) + 1.

So, we can apply Lemma 9.2 to J (which is spanned by δ −m + 1 points and has dimension smaller than
δ − m) and S2,c+2. In this way we obtain that there exists a unisecant curve U ⊂ J ∩ S2,c+2 such that,

setting r the number of the points among P , Pm+1, . . . , P δ−α, P
′

1, . . . , P
′

α belonging to U , then

deg(U) ≤ r − 1.

Let U ∼ l + ǫl′; then deg(U) = c+ 2 + 2ǫ.
Claim. The unisecant U is not contained in D2.
If not, let U := χ−1(U) and h be the number of the points among P , the Pi’s and the P ′

j ’s belonging to U .

On one hand, since these points do not trivially degenerate D4 (by assumption) and U ⊂ D4 (since U ⊂ D2

by the assumption of the Claim), then 2h ≤ deg(U).
On the other hand, h ≥ r by the definitions of h and r and from χ(U) = U . From all these observations, it
follows

deg(U) ≥ 2h ≥ 2r ≥ 2(deg(U) + 1) = 2(c+ 3 + 2ǫ).

Since deg(U) = λ+ 4ǫ, we obtain 2c+ 6 ≤ λ. Using the bound c ≥ (g − 3)/3, we finally get λ ≥ (2/3)g + 4,
against (R1). In this way the claim is proved.

Since U is not contained in D2, we can consider their intersection, which surely contains the r points
introduced before. So

r ≤

∫

S2,c+2

U ·D2 = (l + ǫl′) · (2l + (λ− 2− c)l′) = λ− 2− c+ 2ǫ.

The above relation and deg(U) ≤ r − 1 give:

c+ 2 + 2ǫ = deg(U) ≤ r − 1 ≤ λ− 3− c+ 2ǫ

so λ ≥ 2c+ 5 and this leads to a contraddiction, as in the proof of the claim above.
Hence such unisecant curve U does not exist and this implies

dim(J) = δ −m. (24)

Step 3. Computation of the dimension of L′.

Putting together (23) and (24) we finally obtain:

dim(Σ) = dim〈D4〉+ δ −m+ 1. (25)

Now let us compare dim(Σ) with dim(L′). Consider the linear space

T := 〈P, TP1(S
′), . . . , TPm

(S′), tPm+1(D̃4), . . . , tPδ−α
(D̃4)〉 ⊆ L′.

Note that, from (R1), we have g ≥ 2λ− 3; hence

δ − α ≤ δ = 3(λ− 1)− g ≤ λ.

Therefore the assumption in 9.3 are satisfied by S4,λ, D̃4 and T with respect to the points P, P1, . . . , Pδ−α:
we then obtain

dim(T ) = 2(δ − α) +m. (26)
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Since T ⊆ 〈D̃4, P 〉 by (22), there exist β points, say R1, . . . , Rβ ∈ D̃4 such that 〈T,R1, . . . , Rβ〉 coincides

with 〈D̃4, P 〉, where

β = dim〈D̃4, P 〉 − dim(T ) ≤ dim〈D̃4〉 − dim(T ) + 1. (27)

Therefore the linear space 〈L′, R1, . . . , Rβ〉 contains 〈D̃4, P 〉, so it meets each fibre l′P ′
j
(for j = 1, . . . , α) in

four points: two of them are l′P ′
j
∩D̃4 and the remaining ones are l′P ′

j
∩TP ′

j
(S′). Hence, if we add to this space

a further point, say Aj , on each fiber, the obtained linear space contains also the quartic curves l′P ′
1
, . . . , l′P ′

α
,

hence the whole divisor D4. In this way we have proved that

〈L′, R1, . . . , Rβ , A1, . . . , Aα〉 ⊃ 〈L′, D4〉 = Σ

so
dim(Σ) ≤ dim(L′) + α+ β. (28)

Using (25) and (28) we obtain:

dim〈D4〉+ δ −m+ 1 = dim(Σ) ≤ dim(L′) + α+ β

and from this, using (27) we get:

dim〈D4〉+ δ −m+ 1 ≤ dim(L′) + α+ dim〈D̃4〉 − dim(T ) + 1.

Finally, using (26) we obtain:

dim(L′) ≥ δ −m+ dim〈D4〉 − dim〈D̃4〉 − α+ 2(δ − α) +m =

= 3δ − 3α+ dim〈D4〉 − dim〈D̃4〉 =

= 3δ

where the last equality easily comes from 9.1.
Note that the statement has been proved in the case P 6∈ D̃4, but the case P ∈ D̃4 runs in a similar
way, with some cautions. Namely, in Step 1, the main difference concernes the linear space J := π(Σ) =

〈Pm+1, . . . , P δ−α, P
′

1, . . . , P
′

α〉 obtained from Σ by projecting from 〈D4〉 and the relation (23) still holds. In
Step 2, since δ−m+1 ≤ 2(c+2)+1 then, a fortiori, it holds δ−m ≤ 2(c+2)+1. So also in this case Lemma
9.2 can be applied to J , which is spanned by δ−m points and it is assumed to have dimension smaller then
δ−m− 1. With the same argument can be proved the analogous of (24) i.e. dim(J) = δ−m− 1. Finally, in
Step 3 we obtain the analogous of (25) and precisely dim(Σ) = dim〈D4〉+ δ−m. In the following argument
the result 9.3 is used; since it holds for any P , also in this case (26) is verified. Now it is immediate to see

that (27) becomes β = dim〈D̃4〉 − dim(T ) and we obtain again that

dim〈D4〉+ δ −m = dim(Σ) ≤ dim(L′) + α+ β.

Using the new form of (27) we finally obtain:

dim〈D4〉+ δ −m ≤ dim(L′) + α+ dim〈D̃4〉 − dim(T )

which leads to the end of the proof as in the general case. ⋄

Remark 9.5. The result stated in 9.4 holds also if at most two of the points P1, . . . , Pd belong to the same
fibre.

The following immediately follows from 9.4:

Corollary 9.6. For every curve D ∼ 2l + (λ − 2 − c)l′ ⊂ S0
∼= F0 and for every choice of P1, . . . , Pδ ∈ D

which do not trivially degenerate D, there exists a curve X0 ⊂ S0 whose double points are exactly P1, . . . , Pδ

and whose characters are a, b, λ, where a+ b = g − 3− c. ⋄

We conclude this section with some remark about the construction of the bisecant curves D4 and D̃4.
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Let us consider a geometrically ruled surface contained in V and having minimum degree; each of such
surfaces corresponds to a quotient of type

F := O(a)⊕O(b)⊕O(c) −→ O(a) ⊕O(b) −→ 0 (29)

i.e. it is of the type R := Ra,b = P(O(a)⊕O(b)).

Remark 9.7. Since the above quotients correspond to the sections of F(−c), tensorizing (29) by O(−c) we
obtain:

0 −→ O −→ O(a− c)⊕O(b − c)⊕O −→ O(a− c)⊕O(b − c) −→ 0

so

h0(F(−c)) =





3 if a = b = c
2 if a < b = c
1 if b < c

or, equivalently: dim |Ra,b| =





2 if a = b = c
1 if a < b = c
0 if b < c

.

