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ABSTRACT  19 

Here we report the first detection of a KPC-2 producing Klebsiella pneumoniae strain 20 

belonging to ST833, collected in an Italian hospital from a patient coming from South 21 

America. Its blaKPC determinant was carried by a ColE1 plasmid, named pKBuS13, that 22 

showed the Tn4401b::blaKPC-2 transposon inserted into the regulatory region of a Xer site-23 

specific recombination locus. This interfered with the correct resolution of plasmid multimers 24 

into monomers, lowering plasmid stability and leading to overestimation of the number of 25 

plasmids harboured by a single host cell. Sequencing of the fragments adjacent to Tn4401b 26 

detected a region that did not have significant matches in databases other than the genome of 27 

a carbapenem-resistant E. coli collected during the same year in a hospital of Boston. This is 28 

interesting in an epidemiologic context, as it suggests that despite the absence of tra genes 29 

and the instability under nonselective conditions the circulation of pKBuS13 or of analogous 30 

plasmids might be wider than reported.  31 

32 



INTRODUCTION 33 

During the last decade, Klebsiella pneumoniae (KP) strains producing KPC (K. pneumoniae 34 

carbapenemase) enzymes have become a matter of great concern, as they are often susceptible 35 

to only a few antibiotics, cause high mortality among patients with bloodstream infections and 36 

are increasingly being reported worldwide (1). 37 

KPC-type beta-lactamases include 22 variants (http://www.lahey.org/Studies/other.asp) that 38 

have been detected in a large number of KP lineages. Among them, KPC-2 and KPC-3 are 39 

predominant and are largely disseminated worldwide by strains belonging to the clonal 40 

complex 258 (CC258), including the sequence type (ST) 258 lineage defined by multilocus 41 

sequence typing (MLST) and its single-locus variants (e.g.: ST11, ST437, ST512) (2-6). 42 

Dissemination of blaKPC genes is fuelled by their association with Tn4401, a 10 kb Tn3-like 43 

element, that has been detected on plasmids belonging to different incompatibility groups 44 

(FII, N, L/M) and of different sizes (10 to 170 kb) (7).  45 

In Italy, KPC producing K. pneumoniae (KPC-KP) have increasingly been reported since 46 

2009 (8). Most of them belong to the globally spread ST258 and ST512 clones, but some 47 

isolates of different STs (ST101, ST307) have been detected too (9). 48 

In the present work we report the isolation in the Trieste area (northeast Italy) of a KPC-KP 49 

belonging to ST833, from the blood culture of a patient coming from a Venezuelan hospital. 50 

ST833 is a single locus variant of ST11, which has recently been described as one of the 51 

lineages responsible for dissemination of blaKPC determinants carried on different plasmids in 52 

Latin America (2, 10, 11). To our knowledge, this is the first finding of a KPC-KP belonging 53 

to ST833. In addition we describe its blaKPC-2 carrying plasmid, which displays interesting 54 

features in an epidemiologic context. 55 

 56 



MATERIALS AND METHODS 57 

Bacterial strains and growth conditions 58 

The carbapenem-resistant strain K. pneumoniae KBu-1 was recovered from the blood culture 59 

of a three year old patient, coming from Venezuela, admitted to the Trieste Pediatric Hospital 60 

to undergo marrow transplantation. Both identification and antimicrobial susceptibility were 61 

determined by VITEK2 (bioMérieux, Marcy L’Etoile, France). ESBL production was further 62 

investigated by the Etest method (AB Biodisk, Solna, Sweden). Detection of carbapenemase 63 

production was performed by disc diffusion synergy test (Rosco Diagnostica, Taastrup, 64 

Denmark).  65 

Escherichia coli J53 (met-63, pro-22, Rifr) and J62 (lac-28, proC23, his-51, trp-30, Rifr) were 66 

used as recipients for conjugation experiments. 67 

E. coli JM101 [supE thi Δ(lac-proAB) F'(lacIq lacZΔM15 traD36 proAB+)] was used as 68 

recipient for electroporation of plasmid DNA isolated from K. pneumoniae KBu-1 and for 69 

plasmid DNA preparation for further studies (DNA sequencing, restriction analysis). 70 

