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Abstract

Background. Structural MRI measures for monitoring Alzheimer’s

Disease (AD) progression are becoming instrumental in the clinical prac-

tice, and more so in the context of longitudinal studies. This investigation

addresses the impact of four image analysis approaches on the longitudinal

performance of the hippocampal volume.

Methods. We present an hippocampal segmentation algorithm and

validate it on a gold-standard manual tracing database. We segmented 460

subjects from ADNI, each subject having been scanned twice at baseline, 12-

month and 24 month follow-up scan (1.5T, T1 MRI). We used the bilateral

hippocampal volume v and its variation, measured as the annualized volume

change Λ = δv/year (mm3/y). Four processing approaches with different

complexity are compared to maximize the longitudinal information, and they

are tested for cohort discrimination ability. Reference cohorts are Controls vs.

Alzheimer’s Disease (CTRL/AD) and CTRL vs. Mild Cognitive Impairment

who subsequently progressed to AD dementia (CTRL/MCI-co). We discuss

the conditions on v and the added value of Λ in discriminating subjects.

Results. The age-corrected bilateral annualized atrophy rate (%/year)

were: -1.6 (0.6) for CTRL, -2.2 (1.0) for MCI-nc, -3.2(1.2) for MCI-co and

-4.0 (1.5) for AD. Combined (v,Λ) discrimination ability gave a Area under

the ROC curve (auc) = 0.93 for CTRL vs AD and auc = 0.88 for CTRL vs

MCI-co.

Conclusions. Longitudinal volume measurements can provide mean-

ingful clinical insight and added value with respect to the baseline provided

the analysis procedure embeds the longitudinal information.
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Abbreviations:

AD, Alzheimer’s Disease

ADNI, Alzheimer’s disease Neuroimaging Initiative;

AUC, Area Under Curve;

CTRL, Control Subjects;

MCI(-nc/-co), Mild Cognitive Impairment (non-progressing to AD / pro-

gressing to AD);

MNI, Montreal Neurological Institute;

MRI, Magnetic Resonance Imaging.

ROC, Receiver Operating Characteristic.

SVM, Support Vector Machine;

VOI, Volume Of Interest;
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1. Introduction1

Among image-based markers, structural information is considered highly2

informative in the quantification of progression to Alzheimer’s disease (AD).3

This is becoming even more important in the context of longitudinal stud-4

ies where substantial literature (Hogan et al., 2004; Bateman et al., 2012;5

McEvoy et al., 2011; Spulber et al., 2013; Lobanova et al., 2014; Leung et al.,6

2010; Schuff et al., 2009; Rusinek et al., 2003; Fox and Schott, 2004) suggests7

that longitudinal trend may be pivotal in discriminating a population at risk.8

In addition, there is enough scientific evidence supporting the use of the9

hippocampal geometrical properties (such as the hippocampal volume) as10

biomarker of early / progression of AD, and the reader is referred to Frankó11

and Joly, Olivier (2013); Chincarini et al. (2011); Gerardin et al. (2009);12

Fennema-Notestine et al. (2009) for a sample of studies in the field.13

There are now a number of methods to automatically segment the hip-14

pocampal structure, many of them featuring high accuracy and reliability15

(Shen et al., 2002; Morra et al., 2008; Pruessner et al., 2000; Bishop et al.,16

2011; Wolz et al., 2010b, 2014). In addition, the recently concluded seg-17

mentation harmonization effort (see Frisoni et al. (2014); Apostolova et al.18

(2015)) delivered a set of gold-standard tracings to be used as reference for19

both human and automatic readers (Bocchetta et al., 2014; Boccardi et al.,20

2015).21

Despite the use of gold-standard segmentations, the reliability and the22

clinical usefulness of a longitudinal measurement can be hindered by several23

confounding factors, namely: technical errors (acquisition noises, artefacts,24
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data analysis and algorithmic instabilities) and physiological variability (both25

intrinsic and due to external conditions such as hydration, lipidic balance,26

nutrition and hormonal concentration, Duning et al. (2005); Maclaren et al.27

(2014)). The goal of longitudinal analysis though is to find the long-term28

trend due to either normal or pathological ageing, neglecting the nuisances29

of both intrinsic and extrinsic variabilities.30

Our investigation here looks for possible implementations of a segmenta-31

tion-based longitudinal marker, aiming at the reduction of variabilities other32

than the long-term aging contribution. First, we develop a segmentation al-33

gorithm on a separate dataset, delivering the hippocampal volume. Then,34

we segment a large number of MR images from ADNI and use the hippocam-35

pal volume to construct a longitudinal marker. This marker is implemented36

with four algorithmic variations of increasing complexity, meant to enhance37

the robustness and accuracy of the segmentation over the longitudinal scans.38

Finally, we assess the marker prognostic potential and estimate under which39

conditions the longitudinal information is clinically relevant.40

2. Materials and methods41

2.1. Dataset42

MRI scans (1.5T, T1-weighted) were selected from the ADNI database 2
43

and downloaded in the original format (DICOM). The subjects id list is44

provided in supplemental table S1.45

2The ADNI was launched in 2003 by the National Institute on Aging (NIA), the Na-
tional Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and non-profit organizations.
For up-to-date information, see www.adni-info.org.
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We selected 460 subjects having four scans: two scans at baseline (here-46

after labelled baseline and repeat), 12-month and 24-month scans for a total47

of 460× 4 = 1840 images.48

According to the ADNI evaluators, subjects were grouped in three cohorts49

consisting of 148 Controls (CTRL), 216 Mild Cognitive Impairment (MCI)50

and 96 Alzheimer’s Disease (AD) (clinical label given at baseline). Coarse51

statistical description is summarized in table 1.52

MCI subjects were further divided into 121 “MCI progressing to AD”53

(MCI-co) and 95 stable MCI, or“MCI non-progressing” (MCI-nc) according54

to the clinical follow-up which stretched up to 96 months after the baseline55

scan. A few MCI subjects (8) received more than two labels during follow-up56

(MCI / AD / normal cognition). They were treated considering the first and57

the latest evaluation only.58

On average, time to AD occurred after 48 (24 – 84) months (90% confi-59

dence bounds) from the baseline.60

2.2. Image processing61

Image processing closely follows the method detailed in Chincarini et al.62

(2011), save for two procedural differences. We summarize here the main63

steps applied to each MR image up to the extraction of its Volumes of Interest64

(VOI), which were used as starting points of the segmentation algorithm.65

MR images underwent a series of filters designed for bias B-field reduc-66

tion, volume normalization, anatomical structure registration and gray level67

intensity equalization. The two novelties with respect to Chincarini et al.68

(2011) are the lack of the pyramidal noise filter and the addition of the B-69
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field bias reduction, the latter implemented with the BET algorithm (Smith,70

