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Abstract—Silot leakage field and inductance computation is,
in general, a non-trivial task in the analysis of kectric machines
equipped with semi-closed slots, even under the hgihesis of
neglecting magnetic saturation. This paper proposesan
analytical method to evaluate the slot leakage fiél and
inductances in dual-layer distributed winding machhes,
extending the results of a previous work where thsingle-layer
winding design was addressed. A direct solution t®oisson’s
differential equation in the slot domain is found ly suitably
defining boundary conditions in the slot opening aea.
Boundary conditions are defined exploiting the anaftical form
taken by the magnetic field in the neighborhood of
ferromagnetic corner-shaped regions. The presentedpproach
is successfully validated against Finite Element (FE)
simulations.

Index Terms—Analytical methods,
leakage inductances, semi-closed slots.

electric machines,

|. INTRODUCTION

ALTHOUGH they are not directly involved in the

electromechanical energy conversion, leakage field

and inductances need to be evaluated in the nrmedelid
analysis of electric machines [1]-[3]. In fact, yhaffect
machine equivalent circuit [4] and play a role iome
parasitic phenomena like the occurrence of cirmdat
currents in multiphase machines subject to investgply
(3], [6].

A significant portion of the leakage flux is due the
magnetic field lines that cross the slots, givirgg ito the so
called slot leakage flux and inductances. These loan
computed with simple algebraic formulas if a regtdar
slot shape is used [3], [4], [6], while their contgtion

becomes more complicated in case of a semi-clok#d s
design. The problem can be approached through eFinit

Element Analysis (FEA) [1], but analytical methodse
generally preferred as a more computationally-iffic
alternative, whenever possible.

The problem of analytically computing semi-closéot s
leakage field and inductance has already been ssiettein
[7] where, however, the assumption is made thah ehat
includes only one coil side, as it occurs in sidglger
windings. However, the vast majority of electric ahimes
feature a dual-layer distributed winding, whereivo tcoil
sides, generally belonging to different phaseseanbedded
in the same slot [8]. This paper is intended tceedtthe
treatment proposed in [7] to the case of dual layiadings.

As done in [7], an analytical solution to Poissoetsation
for the magnetic field in the semi-closed slot domia first
found and then the solution is exploited to compheeself-
inductance of the coil sides in the slot as weltresmutual
inductance between them. Such information is esdetat
compute the overall slot leakage inductance of ahme
phase as explained in [3], [6]. The solution tosBon's
equation for the semi-closed slot leakage fieldagied out
under the hypothesis of unsaturated core and haldyi
defining boundary conditions in the slot openingjioe.
Boundary conditions are defined based on the esjmes
taken by the magnetic vector potential in the nedghood
of right-angle ferromagnetic corner regions, whieahe
singular points for the magnetic field [9]. Thispapach
leads to accurately estimate the leakage flux ibigion
inside the semi-closed slot domain without deteimgjrthe
magnetic field in the entire machine [10]. The aacy of
the analytical procedure proposed is positivelyesssd by
comparison against FEA.

The paper is organized as follows: in Section & Hasic
eometry of a semi-closed slot including two cades is
escribed along with the modeling assumptions niiedés

analysis. In Section Ill the simplified expressioh slot

leakage flux and inductance is presented for sules#q
comparison with the accurate one being set forttSdction
IV the magnetic leakage field inside a semi-closéut is

determined along with the inductances of the twib sides

embedded in it. Finally, in Section V some validat are
proposed where the results of both the simplified ¢he

accurate analytical model are compared to eachr atie:to

FEA simulations.

