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ABSTRACT  Both enantiomers of three biologically relevant paraconic acids — MB-3, 

methylenolactocin, and C75 — were obtained with enantioselectivities up to 99% by kinetic 

enzymatic resolutions. Good enantiomeric excesses were obtained for MB-3 and 

methylenolactocin, using -chymotrypsin and aminoacylase as enantiocomplementary 

enzymes, while C75 was resolved with aminoacylase. They all were evaluated for their 

antiproliferative, antibacterial, and antifungal activities, showing weak effects and practically 

no difference between enantiomers in each case. At high concentrations (16–64 g/mL), ()-

C75 acted as an antimicrobial agent against Gram-positive bacteria. 
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INTRODUCTION 

The α-methylene-γ-butyrolactone moiety is part of a variety of natural compounds, most of 

which belong to the sesquiterpene series and are associated with a wide spectrum of 

biological activities both in vitro and in vivo.
1
 γ-Butyrolactones containing a β-carboxy group 

are classified as “paraconic acids”. They are generally lichen products and many of them were 

isolated and characterized as antibiotic, antiviral, antifungal, and antitumor agents.
2–4

 

Insert Figure 1 

A few structures of known α-methyleneparaconic acids are reported in Figure 1 which also 

shows the correct configuration for the enantiomer which is dextrorotatory in chloroform. It 

must be underlined that the active diastereomer is that having the substituents in trans 

relationship, namely 2R*,3S*. Compound (+)-1a (indicated as MB-3 by Sigma-Aldrich in the 

racemic form) is a toxin known to be responsible for the black spots observed on fruit peel
5
 

and for its activity as inhibitor of acetyltransferase Gcn5 of human histone.
6,7

 

Methylenolactocin (–)-1b, found in the culture filtrate of Penicillium sp.,
8
 is active against 
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some Gram-positive bacteria and Ehrlich carcinoma.
9
 Compound C75 1c, although not 

natural, is a fatty acid synthase (FAS) inhibitor,
10–15 

that also shows antitumor,
16–23

 

antiviral
24,25

 and antiinflammatory activity
26

 and it is active against mycobacteria of the 

tuberculosis complex.
27

 Nephrosterinic acid (+)-1d, isolated from lichen Nephromopsis 

endocrocea,
28

 showed antibacterial
29

 and antitumor
30

 properties. Protolichesterinic acid (+)-

1e, isolated from various sources of lichens,
31–37

 exhibits in vitro and in vivo 

antiinflammatory activity,
38

 in vitro antibacterial activity against Helicobacter pylori,
39 

inhibited 5-lipoxygenase,
40

 and it also showed in vitro antiproliferative effects on malignant 

cell-lines.
41-43

 

The cytotoxic and antitumor activity of these α-methyleneparaconic acid derivatives is 

generally attributed to the interaction between the external double bond and nucleophilic sites 

of biologically important molecules.
44–46

 This mechanism was proposed for both molecules 

exhibiting cytotoxic activity and those showing allergenic properties. 

These findings stimulated the interest in this class of compounds and new syntheses of a 

variety of racemic and enantiopure paraconic acids are reported.
47–56

 

As a part of our continuing study on enzymatic resolutions of esters of α-

methyleneparaconic acids,
57

 we have taken into account compounds 1a–d (Figure 1) with a 

twofold purpose: to achieve their resolutions by means of enzymatic methods and to evaluate 

the biological activity of both enantiomers. 

MATERIALS AND METHODS 

IR spectra were recorded on a Thermo Nicolet AVATAR 320 FT/IR spectrophotometer. 

1
H-NMR and 

13
C-NMR spectra were run on a Jeol (Tokyo, Japan) EX-400 spectrometer (400 

MHz for proton, 100 MHz for carbon), and on a Jeol EX-270 spectrometer (270 MHz for 

proton, 68 MHz for carbon) using deuteriochloroform as a solvent and tetramethylsilane as 

the internal standard. Coupling constants are given in Hz. Optical rotations at 589 nm were 

determined on a Perkin Elmer (Boston, MA) Model 241 polarimeter; optical rotatory power 

values are given in 10
-1 

deg cm
2
 g

-1
. CD spectra were obtained on Jasco (Tokyo, Japan) J-710 

spectropolarimeter (0.1 cm pathlength cell); Δε values are given in L cm
-1

 mol
-1

. Capillary gas 

chromatographic measurements were performed on a Carlo Erba (Milan, Italy) GC 8000 

instrument and on a Shimadzu (Kyoto, Japan) GC-14B instrument, equipped with a flame 

ionization detector, the capillary columns being OV 1701 (25 m x 0.32 mm) (carrier gas He, 

40 KPa, split 1:50) and a Chiraldex type G-TA, trifluoroacetyl γ-cyclodextrin (γ-CDX)(40 m 

x 0.25 mm) (carrier gas He, 180 KPa, split 1:100, isotherm 150 °C) or DiMePe ß-cyclodextrin 

(25 m x 0.25 mm) (ß-CDX) (carrier gas He, 110 KPa, split 1:50, isotherm 150 °C). High-
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performance liquid chromatography (HPLC) measurements were performed on a Hewlett 

Packard (Corvallis, OR) series 1100 instrument, the column being Lux 5μ Cellulose-2 

Phenomenex, detector UV 220 nm, a mixture of hexane-isopropanol in a 9:1 ratio as the 

eluent, flow 1 ml/min. Melting points were measured with a Büchi apparatus and were not 

corrected. Enzymatic hydrolyses were performed using a pH-stat Controller PHM290 

Radiometer (Copenhagen, Denmark). Mass spectra were recorded on an ion trap instrument 

Finningan (San Jose, CA) GCQ (70 eV) and on a ESI-MS ion trap Bruker (Karlsruhe, 

Germany) Esquire 4000 instrument. TLC’s were performed on Polygram Sil G/UV254 silica 

gel pre-coated plastic sheets (eluent: light petroleum-ethyl acetate). Flash chromatography 

was run on silica gel 230-400 mesh ASTM (Kieselgel 60, Merck, Darmstadt, Germany). 

