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Abstract: Induced pluripotent stem cells (iPSC) can be produced from adult cells by 

transfecting them with a definite set of pluripotency-associated genes. Under adequate 

growth conditions and stimulation iPSC can differentiate to almost every somatic lineage 

in the body. Patients' derived iPSC are an innovative model to study mechanisms of 

adverse drug reactions in individual patients and in cell types that cannot be easily 

obtained from human subjects. Proof-of concept studies with known toxicants have been 

performed for liver, cardiovascular and central nervous system cells: neurons obtained 

from iPSC have been used to elucidate the mechanism of chemotherapy-induced 

peripheral neuropathy by evaluating the effects of neurotoxic drugs such as vincristine. 

However, no study has been performed yet on pancreatic tissue and drug induced 

pancreatitis. Thiopurines (azathioprine and mercaptopurine) are immunosuppressive 

antimetabolite drugs, commonly used to treat Crohn's disease. About 5% of Crohn's 

disease patients treated with thiopurines develop pancreatitis, a severe idiosyncratic 

adverse event; these patients have to stop thiopurine administration and may require 

medical treatment, with significant personal and social costs. Molecular mechanism of 

thiopurine induced pancreatitis (TIP) is currently unknown and no fully validated 

biomarker is available to assist clinicians in preventing this adverse event.  Hence, in this 

review we have reflected upon the probable research applications of exocrine pancreatic 

cells generated from patient specific iPS cells. Such pancreatic cells can provide excellent 

insights into the molecular mechanism of TIP. In particular three hypotheses on the 

mechanism of TIP could be explored: drug biotransformation, innate immunity and 

adaptative immunity.

Key-words: induced pluripotent stem cells, adverse drug reactions, pancreatitis, 

inflammatory bowel disease, thiopurines
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Adverse drug reactions and drug induced pancreatitis

Adverse drug reactions are an important issue for patients, national health services and 

drug companies [1]. Indeed, development of an adverse drug reaction may be life 

threatening or cause permanent disabilities [2,3]; social costs to treat adverse drug 

reactions are high [4], as the costs associated with failure in new drug development 

because of severe adverse reactions [1]. Drug attrition rates have raised in past years, 

determining increased costs for the pharmaceutical industry and patients; the reasons for 

this comprise the paucity of in vitro models that properly predict clinical efficacy and 

toxicity [5]. Among the adverse drug reactions, idiosyncratic reactions are the most severe, 

given their dose independence, rapid onset and usually requirement for permanent drug 

discontinuation [6].

Drug induced pancreatitis is a particularly severe form of idiosyncratic adverse drug 

reaction; the incidence of this adverse event has been estimated as 0.1-2% by earlier 

reports [3,7-9], while present day studies describe an incidence higher than 5% [10] and 

limited data suggests that the incidence is increasing [11]. Drugs are the third most 

common determinant of pancreatitis after biliary stones and alcohol [12]. Pancreatitis 

occurs as a consequence of injury of the acinar cells and/or pancreatic duct that causes 

undue accumulation and activation of proenzymes within the pancreas. The activated 

pancreatic enzymes damage the cellular and tissue components of the pancreas, leading to 

an inflammatory response, which augments the vascular permeability and may determine 

haemorrhage, edema, ischemia, and necrosis [13]. In severe pancreatitis, a systemic 

inflammatory response syndrome can be triggered and patients may develop sepsis and 

multiple organ failure. Treatment of patients with severe pancreatitis can require extended 
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hospital stays associated with high health care costs: indeed about one fourth of patients 

who develop pancreatitis will have to receive intensive care treatment [14]. A retrospective 

study reported that patients with acute pancreatitis who required intensive care therapy 

had an average intensive care unit stay of 9 days and an average total hospital stay of 39 

days, and the average overall hospital cost was approximately 100,000$ [15]. Recovery 

after acute pancreatitis is typically complete and patients can generally return to their job 

and other normal activities [14,15]. However, around one out of ten pancreatitis cases 

evolves to chronic pancreatitis [13]. 