Remark 9.8. Set V := VS0
and let as usual Σ be the set of the double points of X0. We have the diagram

S0 ⊂ V ⊃ Ry
yπΣ

y
S ⊂ V ⊃ R

where R := π−1
Σ (R). Setting δR := ♯(Σ ∩ R), i.e. the number of the double points (possibly infinitely near)

of X0 lying on R, it is clear that deg(R) = deg(R) + δR = a+ b+ δR.

Lemma 9.9. Let R ∈ |Ra,b| be a fixed ruled surface on V = O(a) ⊕ O(b) ⊕ O(c) and S0 = S2,λ−2 be as
usual. Then

D̃ := R · S0 ∼ 2l+ (λ− 2− c− δ + δR)l
′

and there exists a unique bisecant curve D ∼ 2l+(λ− 2− c)l′ ⊂ S0 such that Σ ⊂ D and D ⊇ D̃. Moreover,
as soon as R varies in |Ra,b|, D varies in a linear system of dimension 0, 1, 2 if b < c, a < b = c, a = b = c,
respectively.

Proof. Let HV be a hyperplane section of V containing R. Since each hyperplane section cannot contain

any other unisecant component out of R, then HV ∼ R + τFV , where FV is the generic fibre of V and τ is
a non negative integer.
Clearly, since deg(HV ) = deg(V ) = deg(V ) + δ = a+ b+ c+ δ and deg(R) = a+ b+ δR, we obtain that

R ∼ HV − (c+ δ − δR)FV .

Taking into account that HV · S0 = 2l+ (λ − 2)l′ and FV · S0 = l′, we obtain:

R · S0 ∼ 2l + (λ− 2)l′ − (c+ δ − δR)l
′ = 2l+ (λ− 2− c− δ + δR)l

′

as required. Note that only δR points of Σ lie on D̃ and the remaining δ − δR lie on δ − δR fibres (possibly
coincident) of S0, say l

′
1, . . . , l

′
δ−δR

. Hence

Σ ⊂ D̃ ∪ l′1 ∪ . . . ∪ l
′
δ−δR ∼ 2l + (λ− 2− c)l′

so, setting D := D̃∪ l′1 ∪ . . .∪ l
′
δ−δR

, we obtain that D is linearly equivalent to 2l+(λ− 2− c)l′ and contains

both Σ and D̃, as required. Finally, from the above construction, the divisor D is unique, for each R. The
last statement follows from 9.7. ⋄

Keeping the notation above, one can immediately compute the degree of D:

deg(D) =

∫
(2l + (λ− 2− c)l′) · (2l + (λ− 2)l′) = 4(λ− 2)− 2c. (30)

Observe that R is the ruled surface generated by the ruling of V on D̃, i.e.

R =
⋃

P,Q∈D̃∩F
V

lP,Q

where lP,Q denotes the line passing through the points P and Q. In particular, R is determined by D̃; to

stress this fact, we will write R = R(D̃).
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10. Moduli spaces of 4–gonal curves with t = 0

In this section we study the moduli spaces of 4–gonal curves with given invariants; in particular we
determine whether they are irreducible and find their dimension. Moreover we give a stratification of these
spaces using the invariants introduced in the previous sections.

Let X be a 4–gonal curve of genus g and consider its canonical model XK ⊂ S ⊂ V ⊂ P
g−1, where

(from 1.1) S is a surface ruled by conics, of minimum degree and unique, unless g is odd and deg(S) = 3g−7
2 .

In this case, there is a pencil of such surfaces.
Assume that S has invariant t = 0, i.e. its (embedded) standard model is the quadric surface R1,1 ⊂ P

3,
on which X can be realized as a curve X ′ ∼ 4l+λl′ having only double points as singularities: we will write
X = X(g, λ). Moreover, if V = P(O(a)⊕O(b)⊕O(c)), then a and b are further invariants of X and we will
write X = X(g, λ, a, b).

Remark 10.1. If X is as before, then by 6.9 it is clear that it has a finite number of models X ′, at most
(
δ
2

)
,

on R1,1 unless g is odd and deg(S) = 3g−7
2 . In this case, there is a one–dimensional family of such models of

X . More precisely, one model comes from another via an elementary transformation of type elmA,B, where
A and B are two double points of X ′ as in 6.9. In this way, denoting by X ′′ another model of X on R1,1

and by ξ an elementary transformations as before, the set

ΞX′ := {ξ : X ′ −→ X ′′}

consists of at most
(
δ
2

)
elements if deg(S) ≤ ⌈ 3g−8

2 ⌉, while dim(ΞX′ ) = 1 if deg(S) = 3g−7
2 .

Note that ΞX′ has exactly
(
δ
2

)
elements in the general case.

Let us denote by Aλ the open subset of the linear system |4l+λl′| on R1,1 parametrizing the irreducible
curves of such linear system and set

Wλ
g := {X ′ ∈ Aλ | X = X(g, λ) and X ′ has δ double points on distinct fibres}

Wλ
g (a, b) := {X ′ ∈ Wλ

g | X = X(g, λ, a, b)}.

Let us denote by Mg,4 the moduli space of 4–gonal curves of genus g and let

θ : Wλ
g −→ Mg,4

be the usual projection defined by θ(X ′) = [X ], where [X ] is the isomorphism class of the four–gonal curve
X in Mg,4. Finally set

Mλ
g := θ(Wλ

g ), Mλ
g (a, b) := θ(Wλ

g (a, b)).

It is clear that, in order to compute the dimension of these moduli spaces, we need to find both the dimensions
of Wλ

g (resp. Wλ
g (a, b)) and of the general fibre of θ.

Remark 10.2. From 8.5, the locally closed subsets Wλ
g (a, b) and hence Wλ

g are not empty, as soon as a, b, λ
fulfil (R1), (R2), (R3).

Lemma 10.3. Let X ′, Y ′ ∈ Wλ
g be two curves on R1,1. If [X ] = [Y ] in Mλ

g , there exists an automorphism
β of the quadric surface R1,1 and a morphism ξ ∈ ΞY ′ such that

Y ′ = ξ(β(X ′)).

Therefore the dimension of the general fibre of θ is:

dim(θ−1([X ])) =

{
7 if g is odd and λ =

⌈
g+2
2

⌉

6 otherwise
.

Proof. Since X ∼= Y , then XK
∼= YK and there exists a linear automorphism, α say, of Pg−1 such that

α(XK) = YK .
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Let SX and SY be the surfaces, ruled by conics and of minimum degree such that XK ⊂ SX ⊂ P
g−1 and

YK ⊂ SY ⊂ P
g−1. Assume that these surfaces are unique: therefore α(SX) = SY .

