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Abstract. Stiffness in chemical reaction systems is a frequently encoun-
tered computational problem, arising when different reactions in the
system take place at different time-scales. Computational savings can
be obtained under time-scale separation. Assuming that the system can
be partitioned into slow- and fast- equilibrating subsystems, it is then
possible to efficiently simulate the slow subsystem only, provided that
the corresponding kinetic laws have been modified so that they reflect
their dependency on the fast system. We show that the rate expectation
with respect to the fast subsystem’s steady-state is a continuous function
of the state of the slow system. We exploit this result to construct an
analytic representation of the modified rate functions via statistical mod-
elling, which can be used to simulate the slow system in isolation. The
computational savings of our approach are demonstrated in a number of
non-trivial examples of stiff systems.

1 Introduction

The presence of multiple scales, either temporal, spatial, or organisational, is one
of the hallmarks of complexity of biological systems. Multi-scale systems present
daunting challenges to their mathematical and computational treatment, as the
cost of analysis and simulation is significantly increased. In order to tame such
complexity, a common practice is to rely on abstraction techniques, simplifying
some scales of the model, yet still capturing relevant features of the dynamics.
Examples are the abstraction of the complex intra-cellular state as a finite state
automaton, a typical approach to build cell population models, the abstraction
of the local dynamics of epidemic spreading in country-level models [12], or
the averaging of fast dynamics in enzyme kinetics [13, 6]. The downside of such
approaches is that the abstractions that are constructed are non-trivial and
model-specific, and often require considerable efforts from the modellers.

In this paper, we explore the idea that model abstraction can be simplified
by relying on statistical methodologies which can be learned automatically from
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(few) exploratory runs of the models. We focus on the specific sub-problem of
multiple-time scales, related to stiffness, a well studied issue but still problematic,
especially for stochastic systems. We build upon the two common theoretical
frameworks of Quasi-Steady-State (QSSA) [13, 11] and Quasi-Equilibrium (QE)
[2] for stochastic models of chemical reaction networks. These approaches provide
recipes to construct abstracted models, by decomposing a model in a fast and a
slow subsystems (more time scales can be considered, but this generalisation is
not considered here for simplicity). The fast subsystem is assumed to equilibrate
at a time scale which is much faster than the characteristic time scale of the slow
subsystem, hence it is abstracted by averaging out fast variables according to
their equilibrium distribution, conditional on a fixed state of the slow subsystem.
This averaging is performed on the kinetic rate functions of the slow subsystem.
This theoretical recipe can produce accurate results, when the QSSA or QE
assumptions are satisfied, yet it is very hard to obtain analytical expressions for
the kinetic rates of the slow subsystem, which hinders its use in practice.

In this paper, we propose a method to circumvent the problem by exploit-
ing ideas from machine learning, in particular Gaussian Processes [14], to learn
the abstracted slow kinetic rates, as a function of slow variables. This approach
allows us to construct statistical surrogates of the reduced rate functions in a
fully automatic and computationally cheap way, without analytical efforts from
the modeller side. It relies only on continuity properties of slow rates, which are
also investigated in the paper. Such statistical abstraction of the slow model can
then be used to perform simulation efficiently. In the paper we present the novel
simulation algorithm, and assess its performance with respect to other slow scale
simulation methods proposed in literature. Furthermore, our approach has an-
other advantage: using the same learning strategy, and at a mild additional pre-
processing cost, we can additionally learn slow rates as a function of some model
parameters, enabling efficient parameter exploration in the stiffness regime.

The paper is organised as follows: in Section 2, we introduce the relevant
background material and related work, as well as the QSSA and QE model re-
duction strategies. The continuity results and the statistical abstraction proce-
dure, together with the resulting simulation algorithm, are presented in Section
4. Section 5 contains the experimental validation of the proposed approach, while
final comments are discussed in Section 6. Throughout the paper we will use a
simple enzyme-substrate model as a running example.

2 Background & Related Work

Chemical Reaction Networks. We will describe biochemical systems using
the widespread formalism of (bio)Chemical Reaction Networks (CRN). The main
entities involved are species and reactions.

– Each species represents a molecule described in the model; the vector X(t) =
(X1(t), . . . , Xn(t)) ∈ S ⊆ Nn counts the number of molecules of each species
in the system at time t.