Over 500 drugs have been associated with pancreatitis in clinical case studies and adverse 

drug reactions databases [12,16]. Pancreatitis is associated with the use of several 

commonly used medications such as HMG-CoA reductase inhibitors (simvastatin) [3], oral 

contraceptives [17], highly active antiretroviral therapy (HAART) for HIV [17] and 

especially thiopurine antimetabolites (azathioprine and mercaptopurine) [3,8,12,17,18]. 

Drug that induce pancreatitis are classified (class I-IV) based on the number of cases 

reported, demonstration of a consistent latency period (time from initiation of drug to 

development of pancreatitis), and recurrence with rechallenge [16]. Class I and II drugs 

have the greatest potential for causing acute pancreatitis, representing medications in 

which at least one case study has reported acute pancreatitis’ recurrence subsequent to a 

rechallenge and with a consistent latency in 75% or more of the cases described [16]. 

According to this classification, azathioprine and mercaptopurine belong to Class I. 

Molecular and cellular mechanisms underpinning drug induced pancreatitis are mainly 

unexplored [12]; however, a number of different mechanisms have been proposed 

including immunologic reactions, direct toxic effect and accumulation of a toxic metabolite 

[11]. Drug-induced pancreatitis has limited peculiar clinical features; therefore careful 
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drug history and a high index of suspicion are essential for making the diagnosis. The 

interval of time necessary to develop pancreatitis depends on the medication involved: 

pancreatitis may indeed develop within a few weeks since the start of a drug associated 

with an immunologically mediated adverse effect; on the other hand, pancreatitis due to 

the accumulation of harmful metabolites generally occurs after several months of drug 

use. Proving the association of a pancreatitis episode with a particular medication may be 

difficult and patients restarted on a suspected drug should be carefully followed up and 

the medication promptly interrupted if symptoms reappear. 

Thiopurines in the treatment of IBD and manifestation of adverse drug reactions as 

pancreatitis

Thiopurine antimetabolites (azathioprine and mercaptopurine) are active and useful for 

the therapy of inflammatory bowel disease (IBD), a chronic, relapsing severe inflammation 

of the gastrointestinal tract [19,20]. The major forms of IBD are Crohn’s disease and 

ulcerative colitis [21,22]. Despite introduction in therapy of biological drugs, such as TNF-

α inhibitors, thiopurines are still extensively employed to treat patients with active, 

steroid-refractory and steroid dependent IBD, and have been proven to be particularly 

effective for maintaining remission of Crohn’s disease [23]. However, these medications 

are related to the development of adverse drug effects in up to 40% of patients [24-26]. The 

most common adverse drug reaction associated with thiopurines is dose dependent bone 

marrow suppression. However, thiopurines are among the medications most strongly 

associated with the development of pancreatitis as a severe idiosyncratic adverse drug 

reaction: a review of the literature indicates that these medications are implicated in many 

reported cases of acute pancreatitis, with several documented cases following re-exposure 
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[25]. Frequency of TIP has been reported to be 5% in Crohn’s disease, while it is less 

frequent (less than 1.5%) in other conditions in which thiopurines are used as 

immunosuppressants, such as autoimmune hepatitis or after renal or heart transplantation 

[27], suggesting that molecular mechanisms involved in Crohn’s disease, such as innate 

immunity, may also contribute to TIP pathogenesis. Indeed the major zymogen 

glycoprotein 2 (MZGP2) is the primary autoantigen of pancreatic autoantibodies and anti-

MZGP2 are highly specific for Crohn’s disease and are also associated with disease 

severity phenotypes [28]. Development of TIP is a severe adverse event for patients: it can 

be life threatening, impedes the patient from continuing thiopurine therapy and forces 

clinicians to use of other medications, which may be less active or more expensive: 

prevention of TIP would be therefore highly useful [29]. 