Bacteria were grown in Luria-Bertani (LB) medium, supplemented with rifampin 100 μg/ml, 71 

ampicillin 100 μg/ml or imipenem 10 μg/ml when required.  72 

Antibiotic susceptibility profile of all strains was evaluated according to the guidelines of the 73 

CLSI, using Sensititre plates produced by Trek diagnostics (Westlake, OH, USA) and, in the 74 

case of imipenem, meropenem and ceftazidime, by standard microdilution method. (12). 75 

Antimicrobial agent powders were obtained from Sigma Chemical Co. (St Louis, Mo, USA). 76 

 77 

PCR amplification and DNA sequencing  78 

Molecular confirmation was performed by PCR assays for the ESBL genes (blaTEM, blaSHV, 79 

blaCTX-M, blaOXA-9) and for the carbapenemase genes (blaIMP, blaVIM, blaNDM, blaOXA-48 and 80 



blaKPC). Specific primers, used to amplify the blaKPC determinant and other resistant genes, 81 

are listed in supplemental material (Table S1). PCR reactions were performed, as previously 82 

described (13-17), directly on 2–3 colonies picked from a pure culture. blaTEM, blaSHV, blaCTX-83 

M and blaKPC amplicons were entirely sequenced to identify the allelic form. 84 

Sequencing reactions were carried on at a commercial sequence facility (BMR Genomics, 85 

Padua, Italy).  86 

The region upstream blaKPC was amplified and sequenced with the couple of primers 3098U 87 

and KPC-Rev (Table 1) to identify the isoform of Tn4401.  88 

The region of the plasmid outward transposon Tn4401 was amplified using the Expand long 89 

template PCR system (Roche Molecular Biochemicals, Mannheim, Germany) and two 90 

outward-directed primers (EcoRIout and 141R-6). For determination of the sequence of the 91 

fragment adjacent to transposon Tn4401, primer walking was carried out with primers Bu13-1 92 

and Bu13-2, designed from sequences obtained with EcoRIout and 141R-6. 93 

Multilocus sequence typing (MLST) was performed according to the protocol described on 94 

the K. pneumoniae MLST web site 95 

(http://www.pasteur.fr/recherche/genopole/PF8/mlst/Kpneumoniae.html). 96 

 97 

Conjugation experiments 98 

Direct transfer of carbapenem resistance into E. coli strains J53 and J62 was attempted by a 99 

filter mating procedure (18). Transconjugant selection was performed on LB agar 100 

supplemented with rifampin and imipenem.  101 

 102 

Molecular investigations 103 



Plasmid DNA from K. pneumoniae KBu-1 was extracted by the alkaline lysis method (19) 104 

and electroporated into E.coli JM101 using a Gene-pulser apparatus (Bio-Rad, Hercules, CA, 105 

USA) according to the manufacturer’s instructions. Transformants were selected on LB agar 106 

plus ampicillin and analyzed by PCR for the presence of all the bla genes previously detected 107 

in the donor strain.  108 

Plasmid profile was analysed after S1 nuclease (Roche) digestion (20 U enzyme in each 109 

sample), both on crude plasmid extract (30 min at 37°) and on DNA extracted from cells 110 

embedded in agarose plugs (20) (1h at 37°C), followed by separation on agarose gel 111 

electrophoresis using different running conditions: i) 20V for 20h on 1% agarose gel; ii) 112 

pulsed-field gel electrophoresis (PFGE) on 0,8% agarose gel with a CHEF-DR III apparatus 113 

(Bio-Rad) at 14°C and 6V/cm for 13h, by using pulse times from 1 to 10 s. Separated DNA 114 

was hybridized with a digoxigenin-labeled blaKPC-specific probe, obtained by amplification of 115 

an internal fragment of blaKPC with primers KPC-F and KPC-R (21) in the presence of 70 µM 116 

dig-11-dUTP (Roche), after capillary blotting onto Hybond-N+ membranes (Amersham 117 

