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1.	I ntroduction

Modelling car purchase decisions using discrete choice models (DCMs) has a long tradition. Howev-
er, with the progress obtained with the electrification process of the conventional cars new interesting 
changes appear in the European market. 

Hybrid, plug-in and battery electric vehicles are the new entrants in the car market with gradually 
growing market shares, and with the hydrogen fuel cell vehicles in the process of going from the concept 
stage to the manufacturing one. All these engine technologies, together with the already existing Com-
pressed Natural Gas vehicles (bi-fuel CNGVs) and Liquefied Petroleum Gas Vehicles (bi-fuel LPGVs) 
ones, are what is called as Alternative Fuel Vehicles (AFVs).

Achieving substantial market penetration of AFVs requires large investments in infrastructure for 
cars and fuels production, and an expansion of the network of refuelling facilities (MacLean et al., 2004). 
So, an urgent challenge is to evaluate the willingness of individuals to adopt, buy and use low-emission 
cars, and their preferences towards specific car features (e.g. car size, refuelling distance, purchase 
price). This is important not only for both car producers and manufacturers and, more in general, the 
automotive sector, in guiding their car design developments, but also for policy makers, to implement 
suitable policy measures aimed to efficiently promote AFVs’ expansion. Wider use of AFVs requires 
an improved understanding of consumer needs, attitudes and desires, as well as consumer willingness 
to change vehicle purchase and travel behaviour. In this direction, recently the European Commission 
funded the Green eMotion1 project with the aim of: setting a framework for pan-European interoperable 

*  The views expressed are purely those of the author and may not in any circumstances be regarded as stating an official 
position of the European Commission
1   The Green eMotion project was officially launched by Siim Kallas, Vice President of the European Commission and Com-
missioner for Transport, at a high-level kick-off meeting in Brussels on 31st of March 2011. The project had a total budget of 
€42 million and was funded by the European Commission with €24 million.
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electromobility which is commonly accepted, user-friendly and scalable; integrating smart grid devel-
opments, innovative ICT solutions and different types of EUs various urban mobility concepts; ena-
bling an European wide market place for electromobility to allow for roaming; and, providing a unique 
knowledge base. The project was also aimed to estimate demand models to contribute understanding 
the reasons for the low penetration of the electric vehicles in three different countries in order to provide 
recommendations on how to boost the potential demand for electric vehicles (Cherchi et al., 2015).

Compared with other neighbouring countries, Italy appears to be lagging behind in the penetration 
of the AFVs, though having high air and noise pollution levels (with daily limits frequently overcome 
in the most industrialized regions), a strong economic dependence from oil imports, the highest index 
of motorization in the world after USA (60 million of people, 37 million of passenger cars). Only 
bi-fuel CNGVs and bi-fuel LPGVs have recently gained relevant market shares in some regions of the 
country. Consumer willingness to change travel behaviour and accept different types of vehicles and 
driving patterns is an important area of uncertainty (IEA, 2011). Public acceptance of AFVs is a key 
factor determining the ultimate success/failure of their technologies. On this, Valeri and Danielis (2015) 
calibrating a mixed error component logit model estimated the potential market shares of AFVs based 
on stated preference car choice data, and using a Monte Carlo simulation model, they evaluated under 
different scenarios, the Italians’ reactions of potential policy measures aimed to boost the AFVs’ diffu-
sion. Cherchi et al. (2015) estimating hybrid choice models investigated the role of individuals’ attitudes 
(such as environmental concern, technological interest and appreciation car feature, scepticism, and 
pro-environmental attitude) on car purchase decisions. 

In this paper, we estimate Mixed Logit models under a Bayesian Hierarchical framework (called, 
HBML model). Our model permits us to take account of possible dependence of the car attribute ran-
dom parameters on individual characteristics, like e.g. age and gender. Moreover, alternative-specific 
parameters and correlation across alternatives can be added straightforwardly to the model. Given the 
complexity of the models employed, the standard approach to obtain an approximation of the joint pos-
terior distribution of both the model parameters and hyper-parameters is to use MCMC methods. The 
most commonly used are the Gibbs sampler and the Metropolis-Hastings (M-H) algorithm (as done for 
instance by Train 2002, Daziano 2015, Scaccia and Marcucci 2010). These methods, particularly Gibbs 
sampler, however, tend to be highly inefficient when applied to non-linear and hierarchical models as 
our HBML model. As a result, a huge number of sweeps of the MCMC algorithm is required to obtain 
a reliable approximation of the joint posterior distribution and marginals. To our knowledge, in the field 
of purchase behaviour for conventional and alternative fuel cars, this paper uses for the first time an 
alternative approach to Gibbs sampler and M-H algorithm, based on Hamiltonian Monte Carlo (HMC) 
methods (Duane et al., 1987; Neal, 1994, 2011). The HMC sampler accelerates both the convergence to 
the stationary distribution and the subsequent parameter exploration by exploiting the information com-
ing from the gradient of the log probability function. Using a novel package of the R software, called 
rstan, we specify and estimate three flexible random parameter logit models through which we show 
individuals’ sensitivity towards the tested attributes.