2002). The noise filtering step was avoided to keep the intensity contrast71

between the hippocampus structure and the adjacent structures (amigdala72

mainly), which could be impaired by the pyramidal filter. Similarly, the B-73

field bias correction was introduced to improve on the deformable registration74

cost function used in the segmentation process.75

As result of the pre-processing steps, images were aligned with a 12-pa-76

rameters affine transformation to the Montreal Neurological Institute (MNI,77

mazziotta, Toga, Evans, Fox (1995)) space and the mean gray level intensi-78

ties of the three major brain constituents - cerebro-spinal fluid (CSF), gray79

matter (GM) and white matter (WM) - were matched to reference values.80

In addition, aligned images are spatially sampled as the MNI template, that81

is with isotropic voxels of 1mm.82

Each image was then sampled with 2 VOIs with dimension 30×80×40 mm83

each, which were placed in both Medial Temporal Lobes (MTL) so that the84

hippocampi are anatomically aligned to the VOIs sagittal axes (see figure 185

for an example of VOI positioning and content).86

Finally, a finer intra-cranial volume correction (icv) is computed by non-87

linear mapping of the segmented MNI brain mask (provided with the tem-88

plate) onto the affine-registered image and the mask volume is weighted by89

the affine transformation jacobian. This number is a minor factor (of the90

order of the unity) and it does not correct for the native volume versus the91

MNI-space one, as the spatial normalization already compensated for it. It92

is rather used to adjust for the possible deviations that escape the affine reg-93

istration. This non-linear-based intra-cranial volume adjustment is used as94
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a hippocampal volume correction factor after the segmentation process.95

2.3. Segmentation algorithm96

The main ground for developing our own segmentation procedure instead97

of using an existing one was the choice to have it under control and to use a98

probabilistic atlas approach rather than voxel-based classification techniques.99

The procedure (referred in the following as GDIseg) requires only the100

hippocampal VOI in input and it is not too dissimilar from that proposed101

by Wolz et al. (2010a), save for some details. It was developed on a MR102

set consisting of 100 T1-weighted MR images and tracings (Frisoni et al.103

(2014), preliminary release) from the “harmonized protocol for hippocampal104

volumetry” project (HarP, www.hippocampal-protocol.net), subjects not105

included in the dataset presented in this investigation.106

For the purpose of this investigation we require only two outputs from107

GDIseg : the bilateral hippocampal volume v and a spatial probability map108

A, which should ideally peak on the hippocampi voxels and quickly fade to109

zero on all other brain structures. The GDIseg algorithm is described in110

Appendix A.111

2.4. Implementations112

We implemented the longitudinal analysis procedure with four progressive113

steps, starting with a naive approach in which all scans are treated separately,114

to a fully integrated one in which image processing and segmentation are115

intertwined. A schematic comparison of the four implementations is given in116

figure 2.117
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All descriptions regarding the hippocampal VOIs have no explicit later-118

ality labels but it is intended that they are run on the left and right VOI119

separately.120

2.4.1. A: independent processing and segmentation121

Each scan is treated independently. The icv correction is also computed122

separately on the four scans; no longitudinal (i.e. time) information is used123

(figure 2 A). This implementation serves as base comparison to assess the124

performance increase of more sophisticated approaches.125

2.4.2. B: unified image processing126

In this implementation image preprocessing is merged by generating an127

unbiased within-subject template space, while segmentation follows on each128

VOI independently (figure 2 B).129

The within-subject template is constructed by generating an average in-130

termediate image H from the 4 scans (baseline, repeat, month 12 and month131

24) using robust, inverse consistent registration (Reuter et al., 2012). The132

intermediate within-subject template is processed up to the extraction of133

the hippocampal VOIs according to section 2.2. The relevant parameters134

(registration onto the MNI reference, VOI positions and intensity normaliza-135

tion) are passed back to the original scans so that the actual VOIs can be136

extracted.137

This implementation ensures that all 4 scans are treated uniformly and138

the VOIs are extracted with a very high degree of reproducibility. The icv139

correction is computed on H only.140
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2.4.3. C: atlas matrix re-normalization141

This implementation shares the same image processing as in “B” but142

it adds a refinement to the segmentation algorithm (figure 2 C). This is143

based on the construction of a single deformation field f ∗ that summons the144

main longitudinal variation of the hippocampal shape. Implementation “C”145

supplements the GDIseg algorithm by adding the temporal information in146

the form of a post-processed probabilistic map A.147

Consider the four scans of a single subject and let bi be the hippocampal148

VOI extracted from scan i and Ai the related probabilistic atlas. Let also fij149

be a deformation field that maps bi onto bj (i, j = 1..4).150

We can define the 4 × 4 matrix f whose elements are the fij and which151

contains the identity transformation I on the diagonal, with the requirement152

that fij + fji = I. Similarly, we can define a matrix a of probabilistic maps153

whose elements are aij = fij(Ai), i.e. the application of the field fij to Ai.154

By definition, the diagonal elements are aii = Ai. Addition, subtraction and155

multiplication by a constant on the deformation field f are intended to be156

applied voxel-by-voxel to the displacement vector components. The identity157

operator I components are by definition all zero.158

We now assume that the main contribution to the longitudinal trend can159

be captured by a linear map of a new operator f ∗. The intent of f ∗ is160

to capture the mean, long term drift by averaging over the paths from the161

baseline to the last follow-up scan, so that162

fij ' αijf
∗, αij ∈ [0, 1]
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A possible choice for αij could be163

αij =
tj − ti

maxi,j=1..4 [tj − ti]

where ti is the time of the ith scan. In order to find f ∗ we average the164

deformation fields on all paths connecting the earliest to the latest scan.165

The generalized expression is166

f ∗ =
1

1 + n1 + n2 + ...

(
fxy +

∑
x<k<y

(fxk + fky) +
∑

x<k<h<y

(fxk + fkh + fhy) + ...

)

where nr are the number of possible paths from x to y using r intermediates.167

The simplified expression for 4 scans (taking into account that t2 = t1) is168

f ∗ =
1

4
(f14 + f24 + (f13 + f34) + (f23 + f34))

We can now compute the new matrix f with elements αijf
∗, and hence the169

new atlas matrix a.170

We have re-normalized the probabilistic maps aij to comply with a single171

deformation field that links the VOIs extracted from the longitudinal scans.172

The re-normalized aij are averaged over the columns and then thresholded,173

to get the binary masks. Then, we apply the icv correction the same way as174

in implementation “B”.175
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2.4.4. D: weighted integration176

In this last implementation images are preprocessed as in “B” and seg-177

mentation undergoes a post-processing step, this time though we drop the178

requirement of an actual binary mask per VOI, in favour of the volume in-179

formation alone (figure 2 D).180

For each subject and bilateral VOI we define two new maps:181

Ap =
∏
j=1..4

Aj

182

Am = max
j
Aj

where j is the index to the baseline, repeat, 12 month and 24 month scans;183

the ‘max’ is taken voxel-wise over the four Aj. If x represents the gray184

intensity in any voxel, the quantity:185

W (k, y) =
∑

x∈VOIk

x Ay

is the weighted sum of the intensity values over the volume VOIk. We now186

define the longitudinal volumes as:187

vj = v̂
W (j,m) W (1, p)

W (1,m) W (j, p)