Light petroleum refers to the fraction with b.p. 40–70 °C and ether to diethyl ether. 

Anhydrous tetrahydrofuran [THF] was prepared by distillation over sodium benzophenone 

ketyl.  

The following enzymes were used in enzymatic hydrolyses of 5a–c: Acylase I from 

Aspergillus immobilized on Eupergit C (Fluka), 102 U/g: 44 U/mmol substrate in 1 mM 

CoCl2; Aminoacylase from Aspergillus melleus (Amano Acylase from Sigma Aldrich), 

>30000 U/g: 1:1 w/w; Acylase I porcine kidney (Sigma), 3442 U/mg: 78019 U/mmol; α-

Chymotrypsin (α-CT) from bovine pancreas (Fluka), 90 U/mg: 2400 U/mmol; Lipase from 

Candida antarctica “Novozym 435” (Novo Nordisk A/S, Bagsvaerd, Denmark), ≥10000 U/g: 

1:1 w/w; Pig pancreatic lipase (PPL type II, Sigma, crude), 46 U/mg of protein 6133 U/mmol; 

Esterase from hog liver (PLE, Fluka), 250 U/mg: 5000 U/mmol; Liver acetone powder equine 

(HLAP, Sigma), 1:1 w/w; Porcine liver acetone powder (PLAP, Sigma), 27 U/mg: 6230 

U/mmol substrate; SPRIN Lipo CALB, adsorbed immobilised preparation of CALB on 

polystyrene DVB cross-linked (300 – 800 µm), >2000 U/g dry: 1:1 w/w; Lipase from 

Pseudomonas cepacea immobilized by SPRIN: 1:1 w/w; Lipase from Pseudomonas 

fluorescens (Fluka), 42.5 U/mg: 1:1 w/w; Protease from Bacillus subtilis, 11.6 U/mg: 1:1 

w/w. 

General Procedure for the Synthesis of Racemic Substrates 

To a solution of 17.35 ml of lithium bis(trimethylsilyl)amide (LiHMDS) (1.0 M in THF), 

cooled to –78 
o
C, 1.0 g (6.94 mmol) of methyl hemi-ester of itaconic acid in anhydrous 

THF(10.0 ml) was added dropwise. The mixture was stirred at –78 
o
C for 1 h. The suitable 

aldehyde (9.7 mmol) in 1.0 ml of anhydrous THF was then added and the mixture was stirred 

for further 5 h at –78 
o
C under argon atmosphere. The reaction was quenched with 6N H2SO4 



 

5 

 

(5 ml). It was then extracted with diethyl ether and dried over anhydrous Na2SO4. The solvent 

was removed and the residue was added with a solution of 250.0 µl of trifluoroacetic acid 

[TFA] in dichloromethane (10.0 ml) and stirred overnight at room temperature. The solvent 

was removed and traces of TFA were removed by coevaporation with diethyl ether (three 

times). The residue was a mixture diastereomeric lactones which were separated by flash 

column chromatography (ethyl acetate-light petroleum, gradient from 2% up to 10%). Before 

charging the column with the crude reaction mixture, the column was eluted with 1% ethyl 

acetate in light petroleum with 1 ml of acetic acid added to avoid isomerization of the α-

methylene-γ-lactones into their α,ß-butenolide isomers.  

Methyl (2R*,3S*)-4-methylene-5-oxo-2-propyltetrahydrofuran-3-carboxylate 5a.
58

 

Oil, 18% yield, after purification; IR (neat): ν = 1769, 1742, 1663 cm
-1

; 
1
H NMR (400 MHz, 

CDCl3, δ): 6.42 (d, J = 2.9 Hz, 1H; =CH), 5.93 (d, J = 2.9 Hz, 1H; =CH), 4.82 (dt, J1 = J2 = 

5.6 Hz, J3 = 7.5 Hz, 1H; H2), 3.80 (s, 3H; OCH3), 3.58 (dt, J1 = J2 = 2.8 Hz, J3 = 5.7 Hz, 1H; 

H3), 1.80–1.63 (m, 2H; CH2), 1.60–1.40 (m, 2H, CH2), 0.97 (t, J = 7.3, 3H; CH3); 
13

C NMR 

(68 MHz, CDCl3, δ): 169.7 (s), 168.3 (s), 133.0 (s), 125.15 (t), 78.8 (d), 52.9 (q), 49.8 (d), 

37.8 (t), 18.1 (t), 13.6 (q); MS (ESI, m/z): 221 (100) [M + Na]
+
. 

Chiral HRGC: ß-CDX: retention time [tR] = 11.7 min for (+)-(2R,3S)-5a, tR = 12.1 min for (–

)-(2S,3R)-5a. 

Chiral HRGC, γ-CDX: tR = 17.3 min for (+)-(2R,3S)-5a, tR = 18.1 min for (–)-(2S,3R)-5a. 