Let us consider the diagram (8) for both X and Y : defining with obvious notation NX := 〈ϕX(KX −ΦX −
ΛX)〉 and NY analogously, we have

P
g−1 ⊃ SX ⊃ XK

πNX−−−−−−→ XΦX+ΛX
= X ′ ⊂ R1,1(X)

α

y α

y α

y β

y

P
g−1 ⊃ SY ⊃ YK

πNY−−−−−−→ YΦY +ΛY
= Y ′ ⊂ R1,1(Y )

where β is the isomorphism between the quadrics R1,1(X) and R1,1(Y ) induced by α. Up to a linear change
of coordinates in P

3, we can assume that R1,1(X) = R1,1(Y ) so β ∈ Aut(R1,1).
Consider then the curves Y ′ and β(X ′) lying on R1,1: from the construction above, we obtain that they
are both models of Y on a quadric. Therefore, applying 10.1, we get that there exists ξ ∈ ΞY ′ such that
Y ′ = ξ(β(X ′)), as requested.
When SX and SY are not unique they vary in a pencil (see 1.1) and the proof runs in a similar way.
The second part of the statement follows from the first part; namely, it is clear that

dim(θ−1([X ])) = dim(Aut(R1,1)) + dim(ΞX).

On one hand, observe that Aut(R1,1) ∼= Aut(P1 × P
1) ∼= PGL(2)× PGL(2) has dimension 6.

On the other hand, by 10.1,

dim(ΞX) =

{
1 if g is odd and deg(S) = 3g−7

2
0 otherwise

.

Finally note that (using 4.4):

g + λ− 5 = deg(S) =
3g − 7

2
or, equivalently

λ =
g + 3

2
=

⌈
g + 2

2

⌉

where the last equality holds since g is odd. ⋄

Let us recall (see Section 8) that, if X ′ ∈ Wλ
g then X ′ ⊂ R1,1

∼= F0 and ϕ4l+λl′ : F0 −→ S′ ⊂ P
5λ+4; in

particular, we can associate to X ′ a hyperplane HX of P5λ+4. By 8.2 we have that X ′ has P1, . . . , Pδ as
double points if and only if HX contains the linear space

LP1,...,Pδ
:= 〈TP1(S

′), . . . , TPδ
(S′)〉.

In this way we can identify Wλ
g with its image via the injective morphism

i : Wλ
g −→ P̌

5λ+4

X ′ 7→ HX

.

In order to compute the dimension of Wλ
g and of Wλ

g (a, b) and to prove their irreducibility, we need
further preliminary observations.

Remark 10.4. The Key–Lemma 9.4 has been proved under the assumption that (P1, . . . , Pδ) are distinct
points. For instance, if δ = 2, this result says that

dimLP1,P2 = dim〈TP1(S
′), TP2(S

′)〉 = 5.

If P2 is infinitely near to P1, given a local system of coordinates of S′ in a neighbourhood of P1, the tangent
plane to S′ at P1 is generated by P1 and the first derived vectors both along the bisecant D̃ and along the
fibre l′1. Hence it is easy to see that the linear space LP1,P2 is generated by the above generators of TP1(S

′)
and by two further second derived vectors and a third derived vector. One can show that all of them are
linearly independent so, also in this case, dimLP1,P2 = 5.
It is not difficult to prove that, if k is any integer (1 ≤ k ≤ δ − 1) and the considered points are
P1, P2, . . . , Pk+1, . . . , Pδ where P2, . . . , Pk+1 are infinitely near to P1, then

dimLP1,...Pδ
≥ 3δ − k.
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Lemma 10.5. Let us consider the morphism

Ψ : Wλ
g −→ Symδ(R1,1)

X ′ 7→ (P1, . . . , Pδ)

where Σ = P1 + · · ·+ Pδ is the singular locus of X ′ ⊂ R1,1. Then the general fibre of Ψ has dimension
i) dim(Ψ−1(P1, . . . , Pδ)) = 5λ+ 4− 3δ if P1, . . . , Pδ are distinct points;
ii) dim(Ψ−1(P1, . . . , Pδ)) ≤ 5λ+ 3− 3δ + k if P2, . . . , Pk+1 are infinitely near to P1, for some k ≥ 1.

Proof. By definition, Wλ
g consists of the irreducible curves of type (4, λ) on R1,1 having δ double points

on distinct fibres. So, taking into account the above injective morphism i : Wλ
g −→ P̌

5λ+4 and the fact

that X ′ ∈ Wλ
g has P1, . . . , Pδ as double points if and only if the hyperplane HX := i(X ′) contains the

linear space LP1,...,Pδ
, it is clear that the general fibre Ψ−1(P1, . . . , Pδ) is isomorphic to an open subset of

{H ∈ P̌
5λ+4 | H ⊃ LP1,...,Pδ

}, since the general hyperplane containing LP1,...,Pδ
contains the tangent planes

to S′ only at the choosen points. This means exactly that

dim(Ψ−1(P1, . . . , Pδ)) = 5λ+ 4− (dimLP1,...Pδ
+ 1).

i) If P1, . . . , Pδ are distinct, then in the Key–Lemma 9.4 we have shown that the dimension of LP1,...,Pδ

is 3δ − 1 independently on the position of the considered points. So, in this case, Ψ−1(P1, . . . , Pδ) is
irreducible of dimension 5λ+ 4− 3δ.

ii) If P1, . . . , Pδ are not distinct – as in the assumption – then the fibre of Ψ could have bigger dimension.
Nevertheless, we can get an upper bound on this dimension by taking into account 10.4, obtaining that
dim(Ψ−1(P1, . . . , Pδ)) is at most 5λ+4− (3δ− k+1) and this proves the second part of the statement.

⋄

Proposition 10.6. For each λ satisfying

g + 3

3
≤ λ ≤

⌈
g + 2

2

⌉
(R1)

the locally closed subset Wλ
g is irreducible of dimension g + 2λ+ 7.

Proof. Setting Sym := Symδ(R1,1), consider the map Ψ : Wλ
g → Sym defined in 10.5. Note that Ψ is

dominant and dim(Sym) = 2δ.
Recall also that the δ singular points of the general curve X ′ ∈ Wλ

g are in general position on R1,1 by 9.4.
If P1, . . . , Pδ are distinct points, by 10.5 we get that dim(Ψ−1(P1, . . . , Pδ)) = 5λ+ 4− 3δ. Therefore

dim(Wλ
g ) = dim(Ψ−1(P1, . . . , Pδ)) + dim(Sym) =

= 5λ+ 4− δ =

= g + 2λ+ 7

where the last equality follows from δ = 3(λ− 1)− g.
Assume now that P2, . . . , Pk+1 are infinitely near to P1 for some k ≥ 1. Then the fibre of Ψ at the point
(P1, . . . , Pδ) ∈ Sym has dimension at most 5λ+3− 3δ+ k by 10.5. The difference between such integer and
5λ+ 4− 3δ is at most

k − 1 < 2k = codim Sym(∆)

where ∆ := {(Q1, . . . , Qδ) ∈ Sym | Q1 = · · · = Qk+1}. Clearly ∆ is a closed subset of Sym and contains the
considered element (P1, . . . , Pδ). Therefore, the variety consisting of the fibres on the points of ∆ is a proper
closed subset of Wλ

g . ⋄

Remark 10.7. Recall that Mg,4 is a closed irreducible subset of the moduli space Mg and has dimension
2g + 3. Let us set the maximum value of λ (see (R1)):

λmax :=

⌈
g + 2

2

⌉
.
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Then, from 10.6
dim(Wλmax

g ) = g + 2λmax + 7.