The paper is organised as follows: a synthetic review of the car purchase literature is presented in 
Section 2; the Stated Preference (SP) experiment and the methodology used are described in Section 3, 
while the econometric results are reported and discussed in Section 4. Section 5 proposes conclusions 
and future extensions.

2.	L iterature review of car choice

The first Bayesian applications to DCMs appeared at the beginning of the early nineties, applying the 
Bayesian approach to the conditional and nested logit models (Koop, Poirier, 1993, Poirier, 1996), using 
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the Gibbs sampler (Gelfand, Smith, 1990) and data augmentation to perform Bayesian inference for the 
MNL probit model (Tanner, Wong, 1987) and binary and ordered choice models (Albert, Chib, 1993)2. 

Table 1 shows an overview of Bayesian DCM applications in the car choice literature. 
Daziano and colleagues analysed Canadian consumers’ choices for AFVs estimating hybrid choice 

models with a Bayesian approach (Daziano 2010, 2015, Daziano, Bolduc 2009, 2013a, 2013b). Using 
data from a survey conducted in 2002 by the Energy and Materials Research Group, Simon Fraser 
University (EMRG) and modelling the data in R language, they performed hybrid Kernel Gibbs mod-
els (Daziano 2010), to explain environmental preferences in a private vehicle choice context. Overall, 
they found that the latent variable of the environmental concern enters very significantly and positively 
into the choice model specification. In fact, reporting the highest effect for the hydrogen fuel cell vehi-
cles, followed by AFVs, and then by hybrid vehicles, the environmental concern boosts the choice of 
alternative fuel technologies. Recently, Daziano (2015) implemented a structural choice model with a 
multinomial probit kernel and discrete effect indicators to study continuous latent segments of travel be-
havior and designing a vehicle purchase model. Exploiting five underlying latent attitudes to determine 
segments of pro-transit, pro-environment, pro-safety, cost-conscious, and pro-performance consumers, 
he found interesting results such as cost-conscious consumers appear as having a continuous sensitivity 
to changes in travel and fuel costs. This pattern of valuation of changes in fuel costs are reflected in an 
implicit discount rate of future energy savings – which is a measure of the energy paradox – that slight-
ly increases with income. In addition, consumers that appreciate safety exhibit a lower probability of 
choosing not only hydrogen cars, but also hybrids. 

Using 2002-2006 new midsize sedan aggregate sales data in US, Haaf (2014) applied a Bayesian 
approach to different Mixed Logit (ML) models (correlated mixed logit versus independent mixed logit) 
to calibrate private vehicles’ market shares in a Matlab environment. The Bayesian estimation allowed 
having better select ASC forecasting method, considering them as model parameters (draws of predicted 
ASCs are made jointly with observed coefficient draws). He found that concerning estimate uncertainty, 
the share uncertainty from predictive ASCs is greater than uncertainty from observed coefficients.

Table 1 - Literature review of Bayesian DCM studies applied to the car choice

Authors Year
Study 

context
Document type

Data 
type

Model type Estimator type
Forecasting 

analysis
Software

Daziano, Bolduc 2009 Canada Conference paper SP HCM Logit mixture kernel Yes R

Daziano 2010 Canada PhD thesis SP MNL, HCM
Gibbs sampler, discrete 
choice kernel

Yes R

Daziano, Bolduc 2013a Canada Journal paper SP HCM Gibbs sampler No R

Daziano, Bolduc 2013b Canada Journal paper SP HCM
Metropolis Hastings-
within-Gibbs sampler

No R

Haaf 2014 USA PhD thesis RP-SP ML  Gibbs sampler Yes Matlab

Daziano 2015 Canada Journal paper SP HCM, probit Kernel sampler Yes R

Notes: SP = Stated Preference, RP = Revealed Preference, HCM = Hybrid Choice Model, MNL = Multinomial Logit Model

