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Abstract: Cytokines are the most important soluble mediators of inflammation. Rare pediatric 

diseases provided exemplar conditions to study the anti-inflammatory efficacy of new 

generation therapies (biologics/biopharmaceuticals) selectively targeting single cytokines. 

Monoclonal antibodies and recombinant proteins have revolutionized anti-inflammatory 

therapies in the last two decades, allowing the specific targeting of single cytokines. They are 

very effective in extinguishing inflammation from outside the cell, even with the risk of  

an excessive and prolonged immunosuppression. Small molecules can enter the cell and 

shutdown the valve of inflammation by directly targeting signal proteins involved in cytokine 

release or in response to cytokines. They are orally-administrable drugs whose dosage can be 

easily adjusted to obtain the desired anti-inflammatory effect. This could make these drugs 

more suitable for a wide range of diseases as stroke, gout, or neurological impairment, where 

inflammatory activation plays a pivotal role as trigger. Autoinflammatory diseases, which have 

previously put anti-cytokine proteins in the limelight, can again provide a valuable model to 

measure the real potential of small inhibitors as anti-inflammatory agents. 
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1. Introduction 

Cytokines are soluble mediators involved in signaling between different cells. They are particularly 

important in the immune system, but several cytokines can be produced by non-immune cells and  

can also act on non-immune tissues, such as bone, muscle, and endothelia [1,2]. The outcome of 

immune responses is greatly influenced by the set of cytokines produced, which can be reflected on  

the recruitment and activation of different effector cells in tissues and on different systemic effects. 

Although the number of known cytokines is quite high, some of them seem to have a pivotal role in 

orchestrating the immune response thanks to their action on a high- controlled interaction network.  

In fact, complex clinical phenotypes are associated with deregulated secretion of few cytokines, such 

as interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α, and Type 1 interferons (IFN). Conversely, 

selective inhibition of a single cytokine has resulted in a deeper anti-inflammatory action than that  

of traditional steroidal or non-steroidal anti-inflammatory drugs. However, patients treated with 

monoclonal antibodies directed against immunological molecules may display clinical features similar 

to patients with primary immunodeficiency (PID) of the corresponding antibody target [3], 

highlighting the risk of excessive immunosuppression. 

Thus, the development of small molecules inhibiting cytokine signaling deserves much attention, 

not only for the ease of their oral administration, but also for the possibility to adjust the dosage for  

an optimal tuning of cytokine levels, or for the possibility of a prompt suspension of the treatment in 

cases of severe infections [4]. 

In the last decades, a number of rare monogenic diseases, with early onset in childhood, offered 

exemplary models to test the action of antibodies and other biological drugs targeting inflammatory 

cytokines. The same disorders can provide the ideal setting to study the action and the potential of 

novel molecules targeting cytokine signaling. 

In this review, we will focus, in particular, on three examples: Cryopyrin-Associated Periodic 

Syndrome, an autoinflammatory diseases associated with excessive release of IL-1β, due to 

constitutive activation of the NLRP3 inflammasome platform; Mevalonate Kinase Deficiency, in 

which increased release of IL-1β is the indirect result of a metabolic defect involving the biosynthesis 

of sterols; and interferonopathies, which are monogenic disorders similar to Systemic Lupus 

Erythematosus, in which excessive levels of Type I IFNs are the main mediator of inflammation. 

In all cases, biological inhibitors based on recombinant proteins or antibodies have been used to 

control inflammation in clinical trials. More recently, the use of small molecules acting on cytokine 

signaling has also been proposed for these disorders (Figure 1). 