Let us recall that the fibre of θ : Wλmax
g → Mλmax

g has dimension either 6 or 7, accordingly to wheter g is
even or odd, respectively (from 10.3). Hence

dim(Mλmax
g ) =

{
g + 2 g+2

2 + 1 = 2g + 3, if g is even ;

g + 2 g+3
2 = 2g + 3, if g is odd.

Therefore, in both cases, we have that dim(Mλmax
g ) = dim(Mg,4); in other words, the general 4–gonal curve

has invariant λmax.

Remark 10.8. We know that, if t > 0, then X admits a standard model X ′ ⊂ R1,t+1. Nevertheless, also
in this case, it is possible to define another model of X , X ′′ say, on a quadric surface R1,1. Clearly, in this
situation, X ′′ will have not only double points as singularities, but also triple points.
Namely, let Q1, . . . , Qt be simple points of X ′, belonging to t distinct fibres of R1,t+1 and consider the
projection from these points:

X ′ ⊂ R1,t+1y
yπQ1,...,Qt

X ′′ ⊂ R1,1

Since X ′ meets each fibre of R1,t+1 in the four points of the gonal divisor, the singularities of X ′′ are the δ
double points of X ′ and, in addition, t triple points, all of them belonging to the same line l.
It is clear that the closure Wλ

g of Wλ
g in Aλ contains also the curves of invariants g, λ and t > 0 and it is

not difficult to see that the closed subset consisting of such curves has dimension smaller then dim(Wλ
g ).

Using 10.2, 10.3, 10.6, 10.7 and 10.8, we immediately obtain the following result, which is the first part

of the Main Theorem stated in the Introduction (here M
λ

g denotes the closure of Mλ
g in the moduli space

Mg,4 of 4–gonal curves):

Theorem 10.9. There exists a stratification of the moduli space Mg,4 of 4–gonal curves given by:

Mg,4 = M
⌈ g+2

2 ⌉
g ⊃ M

⌈ g
2⌉

g ⊃ · · · ⊃ M
λ

g ⊃ · · · ⊃ M
⌈ g+3

3 ⌉
g

and M
λ

g are irreducible locally closed subsets of dimension g+2λ+1, for each λ satisfying g+3
3 ≤ λ <

⌈
g+2
2

⌉
.

⋄

In order to show the second part of the Main Theorem, let us start with some preliminary fact.

We keep the notation of 9.9, where D̃ denotes a divisor of S0 = S2,λ−2 ⊂ P
g−1+δ linearly equivalent to

2l+ (λ − 2− c− δ + δR)l
′ and containing δR points among P1, . . . , Pδ.

Recall also that, referring to Section 7, the unisecant A ⊂ V is the preimage, via π, of the (unique if a < b)

unisecant of degree a of V . Moreover, R := π−1(R), where R := Ra,b, so A ⊂ R = R(D̃) as described in
9.9.
In the forthcoming computations we will use a few times the following relations (coming from a+b+c = g−3
and from (17)):

c = g − 3− a− b, 3λ = δ + g + 3. (31)

Lemma 10.10. Let D̃ ⊂ S0 and R := R(D̃) be as before. Let A ∈ Una+δR(R) and Γ := D̃ · A. Assume
that a ≥ (g − λ− 1)/2. Then:
i) deg(Γ) = 4(λ− 2)− 2b− 2c− 2(δ − δR);
ii) h0(OR(A)) = h0(O

D̃
(Γ));

iii) assume also that δR = δ and either a > (g − λ− 1)/2 or a = (g − λ− 1)/2 and a < b; then:

H0(OR(A))
∼= H0(O

D̃
(Γ)).
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Proof. i) Recall that, keeping the notation in 9.9, D = D̃ + (δ − δR)l
′. So deg(D̃) = deg(D) − 2(δ − δR)

since S0 is ruled by conics. Hence, using (30), we obtain that deg(D̃) = 4(λ− 2)− 2(c+ δ− δR). Therefore,
applying (IF ) and 9.8, we have that

deg(Γ) = 2 deg(A) + deg(D̃)− 2 deg(R) =

= 2(a+ δR) + 4(λ− 2)− 2(c+ δ − δR)− 2(a+ b+ δR) =

= 4(λ− 2)− 2b− 2c− 2(δ − δR).

ii) Let us show first that Γ is a non special divisor on D̃. Since D̃ is of type (2, λ − 2 − c − (δ − δR)) on

the quadric, then pa(D̃) = λ − 3 − c − (δ − δR). A sufficient condition in order to have Γ non special is

deg(Γ) > 2pa(D̃)− 2, or, equivalently:

4(λ− 2)− 2b− 2c− 2(δ − δR) > 2(λ− 3− c− (δ − δR))− 2 ⇐⇒ λ− b > 0

and this is true since b ≤ λ− 2. Therefore h1(O
D̃
(Γ)) = 0 and, by Riemann–Roch theorem, using also (31),

we obtain that

h0(O
D̃
(Γ))− 1 = deg(Γ)− pa(D̃) = a− b+ δR + 1.

Moreover h0(OR(A))− 1 = dimR(|A|) = dim(Una+δR(R)) = a− b+ δR + 1 by (UF ). Hence we obtain that

h0(O
D̃
(Γ)) = a− b+ δR + 2 = h0(OR(A)).

iii) In order to prove the claim, consider the exact sequence

0 −→ I
D̃/R

(A) −→ OR(A) −→ O
D̃
(Γ) −→ 0. (32)

By ii), it suffices to show that the map f : H0(OR(A)) → H0(O
D̃
(Γ)) induced by (32) is injective.

Clearly this holds if and only if there exists a unique A ∈ Una+δR(R) passing through Γ and this holds if∫
A

2
< deg(Γ). From (IF ) and 9.8 we obtain that

∫
A

2
= 2deg(A)− deg(R) = 2(a+ δR)− (a+ b+ δR) = a− b+ δR.

Therefore the condition
∫
A

2
< deg(Γ) becomes

a− b+ δR < 4(λ− 2)− 2b− 2c− 2(δ − δR).

Using again (31), the above inequality is equivalent to:

λ− g + a+ b+ 1− (δ − δR) > 0.

By assumption δ − δR = 0, so

a+ b > g − λ− 1

and using the further assumptions on a and b, the claim is proved. ⋄

Before stating the second part of the Main Theorem, let us set

ǫ :=

{
0, if b < c
1, if a < b = c
2, if a = b = c

, τ :=

{
0, if a < b
1, if a = b

and ξ :=

{
1, if λ = g+3

2
0, otherwise

.
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Theorem 10.11. Let g, λ, a, b be positive integers satisfying (R1), (R2), (R3) and c = g − 3 − a − b. If
a ≥ (g − λ− 1)/2 then Mλ

g (a, b) is an irreducible variety of dimension 2(2a+ b + λ) + 10− g − ǫ− τ − ξ.

Proof. From 10.2 and 10.3, it is enough to show that Wλ
g (a, b) is irreducible of the right dimension.