Methyl (2R*,3R*)-4-methylene-5-oxo-2-propyltetrahydrofuran-3-carboxylate 6a.
58

 

Oil, 23% yield, after purification; IR (film): ν = 1770, 1740, 1667 cm
-1

; 
1
H NMR (400 MHz, 

CDCl3, δ): 6.42 (d, J = 2.2 Hz, 1H;  =CH), 5.83 (d, J = 2.2 Hz, 1H; =CH), 4.64 (m, 1H; H2), 

4.00 (dt, J1 = J2 = 2.2 Hz, J3 = 7.7 Hz, 1H; H3), 3.76 (s, 3H, OCH3), 1.7–1.5 (m, 3H), 1.45 (m, 

1H), 0.95 (t, J = 7.0 Hz, 3H; CH3); 
13

C NMR (68 MHz, CDCl3, δ): 169.5 (s), 169.0 (s), 133.6 

(s), 125.0 (t), 77.9 (d), 52.4 (q), 49.1 (d), 33.5 (t), 18.9 (t), 13.7 (q); MS (ESI, m/z): 221 (100) 

[M + Na]
+
. 

Methyl (2R*,3S*)-4-methylene-5-oxo-2-pentyltetrahydrofuran-3-carboxylate 5b. 

Yellow oil, 22% yield, after purification. All spectroscopic data are in accordance with those 

reported in the literature.
58–61 

Chiral HRGC, ß-CDX: tR = 28.9 min for (+)-(2R,3S)-5b, tR = 30.2 min for (–)-(2S,3R)-5b. 

Chiral HRGC, γ-CDX: tR = 34.9 min for (+)-(2R,3S)-5b, tR =  37.0 min for (–)-(2S,3R)-5b. 
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Methyl (2R*,3R*)-4-methylene-5-oxo-2-pentyltetrahydrofuran-3-carboxylate 6b. 

Yellow oil, 32% yield, after purification. Spectroscopic data are in accordance with those 

reported in the literature.
58–60

 

Methyl (2R*,3S*)-4-methylene-5-oxo-2-octyltetrahydrofuran-3-carboxylate 5c. All 

spectroscopic data are in accordance with those reported in the literature.
57 

Chiral HRGC, ß-CDX: tR = 122.5 min for (+)-(2R,3S)-5c, tR = 126.9 min for (–)-(2S,3R)-5c. 

Chiral HRGC, γ-CDX: tR = 155.6 min for (+)-(2R,3S)-5c, tR = 164.5 min for (–)-(2S,3R)-5c. 

Methyl (2R*,3R*)-4-methylene-5-oxo-2-octyltetrahydrofuran-3-carboxylate 6c. All 

spectroscopic data are in accordance with those reported in the literature.
57

  

Methyl (2R*,3S*)-4-methylene-5-oxo-2-undecyltetrahydrofuran-3-carboxylate 5d. 

Yellow solid, 23% yield, after purification, mp 38–39 °C (lit.
61

 mp 38 °C). The other 

spectroscopic data are also in accordance with those reported in the literature.
61

 

Chiral HPLC: tR = 10.0, 10.7 min for (±)-5d. 

Methyl (2R*,3R*)-4-methylene-5-oxo-2-undecyltetrahydrofuran-3-carboxylate 6d. 

Yellow solid, 33% yield, after purification, mp 4344 °C; IR (neat): ν = 1760, 1732 cm
-1

; 
1
H 

NMR (400 MHz, CDCl3, δ): 6.41 (d, J = 2.2 Hz, 1H; =CH2), 5.83 (d, J = 2.2 Hz, 1H; =CH2), 

4.60–4.64 (m, 1H; H2), 4.01 (dt, J1 = 2.2 Hz, J2 = 7.6 Hz, 1H; H3), 3.76 (s, 3H; OCH3), 1.53–

1.63 (m, 2H; CH2), 1.21–1.39 (m, 18H; 9 CH2), 0.88 (t, J = 7.2, 3H; CH3); 
13

C NMR (68 

MHz, CDCl3, δ): 169.3 (s), 168.8 (s), 133.6 (s, C4), 125.0 (t, =CH2), 78.2 (d, C2), 52.3 (q, 

OCH3), 49.1 (d, C3), 31.9 (t), 31.5 (t), 29.6 (2t), 29.4 (t), 29.34 (t), 29.30 (t), 29.2 (t), 25.5 (t), 

22.6 (t), 14.1 (q). EIMS (m/z (%)): 310 (24) [M
+•

], 251 (100) [M
+•

 – CO2CH3]
+
, 233 (46), 205 

(36), 187 (49), 179 (39), 165 (35), 155 (35), 149 (42), 137 (39), 121 (44), 119 (45), 109 (36), 

95 (45), 93 (45), 79 (52), 67 (56). 

Enzymatic Hydrolyses 

General Procedure for Small-Scale Enzymatic Hydrolyses 

Three slightly different procedures were used owing to the different solubility of the 

substrates in diethyl ether. For compounds 5a and 5b, the enzyme was added to the substrates 

(0.15 mmol) in phosphate buffer at pH 7.4 (10 ml), the mixture was stirred for the time 

indicated in Table 1, while maintaining the pH value constant by addition of 1M NaOH, and 

eventually extracted with ether. From the ethereal solution the unreacted ester 5a (or 5b) was 

recovered after evaporation of the solvent, while the acid 1a (or 1b) was isolated from the 

remaining buffer solution, by acidification with 2M HCl to pH 2 and extraction with ether. In 
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order to measure the enantiomeric excess of the acids by chiral HRGC, they were esterified 

with ethanol (2 ml) and Me3SiCl
62

 (20 µl) to give the corresponding derivatives 5'a and 5'b. 