Personalized medicine approaches to prevent adverse drug reactions and tailor therapy

The aim of personalized medicine is to provide the most appropriate cure to the right 

patient, at the right dose and at the right time [30,31]. Application of personalized 

medicine should streamline clinical decision-making by distinguishing in advance those 

patients most likely to benefit from a given treatment from those who will suffer side 

effects and incur increased costs without gaining significant benefit [30,32,33]. A potential 

evolution of the personalized medicine concept is that of precision medicine, indicating 

cure strategies that comprehensively consider individual variability, now feasible thanks 

to large-scale biologic databases (e.g., human genome sequence), powerful approaches for 

evaluating patients (e.g., genomics, proteomics, cellular test), powerful informatics 

systems for processing large data sets [34]. Stratification based on biomarkers can be 

thought of as a core element of personalized/precision medicine. Pharmacogenomics, i.e. 
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the analysis of DNA and RNA variants associated with drug response, is a critically 

important component of personalized medicine where significant and consolidated 

progress has recently been made [35]. 

Thiopurines are pro-drugs that require bioactivation to thioguanine nucleotides (TGN), 

through enzymes of the salvage pathway for nucleotides synthesis. Genetic 

polymorphisms of enzymes involved in azathioprine’s biotransformation influence 

treatment efficacy and toxicity: reduced enzymatic activity of thiopurine-

methyltransferase (TPMT), due to inheritance of inactive variant genotypes, was 

associated with increased risk for adverse reactions during treatment with thiopurines 

[36]. These variants are however associated mainly to dose dependent toxicity (e.g., bone 

marrow suppression) and not to idiosyncratic adverse drug reactions like pancreatitis 

[37,38]. 

Besides genetic biomarkers, in vitro assays performed on biological samples collected from 

patients can be useful to predict patients’ response and can be applied to tailor therapy 

intensity in order increase efficacy or decrease drug induced adverse drug reactions 

[39,40]: sensitivity of leukemia cells to chemotherapeutic agents at diagnosis is 

significantly associated with treatment outcome [41]. In vitro assays on patient’s tissue 

samples are important for drug companies during the development of new medications, in 

order to identify compounds with an increased risk of toxicity in particular tissues and 

therefore with higher risk of failure at later stages of clinical trial [5]. However so far the 

approach of testing in vitro drug sensitivity on tissue samples taken from patients can be 

performed only for tissues that are easily collected, such as blood or bone marrow, and 

cannot be implemented in tissues that are not readily accessible, as the pancreas. Tissues 
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obtained from patients’ iPSC could become a valuable tool for in vitro assay to evaluate 

drug sensitivity [42-44].

Genetic markers for thiopurine-induced pancreatitis in inflammatory bowel disease 

patients

Enzymes involved in thiopurine pharmacokinetics (e.g., TPMT) and pharmacodynamics 

(e.g., Rac1) may influence thiopurine clinical effects and particularly the incidence of 

adverse drug reactions. For TIP, several studies have considered a candidate gene 

approach: most of these studies, as already mentioned in this paper, did not identify a 

significant association of TPMT genetically determined activity with increased incidence 

of TIP. A recent study performed in Brazil, however, reported an increased incidence of 

patients with TPMT variants among those developing pancreatitis while on azathioprine 

[45]. Our group previously examined variants in TPMT and glutathione-S-transferase 

(GST) as potential candidate determinants of azathioprine induced adverse events, 

including pancreatitis. We did not identify an increased incidence of pancreatitis among 

patients with TPMT variants; however we could identify a trend toward an effect for GST-

M1 deletion: patients with this genetic feature tended to have a reduced incidence of 

pancreatitis during azathioprine treatment [24]. 

Inosine triphosphate-pyrophosphatase (ITPA) is another enzyme involved in thiopurine 

inactivation, putatively by preventing accumulation of potentially toxic thioinosine-

triphosphate metabolites, by conversion to thioinosine-monophosphate. Previous studies 

have shown an increased incidence of pancreatitis among IBD patients treated with 

thiopurines and with an ITPA genetic variant associated with reduced enzymatic activity 

[46]. 
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A recent study performed a genome-wide analysis to identify genetic determinants of TIP 

[29]. This study enrolled patients with IBD that had presented pancreatitis within 3 

months of starting thiopurines from 168 hospitals worldwide. The genome-wide 

association analysis considered 172 cases and 2,035 controls with IBD. By this approach, 

the authors established a strong association of rs2647087 within the class II HLA region 

and development of TIP (odds ratio 2.59, 95% confidence interval 2.07–3.26, P = 2 × 10-16). 