We here discuss the potential and the theoretical limits of novel therapeutic strategies based on 

small molecules. 
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Figure 1. Progress in autoinflammatory disease therapy. After the diagnosis of 

autoinflammatory diseases, first line therapies have been characterized by treatment with 

anti-inflammatory drugs that generally allowed relief of symptoms but could imply severe 

adverse effects, especially in the long-term. The identification of the cytokines involved in 

the pathogenesis of the diseases was the basis for using biologic drugs directly targeted to 

the pathogenic cytokines. In the last years, new molecules have been developed to target 

specific molecules involved in the inflammatory pathways of the diseases, theoretically 

allowing for a better tuning of cytokine levels. IFP: IFNs-pathies; CAPS:  

Cryopyrin-Associated Periodic Syndromes; MKD: Mevalonate Kinase Deficiency; FMF: 

Familial Mediterranean Fever; NSAIDs: Nonsteroidal anti-inflammatory drugs; MTX: 

Methotrexate; CsA: Cyclosporin A; MMF: Mycophenolate Mofetil; IL-6R: Interleukin-6 

receptor; IFN-α: Interferon-α; IL-1β: interleukin-1β; NLRP3: NLR family, nucleotide-binding 

domain, leucine-rich family (NLR), pyrin domain 3; ZAA: Zaragozig Acid; GGTIs: 

geranylgeranyl transferase inhibitors; FTIs: farnesyl transferase inhibitor. 

2. Cryopyrin-Associated Periodic Syndromes 

Cryopyrin-associated periodic syndromes (CAPS) are a group of rare, monogenic autoinflammatory 

diseases arising from mutations in the Cryopyrin gene. 

Depending on the type of mutation, three subtypes of CAPS can be identified, reflecting different 

degrees of severity: 

• Familial Cold Autoinflammatory Syndrome (FCAS) (Online Mendelian Inheritance in Man, 

OMIM #120100); 

• Muckle-Wells Syndrome (MWS) (OMIM #191900); 

• Neonatal-Onset Multisystem Inflammatory Disease (NOMID) (also called Chronic Infantile 

Neurologic Cutaneous Articular, or CINCA, Syndrome) (OMIM #607115). 

There are some clinical characteristics that are common to all three diseases: rash, fever/chills, joint 

pain, eye redness/pain, and headache. Additionally, CINCA/NOMID syndrome, which is the most 
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severe form of CAPS, is characterized by development of significant disabilities, including optic nerve 

abnormalities (papilledema), chronic aseptic meningitis, mental impairment, facial malformation, 

hearing loss, and arthropathy with aberrant ossification [5]. 

CAPS are caused by dominant mutations of the NLRP3 (nucleotide-binding domain, leucine-rich 

family (NLR), pyrin domain containing) gene, encoding cryopyrin. 

This protein plays an important role in the inflammasome, an essential component of the immune 

system, leading to the release of inflammatory cytokine IL-1β. CAPS mutations are associated with 

gain of function of cryopyrin, resulting in IL-1β overproduction, which is ultimately responsible for 

the typical inflammatory features [6]. 

IL-1β is not present in cells from healthy individuals, it is not constitutively expressed, and only few 

kinds of cells are able to produce IL-1β, such as blood monocytes, tissue macrophages, and dendritic  

cells [7]. In physiologic conditions, the release of IL-1β can be induced by pathogen-associated molecular 

patterns (PAMPs) or by damage-associated molecular patterns (DAMPs), but also by other cytokines such 

as TNF, IL-18, IL-1α or by IL-1β itself. The cytokine is produced as an inactive precursor that requires 

intracellular cleavage by caspase 1, activated by proteins of the inflammasome such as cryopyrin [8]. 

2.1. From Anti-Inflammatory to Biological Drugs 

In the past, different anti-inflammatory drugs were used in the attempt to control the symptoms of 

the disease, but with limited success. Non-steroidal anti-inflammatory drugs (ibuprofen or naproxen) 

were the first line for the treatment of the inflammatory features of CAPS, but limited efficacy and 

serious side effects (gastrointestinal complications and bleeding) restricted their use in clinical 

practice. Treatment with glucocorticoids is more effective in relieving pain and febrile episodes, but 

undesired adverse events such as hypertension, opportunistic infections, loss of bone and skin 

integrity, growth retardation, and metabolic disturbances limit the prolonged use of these drugs.  

In addition to steroids, immunosuppressive therapies (methotrexate, cyclosporine, azathioprine, 

cyclophosphamide) have been tried, but always with a poor balance between costs and benefits [5]. 