[I. SEMI-CLOSED SLOT GEOMETRY AND ASSUMPTIONS

The semi-closed slot geometry being investigatethis
paper is illustrated in Fig. 1. In a suitable potaordinate
system [7], the geometry is univocally defined hg four
radii Ry, Ry, Ry, R> and by the angle$, and 8. The slot
domain is subdivided into three regions, respeltive
denoted by lettert), V andW: regionsU andV include the
coil sides of the double-layer winding and are then
characterized by generally non-null current deesjtregion
W corresponds to the slot opening and is then dateti by
air. We shall cally andly the total currents flowing through
the coil sides respectively located in regidhandV of the
slot; hence these regions will be characterized thwy
following current densities:
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Fig. 1. Semi-closed slot geometry assumed in tipempa
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where A, =6, (R22 - Rmz), A =6, (Rm2 - R12) are the

cross-section areas of the regidhandV respectively.
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The slot domain is supposed to be surrounded by ¢
having a theothtica

unsaturated ferromagnetic core,
infinite magnetic permability with respect to the. alhis
hypothesis can be restrictive for some electric himec
design or operating condition, but is necessardgen to
find an analytical solution for the magnetic field the
machine domain [2], [4], [10]. Moreover, end etkeare
neglected in the sense that the field distributtorupposed
to be the same in any cross section of the machine.

I1l. SIMPLIFIED MODEL FOR LEAKAGE FLUX STUDY

For the purpose of computing the slot leakage faid
inductances of electric machines,
simplified models have been proposed in the liteea{3],
[4], [6], where leakage flux lines are supposedfltav
according to simple paths such as illustrated o Bi In
particular, for semi-closed slots, flux lines awggosed to
follow circular paths (Fig. 2b). The assumption fgpen
rectangular slot shapes of leakage flux lines bpegllel to
one another and orthogonal to slot sides is qe#dstic and
actually leads to some simple analytical formulzest have
been proved to be in good accordance with slotagak
inductances computed by FE analysis [3]. Converselthe
case of semi-closed slots the assumption of puoietylar
leakage flux line paths is quite simplistic as ctatgly
disregards the significant distortions of the maignéeld
near the slot opening and near slot corners.

Nevertheless, in order to have a benchmark forsasmp
the accuracy of the new method being set forttim paper
(Section 1V), the slot leakage field formulationsuéing
from the simplified model (Fig. 2b) will be nextried.

A. Leakage field determination

As a first step, one needs to determine the awalyti
formulation of the leakage flux density in the stimain.
According to the simplified model, the flux densay any
point of the slot has only a tangential comporitFig. 2b)
which is supposed to be uniform along each circéllat
path and thereby to depend on the polar coordinataly.

approximate and

(@ (b)

Fig. 2. Simplified leakage flux patterns (dasheedi) for (a) open
rectangular slot and (b) semi-closed slot shape.

Fig. 3. Closed loog for Ampere’s circuital law application.

Let us consider a simplified leakage flux pétlas shown in
Fig. 3. According to the approximated model, thetipa of

/" inside the slot consists of a circular &€ of a given
radiusr. Ampere’s circuital law applied t6 gives
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B. Self and mutual inductance determination

Most of the algorithms available in the literatuier
computing slot leakage inductances of multiphasehinas
require the knowledge of self and mutual inductarafethe
individual coil sides embedded in a slot [3], [Mlore
precisely, the parameters to be computed_gré, andMyy
where:Ly is the self-inductance of the coil side embedded i
the bottom layer of the slot (regith Fig. 1);Ly is the self-
inductance of the coil side embedded in the gapsiger of
the slot (regiorV, Fig. 1); Myy is the mutual inductance of
the two coil sides embedded in the same slot. Ad t
mentioned inductances are due to the slot leakage f

The values of , Ly, andMyy can be determined based on
energy considerations as follows [6]. The total n&ir
energy stored in the slot leakage field can beesqad as a
function of the currentky, Iy flowing in the two slot layers:

R 6
Ely, 1) = eere ”Be(r,|u,|v)2rd9dr
2o | 2 -
Ro=61
®3)

R, 6,

+ J. J-Be(r, ly, 1y )?rdédr |,
R -6,



where L is the machine core length a}(r,1y,1y) is
the flux density given by (2). At this point, thellbwing

equations can be written based on the well-known

relationships between inductances and stored enargy
linear systems [11]:

_1 02 _1 2
E(0)=5Ly1?, EQD=5Ly1%, o

1

E(I,I):%LUI2+EL\,I2+MUVI2,

wherel is a generic positive current. From (4) the follogv
expressions are derived for inductances:

LU_21540) LV_ZEOI),

E( N-E(0)- EQI)

I 2

®)

Muv = (6)

Using (2) in (3), after symbolically solving thetégrals,
explicit expressions can be obtained f&(l,,ly) as
follows:

(ly +|v)2|n(R1/R))
44

Eq u: lV) = LCOFE%{

+166?2{ 2: 2+4f( )In(Rn/Rl)-‘*'vf('u"v)} (7)
Lo RNR/R)-3R Ry +4R, Rn}
166, R2-R2S

where the following auxiliary function has beendise

2
Rv -R
The self and mutual inductances of the two caiésican
be computed by using (7) in (5) and (6). This cotapon
method will be used, together with FE analysis, aas

benchmark to assess the accuracy of the alternatocel
proposed in this paper and explained in the negti@e

fly,ly) =1y +1y

(8)

IV. ACCURATE MODEL BASED ON SOLVINGPOISSON S
EQUATION

In this Section an accurate analytical model is@néd
to compute the slot leakage field and the inductanaf a
double-layer winding electric machine under the
assumptions illustrated in Section Il.

The method is based on solving Poisson’s diffeagnti
equation for the vector potential in the slot damarhe
vector potential can be regarded as a scalar dqyatiin
any other 2D problems [7], [10]. The vector potaistiwill
be denoted as w@ly,lv), v(r,Blyly) and w(r,8ly,ly),
respectively, in the three slot sub-domdihsv andW (Fig.

1), wherer, 8 are the radius and polar angle in a 2D polar

coordinate system. Such functions must satisfyfahewing
Poisson’s equations:

10 du, 102
==— =—dy , <r<R 9
ror ar r2 9 Hodu + R 2 ©
19 av 1 0%v
Ov==—r—+S5——=-lpJy, Rsr< 10
for or 12 9% Udy » Ry Rn (10)
10 ow 162W
Ow = =0, Ry<r< 11
rar o r 026 Ro R (1)

A. Boundary conditions

The differential equations (9)-(11) are subject to
homogenous Neumann’s boundary conditions along the
entire contourQBCEGLMN (Fig. 1) that separates the slot
domain from the surrounding ferromagnetic regiotong
this contour, in fact, we have [11]:

ou/on=0v/on=0w/on=0 (12)
where d/0n indicates the derivative along the normal
direction with respect to the boundary.

Along the arcdMB andNQ, boundary conditions cannot
be exactly defined because the field on such artsably
depends on the machine geometry outside the stotekier,
it is reasonable to suppose that a sufficientlyueate
prediction of the field inside the semi-closed $fopossible
without the need to determine the magnetic fieldthe
whole machine domain. In order to decouple thedbobain
from the rest of the machine, the same approaath insg’]
is herein adopted, assuming that the tangential diensity
By (r.8,1y,1y) . when evaluated along a8, LC andNQ

(Fig. 1), can be approximated with the followingdtions:
BF)(RthIU 1IV) :§;)\IQ(H!|U !|V)

1 1 1 (13)
= byl 1v) Ry (6, +6)F + (8- 0)3),
By (R.,6,1y _';/) =§9MEZ‘9’|U’|V) . (14)
=b(1,.)REG + 0 + (8 -0)],
By (R, 1y, 1v) ZE(I)_C(HJUJV)
={§g"3(e,|u,|v) if —0,<0<6, (15)
0 if 0,<10|<6, ’

where (13)-(14) hold for -6, <6<6;, and (15) for
-0,<0<0, and whereby(l,,ly) and by(ly,l,) are
given by (16) as justified in the following.

bo('w'v):‘m(lu ""v),
R 4R,%67 16)
__Holly +1y)
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Fig. 4. Closed loops for Ampere’s circuital law &pgation.