This finding was validated in an independent cohort of 78 cases and 472 controls with IBD 

matched for drug exposure. Fine mapping of the HLA region further characterized the 

association with the HLA-DQA1*02:01–HLA-DRB1*07:01 haplotype. This study showed 

that after administration of a thiopurine, patients heterozygous for rs2647087 have a 9% 

risk of developing pancreatitis, whereas the risk for homozygotes was 17%. In this study 

with an agnostic approach, TPMT and ITPA candidate variants were not associated with 

an increased incidence of pancreatitis. For GST-M1 deletion, no conclusion could be made, 

since this kind of genetic alteration was not considered by the study.

Induced pluripotent stem cells (iPSC) as a ground-breaking tool for personalized 

medicine

Somatic cells can be reprogrammed into pluripotent stem cells [47], capable of 

differentiating to all cell types present in the human body [48,49,50]. These cells can 

provide an in vitro model to explore cellular and molecular mechanisms involved in 

disease pathogenesis, including adverse drug reactions, which could bring innovative 

medications or be applied to predict peculiar drug responses in specific patients [42]. The 

technology has a particularly strong appeal to investigate clinical issues which occur in 

cell types that cannot be easily collected from patients, such as cardiomyocytes or neurons 
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[51,52]. In particular iPSC technology has been recently applied to the study of 

chemotherapy-induced peripheral neuropathy (CIPN), a severe adverse effect 

characteristic of several anti-cancer agents [53]. No effective biomarker for CIPN is 

currently available. Therefore, human neurons derived from iPSC have been used to 

develop a human neuronal model to investigate the effect of various chemotherapeutics. 

In neurons derived from human iPSC (iCell Neurons), morphological alterations were 

assessed following treatment with drugs associated with CIPN, paclitaxel, vincristine, 

cisplatin, using high-content imaging of neurite outgrowth; in addition, cell viability was 

tested using an appropriate colorimetric assay (CellTiterGlo). Upon in vitro exposure of 

neurons derived from iPSC to these chemotherapeutic agents for 72 hours, a reproducible 

reduction in cell median neurite process length was observed (12-14%, 6-18% and 2-4% 

decrease respectively for paclitaxel, vincristine or cisplatin). Hydroxyurea, a drug not 

associated with neuropathy, did not induce any decrease in neurite length in this in vitro 

model. Vincristine treatment displayed the stronger effect on neurite outgrowth at low 

doses, paclitaxel showed an intermediate effect while cisplatin had a detectable effects 

only at the highest (i.e., micromolar) doses. This model system may constitute a tool to 

investigate the mechanisms of CIPN and to validate candidate genes involved in 

neuropathy [54,55]. Indeed, Diouf et al. recently validated in human neurons derived from 

iPSC findings emerging from a genome-wide association study to identify germline 

variants related to the occurrence and severity of CIPN associated with vincristine therapy 

in pediatric patients with acute lymphoblastic leukemia. This analysis identified a variant 

in the promoter of CEP72, a gene encoding for a centrosomal protein involved in 

microtubule formation, as significantly associated with vincristine-induced peripheral 

neuropathy, and neurons derived from iPSC were successfully used to evaluate the effects 
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of CEP72 hindered expression on vincristine sensitivity. Indeed, knocking-down CEP72 

mRNA in human neurons augmented their in vitro response to vincristine cytotoxic effects 

[56].