With the introduction of biologic agents targeting IL-1β, thus able to target the main source of 

inflammation, therapy has greatly improved patients’ quality of life, leading to complete and sustained 

remission of symptoms in almost all cases and preventing, or even rescuing, inflammatory organ damage. 

There are three commercial biological anti-IL-1β drugs: anakinra, rilonacept and canakinumab. 

The anakinra is a recombinant, non-glycosylated, form of human interleukin-1 receptor antagonist 

(IL-1Ra), an endogenous molecule that binds to the IL-1 receptor and inhibits the pro-inflammatory 

effects of IL-1. Anakinra results in significant relief of clinical symptoms, without the need of other 

immunosuppressive drugs, even if the response to treatment can only be partial in severe cases of 

CINCA [9]. 

Rilonacept is a soluble decoy receptor fusion protein (extracellular domains of IL-1 type 1 receptor 

and IL-1 receptor accessory protein joined to the constant region of human immunoglobulin G1) that 

binds soluble IL-1 (α and β), preventing activation of cell surface receptors [10]. This drug has been 

studied in CINCA and MWS, and leads to a significant reduction in symptoms. 
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Canakinumab is a human anti-IL-1β monoclonal antibody, able to induce complete remission in 

most patients, though severe cases may require a dose escalation. However, due to its strength, it might 

increase the risk of infections [11]. 

Nowadays, canakinumab is the best choice for the treatment of the CAPS: it does not block the IL-1α 

binding to its receptor, and compared to anakinra (daily dosage) and rilonacept (weekly administration), 

one subcutaneous injection every 4–8 weeks appears to be enough. 

2.2. Small Molecules for CAPS 

Despite these encouraging results obtained by biological agents, continuous innovation in 

immunomodulatory drug development is required to address some limitations of protein therapies, 

such as the inability to modulate intracellular proteins that regulate immune cell function [12–14],  

the functional redundancy among inflammatory cytokines, or the limited delivery of protein-based 

reagents to mucosal tissues [15]. In fact, anti-IL-1 treatments can have limited efficacy on some 

complications of the diseases like hearing loss, bone dysplasia, and mental retardation [16]. Another 

limitation of anti-cytokine proteins comes from their high costs and their mode of administration 

which often requires a specialist [17]. 

For all these reasons, in the last years a number of small molecules have been proposed to tune  

the expression or function of intracellular proteins that can give rise to aberrant cytokine signaling or 

that can mediate their downstream consequences. Of course, CAPS can again represent the model to 

test the efficacy of these novel treatments. 

To regulate IL-1β production three main targets are currently under focus: caspase-1, histone 

deacetylase and NLRP3 [18]. 

VX-765 is an orally active caspase-1 inhibitor that is able to block the conversion of the IL-1β 

precursor into an active form of IL-1β. This molecule has been demonstrated to inhibit IL1-β secretion 

in LPS-stimulated cells from FCAS patients [19] and in animal models [20]. Two phase 2 trials have 

been carried out in patients with psoriasis (NCT00205465) and epilepsy (NCT01048255) [21], while 

only a small open-label study has been conducted in six patients with MWS showing partial clinical 

improvement [22]. 

Acetylation and deacetylation of histones is one of the mechanisms to modulate gene expression, 

resulting in binding of transcription factors to DNA. This process is regulated by two enzymes:  

histone acetyltransferases and histone deacetylases (HDACs) [23]. ITF2357 (givinostat) is a histone 

deacetylase inhibitor with anti-inflammatory properties. In a phase 1 clinical trial, HDAC inhibitors 

have been shown to be safe and well tolerated, and able to inhibit pro-inflammatory cytokines such as 

IL-1β, TNF-α, IFN-γ and IL-6 [24]. For this reason givinostat could represent a promising drug to treat 

CAPS. However, there are some doubts about the real selectivity of these drugs, which may influence 

the expression of many other genes. 