Ethyl (2R*,3S*)-4-methylene-5-oxo-2-propyl-tetrahydrofuran-3-carboxylate 5'a. 

HRGC, ß-CDX: tR = 14.4 min for (+)-(2R,3S)-5'a, tR = 14.8 min for (–)-(2S,3R)-5'a. 

HRGC, γ-CDX: tR = 19.9 min for (+)-(2R,3S)-5'a, tR = 20.4 min for (–)-(2S,3R)-5'a. 

Ethyl (2R*,3S*)-4-methylene-5-oxo-2-pentyltetrahydrofuran-3-carboxylate 5'b. 

HRGC, ß-CDX: tR = 36.3 min for (+)-(2R,3S)-5'b, tR = 37.5 min for (–)-(2S,3R)-5'b. 

HRGC, γ-CDX: tR = 44.1 min for (+)-(2R,3S)-5'b, tR = 47.6 min for (–)-(2S,3R)-5'b. 

As to compound 5c, at the end of the procedure described above for 5a and 5b, the 

unreacted ester could not be separated from its hydrolysis product 1c since both were soluble 

in ether. Therefore compound 1c was separated from its ester 5c treating the ethereal phase 

with 5% aqueous solution of NaHCO3. The organic phase containing the ester was dried on 

anhydrous Na2SO4 and, after elimination of the solvent under vacuum, the unreacted ester 5c 

was obtained. The basic aqueous phase was acidified with 2M HCl to pH 2, extracted with 

ether and dried on anhydrous Na2SO4. Evaporation of the solvent afforded the acid 1c which 

was esterified with ethanol and Me3SiCl
62

 to give 5'c, in order to measure its ee by chiral 

HRGC.  

Ethyl (2R*,3S*)-4-methylene-5-oxo-2-octyltetrahydrofuran-3-carboxylate 5'c. 

HRGC, ß-CDX: tR = 153.0 min for (+)-(2R,3S)-5'c, tR = 159.0 min for (–)-(2S,3R)-5'c. 

HRGC, γ-CDX: tR = 183.6 min for (+)-(2R,3S)-5'c, tR = 201.7 min for (–)-(2S,3R)-5'c. 

Similarly, compound 1d was recovered in admixture with its ester 5d but it could not be 

separated from it following the procedure used for 1c and 5c and therefore the two 

compounds were separated by flash chromatography (eluent: gradient from 7.5% ethyl 

acetate, 92% light petroleum, 0.5% acetic acid up to 35.5% ethyl acetate, 64% light 

petroleum, 0.5% acetic acid). The ee’s of 1d and 5d were determined by chiral HPLC. To 

note that during HPLC elution both compounds largely isomerized into their α,ß-butenolide 

isomers.  

Large-Scale Enzymatic Hydrolyses 

Hydrolysis of 5a with α-CT. To an emulsion of 5a (565 mg, 2.85 mmol) in phosphate 

buffer (40 ml) α-CT (74 mg) was added under vigorous stirring. After 10 min, following the 

above described procedure, the unreacted ester (+)-5a with 11% ee was isolated (390 mg, 

69% yield), together with (–)-1a with 74% ee (76 mg, 14% yield).  
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(–)-(2S,3R)-1a: white solid, mp 77–80 °C (Lit.
5
 mp 77–80 °C); [α]D

25
 = –2.9 (c = 0.25 in 

chloroform); CD: Δε263= –0.2, Δε225= +6.1 (MeOH). 

The unreacted ester (+)-5a (390 mg, 1.97 mmol) having 11% ee was hydrolysed in 

phosphate buffer (36 ml) with α-CT (51 mg) for 73 min. After the usual workup, (+)-5a with 

68% ee was isolated in admixture with 33% of its α,ß-butenolide isomer (144 mg, 37% yield), 

together with (–)-1a with 39% ee (163 mg, 45% yield).  

(+)-(2R,3S)-5a: [α]D
25

= +15.1 (c = 0.24 in methanol) in admixture with 33% of its α,ß-

butenolide isomer. 

Hydrolysis of 5a with Aminoacylase. The unreacted ester (+)-5a (144 mg with 33% of its 

α,ß-butenolide isomer) having 68% ee was hydrolysed with aminoacylase (130 mg) in 

phosphate buffer (30 ml) for 95 min. After the usual workup, a mixture of 22% of (–)-5a with 

26% ee and 78% of its α,ß-butenolide isomer with 30% ee was isolated in 55% yield, together 

with (+)-1a with 81% ee (49 mg, 37% yield). 

(+)-(2R,3S)-1a: white solid, mp 69–73
o
C; [α]D

25
= +3.7 (c = 0.35 in chloroform); [α]D

25
 = –5.3 

(c = 0.15 in methanol) {Lit.
5
 mp 7780 °C; [α]D

25
 = +18.2 (c = 0.22 in chloroform for the 

(2R,3S) enantiomer}; CD: Δε267= +0.1, Δε225= –4.8 (MeOH). 

All the other spectroscopic data are in accordance with those found in the literature.
5,6

 

Hydrolysis of 5b with α-CT. To an emulsion of 5b (370 mg, 1.64 mmol) in phosphate 

buffer (90 ml), α-CT (36 mg) was added under vigorous stirring. After 7 h, following the 

above described procedure, the unreacted ester (+)-5b with 79% ee was isolated (143 mg, 

39% yield) together with (–)-methylenolactocin 1b with 73% ee (63 mg, 18% yield).  