Even hepatocytes differentiated from human iPSC have been shown recently to be useful 

to model interindividual variability in drug biotransformation. Activity of cytochrome 

P450 (CYP) enzymes and drug effects in human hepatocytes derived from iPSC were 

significantly associated with those of primary human hepatocytes, suggesting that 

hepatocytes derived from iPSC retain donor-specific CYP biotrasformation activity and 

drug sensitivity. This study also indicated that the interindividual differences, which are 

due to variants in specific CYP genes, could also be recapitulated by primary human 

hepatocytes derived from iPSC [57]. Similar approaches could be applied in order to create 

a human pancreatic model to study drug induced pancreatitis and in particular TIP. 

Exocrine pancreatic cells from patients’ iPSC as most appropriate cell types to model 

TIP

Exocrine pancreatic cells are involved in the pathogenesis of pancreatitis and represent a 

cell type that is difficult to collect from patients or human probands. Therefore, pancreatic 

exocrine cells generated from patients’ iPSC are potentially a model of great interest for 

testing susceptibility or elucidating underlying mechanisms of drug induced pancreatitis. 

The molecular mechanisms that regulate pancreatic acinar cell development remain 

unknown [58]. Until now, production of pancreatic cells from human embryonic stem 

(hES) or iPSC has focused more on the differentiation of endocrine rather than exocrine 

cells [59,60]. Indeed, several iPSC lines have been recently established from patients with 

various types of diabetes, and these could be differentiated into insulin-secreting β cells 
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hinting at a potential cure for diabetes in the future [61,62]. However recent studies have 

consolidated the evidence that exocrine pancreatic cells can also be generated starting 

from human embryonic stem cells using a three step approach (Figure 1): Step I, 

differentiation of hES cell colonies to definitive endoderm (DE) by treatment with activin 

A; Step II, stimulation with all trans retinoic acid to induce differentiation to pancreatic 

progenitor cells, after re-plating of the cells of Step I onto 24-well plates at high density; 

Step III, differentiation of pancreatic exocrine cells by exposure to fibroblast growth factor 

7 (FGF7), glucagon-like peptide 1 (GLP-1) and nicotinamide (NA) in combination [63].  In 

both Step I and II, up-regulation of endodermal markers such as Sox17, Foxa2 and of gut 

tube endoderm marker HNF1β could be observed. The expression level of Pdx1, a 

transcription factor necessary for pancreatic development, arises during Step II. From day 

8 in Step III, cells immunohistochemically positive for pancreatic exocrine cell products, 

amylase and carboxypeptidase A, are induced by FGF7, in proximity of pancreatic 

progenitor Pdx1-positive cells. Thus, this three step culture protocol effectively determines 

the differentiation of human stem cells to pancreatic exocrine cells [63]; these cells could be 

tested as an in vitro model of drug induced pancreatitis and in particular TIP.

Understanding the molecular mechanism of TIP using patient specific iPSC derived 

exocrine pancreatic cells

TIP may be related to thiopurine induced direct damage to the exocrine pancreatic cells or 

to accumulation of a toxic metabolite (biotransformation hypothesis). Pancreatitis due to 

direct toxicity may manifest later than that due to an immunological mechanism; for 

thiopurines, pancreatitis occurs relatively early after the start of treatment, generally 

within 30 days [27,29], therefore the mechanism is likely immunological and may involve 
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the innate or the adaptative immunity. However, a direct toxicity of thiopurines or their 

metabolites on patients’ pancreatic cells cannot be completely excluded, particularly in 

patients with IBD [64].

Biotransformation hypothesis

To test a specific sensitivity to thiopurines of exocrine pancreatic cells from patients that 

developed TIP, pancreatic cells derived from patients iPSC may be grown in vitro and 

exposed to thiopurines: cells sensitivity could then be measured with adequate outputs 

(e.g., cell proliferation by thymidine incorporation assay, cell survival by assays that 

measure mitochondrial activity such as 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay or ATP concentration). Enzymes directly or 

indirectly involved in oxidative stress production (e.g., glutathione-S-transferase, GST and 

xanthine oxidase) contribute to thiopurine biotranformation and these agents may 

therefore induce oxidative stress at the cellular level. Tentatively, this could represent one 

additional mechanism of thiopurine cytotoxicity. This seems to be proven especially for 

azathioprine during its conversion to mercaptopurine. This reaction can occur 

spontaneously [65]; however in vitro studies have shown an increased rate of conversion in 

the presence of the GST enzymes [66], particularly the GST-A1/2 and GST-M1 isoforms 