As explained in [7], the expressions (13)-(14) hesed
on the observation that the magnetic field diverge® >
when the distanc@&from verticesM, N, B and Q tends to
zero [9]. Regarding functionb,(1,,1y) and by(Iy,ly) in
(16), they are derived applying Ampere’s circuital to the
two closed pathg, and/; shown in Fig. 4, which yields:

G
L?xds:j_%Bg‘Q(H,lu AV )RdE = p(1y +1y)  (17)

6 _
Bde:I By (6.1y.1y)RAO= (1 +1y) (18)
/—1 —81
The substitution of (13)-(15) into (17)-(18) givéke
expressions (16) after symbolical expansion ofrttegrals.
For the following it is useful to express (13)-(1B)
Fourier series as follows:

B;C(8,1y.1v)=Bg Iy, 1v)
LC (19)

+ Zn:llzy__Bﬂ (IU ) IV )COSan,
BYB(6,1,,1y)=BYB(1y,1y) )
+z BM (ly,ly)coshnd, (20)

Bg (H'IU'IV):BONQ(IUJV)
21
+Zn: 2 Bl,:‘ (U |V)COd"|n9, ( )

where

k:ﬁ/€21 h:n/el (22)

and Fourier coefficients (as functionslgfandl ) are:

B(I;IIBGU") ﬂo(lu ly) BMB(l e Holly )H

Ré 3R1J_
820 1) =200 e 1,0 = : ‘/_ Mo, 23)
Bl 0. 1y) =208 1) B0, = :;i;“‘/”—)

In (23) the constantd,, andK, are [7]:
K, = j g;l coskne[(é?l +6)73 +(6,-0): ]de (24)

1

Hy = | H;coshne[(el +0) +(6,-6)p6 (25
These can be computed with the formulas derivdd]in
2[c05(kn91)C|( 2kn91)+sm(kn01)8|( 2kna, )|

" Yk2n?
H, = 2(~1)"Ci(2 2an)]/ ¥/ h2n? 27)

where Ci() and Si() are the generalized cosine sing
integrals that can be defined and calculated ds [12

(26)

( 1)m 2m

z 00
H _ a-1_: —_ a
Ci(a z)—{t sin(t)dt = z mzz(:) ame )

(28)

( 1)m 2m+l

? (2m+a+1) 2m+1)'

Si(a 2) = J-ta Leodt)dt =2 z

(29)

B. Analytical solution to Poisson’s equation

In this Section, the analytical solution to thefefiéntial
equations (9)-(11) for the vector potential in ghet domain
is reported using (13)-(15) as boundary condititmsbe
applied in the slot opening region.

The assumed analytical expressions for the vector
potentials in the three slot sub-domalhsV andW (Fig. 1)
are respectively [11]:

ur.6,1y,1v)=Ug(ly) r? +U,(ly ) Inr
+ Uiy 1) PO+ U (11 1 cosng,  (30)
n=12,..
Mr.6,1y,1y ) =Vo(Iy ) 12+ Vq(1y 1y ) Inr
+ 3 Vi (lp ) PV gy ‘k“]coskne (31)
n=12..
w(r,8,1y,1y) =W(ly,ly)Inr
+ Z( Iy 1) P+ Wi (1, 1y) r™)coshng | (32)
n=12..

where: (30) holds forr O[R,,R,] and |60[0,6,]; (31)
holds for rO[R,R,] and |40[0,6,]; (32) holds for
rO[RyR] and|g0[0.6].