The normalization constants v̂ is the mean volume over the baseline and188

repeat scans, as given by GDIseg.189

In short, this formulation modulates the intensities in the bigger map190

(Am, which includes the hippocampal boundary) with the inner intensity191
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values (Ap, where all segmentations agree).192

2.5. Performance metrics193

We checked the performance of all described procedures with four metrics.194

The first one (reliability) is simply a quality control to assess the robustness195

of GDIseg on a large number of images. Then we looked at the test/re-196

test performance (reproducibility) and at the longitudinal trend. Finally we197

checked whether the longitudinal information can improve on the accuracy198

when used as combined biomarker together with the volume.199

2.5.1. Reliability200

The segmentation procedure was applied without human intervention to201

1840 images from the ADNI database. A quality control test checks whether202

and on how many images the procedure crudely fails. This control does203

not imply a “correct” hippocampus segmentation - in terms of harmonized204

protocol - it only points out possible failures in the pre-processing and in205

the segmentation procedure. To perform this test we construct two identical206

statistics Revoi and Remask:207

Revoi = min
t,L,R
{max

i
[r(V OI, TBi)]}

208

Remask = min
t,L,R
{max

j
[r(mask, TMj)]}

where r is the Pearson correlation coefficient, the ‘max’ is taken on the tem-209

plates and the ‘min’ is taken among scans (t) and laterality (L,R). Template210

Boxes (TB) and Template Masks (TM) are the hippocampal VOIs and man-211

ual tracings on the HarP image dataset (see Appendix A).212
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This test computes the best correlation coefficient among the VOI inten-213

sities and each TB, as well as among the segmented mask and each TM ,214

then keeping the lowest among these values with respect to the number of215

scans and laterality. In other words, from each subject we get 8 VOIs and216

8 hippocampal tracings (bilateral regions on 4 scans). If either one or more217

are too distant from its nearest template (in terms of correlation coefficient),218

the subject is flagged for visual inspection. This formulation assumes that219

the HarP subjects are sampled as to represent all relevant physiological vari-220

ability.221

Mishaps in image processing (intensity normalization for instance), in the222

VOI extraction (registration) and in the segmentation algorithm will result in223

either one or both statistics to be significantly impaired. Visual inspection of224

outliers and most extreme values follows, to understand the reasons of failure225

and ensure that outliers are indeed the only images on which the automatic226

procedure failed. Subjects failing this test are discarded.227

2.5.2. Reproducibility228

We addressed the statistics of the segmentation volumetry comparing229

baseline and repeat scans. This tests is crucial for informed use in both230

research and clinical settings. Test/re-test reproducibility - i.e. how the231

outcome measure varies when computed over two repeat scans acquired in232

the absence of plausible biological variability - is a critical measure for reliable233

biomarkers. The considered quantity is234

∆ = 2
vr − vb
vr + vb

=
vr − vb
v̂
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where vb and vr are the baseline and repeat hippocampal volumes respec-235

tively.236

2.5.3. Longitudinal trend237

The annualized volume change Λ (expressed in mm3/year) is defined as238

the slope of the least-squares linear fit of the longitudinal volume measures239

vi versus time:240

vi − ξi = Λ ti + β

where ξi and β are the residuals and the intercept respectively, and i = 1..4241

tags the baseline, repeat, 12-month and 24-month scans. To make Λ more242

robust we did not choose to split measures into 0-12m and 12m-24m intervals243

as in Schuff et al. (2009).244

A linear model using age, sex and cohort as predictors found cohort and245

age as significant (p < 10−4). We adjusted Λ for age using de-correlation.246

Then, we used de-correlation to cross-check whether Λ maintains signifi-247

cant prognostic performance after the adjustment for v̂ and mini-mental state248

examination (MMSE) score.249

2.5.4. Combined markers250

The added complexity to derive a longitudinal biomarker – albeit a simple251

one based on the hippocampal volume drift over time – should be balanced252

by an increased prognostic potential.253

ROC analysis on the combined volume and trend indexes was computed254

with a linear discriminant. We used a support vector machine (SVM) classi-255

fier on the feature set (v̂,Λ) and we considered the distance from the sepa-256
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rating plane as the new marker. Its performance was compared to that of v̂257

and Λ alone.258

2.6. Software and statistics259

Image processing was carried out on a dedicated computational farm260

running the LONI pipeline software (www.loni.ucla.edu), using MATLAB261

(www.mathworks.com) and ITK (www.itk.org) as algorithm libraries. All262

statistical analyses were carried out within the MATLAB environment.263

The Λ score was adjusted for specific variables by de-correlation using264

linear regression in the following manner:265

Λadj
i = Λi −

(
β̂0 +

∑
j

β̂jxij

)

where Λi is the score from the ith subject, xij is variable j of subject i to be266

adjusted for, and β̂i is estimated using a least squares fit Λi = β0 +
∑

j βjxij267

to the considered dataset. We adjusted for either age or for MMSE, as268

they are among the major confounders and we checked whether Λadj still269

carried information. No dominant non-linear relationships were observed270

when inspected by scatter plots. Consequently, a linear adjustment was271

considered sufficient.272

A SVM classifier with linear kernel was trained on CTRL vs. MCI-273

co cohorts. The trained classifier was used to assess the AD and MCI-nc274

cohorts. The combined marker was the distance from the SVM separating275

plane. ROC analysis of the combine marker (v̂,Λ) on CTRL vs. MCI-co are276

given with a 20-fold cross-validation method. Right and left structures were277

treated separately.278
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Confidence intervals on AUC values in table 3 were computed by boot-279

strapping (1000 times) and by using the bias-corrected percentile method280

(Martinez, 2011). Statistical significance in table 4 versus the null AUC and281

among different markers was carried on according to Hanley and McNeil282

(1982, 1983).283

The estimation of confidence intervals on the AUC can be carried out with284

several methods, each delivering slightly different values. Hence the compari-285

son and compatibility among tests in table 3 and 4 should take into consider-286

ation that confidence intervals are method-dependent estimates. We consid-287

ered seven methods, parametric and non-parametric: Hanley-McNeil (para-288

metric); Mann-Whitney, Logit and Bootstrap (non-parametric, Gengsheng289

Qin and Hotilovac (2007)); Maximum variance (non-parametric, Cortes and290

Mohri (2004)); Wald, Wald/continuity-corrected (non-parametric, Kottas291

et al. (2014)).292

For instance, the width of the confidence interval on v̂L for the CTRL/AD293

cohorts (implementation D, AUC=0.89 in table 3) ranges from 0.06 (Hanley-294

McNeil) to 0.09 (Mann-Whitney); in numbers 0.86−0.92 and 0.84−0.93. An-295

other example with ΛR, implementation C and CTRL/MCI-co (AUC=0.78)296

shows a substantially similar interval width of all methods (0.74− 0.82 Han-297

ley, Mann-Whitney; 0.73−0.84 Maximum Variance). The the bias-corrected298

percentile bootstrap was regarded as a safe estimate as it did not require any299

assumption about the normality of the log-transformed AUC (Ahn and Yim,300

2009).301
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3. Results302

Results on volume and longitudinal feature (v̂ and Λ) are given after303

correction for age (de-correlation). Hippocampal volumes are given after304

correction for icv and in the MNI space with spatial sampling of 1×1×1 mm.305

3.1. Quality control306

Figure 3 shows the distribution of Revoi and Remask for all 460 subjects.307

There are three distinctive outliers which are excluded from subsequent anal-308

yses and whose inconsistent VOIs and tracings are shown aside (fig. 3a, b309

and c). Potential outliers - placed in the low value regions of the Revoi /310

Remask scatter plot - are visually screened to ensure that they are correctly311

classified as proper VOI and hippocampal tracings.312

One of the outliers (figure 3a) stems from a blind injection: a null image313

(white noise only) was placed in the analysis pipeline on purpose, in order314

to test the reliability of the whole analysis procedure. Another outlier (fig.315