[67]. One of the main differences between azathioprine and mercaptopurine, from the 

pharmacological point of view, is that azathioprine conversion to mercaptopurine may 

deplete intracellular reduced glutathione, leading to a significant increase of reactive 

oxygen species (ROS) [68]. This phenomenon could explain the fact that azathioprine may 

induce pancreatitis at a higher rate than mercaptopurine in patients with Crohn’s disease 

and that after TIP on azathioprine, some subjects may be safely treated with 
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mercaptopurine [69,70]. Therefore azathioprine in some patients, particularly in those with 

Crohn’s disease, may induce pancreatitis with a drug specific mechanism, different from 

mercaptopurine, leading to ROS production. Therefore, in vitro studies on thiopurine 

induce pancreatitis in Crohn’s disease should consider to mimic even these processes. The 

higher rate of TIP described in some studies for Crohn’s disease patients may also be 

related to a defect at the level of autophagy, present in many patients with Crohn’s disease 

[71], that could not allow a proper protection from oxidative stress induced by 

azathioprine [72].

Innate immunity hypothesis

Crohn’s disease is related to abnormalities in innate immunity, which involves monocyte 

activation [22]. TIP incidence is higher when thiopurines are used in Crohn’s disease than 

in other conditions (e.g., autoimmune hepatitis) [27], even if not all reports are consistent 

on this in the literature [73]. As mentioned previously in this review, the higher frequency 

of TIP when thiopurines are used to treat Crohn’s disease may be suggestive that 

molecular mechanisms involved in Crohn’s disease pathogenesis, such as innate 

immunity, may contribute also to development of TIP. To test this hypothesis, patients’ 

monocyte activation in the presence of pancreatic cells treated or not with thiopurines or 

their metabolites could be evaluated, and compared to stimuli for innate immunity such as 

lipopolysaccharide (LPS). A similar approach has been applied to investigate whether 

oxidatively modified, autologous red blood cells (RBCs) modulate monocyte cytokine 

responses in humans [74]. Oxidatively modified RBCs (OX-RBC) or vehicle-treated RBCs 

(VT-RBC) were exposed to monocytes, also in combination with innate immunity 

activating agents, such as LPS. OX-RBC alone augmented cellular complexity, evaluated 
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by flow cytometry, of CD14-monocytes but did not induce cytokine production. LPS alone 

induced cytokine production with no effect on cell complexity. The combined treatment 

(OX-RBC-LPS), induced both an increase in monocytes complexity and in their production 

of TNF-alpha. Therefore, the interaction between oxidatively damaged autologous 

erythrocytes and monocytes is important for innate responses in human cells. Similar 

pathogenetic processes may be at the base of TIP development during azathioprine 

treatment, especially in patients with Crohn’s disease.

Adaptive immunity hypothesis

Drug hypersensitivity reaction are known to occur through mechanisms involving 

adaptive immunity, in particular through antibodies directed against red blood cells or 

platelets, for drug induced anemia or thrombocytopenia [75]. Activation of patients’ 

lymphocytes by co-culture with pancreatic cells, even obtained by differentiation from 

patients’ iPSC, may shed light on the relevance of adaptive immunity for TIP 

pathogenesis. Lymphocytes’ activation may be measured by in vitro assays, such as 

thymidine incorporation [76]. These experiments would be particularly informative if 

performed on purified lymphocytes subpopulations, including T lymphocytes (CD3+) 

alone, T lymphocytes (CD3+) with B lymphocytes (CD19+) or T lymphocytes (CD3+) with 

monocytes (CD14+), to evaluate the relevance of antigen presenting cells’ presence for TIP 

development and the contribution of specific adaptive immunity functional cells [77,78].