2   For an overview of the evolution of the Bayesian approach in the DCM literature see Brownstone (2000); and for a theo-
retical comparison between a hierarchical Bayes and maximum simulated likelihood for mixed logit models see Train (2001).
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Overall, the literature survey reveals that at our knowledge the studies are very few and concentrated in 
Canada and USA. Although private car purchase choices via DCMs have a long tradition in the empir-
ical literature around the world (e.g. Lave, Train, 1979), no studies on this specific research field with a 
Bayesian approach seem to be carried out in Europe and, even less, in Italy. For the latter, it seems that 
the studies about potential demand estimation of AFVs are carried out by Valeri and Danielis (2015) and 
Cherchi et al. (2015), but with the frequentist estimation approach. Moreover, all the reviewed studies are 
mainly concentrated on estimation of hybrid choice type of model calibrated with R software on SP data.

3.	S urvey design and data

The present survey was conducted in various Italian cities (Trieste, Bologna, Pesaro), collecting ran-
domly car purchase choices with face-to-face interviews in the first half of the year 2013. 

The labelled choice experiments contain seven car alternatives: 

•	 Ford Fiesta (with a Diesel engine technology), 

•	 VW Polo (with a Gasoline engine technology), 

•	 Fiat Punto Evo (with a Bi-fuel – CNG engine technology), 

•	 Natural Power Alfa Romeo Mito (with a Bi-fuel – LPG engine technology), 

•	 Toyota Yaris (with a Hybrid – Gasoline engine technology), 

•	 Peugeot iOn (with an Electric – Owned Battery engine technology), 

•	 Renault Zoe (with an Electric – Leased Battery engine technology) (see Table 3).

These specific cars were chosen because they are very popular in Italy and representative of their fuel\
powertrain technology. They all belong to the same car segment (B segment), apart from the Peugeot 
iOn that belongs to the A segment.

Drawing from the literature, five attributes were included in the SP choice experiments: purchase 
price (€), annual operating cost (gasoline, insurance, tax, maintenance) (€), acceleration (seconds), 
range (kilometres), and refuelling distance (kilometres). 

The selected attributes were set as follows for the choice experiments: 

•	 Purchase price: -20%, Status Quo, +20%, +40%, 

•	 Annual operating cost: -20%, Status Quo, +20%, 

•	 Range: Status Quo, +20%, +40%, 

•	 Acceleration: Status Quo, -10%, -20%, and 

•	 Refuelling distance: Gasoline, Diesel and Hybrid cars (1 km, 5km, 10km); CNG and LPG cars (5km, 
20km, 50km) and Electric cars (0km, 5km, 10km).

The Status Quo attributes for each car were set equal to the Italian average values as shown in Table 2. 
The purchase price is the prevailing market price in Italy in 2013. The annual operating cost is calcu-
lated by Rusich and Danielis (2013) assuming an annual driving distance of 10,000 km. The range and 
acceleration are the ones reported by the car manufacturers. The refuelling distance is estimated based 
on the current Italian fuel distribution network.

An efficient experimental design strategy was used with four waves in order to minimize the asymp-
totic standard error (e.g. Bliemer & Rose, 2010, 2011).
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Due to time and budget constraints only 121 interviews could be collected in the first semester of the 
year 2013. Although the sample size is admittedly small, we decided not to carry out other interviews 
in 2013 and to devote more resources for the next years as new AFVs enter in the Italian car market and 
the consumers get acquainted to the new technologies.

Table 2 – Overview of the attributes-levels

Type of engine technology:
Purchase price

Annual 
operating cost

Range Acceleration
Refuelling 
distance

€ € km 0-100 km in sec. km

VW Polo 
(Gasoline):

11,900 2,081 900 13 1

Ford Fiesta 
(Diesel):

14,000 1,894 980 15 1

Fiat Punto Evo 
(Bi-fuel - CNG):

15,425 1,757 800 15 5

Natural Power Alfa Romeo Mito 
(Bi-fuel - LPG):

20,600 1,784 1,200 15 5

Toyota Yaris 
(Hybrid - gasoline):

18,650 1,920 1,000 13 1

Peugeot iOn  
(Electric – Owned Battery):

30,369 1,681 150 12 0

Renault Zoe 
(Electric – Leased Battery):

21,650 2,553 210 12 0

Table 3 - Choice task example

Car features:

Ford Fiesta 
(Diesel)

VW Polo 
(Gasoline)