After recrystallization from ethyl acetate-light petroleum, the ee of (–)-1b increased to 98%. 

(–)-(2S,3R)-1b: white solid, mp 81–83 
o
C; [α]D

25
= –7.5 (c = 0.71 in methanol); {Lit.

9
 mp 82.5–

83.5 
o
C; [α]D

26
= –2.37 (c = 3.00 in methanol); Lit.

48
 mp 81–83 

o
C; [α]D

25
= –7.0 (c = 0.12 in 

methanol); Lit.
50

 mp 82–84 
o
C; [α]D

24
= –17.13 (c = 1.96 in chloroform); Lit.

51
 [α]D

23
= –6.46 (c = 

0.5 in methanol); Lit.
52

 [α]D
20

= –10 (c = 0.5 in methanol); Lit.
53

 mp 83–84 
o
C; [α]D

25
= –2.23 (c = 

1.56 in methanol); Lit.
63

 mp 82–83 
o
C; [α]D = –12.4 (c = 0.5 in methanol); Lit.

59
 mp 82.5 

o
C; 

[α]D
32

= –18.8 (c = 0.31 in chloroform); Lit.
64

 mp 82–83 
o
C; [α]D

32
 = –8.5 (c = 0.31 in methanol), 

[α]D
29

 = –11.6 (c = 0.31 in chloroform); Lit.
65

 [α]D
25

= –6.77 (c = 0.52 in methanol); Lit.
66

 mp 

82–84 
o
C; [α]D

26
= –6.7 (c = 0.5 in methanol)}; CD: Δε261= –0.27, Δε224= +11.1 (MeOH). 

Hydrolysis of 5b with Aminoacylase. The unreacted ester (+)-5b (143 mg, 0.63 mmol) 

recovered from the previous reaction and having 79% ee was hydrolysed with aminoacylase 

(143 mg) in phosphate buffer (20 ml) for 30 min. After the usual workup, (+)-

methylenolactocin 1b with 99% ee was isolated (20 mg, 15% yield). 
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(+)-(2R,3S)-1b: white solid, mp 80–81 
o
C; [α]D

25
 = +6.8 (c = 0.28 in methanol) {Lit.

51
 [α]D

23
= 

+6.5 (c = 1.5 in methanol), Lit.
53

 mp 82 
o
C; [α]D

25
 = +2.25 (c = 1.46 in methanol), Lit.

64
 mp 

82–83 
o
C [α] D

32
= +7.4 (c = 0.33 in methanol), [α]D

30
= +16.6 (c = 0.33 in chloroform)}; CD: 

Δε262= +0.16, Δε224= –8.62 (MeOH). 

Hydrolysis of 5b with Aminoacylase IPE: To a solution of 5b (40 mg, 0.18 mmol) in 

isopropyl ether (2 ml), aminoacylase (40 mg) in phosphate buffer (2 ml) was added under 

vigorous stirring. After 4 days, following the above described procedure, the unreacted ester 

(–)-5b with 96% ee was isolated (10 mg, 24% yield) together with (+)-methylenolactocin 1b 

with 70% ee (5 mg, 12% yield).  

(–)-(2S,3R)-5b: oil; [α]D
25

 = –4.7 (c = 0.42 in methanol) [Lit.
63

 [α]D
25

 –5.3 (c = 0.956 in 

chloroform)]; CD: Δε258= –0.27, Δε223= +7.98 (MeOH). 

All spectroscopic data are in accordance with those reported in the literature.
63

 

Hydrolysis of 5c with Aminoacylase:
57

 To an emulsion of 5c (362 mg, 1.35 mmol) in 

phosphate buffer (61.2 ml) and acetone (2 ml) aminoacylase (242 mg) was added under 

vigorous stirring. After 4 h 30 min, following the above described procedure, the unreacted 

ester (–)-5c with 32% ee was isolated (159 mg, 44% yield), together with (+)-C75 1c with 

91% ee (38 mg, 11% yield). After recrystallization from light petroleum the ee of (+)-1c 

increased to 98%. 

(+)-(2R,3S)-1c: white solid, mp 88-90 °C; [α]D
25

 = +8.4 (c = 0.15 in methanol), {Lit.
10

 mp 88-

89 °C; [α]D
25

 = +9.5 (c = 0.15 in methanol), [α]D
25

 = +11.4 (c = 1.0 in chloroform)}; CD: 

Δε258= +0.26, Δε225= –10.58 (MeOH). 

The unreacted ester (–)-5c (158 mg, 0.59 mmol) having 32% ee was hydrolysed with 

aminoacylase (158 mg), in phosphate buffer (26.5 ml) and acetone (4 ml) added for 24 h. 

After the usual workup, (–)-5c with 94% ee was isolated (87 mg, 55% yield), together with 

(+)-C75 1c with 89% ee (12 mg, 8% yield). 

Hydrolysis of 5c with HLAP: To a suspension of (–)-5c (86 mg, 0.32 mmol) having 94% 

ee in phosphate buffer (27.3 ml) and acetone (2 ml) HLAP (86 mg) was added under vigorous 

stirring. After 22 h, following the above described procedure, (–)-C75 1c with 94% ee was 

isolated (24 mg, 29% yield). After recrystallization from light petroleum, the ee of (–)-1c 

increased to 99%. 

(–)-(2S,3R)-1c: white solid, mp 8890 
o
C; [α]D

25
 = –9.5 (c = 0.49 in methanol) {Lit.

10
 mp 

8889
 o
C; [α]D

25
 = –11.4 (c = 1.0 in chloroform)}. 