3b) is due to incorrect brain spatial registration, causing the VOIs to be316

misplaced. The third one (fig. 3c) is due to the peculiar atrophy conditions,317

which has no related template in the HarP subject selection.318

3.2. Reproducibility319

The relative volume variation over baseline and repeat scan is given for320

the A, B, C and D implementations in percent units (%), mean and standard321

deviation: ∆A = −0.1 ± 3.5, ∆B = −0.1 ± 2.7, ∆C = 0.0 ± 0.1 and ∆D =322

0.1± 1.2. The absolute value of the standard deviation σv over the quantity323

vr − vb is: σAv = 156, σBv = 128, σCv = 5 and σDv = 68 (units in mm3).324
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3.3. Longitudinal trend325

Mean Λ values over cohorts and implementations are shown in table 2.326

Λ is significantly correlated to the baseline volume v̂ in implementations327

B, C and D. The Pearson correlation r is rA = 0.05 (p = 0.12), rB = 0.09328

(p = 0.01), rC = 0.41 (p < 10−4) and rD = 0.37 (p < 10−4). In words,329

volume loss is higher (in absolute value, i.e. more negative numbers) in330

smaller structures.331

In terms of cohort discrimination, figure 4 shows the distribution and332

ROC curves of Λ for the right and left hippocampus separately, where it333

is apparent that the AUC steadily increases with the implementation com-334

plexity (from A → D). Comprehensive results on the AUC of v̂ and Λ are335

summarized in table 3.336

The average bilateral AUC remained significant (p < 10−4) after de-cor-337

relating baseline MMSE score (AUCA = 0.64, AUCB = 0.64, AUCC = 0.67338

AUCD = 0.70) and volume v̂ (AUCA = 0.66, AUCB = 0.66, AUCC = 0.63339

AUCD = 0.68).340

A derived alternative marker is the bilateral average of the relative annu-341

alized volume loss342

λ =
1

2
([Λ/v̂]R + [Λ/v̂]L)

expressed in %/year. Values (mean and standard deviation) are: λ =343

−1.6(0.55) for CTRL, λ = −2.2(1.0) for MCI-nc, λ = −3.2(1.2) for MCI-co344

and λ = −4.0(1.5) for AD (λ results are calculated on implementation D).345

In order to better specify the expected levels of relative annualized loss in346

potentially pathological subjects, the CTRL cohort is compared to an ‘AD-347
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like’ cohort consisting of subjects with AD together with subjects who sub-348

sequently developed AD (MCI-co). Using implementation D, we selected349

three cut-offs relevant for accuracy (acc), sensitivity (sens) and specificity350

(spec): λ = −2.19 (sens = 0.83, spec = 0.85, acc = 0.84, maximum accuracy351

criterion); λ = −1.28 (sens = 0.32, spec = 0.95, acc = 0.69); λ = −2.94352

(sens = 0.95, spec = 0.69, acc = 0.80). In this example the area under353

the ROC curve is AUC = 0.90 and a graphical representation of the two354

distributions is shown in figure 6.355

3.4. Combined markers356

The benefit of adding the trend information Λ to the average baseline357

volume v̂ is summarized in table 4 and graphically shown in figure 5. In each358

comparison, we marked whether the combined information fared significantly359

better than either factors. Considering a total of 3 (group comparisons) × 4360

(implementations) × 2 (laterality) = 24 tests, adding atrophy rate informa-361

tion to the baseline volume resulted in a significantly higher AUC (compared362

to that of the volume alone) in 14 tests.363

3.5. Sample size calculation364

To determine the power of the different implementations in detecting365

effects on hippocampal volume loss over time we estimated the sample size366

needed in a hypothetical treatment trial to measure a 25% slowing in Λ with367

α = 0.05 significance level and a power 1− β = 0.8.368

Using the formula369

n =
2σ2

(
z1−α/2 + z1−β

)2
δ2
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we chose δ = 0.25Λ where Λ = (ΛR+ΛL)/2 is the bilateral mean atrophy rate370

of the corresponding clinical group, σ their standard deviation and z values371

are z1−α/2 ' 1.96 and z1−β ' 0.84 respectively. For each patient group, the372

estimated sample sizes are displayed in table 5.373

4. Discussion374

In this study we evaluated the impact of using the longitudinal informa-375

tion deriving from serial MRI scans as an added value compared to ‘spot’376

baseline scans in patients with MCI or AD as compared to controls. The377

assumption was that atrophy rate with time could be a neurodegeneration378

marker independent of single atrophy measures. We showed that with a 2-y379

observation time this is true only if adequate post-processing is performed.380

On the other side, this means that 2-y repeated measures are useless when381

only a raw estimate of atrophy rate is performed ‘on the fly’, that is with a382

simple algorithm that does not embed the longitudinal information.383

We compared four possible algorithmic implementations of a volume384

marker in a longitudinal context, where the longitudinal information is taken385

into account with different degrees both in the pre-processing and post-386

processing steps. The first implementation (A) is considered for comparison387

only.388

The longitudinal information is translated into a simple measure Λ, which389

estimates the hippocampal volume drift (atrophy rate) in time; Λ is then used390

as a biomarker – alone and in combination with the average baseline volume391

v̂ – to assess its potential in discriminating among relevant clinical groups.392

All procedures are fully automated and implement an internal quality393
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check.394

Conceptually, the most similar work to this one is Wolz et al. (2010b) –395

where the longitudinal (i.e. time) information is embedded in the segmenta-396

tion workflow – and partially similar to McEvoy et al. (2011). We conclude397

that clinical insight into AD development of subject initially classified as398

MCI can be derived from quantitative measures processed simultaneously399

from multiple time points, and that these measures are more consistent than400

single-time point ones.401

To further reduce the atrophy rate uncertainties we could have used sev-402

eral more time points. This however would be an impractical protocol to403

implement outside clinical trials. Similarly, using two time points only (i.e.404