– Reactions describe how the system state can change. Each reaction is of the
form

r1X1 + . . . rnXn
f(X)−−−→ s1X1 + . . . snXn,

where the left hand side represent molecules that are consumed by the reac-
tion, the right hand side describe which molecules are created, and f(X) is
the kinetic rate function, giving the speed of the reaction as a function of the
system state. For each reaction Rj , we can define the vector rj (respectively
sj), encoding how many agents are consumed (respectively produced) in the
reaction, so that vj = sj − rj gives the net change of species.

We will consider the stochastic interpretation of biochemical reaction networks
[9], in which the dynamics of the system is described by a Continuous-Time
Markov Chain (CTMC), a Markovian (i.e. memoryless) stochastic process de-
fined on a finite or countable state space S and evolving in continuous time [8].
In general, we can think of CTMCs as a collection of random variables X(t) on
the state space S, indexed by time t ∈ [0,∞).

Molecular systems described by CRN are located in a finite volume V , and
one can reason on concentrations, rather than molecule numbers, by dividing
variables by the volume V . We will indicate with capital letters X the molecular
numbers and with small letters x = X/V the concentrations. Rate functions can
be expressed either in terms of molecular numbers or concentrations, modulo a
rescaling of parameters [9]. We will denote with fj(X) and fj(x) the same rate
function, expressed in molecular numbers or concentrations, respectively.

For most CRNs, it is impossible or prohibitively expensive to numerically
solve the underlying CTMC directly, so it is a common practice to explore the
system’s behaviour via stochastic simulation. The standard simulation approach
is known as the Gillespie algorithm [9], and it is exact in the sense that it
simulates every single reaction event happening.

Running example - Part I. We demonstrate the main concepts of the paper
on a simple enzyme-substrate model [13]. The system state is represented as a
vector X = (XE , XS , XES , XP ) that denotes the populations for an enzyme E,
a substrate S, the complex ES formed by the combination of the enzyme with
the substrate, and a product P . The state can be changed by the reactions:

E + S
f1(X)−−−−→ ES, f1(X) = c1XEXS

ES
f2(X)−−−−→ E + S, f2(X) = c2XES

ES
f3(X)−−−−→ E + P, f3(X) = c3XES

(1)

Related work. The approach to model reduction exploiting time scale separa-
tion presented here falls within the scope of Quasi-Steady-State Approximation
(QSSA) for stochastic models [13, 10, 6, 5, 4, 3]. In these approaches, species are
partitioned into fast and slow, and transitions are separated accordingly. Then,
the fast system, conditional on the slow one, is averaged away assuming it is at
steady state. The issue with all these approaches is that they require a-priori



identification of fast and slow species, which is usually a choice left to intuition of
the modeller. A similar approach, known as Quasi-Equilibrium [2], instead, starts
by partitioning the transitions into fast and slow, and then separating species,
possibly defining new species by taking a linear combination of the original ones.
In both cases, the so obtained system satisfies the decomposition discussed in
this section, hence our simulation algorithm can be applied.

A common characteristic of these earlier works on quasi-equilibrium reduc-
tion is that they rely on model-dependent expressions to calculate or approximate
the rate expectations of the slow reactions, de facto limiting the applicability of
the derived simulation algorithms [4–6]. In this work, we investigate the potential
of automatically learning these expectations using a regression technique. Under
the quasi-equilibrium assumption, our approach relies on no more assumptions
regarding the form or the structure of the fast subsystem.

A generic approach to approximate the rate expectation for the slow reactions
is prescribed in [15], where a Nested Stochastic Simulation Algorithm (Nested-
SSA) is proposed to approximate the steady-state of the fast subsystem. We
have implemented Nested-SSA following its description in the original paper, in
order to produce some comparative results. The step parameter for Nested-SSA
has been explored experimentally such that the efficiency of the two approxi-
mate simulation approaches has been roughly the same, in order to perform a
fair comparison in terms of approximation quality. Another approach related to
Nested-SSA has been recently proposed in [16].

3 Quasi-Equilibrium Reduction

Gillespie’s exact simulation approach can have high computational costs in pres-
ence of stiffness, where a small number of reactions dominate computations. We
will now introduce an approach to address such problems by partitioning the
system in two separate subsystems with different time-scales. We will first dis-
cuss how to construct the reduced model, and then comment on how such fast
and slow subsystems can be identified. We will make some strong assumptions
on the structure, commenting later on how to relax them.