All spectroscopic data are in accordance with those reported in the literature.
10,14,57,67 
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Hydrolysis of 5d with PLAP: To a solution of 5d (82 mg, 0.26 mmol) in phosphate buffer 

(8 ml) and acetone (2 ml) PLAP (61 mg) was added under vigorous stirring. After 75 min, 

following the above described procedure, the unreacted ester 5d with 8% ee was isolated (22 

mg, 27% yield), together with nephrosterinic acid 1d
47,49,61,64

 with 11% ee (4 mg, 5% yield). 

Chiral HPLC: tR = 7.7, 8.8 min for (±)-1d. 

Biological Assays 

Cytotoxicity assays. Cytotoxicity assays were carried out against human MCF-7 breast 

carcinoma and rat C6 glioma cells. MCF-7 cell lines were maintained at 37 °C in a 

humidified incubator containing 5% CO2 in Dulbecco's Modified Eagle's medium (DMEM) 

(Lonza) nutrient supplemented with 10% heat inactivated Fetal Bovine Serum (FBS), 2 mM 

L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin. The percentage of DMSO, the 

organic solvent in which the tested compounds were dissolved, never exceeded 1% (v/v) in 

the samples. In preliminary experiments, we verified that this amount did not affect cell 

viability. Cytotoxicity of the tested compounds is expressed as IC50 values — the 

concentrations that cause 50% growth inhibition. A compound was considered inactive when 

its IC50 value was > 100 M. The results were determined using the 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Cells were dispensed into 96-well 

microtiter plates at a density of 5,000 cells/well. Following overnight incubation, cells were 

treated with a range of compound concentrations (0.5100 µM). Then, the plates were 

incubated at 37 °C for 72 h. An amount of 10 µL of 0.5% w/v MTT was further added to each 

well and the plates were incubated for additional 4h at 37 °C. Finally the cells were lysed by 

addition of 100 µL of 1:1 v/v DMSO:EtOH solution. The absorbance at 570 nm was 

determined using a Perkin Elmer 2030 multilabel reader Victor TM X3. 

Antimicrobial Studies 

Antibacterial studies. The in vitro minimum inhibitory concentrations (MICs, g/mL) 

were assessed by the broth microdilution method, using 96-well plates, according to CLSI 

guidelines.
68,69

 Stock solutions of the tested compounds were obtained in DMSO. Then two-

fold serial dilutions in the suitable test medium between 512 and 0.03 g/mL were plated. To 

be sure that the solvent had no adverse effect on bacterial growth, a control test was carried 

out by using DMSO at its maximum concentration along with the medium. Bacteria strains 

available as freeze-dried discs, belonging to the ATCC collection, were used: S. aureus 

29213, E. faecalis 29212 as the Gram-positive strains, and E. coli 25922 as the Gram-negative 

one. To preserve the purity of cultures and to allow reproducibility, a series of criovials of all 
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microbial strains in glycerolic medium were set up and stored at 80 °C. Pre-cultures of each 

bacterial strain were prepared in Cation Adjusted MuellerHinton broth (CAMHB) and 

incubated at 37 °C until the growth ceased. The turbidity of bacterial cell suspension was 

calibrated to 0.5 McFarland Standard by spectrophotometric method (625 nm, range 

0.080.10), and further the standardized suspension was diluted 1:100 with CAMHB to have 

12 x 10
6
 CFU/mL. All wells were seeded with 100 μL of inoculum. A number of wells 

containing only inoculated broth as control growth were prepared. The plates were incubated 

at 37 °C for 24 h, and the MIC values were recorded as the last well containing no bacterial 

growth. Each assay was repeated twice in triplicates. Norfloxacin was used as the reference 

drug. A compound was considered inactive when its MIC was > 64 g/mL. 

Antifungal studies. Antifungal studies
68,70

 were carried out against C. albicans 10231, C. 

parapsilosis 22019, C. tropicalis 750, C. krusei 6258, belonging to the ATCC collection. 

Preparation of stock solutions and purity of cultures preservation were obtained as above 

described for antibacterial studies. Pre-cultures of each yeast strain were prepared in 

Sabouraud broth 2% glucose (SAB), and incubated at 37 °C until the growth ceased. The 

turbidity of yeast stock suspension was calibrated to 0.5 McFarland Standard by 

spectrophotometric method (530 nm, range 0.120.15), and further the standardized 

suspension was diluted first 1:50 with SAB and then 1:20 in the same medium to have 15 x 

10
6
 CFU/mL. All wells were seeded with 100 μL of inoculum. A number of wells containing 

only inoculated broth as control growth were prepared. The plates were incubated at 37 °C for 

2448 h, and the MIC values were recorded as the last well containing no fungal growth. 

Each assay was repeated twice in triplicates. Fluconazole was used as the reference drug. A 

compound was considered inactive when its MIC was > 64 g/mL. 

RESULTS AND DISCUSSION 

Synthesis of Racemic Substrates 

The methyl esters of the target compounds 1a–d to be subjected to enzymatic kinetic 

resolutions, namely 5a-d, were synthesized using a slightly modified version of the procedure 

reported by Carlson and Oyler
47

 (Scheme 1). Methyl hemi-ester of itaconic acid 2,
71

 prepared 

by nucleophilic ring fission of itaconic anhydride, was converted into its lithium enolate and 

reacted with the suitable aldehyde (RCHO = butanal, hexanal, nonanal, and dodecanal). 