0 – 12m) would result in a larger error and a lower discrimination power405

(Wolz et al., 2010b).406

4.1. Quality control407

All procedures need a stable segmentation, which in turns depends on408

an accurate VOI placing. Segmentation accuracy with respect to the expert409

tracing is comparable to results in literature: the LEAP method (Wolz et al.,410

2010a) DICE index ' 0.85; adaboost, ada-SVM and Freesurfer (Morra et al.,411

2010) Precision ' 0.71 − 0.84, Recall ' 0.73 − 0.87; and in Lötjönen et al.412

(2011) DICE index ' 0.87.413

In this study the supplemental Revoi and Remask statistics are used as414

warning indicators of outliers as they compare a new VOI and related seg-415

mentation with the reference templates. If the templates do not sample the416

population extensively enough we may incur in extreme statistic values. In417
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the particular example shown in figure 3c, the VOI and its segmentation are418

not necessarily outliers per se; they are rather given a low rank due to the419

lack of similar templates. In facts, while Revoi captures structure other than420

the hippocampus, Remask refers to the segmentation alone, therefore its score421

is below the average.422

Other VOIs with significant and widespread atrophy dwell in the lower423

Re region for the same reason. Although these cases might bear little clinical424

significance, an extension of the template database would favourably impact425

the finding of true outliers.426

In the case of the purely noisy image (blank test) of figure 3a, Remask427

value still ranks among acceptable numbers while Revoi = 0; this is explained428

because GDIseg is based on atlas deformation and the transformation con-429

straints on the deformation field (such as the use of the demons algorithm430

and the smoothing parameters) are weakly affected by noise. In addition, the431

use of the intra-subject template and the averaged deformation field avoid432

the pitfalls of overestimating the changes in the atrophy rate (Thompson and433

Holland, 2011).434

4.2. Reproducibility435

The standard deviations in implementation A and B are rather conspicu-436

ous, that is in comparison to the volume change one would want to measure437

to discriminate among cohorts. Implementation C has a definitely lower438

mark, but this value is heavily biased by the re-normalization algorithm and439

doesn’t represent the true variability. Rather, it represents the error due to440

the threshold algorithm when applied to the averaged probability matrix aij.441
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The value of σvD though reflects the true difference between the baseline442

and the repeat scan, due to acquisition and processing noises. That is, in443

implementation D the probability atlas is fixed and there is no threshold step444

involved.445

The difference among implementations can also be appreciated with the446

normal probability plot for ∆ (supplemental figure S2), where deviation from447

the Gaussian distribution is rather marked for implementation A and B.448

Comparison to literature shows that results similar to the basic imple-449

mentations A and B are obtained in Maclaren et al. (2014) (with a total450

coefficient of variation of ' 3% on the hippocampus and using Freesurfer).451

452

4.3. Further methodological considerations453

In ADNI, subjects were scanned at different sites and with different MRI454

equipment. Besides, follow-up images could have been acquired with scanner455

models other than those used at baseline.456

The ADNI protocol goes a great length in assuring reproducibility among457

sites (Jack et al., 2008) and in addition, other studies showed that ADNI-like458

acquisitions and optimized analysis procedures (longitudinal processing in459

particular) are robust across sites, regardless of MRI system differences (see460

Jovicich et al. (2013) for a detailed analysis). There are though fewer studies461

combining intra-site and inter-site reproducibility – i.e. measuring the same462

participants on a variety of scanners – a condition which is relevant in the463

longitudinal paradigm. In their study, Reig et al. (2009) found that pooling464

of different sites data can add a significant error compared to intra-site vari-465

24



ability, particularly in single-modality (T1) segmentations.466

We looked for subjects whose record showed the use of different MRI ma-467

chines. A survey of the CTRL cohort indicated that 42 out of 148 subjects468

(' 28%) were acquired with different scanner models at some follow-up visit469

(with respect to the MRI system used at baseline).470

The potential added variability was gauged with a direct comparison of the471

statistics using the non-parametric Kolmogorov-Smirnov test. The applica-472

tion to the sample of 106 CTRL (same scanner model across longitudinal473

measures but different cross-sectionally) and 42 CTRL subjects (different474

scanner model both in longitudinal measures and cross-sectionally) found no475

significant difference the Λ statistics, regardless of the implementation.476

Nonetheless, the use of different models in the longitudinal acquisition could477

show up in the linear fit residuals ξ (cfr. section 2.5.3). Indeed, testing478

the ξ distributions revealed a significant alteration in implementation A only479

(p < 0.001), which would suggest that the adoption of an intra-subject tem-480

plate (used in B, C and D) is sufficient to tame the inter-scanner repro-481

ducibility uncertainty. This finding agrees with Jovicich et al. (2013), where482

the introduction of longitudinal methods for volumes extraction provides a483

lower and more homogeneous reproducibility error across different scanners.484

Another point is the role of laterality. In this study we treated left and485

right hippocampi equally and separately to avoid any laterality bias in the486

results.487

The significance of a performance superiority of the left side was investigated488

by comparing the R and L AUC values with a t-test, regardless of the im-489
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plementation and cohort comparison, grouping only by feature (v̂, Λ and490

(v̂,Λ)). For instance, we tested the pooled set of AUC values for v̂R vs. v̂L491

taking all implementations (A-D) and cohort comparison shown in table 3492

(i.e. 12 values). The one-sample t-test was used to assess whether the mean493

of the difference AUCL-AUCR was compatible with zero.494

Results indicated that the R/L AUC difference was significant for v̂L > v̂R,495

(p < 0.001), moderately significant for ΛR > ΛL (p < 0.01) and not signifi-496

cant for (v̂,Λ).497

The left hippocampus is usually smaller but AD prediction accuracy is less498

clearly tied to laterality, even though the left side seems to have a promi-499

nent role as discussed in Apostolova et al. (2010); Okonkwo et al. (2012).500

Our findings are in keeping with a meta-analysis pooling together data from501

several studies, showing that left hippocampal atrophy is usually more se-502

vere than the right one (Shi et al., 2009) and with Frankó and Joly, Olivier503

(2013), where the volume loss in MCI and AD was significantly lower in the504

left hemisphere than in the right one.505

Speculation on the weight of laterality in AD prediction is outside the scope506

of this study. There are though important physiological findings linking the507

hippocampal laterality to potential mechanisms of neurodegeneration. In508

a series of elderly subjects with cognitive disturbance of increasing degrees509

of severity, a serum marker of oxidative stress was shown to directly corre-510

late with glucose metabolism of the left temporal lobe – including medial511

structures – but not of the right one (Picco et al., 2014). Also, the multi-512

functional mitochondrial enzyme 17β-hydroxysteroid dehydrogenase type 10,513

with high-affinity binding to amyloid-beta peptides, is more expressed in the514
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left than in the right hippocampus in patients with AD but not in patients515

with vascular dementia (Hovorkova et al., 2008).516

That said, the bilateral average usually offers a more robust estimator. In517

all implementations the standard deviation of the bilateral average (σRL ) is518

smaller than the mono-lateral counterparts. The relative measure 2σRL/(σR+519

σL) ranges in 92%− 96% for v̂ and 80%− 90% for Λ. This suggests that in-520

formed clinical use of atrophy rate should take into account both hippocampi,521

as we did in table 5 and in figure 6.522

4.4. Longitudinal trend and combined markers523

The annualized volume loss (atrophy rate) is in par with literature results524

(Barnes et al., 2009; Leung et al., 2010). Although other authors report differ-525

ent average values (Morra et al., 2009; Wolz et al., 2010b; Schuff et al., 2009),526

these values do not contrast with our findings due to the relatively large re-527

ported confidence intervals and possibly because of a potential difference in528

region definition, subjects selection and methodology, as also discussed in the529