Partition of species and reactions. We assume that species X = X1, . . . , Xn

of the system can be partitioned in two disjoint subsets: fast species, denoted
by Y = Y1, . . . , Ym, and slow species, indicated with Z = Z1, . . . , Zs, with
m + s = n. Hence, the state space S is decomposed into the fast Sf and the
slow Ss subspaces, so that S = Sf × Ss. We will use this notation consistently
in rates, writing fj(Y ,Z) in place of fj(X).

Similarly, we assume that the set R of reactions is also partitioned into
fast and slow subsets, denoted respectively Rfast and Rslow. The idea is that
fast reactions act only on fast variables (i.e. for each Rj ∈ Rfast, vj is zero
in correspondence to slow variables), and quickly bring the fast subsystem to
equilibrium. Hence, the evolution of slow variables will essentially sense the fast
system only via its steady state distribution. Slow reactions, instead, can modify
both fast and slow subsystems.



Reduced model. Given a partition of species and reactions into fast and slow
classes, we can construct the fast and the slow subsystems. The fast subsystem
is defined conditionally on a fixed value of the slow variables Z. It is a CRN with
species Y = Y1, . . . , Ym and reactions Rfast. In particular, the rate functions of
reactions in Rfast are computed by instantiating the slow variables with their
fixed value. Here we assume that such kinetic rate functions depend on slow
variables via their concentration, fj = fj(Y , z), hence the fast subsystem will
be parameterised by the concentration z of slow species, which can take values
in Rs

≥0 or on a compact subset, if the state space Ss is finite. This dependency
will be made explicit in the notation Y |z.

At this stage, we need to make a crucial assumption for the method to work,
namely that the conditional fast process Y |z(t) is an irreducible and positive
recurrent CTMC on the fast subspace Sf , for any value of z. This will guarantee
existence and uniqueness of the steady state distribution Y |z(∞) of Y |z(t). In
the following, we will denote the conditional expectation of a function f(Y , z),
with respect to the steady state distribution Y |z(∞) of the conditional fast
process by E|z[f(Y , z)], to stress the fact that this will be a function of the
concentration of slow species.

The slow subsystem, instead, is a CRN on the slow species Z, with dynamics
given by the slow reactions Rslow only. However, all reactions Rj in Rslow are
modified by

1. removing fast species from the left and right hand side of the rule of Rj ,
6

2. replacing the rate function fj(Y , z) by f̂j(z) = E|z[fj(Y , z)], i.e. averaging
out fast variables with respect to the steady state distribution of fast species,
conditional on a given concentration of slow species.

Running example: Part II. In the enzyme-substrate example, stiffness can
easily arise if we assume that c1, c2 � c3. In that case, the reactions in (1) can
be partitioned into fast and slow subsets Rfast = {R1, R2} and Rslow = {R3}
correspondingly. Consequently, we have fast species Y = (XE , XS , XES) and
slow species Z = (XP ). We therefore obtain the following fast subsystem:

E + S
f1(Y ,z)−−−−−→ ES, f1(Y , z) = c1XE(N −XES −XP )

ES
f2(Y ,z)−−−−−→ E + S, f2(Y , z) = c2XES

(2)

where N is a constant that denotes the total enzyme/substrate population in
the system; in this way, the dependency on the slow system is reflected in the
reaction rates. The slow subsystem is then described by the following reactions:

∅ f̂3(z)−−−→ P, f̂3(z) = E|z[f3(Y , z)] (3)

6 This is a technically sound operation, as the fast subsystem has a unique steady
state distribution, depending only on the state z of the slow subsystem, which is
reached immediately after the firing of a slow reaction.



4 Approximation of Rate Expectations

4.1 Continuity of rates of the slow system

We start by proving a crucial property for our method, namely that the rate
functions of the reduced slow subsystem are continuous as a function of the
concentration of slow species, taking values on the whole Rs

≥0 (or on a compact
connected subset). This property is a consequence of mild regularity properties
of the original kinetic rate functions, and is captured by the following theorem,
whose proof can be found in the appendix.

Theorem 1. Let f(Y , z) be a locally Lipschitz continuous function w.r.t. (nor-
malised) slow variables. Assume that the fast process, conditional on a fixed
concentration z of the slow variables, is irreducible and positive recurrent for
each z. Then E|z[f(Y , z)] is a continuous function of z. ut

Theorem 1 enables us to use powerful techniques based on statistical emula-
tion, which will be discussed in the following subsection, and which are the key
of our simulation algorithm.