Biosciences, Piscataway, NJ). 118 

Plasmid restriction analysis was carried on with Bam HI, Hind III, Pst I, Sac I, restriction 119 

enzymes according to the manufacturer’s instructions (New England Biolabs, Mississauga, 120 

Ontario, Canada), followed by separation on 0,8% agarose gel. 121 

The 13 kb band recognized by the blaKPC-specific probe was extracted from low melting 122 

agarose by GELaseTM digestion (Epicentre, Madison, Wisconsin, USA) and electroporated 123 

into E. coli JM101. 124 

 125 

Stability assay  126 

Evaluation of the number of plasmid-free cells among bacteria grown under nonselective 127 



conditions was carried out as described by Tolmasky et al.(22). Each test was replicated three 128 

times.  129 

 130 

Comparative analysis 131 

The nucleotide and protein sequences were analysed using the blastn, blastp and bl2seq 132 

algorithms available at the National Center of Biotechnology Information website 133 

(http://www.ncbi.nlm.nih.gov).  134 

Direct and tandem repeats were detected using the Tandem Repeats Finder software, version 135 

4,07b (23). 136 

 137 

Nucleotide sequences accession number  138 

The regions of pKBuS13 sequenced in this work have been deposited in GenBank under the 139 

accession numbers KM076933, KM076934 and KM076935. 140 

 141 

RESULTS AND DISCUSSION 142 

Isolation and molecular characterization of KBu-1 143 

In May 2012, a three year old patient coming from Venezuela was admitted to the Trieste 144 

Children’s Hospital “IRCCS Burlo Garofolo” to undergo bone marrow transplantation. 145 

Culture of a surveillance rectal swab detected different multi-drug resistant organisms: 146 

extended spectrum beta-lactamase (ESBL) producing Escherichia coli, vancomycin resistant 147 

Enterococcus faecium (VRE) and K. pneumoniae resistant to all beta-lactams, with MICs for 148 

imipenem and meropenem ≥ 16 µg/ml. Unfortunately, at a later stage the patient became 149 

neutropenic, developed a severe KP sepsis and died. Further analysis revealed identical 150 

features to the previous isolate: i) they showed the same antibiotype (Table 1); ii) both were 151 



positive for carbapenemase production. Screening by PCR revealed the presence of the blaKPC 152 

gene and was negative for other carbapenemase determinants; iii) ESBL production was not 153 

detected by Vitek2 and resulted non-determinable by Etest, as MIC values were above the test 154 

ranges; further analysis by polymerase chain reaction and sequencing of the amplicons 155 

revealed the presence of the blaCTX-M-1, blaTEM1b and blaSHV11 genes, while blaOXA-9 was not 156 

detected. 157 

This KPC-KP isolate remained a unique one, thanks to strict infection control procedures 158 

(segregation, barrier nursing) adopted for patient management: culture of rectal swabs of all 159 

the patients recovered in the same unit gave negative results. 160 

The isolate was named KBu-1 and was further characterized at the molecular level.  161 

Sequencing of the blaKPC amplicon and of the genes used to determine the MLST group of the 162 

isolate revealed that it harboured blaKPC-2 gene and belonged to ST833 (allelic profile 3-3-1-1-163 

1-1-12). To our knowledge, this is the first report of a KPC-KP belonging to ST833. It differs 164 

for a single point mutation from the ST11 lineage (370 CG in the tonB allele, leading to the 165 

aminoacidic substitution 121 PA) and belongs to CC258, which is considered of special 166 

concern as it gathers the most common lineages spread worldwide (4-6), including South 167 

America (2, 3, 11). The report of the SENTRY antimicrobial surveillance program on strains 168 

collected from different South America hospitals during 2010 confirmed the expansion of 169 

CC258 in this area and particularly of strains belonging to ST11, mostly detected in Brazil 170 

(10). 171 

Unfortunately, no data are available about STs circulating in Venezuela, as none of the 172 

hospitals were part of the study in 2010, although the circulation of the blaKPC determinant in 173 

Venezuelan hospitals is documented (24, 25). 174 



Plasmid extraction followed by S1 digestion revealed at least 12 bands of various sizes 175 