The radial and tangential flux density componentshie
slot domain directly result from (30)-(32) as [11]:

%W O[Ry. Rel160[0.6]

B (101 1) = %OWF,Z;U . O[R,R,],160[0,6,] (33)
%%mmﬂmﬂ[wﬁ
W,rm[m%lylﬂﬂloﬂz]

Bolr 6.1y.1,) = 2N ofr R 106 (a4
IONu:) ¢ o, R]0[04]

In the expression for the scalar potentie(r,8,1,1,)

in (32) the term proportional tf is omitted because such
potential must satisfy Laplace’s differential eqoat(11);

the same term s, instead, included in potentials
u(r,8,1y,1y) and v(r,8,1,,1,) so as to account for the

non-null current-density forcing terms in Poissogdgiations
(9)-(10).

The trigonometric expansions in (30)-(32) are chose
as to automatically satisfy homogenous Neumann’'s
boundary conditions on slot sides, i.e. on segm@RsCE,
LG andNM (Fig. 1). In fact, according to (33) it can bersee
that the radial flux density is identically null osuch
segments, i.e.:



B/ (r.0,1y,ly) =B, (r,=6,,1y,ly)=0, R<r<R;, (35)
B, (r.6,1y.lv)=B(r=6,1y.ly)=0, Rysr<R (36)

In the assumed expressions for the scalar potgi3g+
(32) there appear some unknown functiongoénd/orly,
which need to be determined by imposing that (2)-¢hust
be satisfied together with the following conditiqif$g. 1):

a) homogeneous Neumann’s boundary conditioiGan

b) continuity condition for the radial flux density
component acrodsD;

c) continuity condition for the tangential flux densit
component acrodsD;

d) non-homogeneous boundary condition on b@; i.e.
the tangential flux density doC must be equal to (15);

e) non-homogeneous boundary condition on €fg, i.e.
the tangential flux density ddQ must be equal to (13).

By direct substitution of (30)-(32) into (9)-(11n® can
immediately find that, for the latter to be sa#sfj functions
Ug(ly) andVg(ly,) must be equal to:

Veolly) == m (37)

Holy

Uso(lu):_mRz—)'
2

C. Computation of slot leakage inductances

The knowledge of functions (37) and (38) enables tmn
fully determine the vector potential in the slotnuan
through (30)-(32) and the flux density by means(28)-
(34). Once the flux density in known, the magnetiergy
stored in the slot leakage field can be determasef.1]:

E(ly,lv)=
R 6,
Leore I“B (16,15, 1y )2 + By (r.6,1y. 1y )2]rdédr
(39)
RZHZ

+ [ [[Br.0.1,1, )2 +B(r.6,15,1, ) Jrdear
R -6,

The analytical formulation of the flux density cpaments
B;, By found in the previous subsection makes it posgible
solve (39) symbolically. This leads to express émergy
stored in the slot as shown in (40) at the bottémh® page.

At this point, based on the same reasoning made in
Section IIIB for the simplified model, the relationships (4)
can be written and, from them, the self-inductanakthe
two coil sides I(y, Ly) as well as their mutual inductance

Then, imposing the boundary conditions listed @bov(Muy) can be obtained through (5)-(6) in which the aateu

leads to determine the other unknowns in (30)-32)
Uy(ly) = ‘2R22 Us(ly) .
Vio(lylv) = 2R [Ug(1y) = Ve (Iy)] - 2R,
Wio(ly,lv) = Ho(ly +1v)1(26,),
R B (Iy, Iy)

UsO(IU) '

U;(|U'|V):V;(IU1|V): kn(R12kn_R22kn)

~ _y- :len+lR22knBrl]C(|U,|V)
Un(ly.v) =V (ly.ly) kn(R12k”—R22k”)
W (1 1) = R Bl ) - R BYE (1 1)

h n(ROZh” R12hn)

expression (40) for Eg, Iv) is used.

V. VALIDATIONS BY COMPARISON WITHFEA

In this Section, the results obtained for the #atkage
field and inductance computation by direct solutioh
Poisson’s equation (Section IV) are assessed bypaonson
with FEA calculations. Furthermore, the same rssalte
compared to the prediction made through the simeglif
model described in Section Ill in order to evaludie extent
to which the new proposed model enhances the amcorfa
the estimation.