4.2 Exploring rate expectation via pre-simulation runs

As discussed in Section 3, for many systems exhibiting time-scale separation,
it is possible to obtain a good approximation of the system by introducing an
auxiliary system where the time scales are separated. Hence, the slow variables
are treated as statistically independent random variables from the fast variables,
and the time-scale separation is equivalent to a mean-field approximation which
replaces the true transition rates of the slow variables (which in general depend
on the actual fast variables) with their averages with respect to the equilibrium
distribution of the fast variables. While this approximation in principle offers
huge computational savings, in practice for most systems the equilibrium distri-
bution of the fast variables cannot be computed analytically, and its expectation
can consequently be computed only from a set of simulations. Furthermore, in
most cases the statistics of the equilibrium distribution of the fast variables will
themselves depend on the slow variables. This feedback mechanism engenders
stiffness which effectively negates the computational benefits of time-scale sep-
aration: for every simulation step in the slow variables, a whole (large) set of
complete simulations for the fast variables must be executed to obtain reliable
estimates of the equilibrium statistics of the fast variables.

A possible solution to this computational problem would be to explore the
functional dependency of the equilibrium statistics of the fast variables on the
state of the slow variables. This in principle would greatly facilitate computa-
tions, replacing the need for simulations of the fast variables with a lookup table
for the statistics. However, in general the number of states visited by slow vari-
ables may be very high, resulting in a need for very long precomputing steps.
To obviate this problem, we exploit the results of Section 4.1, which imply that
the equilibrium statistics of the fast variables are a continuous function of the



slow variables (rescaled to concentrations). This enables us to leverage powerful
machine learning techniques to construct a statistical approximation to the equi-
librium statistics from a potentially much smaller number of pre-simulation runs.
We use Gaussian Processes (GP) regression, a flexible non-parametric Bayesian
method for non-linear regression, although other methods are also possible in
principle. GPs provide us with a fast analytical approximation to the unknown
function from a set of precomputed values of the function; importantly, their
flexibility guarantees that they can approximate arbitrarily well any continuous
function [1]. We refer the reader to [14] for a comprehensive introduction to GP
regression, which we do not provide for space reasons.

4.3 Stochastic simulation via statistical abstraction

We propose a stochastic simulation algorithm via statistical abstraction (SA-
SSA), which involves simulating the slow system only. The algorithm works in
two phases. In an initialisation phase, we construct an analytical approximation
of the rates of the slow subsystem. In the simulation phase, these approximate
rates are used in place of the true slow kinetic rate functions to simulate the
slow subsystem with standard Gillespie simulation [9]. As the simulation phase
is standard, we shall focus on the first phase.

The construction of these analytic approximations during the initialisation
process is broken down to two steps. The first step involves estimating the rate
expectations f̂j(z),∀Rj ∈ Rslow for a grid of n population vectors, which corre-
spond to n different states of the slow process. For each population vector, the
fast subsystem is simulated until steady-state is reached, and the expectation of
fj(Y , z) is calculated as follows:

f̂j(z) = 1/tf

∫ t0+tf

t0

fj(Y , z)dt (4)

where t0 is the time required to reach equilibrium and tf is sufficiently large to
compute accurately the time average. This is estimated using a simple heuris-
tic: the rate expectation is measured for regular subsequent time intervals, and
steady-state is considered to have been reached if the change observed is less
than 1%. Since we have assumed that the fast process is ergodic, there should be
exactly one steady-state distribution, therefore the expectation can be calculated
using a single trajectory for each of the n states. We stress that our approach is
independent of the choice of the method to estimate the steady state, which can
be safely replaced.

At the end of this pre-simulation process, we have a collection of n population
vectors paired with n noisy observations of the rate expectation as a function
of the state of the slow system. GP regression is a natural and fully automated
choice to obtain estimations for the the expectations for any point in the state-
space, since it transfers information across neighbouring points.

To comment on the cost of the initialisation process, we have to consider
the cost of the pre-simulation runs and the regression step. One of the main



assumptions of QE reduction is that steady-state is reached quickly for the fast
subsystem, therefore pre-simulation avoids the excessive simulation of the fast
system that occurs when stiffness is present. The cost of regression is dominated
by the solution of a linear system, whose complexity is O(n2), where n is the
number of training points7. This cost can be further reduced by employing sparse
approximations to GPs, which is a subject well studied in the machine-learning
community [14]. An important note on the initialisation cost is that it has to be
paid only once, and then name trajectories can be efficiently sampled from the
slow subsystem. If the rate expectations are learned as a function of the system
parameters as well, then it is possible to approximate an entire family of stiff
systems. The relationship between the initialisation cost and the computational
savings achieved is demonstrated in the experiments of Section 5.