Barnes et al. (2009) meta-analysis.530

In terms of discrimination power among groups, raw performance of vol-531

ume is comparable to Lötjönen et al. (2011) (CTRL / AD AUC= 0.89) and532

atrophy rate relates to those in Wolz et al. (2010b) where their method de-533

livers AUC= 0.88− 0.92 for CTRL vs. AD, AUC= 0.83− 0.86 for CTRL vs.534

MCI-co, and AUC= 0.71− 0.72 for MCI-nc vs MCI-co; numbers that agree535

with our integrated implementation D within the CL.536

To be clinically relevant, the use of repeated scans should improve on537

clinical group discrimination, and with respect to the baseline volume infor-538
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mation.539

Results indicate that we can get substantially more insight only using540

implementation D, which comes at the expense of a partial segmentation, that541

is one that does not deliver a tracing around the anatomical structure. This542

can be understood if we consider that in hippocampal segmentation literature543

near-boundary voxels are those who carry the burden of uncertainty (in our544

study, the threshold applied to the probabilistic map is the major source of545

error). Giving up the tracing we (re-)discover that the probabilistic map546

does carry a significant information.547

If we compare the effect of the implementation on the longitudinal and548

baseline values while fixing the cohort comparison and feature (table 3),549

we find evidence that the use of an intra-subject template (impl. B) is550

not enough to make the difference. The decisive approach is the unified551

segmentation, in either variant (C and D).552

In clinical practice physicians are used to evaluate basal information on553

patient status, generate diagnostic hypothesis, plan treatment and then eval-554

uate response in the longitudinal assessment. Moreover the trend observed555

in longitudinal assessment adds value to confirm or put in discussion the556

original assumption. Theoretically, this longitudinal evaluation sounds more557

robust because intra-subject variance due to confounders is smaller than558

between-subject variance in cross-sectional data. Hence a longitudinal mea-559

sure of hippocampal atrophy could in principle be more informative than a560

spot measure whenever taken during the patient history.561

Translated into practice this would be similar to the advantage to have562
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– for instance – serial MMSE scores during patient follow-up as a measure563

of disease worsening, but based on a solid neurodegeneration marker. The564

pathological basis of our assumption is the ongoing neurodegeneration pro-565

cess in MTL structures during the early stages of the disease leading to566

progressive atrophy that can be precisely detected by adequate MRI mea-567

sures.568

As closing remark, the shorter the follow-up time, the higher the need for569

sophisticated analysis tools. Probably a longer (say 5 years) period would al-570

low simpler methods to detect significant changes, although that would void571

their need as the information would overlap with more direct and simpler572

approaches. Restricting the investigation to the time-varying hippocampal573

volume, it would be interesting to know whether this measure (on 2-y pe-574

riod and with 1.5T images) has reached an upper limit in terms of added575

value. This could perhaps be challenged by a longitudinal extension to the576

harmonized hippocampal segmentation study.577

4.5. Study limitations578

We considered 1.5T images only. Surely 3T images could provide better579

contrast and potentially a more reliable segmentation (Chow et al., 2015).580

In practice though, this and other studies (Lötjönen et al., 2011; Macdon-581

ald et al., 2014) show that the advantages of 3T images do not necessarily582

translate into a decidedly smaller variance in test/re-test conditions. Besides,583

clinical practice and still many trials must cope with 1.5T scanners. These584

reasons would qualify the present study as delivering a lower bound, on which585

the use of better scanners and acquisition protocols should only improve.586
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In addition, the use of a preliminary release (100 out of the now available587

135 labels) of the cross-sectional gold-standard tracings – without a longitu-588

dinal benchmark – did not provide a hint to the longitudinal performance589

achievable by a given algorithm. Perhaps a further evolution of the hip-590

pocampal protocol study could help in assessing new methods cross-sectional591

as well as longitudinal performance.592

Another point arises from the use of the hippocampal volume and its593

derivative marker Λ, as they do not necessarily implement the most sensi-594

tive measure of early AD. For instance, more sophisticated approaches based595

on local geometry measures could be more informative (see Frankó and Joly,596

Olivier (2013)). Still, the volume is a rather straightforward and robust mea-597

sure which more easily serves the purpose of confrontation among algorithms598

and studies. In addition, the hippocampal volume is now a widely accepted599

marker among clinicians.600

We must also consider that the cohorts in this study consist of rather601

elderly subjects. It is conceivable that younger subjects (i.e. 40-60 y) exhibit602

smaller longitudinal variability than their elderly counterparts. In this case,603

the distinction between healthy controls and a population at risk could be604

made more substantial and a longitudinal marker would be instrumental.605

Further studies are needed on relatively young subjects.606
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Table 2: Mean Λ values.

CTRL MCI-nc MCI-co AD

R

A -75.90 (84.62) -80.04 (89.81) -135.80 (93.15) -135.54 (90.59)

B -72.60 (67.46) -96.99 (69.46) -129.63 (87.30) -140.09 (83.22)

C -69.32 (47.40) -98.39 (66.19) -131.29 (67.50) -154.58 (73.46)

D -76.27 (23.40) -91.96 (37.74) -124.41 (45.34) -143.10 (54.22)

L

A -61.83 (79.76) -73.76 (96.06) -111.40 (88.74) -108.91 (85.86)

B -56.48 (53.35) -61.14 (86.43) -95.81 (72.96) -101.47 (91.23)

C -59.82 (43.71) -72.01 (54.72) -113.99 (59.09) -133.65 (60.39)

D -63.34 (25.19) -77.70 (40.32) -108.19 (44.21) -122.80 (47.32)

Annualized volume change (Λ) in mm3/year (mean and standard deviation).
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Table 3: Performance (AUC).