Finally, inhibitors of NLRP3 have been also evaluated, whose potential is of particular interest 

based on the pivotal role of the NLRP3 inflammasome in inflammation. In past years, some of  

such drugs (glyburide, CRID3, parthenolide15, 3,4-methylenedioxy-β-nitrostyrene16, and dimethyl 

sulfoxide) have already been proposed and used with limited success due to poor potency and 

nonspecific effect [25–29]. In October 2015, Rebecca Coll and collaborators described a new potent, 
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selective, small-molecule inhibitor (MCC950) able to specifically block the activation of NLRP3, but 

not the AIM2, NLRC4 or NLRP1 inflammasomes. In animal models of experimental autoimmune 

encephalomyelitis (EAE), MCC950 is able to reduce IL-1β production in vivo and to improve  

the symptoms of the disease. Moreover, this molecule prevented neonatal death in a mouse model of 

MWS, and was shown to block NLRP3 activation in peripheral blood mononuclear cells from MWS 

patients [30,31]. Thus, MCC950 could be a valuable therapeutic choice for NLRP3-associated syndromes, 

including autoinflammatory and autoimmune diseases, but further clinical trials are needed to better 

understand the potential of this small molecule. 

Direct targeting of NLRP3 is of particular interest if we consider recent data showing how activated 

NLRP3 inflammasome, by recruiting the protein adaptor ASC, can act to propagate and amplify 

inflammation from cell to cell [32]. Thus, NLRP3 activation could be a better target to act on early 

events of inflammation before inflammatory amplification has started occurring. 

Furthermore, the confirmation of the safety and efficacy of these drugs could open the way to their 

use for other diseases, whose course can be worsened by an IL-1β-mediated inflammatory response 

(gout, diabetes mellitus type 2, cortical strokes, and following myocardial infarction), as already done 

with the biological agents [33–38]. 

3. Mevalonate Kinase Deficiency 

Mevalonate Kinase Deficiency (OMIM #260920; MKD) is a rare and neglected disease, due to 

mutations in the mevalonate kinase gene (MVK) coding for mevalonate kinase (MK), an enzyme of 

the mevalonate pathway for the biosynthesis of cholesterol and non-sterol isoprenes [39,40]. The residual 

activity of MK defines different degrees of MKD severity, ranging from an auto-inflammatory 

phenotype (Hyper IgD Syndrome/HIDS; OMIM #260920), to a very severe clinical presentation 

(mevalonic aciduria/MA; OMIM #610377) [41]. The phenotype of HIDS typically includes only 

recurrent episodes of fever and associated inflammatory symptoms such as oral ulcers, skin rashes, 

arthralgia, abdominal pain, and diarrhea. Patients with MA show, in addition to these episodes, 

developmental delay, dysmorphic features, ataxia, cerebellar atrophy, psychomotor retardation and 

may die in early childhood [42–44]. 

To date, the pathogenesis of MKD is still a matter of study, in particular as concerns  

the neurological involvement. 

The study of MA pathogenesis is quite difficult because the only existing murine model of the disease is 

created with a heterozygous knock-out deletion of the MKV gene [45], resulting in a mild disease 

phenotype, lacking the features of neurological dysfunction. Complete shortage of other enzymes in 

the same pathway, upstream [46] or downstream [47] MK in mice have revealed a high degree of 

embryonic lethality. Moreover, cell lines from MA patients do not exist: the anatomical evaluations 

about neurological impairment of MKD can only be done post-mortem. The only alternative, so far, 

has been provided by cell lines treated with biochemical inhibitors to produce a deficiency in  

the mevalonate pathway. Although these models did not reproduce the same defect observed in MA, 

they could shed some light on biochemical mechanisms relevant to the disorder [48,49]. 
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3.1. Biological Drugs for MKD 

MKD is an orphan disease and the current treatment options are mainly targeted at relieving 

inflammatory symptoms [50]. While anti-inflammatory drugs and on demand steroids provide 

acceptable control of symptoms in patients with milder forms of the disease, lifelong treatment with 

biological drugs (such as anakinra or canakinumab) is usually required for patients with high 

recurrence of severe inflammatory attacks [51,52]. Furthermore, the only valuable therapeutic option 

for patients with MA is hematopoietic stem cell transplantation which, however, is burdened with  

a series of risks and complications [53]. 