Keeping the notation in 10.5, set Y λ
g (a, b) := Ψ(Wλ

g (a, b)).

Claim: Ψ−1(Y λ
g (a, b)) ⊂ Wλ

g (a, b).

This is equivalent to the following property: letX ′′ ∈ Wλ
g be such that Ψ(X ′′) = (P1, . . . , Pδ) = Ψ(X ′), where

X ′ ∈ Wλ
g (a, b); then X

′′ ∈ Wλ
g (a, b). This is true, since π〈P1,...,Pδ〉(V ) is the scroll V = P(O(a)⊕O(b)⊕O(c))

associated both to X ′ and to X ′′ and this proves the claim.

Step 1. Irreducibility and dimension of Wλ
g (a, b).

From the claim above we can consider the restriction of Ψ

ψ : Wλ
g (a, b) −→ Y λ

g (a, b).

From 10.5, dim(ψ−1(P1, . . . , Pδ)) = 5λ+ 4− 3δ if P1, . . . , Pδ are distinct points.
With the same argument as the one in the proof of 10.6, in the case of infinitely near points one easily shows
that the variety consisting of the fibres on the points of ∆ is a proper closed subset of Wλ

g (a, b). For this

reason, Wλ
g (a, b) is irreducible if Y λ

g (a, b) is irreducible and

dim(Wλ
g (a, b)) = dim(Y λ

g (a, b)) + 5λ+ 4− 3δ. (33)

Step 2. Irreducibility and dimension of Y λ
g (a, b) .

Recall that the singular locus Σ = P1 + · · · + Pδ of X ′ ⊂ R1,1 is contained in a suitable bisecant curve
D ∼ 2l+ (λ− 2− c)l′ ⊂ R1,1 by 9.9 (there the result concerns S0, here R1,1).
It is not hard to show that there exists an open subset, Y 0 say, of Y λ

g (a, b) whose elements (P1, . . . , Pδ)

fulfil the following property: there exists D ∈ |2l + (λ − 2 − c)l′| not containing fibres and such that
P1, . . . , Pδ ∈ D ∩ A, for a suitable A ∈ Una+δ(R), where R := R(D). In particular, on this subset δR = δ.
Let us check that the above condition is compatible with the degrees of the involved divisors i.e., setting
Γ := D ∩A, we must have that δ ≤ deg(Γ). From 10.10 (ii), taking into account that here δ = δR and using
(31) as usual, it is easy to see that deg(Γ) = 2a+ λ− g +1+ δ ≥ δ, since 2a+ λ− g + 1 ≥ 0: namely this is
equivalent to a ≥ (g − λ− 1)/2, which holds by assumption.
Consider then the following correspondence:

Zλ
a,b ⊂ |2l+ (λ− 2− c)l′| × Symδ(R1,1)

defined by:

Zλ
a,b :=

{
(D,P1, . . . , Pδ) | there exists A ∈ Una+δ(R(D)) such that P1, . . . , Pδ ∈ D ∩ A

}
.

Consider now the two canonical projections, where Ω is the open subset of |2l + (λ − 2 − c)l′| consisting of
curves not containing fibres:

Zλ
a,b

p ւ ց q

|2l + (λ− 2− c)l′| ⊃ Ω Y 0 ⊂ Y λ
g (a, b) ⊂ Symδ(R1,1)

.

By 9.9, every element (P1, . . . , Pδ) of Y 0 determines either a unique D ∼ 2l + (λ − 2 − c)l′ (if b < c) or a
pencil (if a < b = c) or a two–dimensional linear system (if a = b = c) of such curves. This implies that
the general fibre of q is irreducible of dimension ǫ, where ǫ = 0, 1, 2 as soon as b < c, a < b = c, a = b = c,
respectively. Furthermore p is surjective by 9.6.
Denoting by ZD := p−1(D) any fibre of p, we have that: if ZD is irreducible, then Y λ

g (a, b) is irreducible and

dim(Y λ
g (a, b)) = dim(Zλ

a,b)− ǫ = dim(ZD) + dim(|D|)− ǫ

= dim(ZD) + 3(λ− 1− c)− 1− ǫ.
(34)
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Step 3. Irreducibility and dimension of ZD
It is clear that

ZD
∼= {(P1, . . . , Pδ) ∈ Symδ(D) | there exists A ∈ Una+δ(R) such that P1, . . . , Pδ ∈ D ∩ A}.

In order to compute the dimension and to prove the irreducibility of ZD, consider the following correspon-

dence (where Γ = D ∩ A is as before):

TD := {(P ′
1, . . . , P

′
δ, A) | P

′
1, . . . , P

′
δ ∈ Γ} ⊂ Symδ(D)× Una+δ(R)

and the two projections:
TD

π1 ւ ց π2

Symδ(D) Una+δ(R)

Obviously, Im(π1) = ZD and π2 is a finite surjective morphism; hence, denoting by τ the dimension of the
fibres of π1, we obtain:

dim(ZD) = dim(TD)− τ = dim(Una+δ(R))− τ = a− b+ δ + 1− τ. (35)

Let us find the possible values of τ .

In the proof of 10.10 (iii) we show that
∫
A

2
= a− b+ δ; with the same argument used there to prove the

uniqueness of the unisecant A passing through a certain divisor, it is immediate to see that

τ = 0 ⇔

∫
A

2
< δ ⇔ a− b+ δ < δ ⇔ a < b.

With the same argument we obtain:

τ ≥ 1 ⇔

∫
A

2
≥ δ ⇔ a− b+ δ ≥ δ ⇔ a = b and

∫
A

2
= δ.

Hence, necessarily, τ = 1 and a = b.
We are left to show that ZD is irreducible. Since ZD = π1(TD), it is enough to show that TD itself is
irreducible.
Assume first that

a >
g − λ− 1

2
or a =

g − λ− 1

2
< b.

It follows from 10.10 (iii) that H0(OR(A))
∼= H0(OD(Γ)), hence

TD
∼= {(P ′

1, . . . , P
′
δ,Γ

′) | P ′
1, . . . , P

′
δ ∈ Γ′} ⊂ Symδ(D)× |Γ|.

Consider the morphism associated to |Γ|:

ϕΓ : D −→ P
r

where r = dim |Γ| = a− b + δ + 1 (as computed in the proof of 10.10 (ii)); if D
′
denotes the image of D in

P
r, it is clear that

TD
∼= {(P ′

1, . . . , P
′
δ, H) | P ′

1, . . . , P
′
δ ∈ H ∩D

′
} ⊂ Symδ(D

′
)× P̌

r.

The irreducibility of TD is a consequence of the forthcoming lemma 10.12.
Finally, we have to consider the last case:

a =
g − λ− 1

2
= b.

Since c = g − 3− (a+ b) = λ− 2, from 10.10 (i) we have

deg(Γ) = 4(λ− 2)− 2b− 2c = 3λ− 3− g = δ.

Therefore π2 : TD → Una+δ(R) is an isomorphism, hence TD is irreducible of dimension δ+1 (since a = b).