Feat. Impl. CTRL/MCI-nc CTRL/MCI-co CTRL/AD

v̂R

A 0.71 (0.65 – 0.74) 0.79 (0.75 – 0.83) 0.86 (0.81 – 0.89)

B 0.71 (0.65 – 0.75) 0.79 (0.75 – 0.83) 0.85 (0.81 – 0.88)

C 0.71 (0.66 – 0.77) 0.82 (0.77 – 0.85) 0.87 (0.83 – 0.90)

D 0.71 (0.66 – 0.76) 0.82 (0.78 – 0.85) 0.87 (0.83 – 0.90)

v̂L

A 0.72 (0.67 – 0.78) 0.82 (0.79 – 0.86) 0.88 (0.85 – 0.91)

B 0.72 (0.68 – 0.77) 0.83 (0.78 – 0.86) 0.88 (0.83 – 0.91)

C 0.73 (0.68 – 0.78) 0.84 (0.80 – 0.87) 0.89 (0.85 – 0.92)

D 0.73 (0.67 – 0.77) 0.84 (0.80 – 0.87) 0.89 (0.85 – 0.92)

ΛR

A 0.52 (0.46 – 0.57) 0.69 (0.64 – 0.73)∗ 0.69 (0.63 – 0.73)∗

B 0.60 (0.55 – 0.66) 0.71 (0.66 – 0.75)∗ 0.73 (0.68 – 0.78)∗

C 0.64 (0.58 – 0.69) 0.78 (0.73 – 0.82) 0.84 (0.80 – 0.88)∗

D 0.63 (0.57 – 0.69) 0.83 (0.79 – 0.87) 0.89 (0.85 – 0.92)

ΛL

A 0.55 (0.49 – 0.60)∗ 0.68 (0.63 – 0.73)∗ 0.66 (0.60 – 0.71)∗

B 0.54 (0.47 – 0.59)∗ 0.68 (0.63 – 0.73)∗ 0.67 (0.62 – 0.73)∗

C 0.56 (0.50 – 0.61) 0.77 (0.72 – 0.80) 0.84 (0.79 – 0.87)

D 0.60 (0.55 – 0.67) 0.82 (0.77 – 0.86) 0.88 (0.84 – 0.91)

(v̂,Λ)R

A 0.68 (0.62 – 0.74) 0.83 (0.79 – 0.87)∗ 0.89 (0.85 – 0.91)

B 0.71 (0.66 – 0.77) 0.83 (0.78 – 0.86)∗ 0.89 (0.85 – 0.91)

C 0.71 (0.66 – 0.76) 0.85 (0.81 – 0.88) 0.90 (0.86 – 0.93)

D 0.70 (0.64 – 0.76) 0.87 (0.84 – 0.90) 0.92 (0.88 – 0.94)

(v̂,Λ)L

A 0.72 (0.66 – 0.76) 0.85 (0.81 – 0.88) 0.89 (0.86 – 0.92)∗

B 0.69 (0.64 – 0.75) 0.84 (0.81 – 0.88) 0.88 (0.84 – 0.91)∗

C 0.70 (0.65 – 0.76) 0.85 (0.82 – 0.88) 0.91 (0.87 – 0.93)

D 0.71 (0.66 – 0.75) 0.88 (0.84 – 0.90) 0.93 (0.90 – 0.95)

Area under the ROC curve. Numbers within parentheses are the 95% con-

fidence interval. The ‘∗’ indicates significant difference (p < 0.001) between

implementation D and A, B or C for each respective feature and cohort

comparison.
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Table 4: Performance comparison.

Impl.
CTRL / MCI-co CTRL / AD MCI-nc / MCI-co

v̂ Λ (v̂,Λ) v̂ Λ (v̂,Λ) v̂ Λ (v̂,Λ)

R

A 0.79 0.69 0.83 ∗ † 0.86 0.69 0.89 † 0.58 ‡ 0.67 0.66 ∗

B 0.79 0.71 0.83 ∗ † 0.85 0.73 0.88 † 0.58 ‡ 0.63 0.64

C 0.82 0.78 0.85 † 0.87 0.84 0.90 † 0.62 0.64 0.66

D 0.82 0.83 0.87 ∗ † 0.87 0.89 0.92 ∗ 0.62 0.71 0.72 ∗

L

A 0.82 0.68 0.85 † 0.88 0.66 0.90 † 0.61 0.62 0.66

B 0.83 0.68 0.84 † 0.88 0.67 0.88 † 0.61 0.63 0.67 ∗

C 0.84 0.77 0.85 † 0.89 0.84 0.91 ∗ † 0.64 0.71 0.71 ∗

D 0.84 0.82 0.88 ∗ † 0.89 0.88 0.93 ∗ † 0.64 0.72 0.73 ∗

Performance (AUC) comparison for v̂, Λ and the combined marker. Signif-

icant changes (p < 0.001) are marked as ‘∗’ for the test (v̂,Λ) vs. v̂; ‘†’ for

the test (v̂,Λ) vs. Λ. ‘‡’ shows the AUC which are not significantly different

from 0.5.
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Table 5: Sample size calculation.

Impl. CTRL MCI-nc MCI-co AD

A 267 (210 – 357) 268 (211 – 359) 88 (69 – 117) 85 (67 – 114)

B 153 (120 – 204) 169 (133 – 227) 77 (61 – 104) 101 (79 – 135)

C 91 (72 – 122) 103 (81 – 138) 58 (46 – 78) 42 (33 – 57)

D 25 (20 – 33) 45 (35 – 60) 33 (26 – 44) 33 (26 – 44)

Estimated sample sizes for both arms that would be needed to detect a 25%

reduction in atrophy in all clinical cohorts and implementations. Numbers

are given at fixed α = 0.05 and for power 1− β = 0.8 (0.7− 0.9).

47



Figure 1: Positioning and content of a sample hippocampal VOI.
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Figure 2: Schematic flowchart of the four implementations. The four MRI drawings

represents the baseline, repeat, month 12 and month 24 scans. In implementation A

(section 2.4.1) all four images follow a separate preprocessing and segmentation path. In

implementation B (section 2.4.2) an intermediate image H is generated and preprocessing

is performed on it; parameters are then mapped back onto the original images to extract

the VOIs. In implementation C (section 2.4.3) the VOIs extracted with the B procedure

are segmented together with atlas re-normalization. Implementation D (section 2.4.4)

avoids the shape segmentation and delivers an equivalent volume only.
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Figure 3: Left: reliability scatter plot over VOIs (x-axis) and hippocampal masks (y-axis).

Each circle represents a subject. Lower scores are an indication of either improper image

processing or biased template sampling. a,b and c are outliers. The dotted outline shows

the subject who underwent visual inspection. Right: coronal and sagittal view of the three

outlier VOIs. The red outline shows the GDIseg hippocampal tracing.
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R

L

Figure 4: Distribution of Λ for the right hippocampus (top) and left hippocampus (bot-

tom) on Controls (CTRL), Mild Cognitive Impairment non-converters / converters (MCI-

nc/MCI-co) and Alzheimer’s Disease (AD) subjects. The median and its 95% conf. interval

are marked with a black dot and triangles on each bar. The related ROC curves and area

under the curves (AUC) are shown on the right plots
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R

L

Figure 5: Baseline volume v̂ and combined markers (v̂,Λ) performance comparison and

implementation dependence. Area under the ROC curve (AUC) is shown for CTRL vs.