Caveats of exocrine pancreatic cells derived from patients’ iPSC as a model for TIP 

One  aspect  to  consider  when  using  iPSC-derived  cells  as  functional  models  for 

pharmacological studies is the very low efficiency of the reprogramming processes and 
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that  in vitro redifferentiated cells may be heterogeneous, expressing for example in part 

fetal  markers,  even  at  low level  [79].  Recent  insights  on  the  molecular  mechanism of 

reprogramming, obtained by genome-wide characterization of transcriptomic, epigenomic 

and  proteomic  data  describing  the  cellular  routes  leading  fibroblast  to  induced 

pluripotency.  These  results  will  likely  lead  to  improved  efficiency  in  reprogramming, 

providing human models derived from induced pluripotent cells more quickly and with 

reduced costs [80,81]. 

These  in  vitro models  may  lack  intercellular  communication,  known to  be  crucial  for 

organogenesis.  The  generation  of  complex  vascularized  organs,  such  as  endoderm 

derivatives, indeed depends on coordinated signals deriving from endodermal, epithelial, 

mesenchymal and endothelial  progenitors. Therefore,  specific challenges to recapitulate 

organ development in vitro, such as liver and pancreas, are the induction of in vitro organ 

formation by co-culturing endothelial  and mesenchymal progenitors and simulation of 

blood  perfusion  for  stimulating  intercellular  communication.  This  approach  has  been 

recently  applied to  the  development  of  liver-like  tissue  from iPSC in  culture.  Specific 

human  hepatic  cells  condensed  and  self-organized  into  3D-iPSC-derived  liver  buds 

(rudimentary/miniature  liver),  when  cocultured  with  endothelial  and  mesenchymal 

progenitors,  display  also  gene  expression  patterns  similar  to  those  found  in  relevant 

embryonic and endothelial tissues (e.g., inner branched endothelium) [44].

From the  pharmacological  point  of  view,  it  is  important  to  note  that  thiopurines  are 

prodrugs requiring conversion to thioguanine nucleotides to  exert  their  cellular effects 

[65]:  after  oral  administration  azathioprine  is  completely  converted to  mercaptopurine 

during first pass metabolism in the liver and even mercaptopurine has a very short half-

life and is transformed to thionucleotides [66]. The main effects of these medications are 
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indeed  due  to  thionucleotides.  Therefore,  in  Crohn's  disease  patients,  after  oral 

administration of thiopurines, pancreatic cells are reached through the blood stream by a 

mix  of  thionucleotides,  including  thioguanosine,  thioinosine,  methylthioinosine,  which 

should be responsible for TIP in susceptible patients.  On these bases,  drug sensitivity, 

drug metabolism and immunological assays should be performed with azathioprine and 

mercaptopurine, and even with their active metabolites. Moreover, a medium conditioned 

by a  stabilized cell  line  of  human hepatocytes  (e.g.,  IHH),  exposed to  azathioprine  or 

mercaptopurine,  could  be  used,  as  representative  of  a  mix  of  thiopurines'  active 

metabolites produced by the human liver after oral administration.

Patients’ iPSC for preventing TIP

Human cells  derived  from iPSC have  been  shown to  be  useful  as  a  model  for  drug 

sensitivity of tissues that are not easily accessible, such as cardiac muscle, brain and  liver. 

In vitro cellular models based on patients’ iPSC have great potential in developing agents  

and  predicting  toxicity  in  the  field  of  cardiovascular  medicine  and  neuroscience,  as 

discussed recently in excellent reviews [82-84]. Using iPSCs to predict toxicity has been 

streamlined in some pharmaceutical companies [85].