For the purpose of FEA validations, the geometrariet
shown in Fig. 5 is considered. The model is charartd by
the dimensions given in Table I.

TABLE |. CHARACTERISTIC DIMENSIONS OF THE MODEL CONSIDERED FOR
FEA SIMULATIONS

_R™RMBIIy, 1) -RM™IRBY 1y )

W (ly.1v)= hr{R)Zh”—th”) R 140mm| R, 175mm| @  2.711°| Lewe 100 mm
(38) Ry 150 mm| R> 200mm| 6 11.53° g 10 mm
E(ly.lv) = ;"m{ez[um (IU)In[z] +R*-RyY) Usoz(lu)+2(R22—Rm2)Uso(lu)um(lu)}
0
+Hz[v/oz(lu,lv) In(%}(Rm“ ~R*) V(1) + 2R, 2 - RZ) Vo 1) v/o(lu,lv)}
(40)

+91W[02(|U,|V) In(%j+g ZH[UEZ(IU’IV) (R22kn_R12kn)_U;2(|U,|\/) (R2—2kn_R1—2kn)]
n=12,..

+_
n= 1,2

[W (Iu, 1y )(Rlzhn_ROZhn)_

Wn_z(lu 1) (Rl—zhn _ Ro—zhn)]}
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Fig. 5. Slot model (with relevant mesh) used for slot figlignulatior 0
through FEA. -02 -01 0 0.1 0.2
—02 O [rad] O
The meaning of the symbols appearing in Table | is Bo(Ro, 0, Iro, Iro) [T] @
illustrated in Fig. 1. 0.6
As to the gap widtly, it is initially set atg=10 mm, but Analytical
simulations are run for different values @fto assess the 0.4
extent to which the analytical solution found ire tlot
domain is actually independent of the machine gégme 0.2
outside the slot.
The assessment of the proposed method by comparist 0
with FEA is first addressed looking at the predictiux _91_ 0.4 -0.02 g 0 d 0.02 0.04 o,
density in the slot domain. For this purpose, cside [rad]
currents are assigned the example values below. Fig. 6. Flux density components computed analyficatd by FEA alon
significant model contours for coil side currefigg = 5000 A andyo =
ly =1lyo =5000A, I, =1,,=-2500A (412) -2500 A: (a) tangential flux density on dr€; (b) radial flux density c

. . . . arcLC; (c) radial flux density on ardD; (d) tangential flux density on ¢
In the model shown in Fig. 5, the focus is onitiegnetic g,

field inside the upper (zoomed) slot energized withrents

lyo and lyg however, as shown in Fig. 5, another slot,

displaced by the 180° and energized with oppositeecats and Fig. 7 proving that the proposed approach palge of
—lyo and +y, is considered so that the total current flowingpredicting the slot leakage flux density in thetshith a
through the model cross section is zero. satisfactory accuracy.

The flux density values resulting from the fieldwmn It is noted that, in Fig. 6 and Fig. 7, the acoairaibdel is
presented in Section IB.are compared to those obtainedused considering the first ten harmonics; in otherds, the
from FEA along some significant contours of thetsloindexn appearing in all Fourier series expansions derimed
domain. Examples of such comparison are showndgn&i Section IV ranges from 1 to 10.
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Fig. 7. Flux density components compli@nalytically and by FEA alol P
significant model contours for coil side currehgs = 5000 A andlyvo = Gap width g [m
—2500 A: (a) radial flux density on akHD; (b) tangential flux density «
segmenCE; (c) tangential flux density on segmekF.
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As a further check, the self and mutual inductahggs,,
Myy of the coil sides embedded in the slot are evatuat
based on (5)-(6) where the energyJ:(y) stored in the slot
is independently evaluated both with the simplifieddel <
(Section 111B) and with the proposed accurate one (Sectior " Gap width g [m]
IV.C). In the latter case, the first ten harmonics otifer