3.2. Small Molecules for MKD: Inhibitors of Mevalonate Pathway 

Recent literature data showed that several molecules, as farnesyl transferase inhibitors (FTIs), 

geranylgeranyltransferase inhibitors (GGTIs), isoprenoids, or squalene synthase inhibitors, acting on 

the mevalonate pathway are able to modulate the inflammatory response. 

FTIs (tipifarnib and lonafarnib) and GGTIs are two classes of molecules acting on post-translational 

modifications of Ras proteins, and can have opposite effects on the modulation of inflammation.  

In particular, FTIs have been shown to have an anti-inflammatory action, which could be mediated 

both by reduced farnesylation of Ras proteins and by diversion of mevalonate derived isoprenoids 

toward geranylgeranylation of Rac1 and RhoA GTPases. In contrast, GGTIs were demonstrated to be 

able to increase the inflammatory response. However, preclinical data are still insufficient to justify the 

experimental use of these drugs in clinical trials in patients with MKD. 

Furthermore, preliminary investigations have shown a potential synergy between FTIs and 

mevalonate-derived isoprenoids such as geranylgeraniol both on MKD cellular models and on 

patients’ samples [54]. Other bioactive isoprenoids with a potential in MKD include geraniol, farnesol, 

limonene and menthol. 

Of note, the mevalonate pathway is the focus of pharmacological approaches for different medical 

conditions, from osteoporosis, to cancer and lipid metabolism. The different effects of drugs active on 

this pathway are not always easily predictable, due to the complex regulation of enzymes in  

the mevalonate pathway. 

Aminobisphosphonates act on different enzymes downstream of mevalonate, reducing  

the availability of isoprenoid intermediates in a variable manner, leading to various biological effects, 

including inhibition of bone resorption and tumor proliferation. Aminobisphosphonates have been used 

to induce an MKD-like inflammatory reactivity in vitro and in animal models [55,56]. 

Statins are cholesterol lowering agents acting upstream of the mevalonate pathway by reducing  

the availability of mevalonate and the production of endogenous cholesterol. They are used in  

the pharmacological treatment of diseases such as hypercholesterolemia, atherosclerosis, and 

cardiovascular disease [57]. 

To avoid undesired effects of statins, which have been related to a shortage of cholesterol derived 

isoprenoids, other cholesterol lowering agents have been proposed, inhibiting squalene synthase, the 

enzyme responsible for the synthesis of sterols from isoprenoids. Several squalene synthase inhibitors 

have been developed, such as zaragozic acids or 2,8-dioxabicyclo[3.2.1]octane derivatives, 
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dicarboxylic acid and quinuclidine derivatives, 4,1-benzoxazepine and substituted morpholine 

derivatives [58]. Zaragozic acid, in particular, reversed the defect in geranylgeranylation of RhoA and 

Rac1 in cells from patients with MA [59] and displayed an appreciable anti-inflammatory effect on 

cells from patients with MKD [60]. Although some of these drugs, such as lapaquistat, have shown  

a good safety profile in volunteers, no clinical trials have yet been performed in MKD [61]. 

4. Interferonopathies 

Interferonopathies are a particular category of autoinflammatory diseases [62], grouping few rare 

disorders characterized by highly deregulated production of class I IFNs [63,64]. These disorders arise 

from defects in the pathway of sensing of nucleic acids in the cells, and include deficiency of DNAses, 

RNAses and gain of function mutations of the adaptor protein STING (Stimulator of Interferon  

Genes) [65,66]. Clinical features show significant overlap with Systemic Lupus Erythematous (SLE) 

(OMIM #152700), which is as well associated with increased signaling by class I IFNs. Indeed,  

anti-double-stranded DNA auto-antibodies (anti-dsDNA) are found both in SLE and in 

interferonopathies and can be the results of a defective disposal of nucleic acids derived from apoptotic 

cells [67,68]. However, while in sporadic SLE autoimmune features are usually the prominent features, 

interferonopathies are characterized by more severe inflammation, poor response to conventional 

treatments and worse outcomes. 