Finally observe that, if D 6∈ Ω in Step 2, then one can easily prove that dim(Z
D
) = a− b + δR + 1 − τ . In

particular, dim(Z
D
) < dim(ZD) hence p−1 (|2l + (λ− 2− c)l′| \ Ω) is a Zariski locally closed subset of Zλ

a,b.

38



Step 4. Final computation
We can now compute the dimension of the moduli space using (33), (34), (35) and (31):

dim(Wλ
g (a, b)) = dim(Y λ

g (a, b)) + 5λ+ 4− 3δ =

= dim(ZD) + 3(λ− 1− c) + 3− ǫ+ 5λ− 3δ =

= 2(2a+ b+ λ) + 16− g − ǫ− τ

hence, from 10.3, we obtain

dim(Mλ
g (a, b)) = dim(Wλ

g (a, b))− 6− ξ = 2(2a+ b+ λ) + 10− g − ǫ− τ − ξ

and this proves the claim. ⋄

We are left to show the following fact:

Lemma 10.12. Let X ⊂ P
r be a (smooth) irreducible curve, k an integer such that k ≤ deg(X) and let

VX := {(P1, . . . , Pk;H) | P1, . . . , Pk ∈ H ∩X} ⊂ Symk(X)× P̌
r.

Then the variety VX is irreducible.

Proof. It is a straightforward generalization of the argument used in the proof of the Uniform Position
Lemma, [9]. ⋄

Now we are going to prove the last part of the Main Theorem. We need first some preliminary results;
let us recall that, if a < (g − λ− 1)/2, then A ⊂ S0 ⊂ V (from 7.3).

Lemma 10.13. Let a < (g−λ− 1)/2 and [X ] ∈ Mλ
g (a, b). Then in θ−1([X ]) there exists a curve X ′ ⊂ R1,1

such that A ∼ l. In particular, deg(A) = λ− 2 and δA = λ− 2− a.

Proof. Let A ∼ l + αl′ ⊂ S0 = ϕ2l+(λ−2)l′ (F0) ⊂ P
3λ−4 and assume α ≥ 1. Since

degS0
(A) =

∫
(l + αl′) · (2l + (λ− 2)l′) = λ− 2 + 2α (36)

and deg(A) = a ≤ λ − 2 (from 7.1), the number of double points of X0 lying on A is, from (11), δA =
deg(A)− deg(A) = λ− 2+ 2α− a ≥ 2α. Therefore, since A meets each line of the ruling l of S0 in α points,
there are at least two double points of X0, N1 and N2 say, belonging to A and not belonging to a same line
l.
Consider now the isomorphism

ϕl+2l′ : R1,1
∼= S0 −→ S̃ ∼= R2,2

and set Ã := ϕ(A) ∼ l̃ + αl̃′; for simplicity, we still denote by N1 and N2 the images of these points in S̃.
Clearly deg(Ã) = α+ 2 and the projection

π〈N1,N2〉 : S̃ −→ R1,1

maps Ã to a unisecant curve A
∗
of degree α (since N1, N2 ∈ Ã) lying on R1,1; hence A

∗
∼ l + (α − 1)l′; in

particular, from (36), degS0
(A

∗
) = λ− 2 + 2(α− 1).

Set X ′ :=
(
π〈N1,N2〉 ◦ ϕl+2l′

)
(X) ⊂ R1,1 and A∗ ⊂ S be the curve corresponding to A

∗
⊂ R1,1. Since the

number of the double points of X ′ lying on A
∗
is δA − 2, we get that

deg(A∗) = degS0
(A

∗
)− (δA − 2) = λ− 2 + 2α− δA = a = deg(A)

and this implies that A∗ = A. Iterating this procedure we obtain a model of X such that α = 0, hence A ∼ l
and the other requirements are fulfilled. ⋄
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Corollary 10.14. Let a < (g − λ− 1)/2 and let W̃λ
g (a, b) ⊂ Wλ

g (a, b) be the following set:

W̃λ
g (a, b) := {X ′ ∈ Wλ

g (a, b) | X
′ ⊂ R1,1, A ∼ l}.

Then the restriction
θ : W̃λ

g (a, b) −→ Mλ
g (a, b)

is surjective and the fibres have dimension 6 unless g is odd and λ = (g + 3)/2: in this case they have
dimension 7.

Proof. The surjectivity is immediate by 10.13 and the dimension of the fibres can be computed with the
same argument of 10.3. ⋄

Let us set

ǫ :=

{
0, if b < c
1, if a < b = c

and ξ :=

{
1, if λ = g+3

2
0, otherwise

.

Note that the case a = b = c (which corresponds to ǫ = 2 in 10.11) here does not occur. Namely we now
consider the range a < (g − λ− 1)/2: the relation a = b = c would contradict (R1).

Theorem 10.15. Let g, λ, a, b be positive integers satisfying (R1), (R2), (R3) and c = g − 3 − a − b. If
a < (g − λ− 1)/2 then Mλ

g (a, b) is an irreducible variety of dimension 2(a+ b) + λ+ 8− ǫ− ξ.

Proof. Using 10.14, we can slightly modify the construction in 10.11; essentially we use W̃λ
g (a, b) instead of

Wλ
g (a, b). In particular, we consider models X ′ ⊂ R1,1 of X such that A ∼ l and A ⊂ D ∼ 2l+ (λ− 2− c)l′.

Namely, if A 6⊂ D, then δA ≤ A ·D; but δA = λ − 2 − a (from 10.13) while A · D = λ − 2 − c and this is
impossible since a < c.
Setting Ỹ λ

g (a, b) the image of W̃λ
g (a, b) via the map Ψ : Wλ

g → Symδ(R1,1) we have

Ỹ λ
g (a, b) = {(P1, . . . , Pδ) | there exist A ∈ |l|, B ∈ |l+(λ−2−c)l′| : P1, . . . , Pλ−2−a ∈ A,Pλ−1−a, . . . , Pδ ∈ B}

and the analogous of (33) holds:

dim(W̃λ
g (a, b)) = dim(Ỹ λ

g (a, b)) + 5λ+ 4− 3δ. (37)

Consider the following correspondence

Zλ
a,b ⊂ |l| × |l + (λ− 2− c)l′| × Symδ(R1,1)

defined by:
Zλ
a,b :=

{
(A,B, (P1, . . . , Pδ)) | P1, . . . , Pλ−2−a ∈ A,Pλ−1−a, . . . , Pδ ∈ B

}
.

Note that b is determined from a and c. Consider now the two canonical projections:

Zλ
a,b

p ւ ց q

|l| × |l + (λ− 2− c)l′| Ỹ λ
g (a, b) ⊂ Symδ(R1,1)

.