(ranging from 3 to 80 kb), three of which (approximately 13, 25 and 50 kb) were recognized 176 

by an internal probe for the blaKPC gene (Fig. 1). All attempts to transfer resistance to 177 

imipenem by conjugation from KBu-1 to E. coli J53RifR and to E. coli J62RifR were 178 

unsuccessful. However, when the plasmid mixture was electroporated into E. coli JM101, 179 

transformants carrying both the 13 kb and the 50 kb plasmids were obtained (Fig. 1). The 180 

same result was achieved when we electroporated the 13 kb band alone, extracted from low 181 

melting agarose (Fig. S1). Analysis by polymerase chain reaction on plasmid DNA from E. 182 

coli JM101 transformants revealed the presence of the blaKPC determinant, while blaCTX, 183 

blaSHV and blaTEM were not detected. The 13 kb plasmid was named pKBuS13 and was 184 

further investigated. 185 

 186 

Sequence analysis of plasmid pKBuS13 187 

Besides the spread of few strain lineages, the worldwide dissemination of the blaKPC-2 188 

determinant is favoured by its location on the Tn4401 transposon, a Tn3-like element that 189 

supports replicative transposition and has been found inserted at different loci on a broad 190 

variety of plasmids (7, 11).  191 

Most of the KPC-KP circulating in South America carry the blaKPC-2 determinant on the 192 

Tn4401b variant of Tn4401, located on plasmids of variable size (20-300 kb) and belonging 193 

to different incompatibility groups (IncFII, IncL/M and IncN) (2, 3, 11). 194 

On the assumption that the KBu-1 isolate carried the blaKPC determinant inside Tn4401, we 195 

investigated the variable region of the transposon located upstream blaKPC. As expected, 196 

amplification and sequencing of this region yielded the typical structure of the Tn4401b 197 

variant, without the deletions of 100 or 200 bp detected in the Tn4401 or Tn4401a isoforms. 198 



The region of pKBuS13 adjacent to Tn4401b was amplified using outward-directed primers 199 

and the 2700 bp amplicon was fully sequenced. The location of genes and genetic structures 200 

identified by comparative analysis is shown in figure 2. 201 

The 1605 bp region adjacent to the tnpA-side of Tn4401b contained two genes responsible for 202 

replication (ori p15A) and control of the copy number (rop) of plasmids belonging to the 203 

ColE1 family. In addition, an open reading frame (ORF1) containing different direct repeats 204 

was found (Fig 2).  205 

The insertion site of Tn4401 looked peculiar, as it was inserted quite inside a Xer site-specific 206 

recombination locus. This locus, involved in the resolution of plasmid multimers (26), usually 207 

consists of a core region containing the binding sites for two recombinases (XerC and XerD) 208 

and an accessory region, which provides the binding sites for specific accessory proteins, 209 

needed for the regulation of the entire process. Different core recombination sites have been 210 

described (mwr, psi, cer, dif, dxs, fpr), which work with different efficiency and are regulated 211 

by different accessory proteins (27, 28). Two of them, mwr and fpr, are osmoregulated, that is 212 

at high salt concentrations their recombination efficiency is lower than that required for 213 

multimers resolution. These sites have been detected so far only on two natural plasmids, 214 

pJHCMW1 (22) and pFPTB1 (29) in a Salmonella Typhimurium and in a K. pneumoniae 215 

isolate respectively (22, 29), both carrying a transposon inserted about 20 bp downstream of 216 

Xer. It has been postulated that multimers resolution of these plasmids is provided by the 217 

transposon resolvase besides the Xer system, suggesting that they form a group of plasmids 218 

whose stability is significantly enhanced by transposon acquisition (28). pKBuS13 is, to our 219 

knowledge, the third natural plasmid belonging to this group. However, its Xer recombination 220 

system is probably ineffective, because the fpr site is the less efficient among those detected 221 

in the core region (28) and, most importantly, its accessory region is broken by Tn4401b 222 



insertion. Xer system inactivity is supported by two observations: i) under non selective 223 

conditions, both K. pneumoniae KBu-1 and E. coli JM101 lost pKBuS13 at approximately the 224 

same rate of pUC19, that lacks a Xer recombination site and is randomly partitioned during 225 