4.1. From Monogenic Interferonopathies to SLE 

A critical issue to be solved is whether knowledge on monogenic causes of inflammatory disorders 

may open the way to the identification of molecular targets for therapy and to the development of 

novel treatments. This goal is highly relevant in pediatrics, given the chronic and severe course of 

early onset forms of SLE, despite currently available therapies [69–71]. 

As concern the pathogenesis of SLE, the break of the normal tolerance between T- and B-cells 

occurring in SLE implies an altered T-cell response that, in turn, primes the B-lymphocytes to produce 

high-affinity auto-antibodies, which cause tissue damage. Moreover, the interaction between T- and  

B-cells is strictly regulated by the presence and interaction of co-stimulatory molecules (CD40/CD40L 

and CD28/B7) and secretion of inflammatory cytokines, such as TNF-α and IL-6 [72]. Every step of 

this inflammatory pathway is a conceivable target for SLE therapy. In fact, in the past, the disease was 

treated with immunosuppressive drugs (i.e., corticosteroids, cyclosporin, mycophenolate mofetil, 

cyclophosphamide, azathioprine), that allowed an improvement in the course of the disease, but that 

were burdened by serious adverse effects, especially in the long term [73,74]. During the past years 

more specific treatments were developed against one or more of the steps involved in the inflammatory 

process mentioned above. Even though the possible targeted therapies were investigated in different 

clinical trials, their substantial efficacy is still unclear because of the difficulty of conducting 

randomized controlled trials, due to the heterogeneity of the disease itself. Thus, to date, none of these 

biologics have an established use in clinical practice for the treatment of SLE, with the exception for 

Rituximab, a monoclonal antibody to the CD20 antigen expressed on B cells, and Belimumab,  

a monoclonal antibody to B-cell activating factor (BAFF), that have demonstrated improvements in 

controlling the worst manifestation of SLE, the lupus nephritis [75]. The first remains the treatment of 
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choice in case of SLE refractory to conventional treatments [76,77], while the second is the only biologic 

approved for SLE that demonstrated improvements in antibody titers and disease activity [78–80]. 

The recent identification of a group of monogenic interferonopathies may shed some light on  

the pathogenesis of SLE and may help resolve open issues concerning resistance to conventional 

treatments in some cases, in particular among those with early onset in childhood. In fact, deficiencies 

of TREX1 and RNASEH2C are responsible for rare disorders that were considered as familial forms of 

SLE (Chilblain Lupus; Aicardi Goutieres syndrome). Recent studies demonstrated that a key molecule 

in these inflammatory disorders is the adaptor protein STING. These results are in agreement with  

the recent identification of the SAVI syndrome, (STING-associated vasculopathy, infantile onset),  

a monogenic disorder due to activating mutations of STING, which shares significant pathological 

features with other interferonopathies (OMIM #615934) [81]. 

Indeed, the identification of high levels of type I IFNs, and in particular of IFN-α, and  

the observation of a set of inflammatory genes induced by IFNs in biologic samples from patients  

with SLE (interferon signature), have demonstrated a common pathogenic pathway that underlies  

the heterogeneous spectrum of the disease and can also explain the onset of lupus-like syndromes or 

other condition with anti-dsDNA negative sera [82–85]. Type I IFNs were produced in response to 

viral nucleic acids, but also in response to endogenous DNA recognized by cellular sensors such as 

TLR7, TLR9 and cGAS, mainly through the activation of STING. In particular, endogenous DNA is 

released during apoptosis and necrosis of cells and can induce the breakdown of T- and B-cell immune 

tolerance, especially in presence of concomitant genetic alteration that predispose to SLE, since in SLE 

patients the clearance of cell debris after apoptosis and necrosis is impaired [86,87]. 

All this considered, an interesting therapeutic strategy is the blockade of the IFN pathway by 

inhibiting IFN-α by administering a monoclonal antibody. The most studied monoclonal antibodies 

anti-IFN-α are Sifalimumab, an IgG1 human monoclonal antibody that binds to IFN-α and prevents the 

signaling through its receptor [88–90], and Rontalizumab, an IgG1 monoclonal antibody with 

inhibitory activities on multiple isoforms of IFN-α [91,92]. 