With the same argument as in 10.11, one can see that the fibres of q are irreducible of dimension ǫ. Note
that, in this case, ǫ can assume only the values 0 and 1, since the assumption a < (g − λ − 1)/2 implies
a < b, otherwise a+ b < g − λ− 1, against (R3) (see 8.5).
Note that p is surjective from 9.6. Moreover the general fibre p−1(A,B) of p is isomorphic to Symλ−2−a(A)×
Symδ−λ+2+a(B), hence it is irreducible of dimension δ. Therefore we can conclude that Zλ

a,b and hence

Ỹ λ
g (a, b) are irreducible and

dim(Ỹ λ
g (a, b)) = dim(Zλ

a,b)− ǫ = dim |l|+ dim |l + (λ− 2− c)l′|+ δ − ǫ =

= 2(λ− 1− c) + δ − ǫ

so, using (37) we obtain

dim(W̃λ
g (a, b)) = 2(λ− 1− c) + δ − ǫ+ 5λ+ 4− 3δ = 2(3λ+ 1− c− δ) + λ− ǫ.

Using (31), we get 3λ+ 1− c− δ = 3λ+ 1− (g − 3− a− b)− 3(λ− 1) + g = a+ b+ 7, so

dim(W̃λ
g (a, b)) = 2(a+ b) + 14 + λ− ǫ.
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Appliying 10.14, we obtain that

dim(Mλ
g (a, b)) = dim(W̃λ

g (a, b))− 6− ξ = 2(a+ b) + 8 + λ− ǫ− ξ

as required. ⋄

Remark 10.16. If a < (g−λ−1)/2 then δ = 3(λ−1)−g > 0; in particular, λ > (g+3)/3. To show this, just
remark that g ≤ 3λ−3 by (R1); hence a <

g−λ−1
2 ≤ 3λ−3−λ−1

2 = λ−2 so, from 10.13: δ ≥ δA = λ−2−a > 0.

Corollary 10.17. Set, as usual, a ≤ b ≤ c and a+ b+ c = g − 3. The following facts hold:
1) The general curve X(g, λ, a, b) of Mλ

g satisfies a+ b ≥ (2g − 8)/3.

2) For the general curve X(g, λ, a, b) of Mλ
g , the values of a, b, c = g − 3 − (a + b) are determined by the

class of g (mod 3); in particular:

(i) if g = 3p then (a, b, c) = (p− 1, p− 1, p− 1);
(ii) if g = 3p+ 1 then (a, b, c) = (p− 1, p− 1, p);
(iii) if g = 3p+ 2 then (a, b, c) = (p− 1, p, p).

3) Conversely, for the above values of a and b we obtain a stratum of maximal dimension, i.e.

dim(Mλ
g (a, b)) = dim(Mλ

g ).

Consequentely,

a curve X(g, λ, a, b) ∈ Mλ
g is general ⇐⇒ a, b, c ∈

{[
g − 3

3

]
,

[
g − 1

3

]}
.

Proof. 1) We have to show that, if a+ b < (2g − 8)/3, then dim(Mλ
g (a, b)) < dim(Mλ

g ).
Let us rewrite the above condition correspondingly to the possible values of g (mod 3):

• g = 3p : a+ b ≤ 2p− 3 ⇒ a ≤ p− 2 ⇒ 2a+ b ≤ 3p− 5;

• g = 3p+ 1 : a+ b ≤ 2p− 3 ⇒ a ≤ p− 2 ⇒ 2a+ b ≤ 3p− 5;

• g = 3p+ 2 : a+ b ≤ 2p− 2 ⇒ a ≤ p− 1 ⇒ 2a+ b ≤ 3p− 3.

Clearly, in all these cases

a+ b ≤
2g − 9

3
and 2a+ b ≤ g − 5. (38)

From 10.11 (resp. 10.15) and using (38) we immediately obtain:

a ≥
g − λ− 1

2
⇒ dim(Mλ

g (a, b)) ≤ 2(2a+ b+ λ) + 10− g − ξ ≤ 2(g − 5 + λ) + 10− g − ξ = g + 2λ− ξ

a <
g − λ− 1

2
⇒ dim(Mλ

g (a, b)) ≤ 2(a+ b) + λ+ 8− ξ ≤
4g − 18

3
+ λ+ 8− ξ = g + λ+ 1 +

g + 3

3
− ξ

where, in both cases, ξ :=

{
1, if λ = g+3

2
0, otherwise

.

Note that, in the second case, from 10.16 we have that (g+3)/3 < λ. Therefore, for every value of a it holds

dim(Mλ
g (a, b)) < g + 2λ+ 1− ξ. (39)

Finally recall that, from 10.9, dim(Mλ
g ) = g + 2λ+ 1 for all (g + 3)/3 < λ < λmax, where λmax =

⌈
g+2
2

⌉
.

On the other hand, from 10.3, 10.6 and 10.7 it turns out that

dim(Mλmax
g ) =

{
g + 2λmax, if g odd
g + 2λmax + 1, if g even

.

Therefore, if λ < λmax or g even, then ξ = 0 so (39) gives

dim(Mλ
g (a, b)) < g + 2λ+ 1 = dim(Mλ

g ).

Otherwise, λ = λmax and g odd; then ξ = 1 so (39) gives

dim(Mλ
g (a, b)) < g + 2λ = dim(Mλ

g ).

and this proves the first part of the statement.
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2) Let us consider a general curve X(g, λ, a, b) ∈ Mλ
g . We have just proved that a + b ≥ (2g − 8)/3. From

the condition (R3) we get:

2g − 8

3
≤ a+ b ≤

2g − 6

3
⇒ a+ b =

[
2g − 6

3

]

hence a+ b is uniquely determined. Therefore, since c = g − 3− (a+ b) and a ≤ b ≤ c, we obtain:

• g = 3p : a+ b = 2p− 2 ⇒ c = p− 1 ⇒ (a, b, c) = (p− 1, p− 1, p− 1)

• g = 3p+ 1 : a+ b = 2p− 2 ⇒ c = p ⇒ (a, b, c) =

{
(p− 1, p− 1, p)
(p− 2, p, p)

• g = 3p+ 2 : a+ b = 2p− 1 ⇒ c = p ⇒ (a, b, c) = (p− 1, p, p)

Note that the case g = 3p+1 and (a, b, c) = (p− 2, p, p) does not correspond to a general curve since, in this
case, X(g, λ, a, b) belongs to a proper closed subset of Mλ

g .
To show this, let us consider the two ranges of a and the corresponding dimensions of the moduli spaces
found in 10.11 and 10.15, respectively.
(I) a ≥ g−λ−1

2 .

dim(Mλ
g (a, b)) ≤ 2(2a+ b+ λ) + 10− g = 2(3p− 4 + λ) + 10− (3p+ 1) = 3p+ 2λ+ 1

while dim(Mλ
g ) = g + 2λ+ 1 = 3p+ 2λ+ 2.

(II) a < g−λ−1
2 .

Substituting g = 3p+ 1 in (R1) and in the bound of a in the assumption, we obtain respectively:

λ ≥
g + 3

3
= p+

4

3
⇒ λ ≥ p+ 2

p− 2 = a <
g − λ− 1

2
⇒ λ ≤ p+ 3.

Using 10.15, under the assumption (a, b, c) = (p− 2, p, p) we obtain that ǫ = 1 and ξ = 0, hence

dim(Mλ
g (a, b)) = 2(a+ b) + λ+ 8− ǫ− ξ = 2(2p− 2) + λ+ 8− 1 = 4p+ λ+ 3.