5 Experimental evaluation

In order to demonstrate the computational savings and assess the approximation
quality of our approach, we consider two stiff examples of bio-chemical reaction
networks. We have generated samples from the distributions of the slow species,
using both the standard Gillespie algorithm [9] and SA-SSA. The approximation
quality is evaluated by in terms of the histogram distance between the samples
from the exact and the approximate simulation process. To put the histogram
distance in a context, this has to be compared with the corresponding self-
distance. A distance value smaller than the self-distance implies that the two
distributions are practically indistinguishable for a given number of samples.
The self-distance is estimated using the following result of Cao & Petzold [7]: an
upper bound for the average histogram self-distance is given by

√
(4K)/(πN),

for N samples and K intervals in the histogram. For the examples that follow,
we consider K = 50.

5.1 Stiff enzyme-substrate reaction

We perform numerical experiments on the enzyme-substrate example, given the
partitioning described by Equations (2) and (3). We consider kinetic constants
c1 = 0.01, c2 = 1 and c3 = 10−4, and initial state X0 = (220, 3000, 0, 0). The
rate expectation for R3 in (3) has been approximated via GP regression. For
the training set, we have sampled 1000 population values for the slow variable
P between 0 and 3000.

The results of simulating the slow subsystem can be seen in Table 1, which
summarises the histogram distances from the true distribution for the popula-
tion of P , at four time-points. Most of the distances recorded are lower than the
estimated upper bound for the average self-distance (i.e. 0.252). We also report
the corresponding histogram distances for the Nested-SSA method of Weinan et

7 GP regression typically involves matrix inversion, but this can be avoided as we
make no use of predictive variances.



al [15], which was parametrised so that it has been as efficient as out method
(see Table 2). For the given level of efficiency, our method resulted in lower val-
ues for the histogram distance in most cases. Most importantly, the simulation
strategy that we propose has been significantly more efficient that exact Gille-
spie simulation, as can be seen in Table 2. We also report the time required
for initialisation, which is broken down to pre-simulation runs, hyperparameter
optimisation, and the training of the GP regression model.

Table 1. Enzyme-substrate model: histogram distances for 103 simulation runs (esti-
mated self-distance: 0.252).

P

Time Nested-SSA SA-SSA

5× 104 0.290 0.246

10× 104 0.250 0.204

18× 104 1.016 0.160

20× 104 0.940 0.142

Parameter Exploration. We demonstrate an example of learning the ex-
pected rates as a function of the slow state in combination with a parameter of
the system. This practice allows us to pay the initialisation cost once and then
simulate a range of stiff systems using our accelerated simulation approach. For
the enzyme-substrate system we consider that c1 varies in the range [0.01, 1];
note that for the values of c1 considered, the system remains stiff, so the QE
reduction is meaningful. We have randomly sampled a grid of 1000 values for
XP ∈ [0, 3000] and c1 ∈ [0.01, 1], which was used as training set for a regres-
sion model. By fixing the parameter c1 to a particular value, we were able to
generate trajectories efficiently using SA-SSA. Table 3 summarises the relative
mean error observed when approximating the mean value of XP , for different
values of c1. The total initialisation time for our approach has been 3.562 sec.
Parameter exploration via the standard Gillespie algorithm required 1911 sec,
while SA-SSA required only 32 sec.

5.2 Viral infection model

We now consider is the viral infection model appeared in [11]. We present the
following simplified version of the model which involves three species, the viral
template T , the viral genome G, and the viral structural protein S:

T
f1(X)−−−−→ G + T, f1(X) = k1XT T

f4(X)−−−−→ ∅, f4(X) = k4XT

G
f2(X)−−−−→ T, f2(X) = k2XG S

f5(X)−−−−→ ∅, f5(X) = k5XS

T
f3(X)−−−−→ S + T, f3(X) = k3XT G + S

f6(X)−−−−→ V, f6(X) = k6XGXS

(5)

The system state is represented as a vector X = (XT , XG, XS). Regarding the
model parameters, we follow [11]; for the kinetic constants we have: k1 = 1,



Table 2. Execution times in seconds for 103 simulation runs.