4.2. Small Molecules in Interferonopathies 

The study of the SAVI syndrome highly contributed to unravel the common pathway of IFN activation 

in interferonopathies and may serve as a model to improve knowledge and to develop novel treatments, as 

well as for multigenic disorders such as SLE, which can be associated with deregulated IFN signature. 

Activation of STING leads to enhanced transcription of IFN regulating genes and to strongly-increased 

production of type I IFNs. In turn, IFNs exert their inflammatory action though binding of the  

receptor IFNAR1/2 on the surface of cells and leading to JAK1/TYK2 and STAT1/2 activation and 

downstream transcription of IFN-dependent pro-inflammatory mediators [93,94]. 

In very recent years, small molecules were developed to interfere with the inflammatory pathways, 

depending on cytokine signaling. Different molecules that act as JAK1/JAK2 inhibitors underwent 

evaluation in clinical trials [95]. Among them, Ruxolitinib was already approved by FDA for the treatment 

of myelofibrosis and has also demonstrated significant improving in rheumatoid arthritis [96,97], and 

Baricitinib, which is currently under evaluation in multiple clinical trials, in particular for the treatment 
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of rheumatoid arthritis [98]. Of note, blocking JAK signaling with Baricitinib was shown to be able to 

reduce the inflammatory response in cells from subjects with activated STING disease [81]. 

Based on these data, it may be worth evaluating the potential of JAK inhibitors also in subjects with 

SLE who failed to respond to conventional treatments. The advantages of treatment with small 

molecules if compared to biologics, reside in their lower cost and in their availability for oral 

administration. On the contrary, the limitation in use derives obviously from their recent access as  

a therapeutic tools, and consequently to poor knowledge in particular of long-term efficacy and safety 

and possible adverse effects both for prolonged therapy and for discontinuation [99–101]. 

5. Conclusions 

After four decades since the first development of monoclonal antibodies, the promise of more 

selective and safe therapies has been kept. The market of therapeutic antibodies and other recombinant 

proteins has shown a constant increasing trend. Although most prescriptions relate to malignancies and 

multifactorial inflammatory diseases, the best demonstrations of efficacy have been obtained in few 

rare monogenic diseases characterized by prevalent deregulation of single cytokines. On one hand, 

treatment with biological drugs allowed to obtain a more complete suppression of a given cytokine 

with lower rates of undesired effects if compared with traditional anti-inflammatory and 

immunosuppressive drugs. On the other hand, anti-cytokine antibodies are not free from costs and 

risks. Indeed, the preparation of large amount of recombinant proteins for therapy has high costs and 

the strong inhibitory activity is not easily adjustable. In fact, the long half-life of most monoclonal 

antibodies can be both an advantage and a reason of concern, in particular in case of infections. 

In recent years, improved experimental settings have allowed selecting and producing  

increasing numbers of small molecules with definite molecular targets. When compared with  

protein-made-biologicals, these novel drugs may present advantages for the ease of administration and 

for a more precise tuning of their action, and in many cases for their lower production costs. In addition, 

small molecules can have a better distribution in diseased organs and cells. The development of drugs 

acting on definite molecular pathways can allow the inhibition of more than one target cytokine with 

the same drug. In several cases, small inhibitors developed to treat tumors may come in handy to treat 

inflammatory diseases whose pathogenesis involves the same molecular pathways. Compared with 

cytokine blocking agents, small molecules may have the advantage of acting on earlier pathogenic 

events. Again, rare monogenic disorders can provide valuable models for the evaluation of these novel 

drugs. In particular cases, such as MKD, the study of the molecular mechanisms of the diseases can 

help find novel targets for therapy. Great caution should be taken in considering the possibility that 

novel small molecules may have unpredicted effects in addition to their action on the selected 

molecular target. However, given the increasing knowledge on the molecular mechanisms of genetic 

disorders, it is predictable that several inhibitors will find a place, in the near future, in the so called 

“precision medicine”. 
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