Acidification of the resulting reaction mixture carried out at –78 °C gave the corresponding 

anti and syn hydroxy hemi-esters 3a–d and 4a–d in the ratio of 2:3, identified only by 
1
H 

NMR analysis. Their lactonization, carried out with TFA in CH2Cl2, furnished the 
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corresponding (2R*,3S*) and (2R*,3R*) lactonic esters 5a-d and 6a-d respectively, in about 

50% total yield. Compounds 5a-d were separated from 6a-d by flash chromatography using 

as stationary phase a silica gel pretreated with acetic acid to avoid the double bond 

isomerization.  

Attempts were made to isomerise compounds 6a-d into their respective diastereomers 5a-

d, however unsuccessfully. The first strategy involved protection of the double bond via a 

Michael addition of a thiol (ethanethiol and dodecanethiol),
72

 equilibration and deprotection 

via a retro-Michael reaction. This reaction sequence was attempted on 6d, but in the first step 

already, conversion into its α,ß-butenolide isomer occurred, probably because of the slightly 

basic conditions required by the procedure. Following a second strategy proposed in the 

literature for the transformation of 6b,
58,59,63

 compound 6a was treated with 6M HCl in 

butanone under reflux for 2h, leading to a complex inseparable mixture of compounds. 

Insert Scheme 1 

Enzymatic Hydrolyses of Lactonic Esters 5a-d 

Prior to enzymatic hydrolysis, it was important to determine whether the lactonic esters 5a-

d underwent chemical hydrolysis under the conditions used. This was tested on compound 5b. 

On standing in phosphate buffer at pH 7.4 for 3.5 h, 5b was recovered unchanged, except for 

the presence of less than 5% of its α,ß-butenolide isomer. Incidentally, under the same 

conditions, the diastereomer 6b underwent more important modifications not including 

hydrolysis.  

Enzymatic hydrolyses were carried out using a series of commercially available enzymes, 

namely Acylase I on Eupergit, Aminoacylase, Acylase I from porcine kidney, α-chymotrypsin 

(α-CT), Candida antarctica lipase (Novozym 435), Porcine pancreatic lipase (PPL), Esterase 

from hog liver (PLE), and Liver acetone powder equine (HLAP). A preliminary evaluation of 

enzyme selectivity was performed on 30–50 mg of substrates 5a–d in 10 mL of phosphate 

buffer at pH 7.4. The results obtained for compounds 5a-c are listed in Table 1. Compounds 

5d is not included in the Table because it was hydrolysed only by porcine liver acetone 

powder (PLAP, 20% conversion, 2 h, E
73

 = 1.3), however with negligible enantioselection, 

whereas the other enzymes checked, namely Acylase I on Eupergit® C, Aminoacylase, α-CT, 

Lipase from Candida antarctica (CAL-B), Lipase from Candida antarctica (Novozym 435), 

PLE, Lipase from Pseudomonas cepacea, Lipase from Pseudomonas fluorescens, Proteases 

from Bacillus subtilis and PPL, were uneffective. 

Insert Table 1 
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As it is evident from the E values listed in Table 1 for the various hydrolyses, 

enantioselectivity was good only for 5c. In fact, at low conversion values the corresponding 

acid 1c was isolated with ee’s ranging from 90 to 96% using acylases from Aspergillus sp.
57

 

(Entries 1 – 3). Novozym 435 was enantiocomplementary to the previous enzymes, although 

with poor enantioselectivity (Entry 6), and Acylase I from porcine kidney, α-CT and PPL 

were uneffective. The best enzymes for lactones 5a and 5b were acylases from Aspergillus sp. 

and α-CT (Entries 1 – 3, 5), although with less enantioselectivity, as indicated by the ee’s of 

their respective acids 1a and 1b that ranged from 70% to 87%. Interestingly however, 

acylases and α-CT were enantiocomplementary. On the contrary, Acylase I from porcine 

kidney, Novozym 435 and PPL were found poorly enantioselective (Entries 4, 6, 7). As it is 

evident from Table 1 (Entry 8), PLE and HLAP were able to hydrolyse all substrates, 

however with no enantioselectivity, and therefore they were used as alternatives to chemical 

hydrolysis
63

 of enantiopure methyl α-methyleneparaconates. Attempts to increase the 

enantioselectivity of these hydrolyses by adding acetone or ethanol as cosolvents were 

unsuccessful, while addition of isopropyl ether resulted in a slight increase of the E values 

(Entry 3). 

In scaling up the enzymatic hydrolyses, both enantiomers of 1a and 1b were obtained from 

the corresponding methyl esters 5a and 5b using α-CT and aminoacylase which were 

enantiocomplementary. However, as their efficiencies were not high, as demonstrated by their 

low E values, a particular procedure was followed to take advantage of both enzymes. For 

compound 5b, in a first run, performed with α-CT, the hydrolysis reaction was stopped at 

about 50% conversion. The acid (–)-1b was isolated with 73% ee in 18% yield and the 

unreacted ester (+)-5b was isolated with 79% ee in 39% yield. To improve the optical yield of 

both compounds, the acid (–)-1b was fractionally crystallized thus increasing its ee to 98%, 

while the ester (+)-5b was subjected to a further resolution with aminoacylase that allowed 

the isolation of (+)-1b with 99% ee (Scheme 2). However, since optical yield optimization 

was detrimental to chemical yield, the biological assays were performed with (+)-1b and (–)-

1b having 92 and 93% ee respectively.  

The strategy adopted for the obtainment of (+)-1b and (–)-1b in pure enantiomeric forms 

was not so satisfactory when applied to 1a, as fractional crystallization of enantioenriched 

acids did not improve their respective ee’s significantly; (+)- and (–)-1a (optical rotations 

determined for chloroform solutions) were obtained with 81% and 74% ee respectively. 