Method Enzyme-substrate Viral model

SA-SSA

Pre-simulation 0.291 26.11

Hyperparam. opt. 1.484 1.68

Training 0.080 0.05

Total initialisation 1.855 27.84

Simulation 153 316

Exact SSA 6947 2410

Nested-SSA 209 327

Table 3. Relative mean error values for approximating the mean value of XP , for 103

simulation runs.

P (RME)

Time c1 = 0.01 c1 = 0.1 c1 = 0.5 c1 = 1

5× 104 1.83× 10−3 9.08× 10−4 2.35× 10−3 2.17× 10−3

10× 104 1.20× 10−3 1.49× 10−3 1.94× 10−3 2.87× 10−3

18× 104 8.04× 10−4 3.73× 10−5 4.49× 10−4 3.05× 10−4

20× 104 9.13× 10−4 4.56× 10−5 6.06× 10−5 3.26× 10−5
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Fig. 1. Left: A random trajectory of the viral infection model, showing the slow species
populations. Right: Distribution of the genome population XG at t = 50.

k2 = 0.025, k3 = 1000, k4 = 0.25, k5 = 1.9985 and k6 = 7.5e − 6, and initial
state X0 = (10, 0, 0). A random system trajectory can be seen in Figure 1.

Based on the kinetic constants, we consider the set of fast reactions Rfast =
{R3, R5} and slow reactionsRslow = {R1, R2, R4, R6}. Therefore, the fast species
will be Y = (XS), and we have slow species Z = (XG, XT ), give rise to the fol-
lowing fast and slow subsystems correspondingly:

∅ f3(Y ,z)−−−−−→ S, f3(Y ,z) = k3XT

S
f5(Y ,z)−−−−−→ ∅, f5(Y ,z) = k5XS

T
f1(z)−−−→ G + T, f1(z) = k1XT

G
f2(z)−−−→ T, f2(z) = k2XG

T
f4(z)−−−→ ∅, f4(z) = k4XT

G
f̂6(z)−−−→ V, f̂6(z) = E|z[f6(Y ,z)]



The rate of R6 originally depends on XG directly, and on XT indirectly, since
the population of T affects the steady-state of the fast process. We consider a
random grid of 256 uniformly distributed population values for the genome G
and the template T , given upper bounds of 500 and 100 molecules correspond-
ingly. Note that a näıve exploration of the rate expectation would require 50000
evaluations, while we use only 256 for the training set of the GP.

The performance in terms of accuracy for the viral model is summarised in
Table 4. We report the histogram distances for slow components, at four time-
points. An example of the histograms generated can be seen in Figure 1 for the
genome G, at time t = 50. We see that in all cases the distance from the true
distribution is very close to the self-distance estimated for the given number
of samples, a fact that implies a very good approximation of the stochastic
properties for the slow system. The computational savings are also significant,
as can be seen in Table 2.

Table 4. Viral infection model: histogram distances for 103 simulation runs (estimated
self-distance: 0.252).

G T

Time Nested-SSA SA-SSA Nested-SSA SA-SSA

50 0.988 0.308 0.548 0.242

100 0.244 0.414 0.154 0.226

200 0.388 0.406 0.156 0.204

500 0.346 0.432 0.198 0.238

6 Conclusions

Time-scale separation is a well studied approach to efficiently simulate systems
that exhibit stiffness, where systems are partitioned into slow and fast subsys-
tems. Nevertheless, most of the approaches proposed in the literature rely on
the structure of the system to produce estimations for the rate expectations for
the slow process. We have proposed SA-SSA as a generic approach to simulate
the slow-scale subsystems, where these rate expectations are approximated via
a machine learning method.

Experiments on examples of stiff systems show that SA-SSA requires a small
initialisation cost and results in significant computational savings. For a given
level of efficiency, SA-SSA achieved similar or better accuracy than Nested-SSA,
whose premise is also a generic simulation framework for stiff systems. Besides
any performance comparison, there is a qualitative difference between the two
methods. Unlike Nested-SSA, our approach is not transparent with respect to
the slow process, since it requires a rough estimate of the reachable state-space.
However, the efficiency of SA-SSA is not affected by the complexity of the fast
subsystem, in contrast with Nested-SSA, as any relevant cost in only paid dur-
ing the initialisation phase. Moreover, it has been possible to learn the rate



expectations as functions of the model parameters as well; we therefore obtain
approximations for a family of systems, provided that these comply with the
stiffness assumption.
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