cell division (Fig. 3); ii) plasmid stability did not increase in the absence of NaCl (data not 226 

shown). 227 

The low stability of pKBuS13 proves that the activity of the transposon resolvase alone is not 228 

sufficient to stabilize this plasmid, suggesting that the level of dimer resolution needed for 229 

stabilization may be achieved by the cooperation between the Xer system and the transposon 230 

resolvase, and therefore they are both necessary. 231 

These results suggested that the two plasmids detected in the E. coli recipient were the 232 

monomeric and tetrameric form of pKBuS13; hypothesis that was confirmed by restriction 233 

analysis, with four different enzymes (Bam HI, Hind III, Sac I, Pst I), of plasmids extracted 234 

from E. coli JM101, which gave always the pattern expected for pKBuS13 (Fig. 4).  235 

The 1118 bp region located downstream of the tnpR-side of the transposon carried an 236 

unknown ORF2 that retrieved a single match in the database: a fragment of the genome of a 237 

carbapenem resistant E. coli, named BIDMC43b (GenBank accession number 238 

JAPE01000031), detected in a blood culture in a hospital of Boston in December 2012. E. coli 239 

BIDMC43b is part of the “Carbapenem resistance initiative”, an epidemiologic study 240 

currently in progress at the Broad Institute of MIT and Harvard (broadinstitute.org). Its entire 241 

genome has been sequenced by a shotgun approach and is now at the scaffold assembly level, 242 

so little information is yet available (January 2015). The same strain carries a Tn4401b too, 243 

although in a different region of the genome (GenBank accession number JAPE01000025), so 244 

the hypothesis that pKBuS13 might have originated by genomic rearrangements in this strain 245 

(or in an analogous one) should be taken into account. 246 



In conclusion, pKBuS13 is a small plasmid carrying only one resistance determinant and it is 247 

not self-transmissible by conjugation as it does not contain tra genes (although its 248 

mobilization in presence of a helper plasmid cannot be excluded), so it might be considered 249 

unimportant for dissemination of antibiotic resistance. Nevertheless, the finding that part of its 250 

sequence did not have significant matches in the database other than the genome of a 251 

carbapenem resistant E. coli detected very far both from Italy and from South America is 252 

interesting for epidemiologic studies, as it might mirror a wider distribution of this kind of 253 

plasmids than that reported. Moreover, the finding that it is carried by a strain that hosts many 254 

different plasmids (Fig. 1A), along with the ability of Tn4401 to undergo replicative 255 

transposition, agrees with the report that many different blaKPC-carrying genetic platforms are 256 

circulating in Latin America (2) and represents a particularly worrisome circumstance. 257 

The plasmid instability described for pKBuS13 is a peculiar feature that displays both positive 258 

and negative aspects. In the clinic, the detection of unstable plasmids might be considered less 259 

alarming compared to that of other plasmids, as their spread might be considered containable 260 

providing that appropriate antibiotic control policies were adopted. On the other hand 261 

however, researchers that study the epidemiology of resistance determinants should take into 262 

account this property as it might lead to overestimation of the number of plasmids harboured 263 

by clinical isolates 264 

 265 
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FIGURE LEGENDS  367 

Fig. 1: Hybridization with a blaKPC probe of plasmid DNA separated on agarose gel 368 

electrophoresis. 369 

1A) Plasmid extract from K. pneumoniae KBu-1 and from E.coli JM101 transformed with 370 

KBu-1 plasmid content was run at 20V for 20h before and after S1 nuclease digestion. 1B) 371 

Fragments higher than 30 kb obtained by S1 digestion were better separated on PFGE, switch 372 

1 s -10 s for 13h. 373 

lane 1: KBu-1 plasmid content; lane 2: plasmid extraction from E.coli JM101 transformed 374 

with KBu-1 plasmid content; lane M: Molecular Weight marker II (Roche); lane Mdig: 375 

digoxygenin-labeled MWmarker II (Roche); lane λ: λ ladder (New England Biolabs). 376 