MCI-co (full line) and CTRL vs. AD subjects (dotted line).
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Figure 6: Boxplot of the bilateral average of the relative annualized loss lambda on the

CTRL and the ‘AD-like’ (AD + MCI-co) cohorts. Vertical lines shows three possible cut-

off values: maximum accuracy (solid line), 95% sensitivity and 95% specificity (dashed

lines). The median and its 95% conf. interval are marked with a dot and triangles on each

bar.
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Appendix A. Segmentation algorithm859

The GDIseg algorithm is based on a set of manually traced segmentations860

by expert and certified readers from the HarP project. At the time of this861

writing, 100 manual tracings were made available (58 1.5T and 42 3T)862

Reference HarP images were processed as in section 2.2. In addition we863

extracted the VOIs from the manually segmented masks, using the same864

coordinates found for extracting the VOIs from the MRI.865

We refer to the set of VOIs from the HarP MR images as Template866

Boxes (TBs) and the set of the corresponding segmented masks as Template867

Masks (TMs), both naturally coming with the right (R) and left (L) label.868

A pictorial overview of the segmentation process is shown in supplemental869

figure S1.870

For each new segmentation, the MRI goes through the pre-process steps871

up to the extraction of both hippocampal VOIs (target VOIs). Subsequently,872

each TB is mapped onto the target VOI with a deformable registration873

transform, implemented in ITK with the “Diffeomorphic Demons” algorithm874

(Thirion (1998) and http://hdl.handle.net/1926/510). The resulting de-875

formation field - one for each TB - is applied to the corrensponding TM .876

At this point of the procedure, we have 100 deformed TBs (δTBs) and877

TMs (δTMs) to map the target VOI (L and R VOIs are run separately).878

Naturally, the more similar the original TB is to the target VOI, the lesser879

deformation it experiences and the more it ideally maps onto the target VOI.880

A probabilistic atlas A is generated by weighted average of all deformed881

TMs, followed by a normalization. All VOIs, TBs, TMs and their deformed882
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counterparts (δTBs, δTMs) have the same dimensions and number of voxels,883

so that we can write884

A =
Nt∑
i=1

wi δTMi

where Nt is the number of templates.885

In order to find the weights wi, the TBs are ranked according to the Pear-886

son correlation coefficient r with the target VOI. The correlation coefficient887

is not computed over the whole volume of the VOI, but on a subset of voxels888

corresponding to the volume surrounding the TM . The detailed procedure889

consists in three steps: a) dilation of the the binary TM (distance of 3mm),890

b) mapping of the the dilated TM onto both the target VOI and the TB891

(voxel selection), c) computation of the correlation coefficient r between the892

intensities of both volumes over the selected voxels.893

This procedure is applied to each TB using the related TM as initial894

mask to dilate. The dilation step is instrumental to capture the intensity895

gradient of the hippocampal borders, thereby ranking TBs according to their896

similarity to the target VOI more effectively. If we had used the whole VOI897

volume, the correlation coefficient would have been swayed by intensities898

coming from tissues unrelated to the hippocampus.899

The correlation rank is used to compute the weights in the TMs average,900

under the hypothesis that it contains information on the “true segmentation”.901

In this sense, correlation values are used as proxies for the segmentation902

similarity.903

Since we do not know the target VOI true segmentation, we use a sur-904

rogate target δTB∗ - that is the deformed TB with the best rank - in place905
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of the target VOI, with the benefit that the true segmentation δTM∗ is now906

available.907

Weights are thought to be a simple exponential functions of the correla-908

tion coefficient, they are computed by minimizing the distance m over the909

free parameter s (s ≥ 0)910

m =
∑

all voxels

δTM∗ −

N∑
i=1,i 6=i∗

wi δTMi

N∑
i=1,i 6=i∗

wi


2

911

wi =

(
ri

maxi(ri)

)s
where N is the number of templates, i∗ is the index of the surrogate tar-912

get δTB∗ and ri are the correlation coefficients now computed between the913

surrogate target δTB∗ and the TBs.914

Once we find the optimal value of the parameter, we have a relationship915

between the correlation coefficients and the weights, which is then used to916

construct the probabilistic atlas.917

The weight function optimizes the atlas generation by selecting TBs with918

a non-linear proportionality relationship. This step is necessary to the algo-919

rithm accuracy as a simple average (equal weights, s = 0) of the deformed920

masks typically results in smeared out atlas, not always able to capture the921

subtle anatomical and intensity differences in the target VOI.922

The optimization is carried out for each target VOI, so that parameter923

values are adapted to the target. We found that the weight function wi is924

usually rather steep (s� 1), that is only a small number of δTMs contribute925
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to the probabilistic atlas.926

The last step takes the probabilistic atlas A and applies a threshold t on its927

intensity values to convert it to a binary mask: A(t) = {xi such as A(xi) ≥ t}.928

The optimal threshold is defined as929

t∗ = max
t
{ 1

n

∑
xi∈∂A(t)

[∇A(xi)]
2}

where ∇A is the 3D-gradient of the atlas A, xi is the i− th voxel, ∂A(t) is930

the boundary of the thresholded atlas, n is the number of voxels xi belonging931

to ∂A(t). That is, the optimal threhsold is the intensity value t∗ that max-932

imises the overlap of the thresholded atlas boundary onto the atlas squared933

gradient.934

We have found that the maximization over the gradient gives superior935

performance - in terms of DICE index - compared to the simple intensity936

rule937

t∗ =
1

2
max
xi

A(xi)

The thresholded atlas naturally yields the hippocampal volume v which938

is used as base measure in this study.939

The performance of the GDIseg procedure was tested on the same HarP940

dataset using a 20-fold cross-validation method (kfcv) and it was evaluated941

by three standard indexes: DICE (Dc, or F1-score), Recall (Rc, or sensitiv-942

ity) and Precision (Pr, or positive predictive value). Results are shown in943

supplemental table S2.944

Since the 100 images from the HarP database consisted in 58 1.5T and 42945
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3.0T MRI, we show the performance by field strength, demonstrating that946

the segmentation algorithm is not affected by the B-field intensity.947
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Table S2: Cross-validation performance.

Metric 1.5T+3.0T 1.5T 3.0T

Dc 0.85 (0.82 – 0.88) 0.85 (0.83 – 0.87) 0.86 (0.81 – 0.89)

Pr 0.87 (0.80 – 0.92) 0.87 (0.80 – 0.91) 0.87 (0.76 – 0.93)

Rc 0.85 (0.79 – 0.90) 0.84 (0.79 – 0.89) 0.85 (0.76 – 0.91)

Dice (Dc), Recall (Rc) and Precision (Pr) measured with a k-fold cross-

validation method on the 100 HarP manual tracings. Statistics are calculated

on the right and left hippocampi together, for a total of 200 (1.5T+3.0T),

116 (1.5T) and 94 (3.0T) segmentations. Within parentheses are the 5% and

95% confidence level values.
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Figure S1: Segmentation algorithm flowchart. TB set: reference VOIs (template boxes);

TM set: manually traced reference segmentations (template masks); δTB, δTM: reference

boxes and labels after the deformable registration; δTB*, δTM*: surrogate box and mask,

i.e. the transformed template box and mask which has the highest correlation rank with

the VOI.
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Figure S2: Normal probability plot of the reproducibility error ∆. Dotted lines show the

best gaussian distribution fitted over the experimental data. Deviation from the straight

line indicates non-gaussian behaviour.
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