Insert Scheme 2 

As to the lactonic acid 1c, both enantiomers were obtained with excellent ee [(+)-1c, 98% 

ee, (–)-1c, 99% ee], as reported in the literature.
57
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The resolution outcome depends on the rate at which the α-methylene-γ-lactone turns into 

its α,ß-butenolide isomer and this is a function of the chain length, being higher for C3 than 

for C8, under the experimental conditions used. In spite of the presence of this competitive 

reaction, α-methyleneparaconic acids can be obtained in pure state because their α,ß-

butenolide isomers do not undergo hydrolysis within the enzymatic reaction times, and thus 

they can be easily separated from the esters.  

The (2R,3S) absolute configuration was assigned to the enantiomers which in chloroform 

were dextrorotatory, by comparison of the signs of their optical rotation values with those 

reported in literature (see Material and Method) and by comparison of their CD spectra with 

that of (2R,3S)-(+)-protolichesterinic acid 1e (257 +0.32, 220 –9.62),
75

 whose absolute 

configuration is known (Compound 1a: Δε267= +0.1, Δε225= –4.8 (MeOH); compound 1b: 

Δε262= +0.16, Δε224= –8.62 (MeOH); compound 1c: 258 +0.26, 225 –10.58 (MeOH)). 

The optical rotation values for the α-methylene paraconic acid derivatives deserve a 

comment. The values reported in the literature for compounds having approximately the same 

high enantiomeric excess, at comparable concentrations, are rather variable. If one compares 

literature data for methylenolactocin (–)-1b optical rotation values obtained for methanolic 

solutions range from –6.46 (23 °C) to –12.4 (temperature not given), while those obtained for 

chloroform solutions, vary from –11.6 to –18.8. The syntheses reported are multi-step and 

either the chirality is already present in the parent molecule or it is introduced in a 

stereochemically controlled step of the synthesis. In no case however the enantiomeric excess 

of the target molecule is measured because it is assumed to be the same as in the parent 

molecule. On the contrary, in the present paper the enantiomeric excess is measured on the 

final esterified products. 

Finally, it is interesting to note that 1a showed a solvent dependency of the optical rotation, 

which changed its sign replacing methanol for chloroform, differently from what observed for 

1b (see Materials and Methods), 1c
10

 and 1d.
64

 

Biological Assays  

Cytotoxicity Assays 

Antiproliferative activities of both enantiomers of lactonic acids 1a–c were evaluated in both 

human breast carcinoma and rat glioma cells (MCF-7 and C6, respectively) by the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. All tested compounds 

were inactive on both cell lines but (+)- and ()-1c displayed moderate cytotoxic effects at the 
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middle micromolar level. Both enantiomers were about four-fold higher on C6 glioma cells 

(IC50 = 12–18 M) but still less active than cisplatin (0.6 ± 0.2 M), taken as a reference 

compound. The observed antiproliferative activity was characterized by low, significant (p < 

0.01) stereoselectivity in the MCF-7 assay, ()-1c resulting more active than its enantiomer 

(IC50 values 68.4 ± 0.3 vs 84.5 ± 2.3 M). This observation was in agreement with previously 

reported results.
10

 No stereoselectivity was observed when the activity on G6 cells was 

evaluated. 

Antimicrobial Studies 

Antibacterial studies. These studies were performed in agreement with a previously 

reported protocol.
68

 According to the Clinical Laboratory Standards Institute (CLSI) 

guidelines,
69

 compounds 1ac were tested against Gram-positive and Gram-negative bacteria 

belonging to the ATTC collection (Staphylococcus aureus, S. aureus 29213; Enterococcus 

faecalis, E. faecalis 29212; Escherichia coli, E. coli 25922) using norfloxacin as a reference 

compound.  

All tested compounds displayed no antibacterial activity against E. coli, while moderate 

activity was observed against Gram-positive bacteria. ()-1c was the most active compound, 

(MIC: 16 g/mL; 60 M) about three times less potent than norfloxacin on E. faecalis  

Antifungal studies. These studies were performed in agreement with a previously reported 

protocol.
68

 According to the CLSI guidelines,
70

 compounds 1ac were tested against a panel 

of fungi strains belonging to the ATCC collection (Candida albicans, C. albicans 10231; 

Candida tropicalis, C. tropicalis 750; Candida parapsilosis, C. 22019; Candida krusei, C. 

krusei 6258) using fluconazole as a reference compound.  

All tested compounds were inactive as antifungal agents. 

CONCLUSIONS 

Optically pure paraconic acids can be obtained by enzymatic resolutions of their methyl 

esters. High enantioselectivity for hydrolyses of 5a and 5b could be achieved taking 

advantage of enantiocomplementary enzymes. Thus the unreacted esters, isolated from the 

reaction with α-CT could be resolved successfully with aminoacylase.  

As to the biological results, in agreement with previously reported results,
10

 C75 displayed 

moderate cytotoxic effects on human breast carcinoma and rat glioma cells. Both C75 

enantiomers displayed higher cytotoxic effects on C6 glioma cells with no stereoselectivity. 
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()-C75 also acted as the most potent antimicrobial agent against Gram-positive bacteria. 

Unfortunately, the antibacterial activity required concentrations as high as the ones displaying 

cytotoxicity on the tumoral cells. This observation casts doubt on the possibility to develop 

antibacterials using C75 as the lead compound.  
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