 377 

Fig. 2: Genetic map of relevant region of pKBuS13.  378 

Genes, ORFs and genetic structures in the regions adjacent to Tn4401b are shown. The 1605 379 

bp region upstream the tnpA-side (GeneBank accession n° KM076933) is gray-shaded; the 380 

1118 bp region downstream the tnpR-side (GeneBank accession n° KM076935) is cross-381 

hatched. 382 

Tn4401b is drawn schematically, not to scale, indicating the tnpA and tnpR genes located at 383 

the boundaries. The region evidenced by dots was verified by sequencing (GeneBank 384 

accession n° KM076934).  385 

The position of some primers used in this work and the sites of the enzymes used for 386 

restriction analysis are shown (B=Bam HI; H=Hind III; P=Pst I; S=Sac I). 387 

Two sequences are enlarged: above, the Xer site, with the mwr locus (interrupted by the 388 

Tn4401b insertion) in the accessory region shown in the grey box, the 5 bp duplication 389 

resulting from transposon insertion underlined, the fpr locus in the core region boxed, with the 390 



binding sites for XerC and XerD shown in bold; below, the sequence containing the direct 391 

repeats (DR) identified inside ORF1, with the different DR motifs marked as follows: 392 

− ******  6 bp motif (5 repeats)  393 

− underlined  37 bp stretches separated by 25 bp 394 

− bold tandem repeat identified by the tandem repeat finder software (23): two 395 

61 bp stretches separated by one T; it is an imperfect DR, with three mismatches 396 

(lower case) compared with the consensus sequence: 397 

CGCGGGTGTACAACAGAATTACATCAAAAGTACA 398 

 399 

Fig. 3: Stability of pKBuS13 in K. pneumoniae KBu-1 (circles) and in E. coli JM101 400 

(triangles). Plasmid pUC19 carried by E. coli JM101 (squares) was used as control, as it lacks 401 

a Xer recombination site and is randomly partitioned during cell division. 402 

Plasmid content of strains cultured under nonselective conditions for the indicated number of 403 

generations was analysed. The graph shows the means of three independent experiments ± the 404 

standard deviations.  405 

 406 

Fig. 4: Restriction analysis of pKBuS13 407 

Separation on 0,8% agarose gel electrophoresis of pKBuS13 extracted from the E. coli JM101 408 

recipient and digested with Bam HI (lane B), Hind III (lane H), Sac I (lane S), and Pst I (lane 409 

P).   Lane M:  GeneRulerTM 1 kb DNA Ladder (ThermoScientific). 410 

411 



Table 1. Antimicrobial susceptibility patterns of K. pneumoniae KBu-1, the E. coli 412 

JM101 recipient and the E. coli JM101 transformants. 413 

 

Antimicrobial agent(s) 

MIC µg/mla 

K. pneumoniae 

KBu-1 

E. coli JM101 E. coli JM101 

transformantsc 

Imipenemb 512  0.25 4 

Meropenemb 512 0.03 4 

Ceftazidimeb 64 0.12 8 

Amoxicillin-clavulanic acid >8 4 >8 

Ampicillin/Sulbactam >32 ≤8 >32 

Cefepime >32 ≤1 2 

Cefotaxime >4 ≤0.06 4 

Piperacillin-Tazobactam >128 ≤2 128 

Amikacin ≤4 ≤4 ≤4 

Gentamicin ≤1 ≤1 ≤1 

Colistin ≤0.5 ≤0.5 ≤0.5 

Nitrofurantoin >64 ≤32 ≤32 

Tigecycline 1 0,25 0,25 



Trimethoprim-Sulphametoxazole >4 ≤0.5 ≤0.5 

Ciprofloxacin >2 ≤0.06 ≤0.06 

Levofloxacin >4 ≤1 ≤1 

a Reported MIC values were determined by Sensititre plates (Trek diagnostics), with the 414 

exception of those of imipenem, meropenem and ceftazidime.   415 

b For these antibiotics the CLSI standard microdilution method was used (12), in order to 416 

obtain a more precise evaluation. 417 

c E. coli JM101 transformed with the entire K. pneumoniae KBu-1 plasmid content and with 418 

the 13 kb band alone displayed the same susceptibility profile. 419 

 420 
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