TIP is a significant, potentially life-threatening, clinical issue for Crohn’s disease patients 

treated with azathioprine or other thiopurines. Current strategies to prevent TIP consist 

mainly  in  clinically  monitoring  by  measuring  in  patients’  peripheral  blood  the 

concentration of amylase and lipase, especially in the first weeks of treatment: in case of  

increase in the concentration of circulating pancreatic enzymes, azathioprine treatment is 

promptly  interrupted.  In  our  hospital,  amylase/lipase  concentrations  are  evaluated 

weekly during the first month of thiopurine therapy, then monthly for the second and 
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third month and then every three months, since it is known that TIP occurs early after  

therapy start.  While  practitioners accept  this  strategy,  it  poses  significant risks  for  the 

patient  since  pancreatitis  is  detected  only  after  the  beginning  of  thiopurine-induced 

pancreatic  damage  and,  moreover,  therapy  with  azathioprine  has  to  be  promptly 

interrupted during the early phases, suspending IBD treatment and increasing the risk of 

missing the “window of opportunity” for optimal therapy, leading to disease progression 

and intestinal damage. Pancreatic cells derived from patients’ iPSC, as a model of human 

pancreas, may provide strategies to identify, before treatment, patients predisposed to TIP 

in Crohn's disease (Figure 2). Patients at high risk could then be treated with a different 

medication,  preventing  this  severe  adverse  drug  reaction  and  inefficacious  patients’ 

treatment, with the associated risk of disease progression. This approach could also result 

in saving significant resources related to treatment failure and medical care of TIP. 

Conclusion

In  this  review,  we  have  reflected  upon  the  future  research  applications  of  exocrine 

pancreatic cells generated from patient specific iPSC. Such pancreatic cells can provide 

excellent insights into the molecular mechanism of TIP. In particular three hypotheses on 

the mechanism of TIP could be considered: on a role of drug biotransformation, on innate 

immunity and on adaptative immunity. Hence, our proposed model system could also be 

extended as a paradigm to study pancreatitis induced by other medications and in other 

conditions.
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Figure 1: Summary of procedure to differentiate human iPSC to pancreatic exocrine cells 
(modified from [63]). Exocrine pancreatic cells can be generated starting from human stem 
cells  using  a  three  step  approach:  stem  cell  colonies  are  differentiated  to  definitive 
endoderm (DE) by treatment with 100 ng/ml activin A and 25 ng/ml Wnt3A in RPMI 
medium  supplemented  with  2  mM  L-glutamine,  50  U/ml  penicillin  and  50  μg/ml 
streptomycin. After 24 h, the medium is switched to 100 ng/ml activin A in RPMI medium 
supplemented  with  ITS  (i.e.,  5  μg/ml  insulin,  50  μg/ml  transferrin,  30nM  selenium 
chloride), 2 mM L-glutamine, 50 U/ml penicillin and 50 μg/ml streptomycin for 48 h. Step 
II of the culture procedure results in the differentiation of pancreatic progenitor cells from 
the  DE cells.  These  are  re-plated onto  24-well  plates  and  treated with  1  μM all-trans 
retinoic acid in RPMI1640 medium supplemented with 2% fetal bovine serum (FBS), 50 
U/ml penicillin and 50 μg/ml streptomycin for 3 days. Step III of the culture procedure 
achieved the  final  differentiation of  cells  containing  pancreatic  exocrine  enzymes.  The 
pancreatic  progenitor  cells  are  cultured  in  DMEM/F12  supplemented  with  15  ng/ml 
fibroblast growth factor 7 (FGF7), 10 mM nicotinamide (NA), 100 ng/ml glucagon-like 
peptide 1 (GLP-1) (7–36 amide), N2 supplement, B27 supplement, 50 U/ml penicillin and 
50 μg/ml streptomycin. Cell markers: pancreatic progenitor cell marker (Pdx1), pancreatic 
exocrine cell marker (amylase)
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Figure 2: schematic representation of exocrine pancreatic cells derived from patients’ iPSC 
as a model for TIP (modified from [51]): exocrine pancreatic can be differentiated from 
iPSC generated from lymphocytes of patients with Crohn’s disease susceptible or not to 
TIP. In order to assess differences in thiopurine sensitivity and biotransformation, these 
can be treated with thiopurines and their metabolites. In order to identify immunological 
activation,  patients’  lymphocytes  can  be  exposed  to  exocrine  pancreatic  cells  obtained 
from patients’ iPSC, with and without thiopurines.
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