On the other hand
dim(Mλ

g ) = g + 2λ+ 1 = 3p+ 2λ+ 2.

Examining the two possible cases of λ, we immediately get:

dim(Mλ
g (a, b)) =

{
5p+ 5, if λ = p+ 2
5p+ 6, if λ = p+ 3

while dim(Mλ
g ) =

{
5p+ 6, if λ = p+ 2
5p+ 8, if λ = p+ 3

and this proves the second part.

3) We are left to show that the strata corresponding to the values (i), (ii), (iii) of (a, b, c) are maximal.
First note that the inequalities a < g−λ−1

2 and λ ≥ g+3
3 (the latter coming from (R1)) become, respectively:

(i) p− 1 <
3p− λ− 1

2
and λ ≥

3p+ 3

3

(ii) p− 1 <
3p− λ

2
and λ ≥

3p+ 4

3

(iii) p− 1 <
3p− λ+ 1

2
and λ ≥

3p+ 5

3

and in cases (i) and (ii) we get a contraddiction, while in (iii) we get λ = p + 2. So in cases (i) and (ii)
necessarily a ≥ g−λ−1

2 .

Secondly, observe that if a ≥ g−λ−1
2 then 10.11 can be applied and we have

dim(Mλ
g (a, b)) = 2(2a+ b+ λ) + 10− g − ǫ− τ − ξ (∗)

where ξ = 1 if and only if λ = g+3
2 . This happens if g is odd, so λ = g+3

2 =
⌈
g+2
2

⌉
. Keeping the notation

and the result in 10.7, where λmax :=
⌈
g+2
2

⌉
, we have that dim(Mλmax

g ) = 2g + 3 = dim(Mg,4). Otherwise,

ξ = 0 and λ <
⌈
g+2
2

⌉
; in this case, from 10.9, dim(Mλ

g ) = g + 2λ+ 1.
Consider now each possibility.
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Case (i): g = 3p, (a, b, c) = (p− 1, p− 1, p− 1).
Since ǫ = 2 and τ = 1, from (∗) we obtain:

dim(Mλ
g (a, b)) = 2(3p− 3 + λ) + 10− 3p− 2− 1− ξ = 3p+ 2λ+ 1− ξ =

= g + 2λ+ 1− ξ.

Therefore

λ =

⌈
g + 2

2

⌉
⇒ ξ = 1 and dim(Mλ

g (a, b)) = g + 2λ = g + 2
g + 3

2
= 2g + 3 = dim(Mλ

g );

λ <

⌈
g + 2

2

⌉
⇒ ξ = 0 and dim(Mλ

g (a, b)) = g + 2λ+ 1 = dim(Mλ
g ).

Case (ii): g = 3p+ 1, (a, b, c) = (p− 1, p− 1, p).
Since ǫ = 0 and τ = 1, from (∗) we again obtain:

dim(Mλ
g (a, b)) = 3p+ 2λ+ 2− ξ = g + 2λ+ 1− ξ.

With the same argument as before we prove the claim.

Case (iii): g = 3p+ 2, (a, b, c) = (p− 1, p, p).
I) If a ≥ g−λ−1

2 , the proof runs as above, using (∗) where ǫ = 1 and τ = 0.

II) If a < g−λ−1
2 , the dimension of the strata is computed in 10.15 where one can find that

dim
(
Mλ

g (a, b)
)
= 2(a+ b) + λ+ 8− ǫ− ξ. (∗∗)

In our situation, ǫ = 1 and ξ = 0, since λ 6= g+3
2 being g = 3p+ 2 and λ = p+ 2, as remarked before.

So (∗∗) gives dim
(
Mλ

g (a, b)
)
= 5p+ 7. On the other hand, dim(Mλ

g ) = g + 2λ+ 1 = 5p+ 7.

The final claim comes from (2) and (3), together with a straightforward computation on the values in (i),
(ii), (iii), taking into account that a ≤ b ≤ c. ⋄

11. Moduli spaces of 4–gonal curves with t ≥ 1

Let us recall that if t ≥ 1 and the double points of the standard model X0 are distinct, then the bounds
of the invariants λ and t are described in 5.4 (i)− (iv) while the invariants a and b are determined by λ and
t (see 5.1). More precisely,

g + 3

3
+ t ≤ λ ≤

g + 3

2
, 1 ≤ t ≤

g + 3

6

a = g − 2λ+ t+ 1, b = λ− t− 2, c = λ− 2.

As a consequence, the subvariety of Wλ
g parametrizing the curves of invariants g, λ, t, a, b can be simply

denoted by Wλ
g (t).

In order to describe such variety, we perform a construction similar to that in 10.11.
Let us denote by At

λ the open subset of the linear system |4C0 + (λ+ t)f | on R1,t+1 parametrizing the
irreducible curves of such linear system and set

Wλ
g (t) := {X ′ ∈ At

λ | X = X(g, λ, t) and it has δ distinct double points on C0}.

If we consider the morphism
ϕ := ϕ4C0+(λ+t)f : R1,t+1 −→ S′ ⊂ P

N

it is clear that N = h0(R1,t+1,OR1,t+1(4C0 +(λ+ t)f))− 1 = 5(λ− t)+ 4 (from [4], 1.8) and we can identify

Wλ
g (t) with the following subset of P̌N :

Wλ
g (t)

∼= {H ∈ P̌
N | H ⊃ 〈TP1(S

′), . . . TPδ
(S′)〉, Pi ∈ C0}.
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Therefore, consider the following correspondence

W̃ = {(H ;P1, . . . , Pδ) | H ⊃ 〈TP1(S
′), . . . TPδ

(S′)〉} ⊂ P̌
N × Symδ(P1)

and the projections
W̃

π1 ւ ցπ2

P̌
N Symδ(P1)

Obviously, π1(W̃ ) = Wλ
g (t) and π1 is an isomorphism on an open subset of Wλ

g (t). Moreover, π2 is surjective
and the fibres have dimension N − dim〈TP1(S

′), . . . TPδ
(S′)〉.

One can show (as in 9.4) that also in the case t ≥ 1 it holds that the space 〈TP1(S
′), . . . TPδ

(S′)〉 has maximum

dimension, i.e. 3δ− 1. Hence dim(Wλ
g (t)) = dim W̃ = N − (3δ− 1)+ δ = 5(λ− t+1)− 2δ, so using 2.2 (iii),

we obtain:
dim(Wλ

g (t)) = 2g + t− λ+ 11.

As well as in the case t = 0, one can show that these varieties are not empty. Furthermore, let us recall that
the automorphism group of a rational ruled surface R1,t+1 ⊂ P

t+2 has dimension t + 5, if t ≥ 1, and 6, if
t = 0 (as we already noted in 10.3). These two facts, together with the previous computation of dim(Wλ

g (t)),
immediately give the following result:

Theorem 11.1. Let g, λ, t be positive integers satisfying: g ≥ 10,

g + 3

3
+ t ≤ λ ≤

g + 3

2
, 1 ≤ t ≤

g + 3

6
.

Then Mλ
g (t) is an irreducible variety of dimension 2g − λ+ 6. ⋄
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