% error for Ly
=

(=]

L0 ) o

|
=]

100 150

w
(=1

series expansionsn{1,2...10) are again considered. The 1% o <
comparison is repeated for different values of gap g, =20

while the slot geometry is maintained the samehasvs in g

Fig. 5 with the other dimensions given in Tabl&he results S

are illustrated in Fig. 8 and Fig. 9. c\‘g 0 O00 o S)

From Fig. 8 and Fig. 9 the following remarks can be
drawn: 0 50Gap width g [m

* The proposed accurate analytical model (Section 1V)
gives an estimation of self and mutual inductaheg t
very well matches the same quantities computed big. 9.Percent error (with respect to FEA results) of ictdnce estimatic
FEA, with errors below 3%. through the simplified and accurate analytical apph.

e Conversely, the simplified analytical model (Sestio
Ill) appears to be very inaccurate, leading to <+ The error of the accurate analytical method with
overestimate inductances by 20-30% with respect to respect to FEA, although in any case acceptable,
FEA results. exhibits some dependency on the gap width. In

—
=]

100 150
]

O Accurate analytical model < Simplified analytical model



particular, the analytical prediction given by theFEA, at least for those machine designs and operati
proposed model appears to be the asymptoticalonditions that allow for magnetic saturation effeto be

approximation of FEA result when the air gapends
to infinity. In other words, analytically computed
values practically coincide with FEA estimations fo

very large gaps (corresponding to the physica!l]

situation where the rotor of the electric machise i
withdrawn). This was already observed in [7].

The last remark has a quite intuitive physical[z]

interpretation. In fact, the accurate analyticadelds based
on assuming that the tangential flux density in #iet
opening region can be approximated by (13)-(15)ereim
rotor effects are disregarded. Such an approximatso
precise for relatively large gap values, while &cbmes
slightly less precise when the gap decreases andotior
presence tends to affect the flux density valuethén slot
opening area. The errors introduced, however, essekn to
be definitely acceptable.

A final note is about the effect of magnetic satora In
this respect, it needs to be observed that alltrisgtment
proposed in this paper assumes an infinitely-pebteecore,
which leads to the so-called “unsaturated” valuésslot
leakage inductances. In [7] it is shown how magneti
saturation causes slot leakage inductances to arnsith
respect to their unsaturated values. The same \a@ig@aTS
made in [7] for single-layer windings obviously ddbr the
dual-layer winding design addressed in this paoer, Also
in this case, it can be said that an accurate agtm of
leakage inductances in presence of significant miagn
saturation generally requires the use of FEA.

VI. CONCLUSION

In this paper an accurate analytical method has bee

presented to determine the slot leakage field adddtances
for electric machines with semi-closed slots andidie-layer
distributed windings. The analytical formulationbtained
are an extension of those presented in a previauk for
the case of single-layer windings. The approactptetbin
the paper is based on directly solving Poissorfiemintial
equation for the vector potential in the semi-ctbsdot
domain. An analytical field solution for the sleakage flux
has been determined in the paper by suitably defini
boundary conditions on the slot opening region. Hus
purpose, the specific mathematical form taken hey fthx
density in the neighborhood of right-angle ferrometic
corners (which are singular point for the magnééld) has
been exploited. Such boundary condition setting ladsto
decouple the slot domain from the rest of the mehi
geometry, making it possible to determine the Igak#ux
distribution inside the slot without knowing thelfi outside
it. The analytical technique proposed in the pdypes been
validated against FE simulations and shown to giegey
accurate results, with errors less than 5%. Coelgrshe
application of alternative simplified models, fregqdy
adopted in the literature, are shown to give pamueacy,
with errors ranging between 20% and 30% with respec
FEA simulations.

In conclusion, the methodology presented is deetimde
a convenient and efficient alternative to time-aonig

neglected.
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