Fiat Punto Evo 
(Bi-fuel - CNG)

Alfa Romeo Mito 
(Bi-fuel - LPG)

Toyota Yaris 
(Hybrid - gasoline)

Peugeot iOn 
(Electric – Own 

Battery)

Renault Zoe 
(Electric – Leased 

Battery)

Purchase price 
(€):

14,000 11,900 15,425 20,600 18,650 30,369 21,650

Range 
(km.):

980 900 800 1,200 1,000 150 210

Acceleration
 (0-100 km. in sec.):

15 13 15 15 13 12 12

Annual operating 
cost (€):

1,894 2,081 1,757 1,784 1,920 1,681 2,553

Refuelling (km.): 1 1 5 5 1 0 0

Which car would you buy?
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4.	H ierarchical Bayesian ML modelling

4.1 HBML  models specification

PRIMO PUNTO: EQUAZIONE (1) PAG. 49 C’E’ UN NOSTRO ERRORE: LA 
SECONDA EQUAZIONE DEL MODELLO SU DIESEL CAR; Acceleration D deponente 
invece che Acceleration G deponente. 
 
 
 
We estimated the following HBML model and two restricted variants of it. According to our 
specification, the i th−  interviewee, 1, ,i N= … , with 121N = , faces a choice among 7 
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where , . . .ij a i i dε :  extreme value, 1,..., , 1,...,i N j J∀ = ∀ = , a∀ ∈Ω , with  
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tasks, made under the assumption that the interviewee i chooses alternative *a ∈Ω  in choice 
task j if *

*
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The HBML model is completed by specifying a hierarchical prior for the parameters. We 
assume that the random parameters on the car attributes Purchase Price, Annual Operating 
Cost and Range for non-Electric car are all linearly affected by the individual’s gender and 
age3: 
 

(4) 
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where the error terms are mutually independent with 2

, . . . (0; )PP i PPu i i d N σ: , 
2
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, . . . (0; )R i Ru i i d N σ: . The hyper-parameters  0,PPd , 1,PPd , 2,PPd , 

0,AOCd , 1,AOCd , 2,AOCd , 0,Rd , 1,Rd and 2,Rd  are assumed to be independently and identically 
distributed 2(0;5 )N . The error standard deviations, PPσ , AOCσ and Rσ , are assumed to be i.i.d. 
half-Cauchy (0, 2.5). 

The Alternative Specific Constants (ASCs) are treated as random parameters and specified 
as follows: 
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3 The variable Age is specified as a dummy variable, assuming the value one if the respondent’s age is greater 
than 29 years and zero otherwise. 
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4.2 C omputational implementation 

Given the complexity of the models we presented, the standard approach to obtain an approxima-
tion of the joint posterior distribution of both parameters and hyper-parameters is to use MCMC 
methods. The most commonly used are the Gibbs sampler and the M-H algorithm (as done for 
instance by Train 2002, Scaccia and Marcucci 2010, Daziano 2015). These methods, particularly 
Gibbs sampler, however, tend to be highly inefficient when applied to non-linear and hierarchical 
models as our HBML model. As a result, a huge number of sweeps of the MCMC algorithm is 
required to obtain a reliable approximation of the joint posterior distribution and marginals. Of 
course, also the size of the burn-in sample has to be carefully monitored in order to avoid using 
draws from the transient phase of the Markov Chain. To our knowledge, in the field of purchase 
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Besides the Electric car constants that are assumed to be correlated, i.e. EΣ  is assumed to be 
not diagonal, all the other ASCs’ are mutually independent. The prior distribution for the 
means ,a aµ ∈Ω , standard deviations, , ,D CNG LPGσ σ σ , and Hσ , and covariance matrix EΣ , 
are independent and we assume that the means are identically distributed 2(0;5 )N . The 
covariance matrix EΣ  has an Inverse Wishart prior distribution with 6 d.f. and scale matrix 

2100I , whereas the standard deviations are assumed to be i.i.d. half-Cauchy (0; 2.5). Finally, 
the fixed parameters are assumed to follow the independent prior distributions: 
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The above model is labelled Model 2 and its estimation results are reported in Table 5. We 
also estimated two restricted versions of Model 2. In Model 1, we restricted the random 
parameters of the car attributes Purchase Price, Annual Operating Cost and Range of non-
Electric car to be i.i.d. in the population, i.e. they were assumed to be no more dependent on 
the individual’s gender and age. Therefore for this model in eq. (4) we 
set 1, 2, 0PP PPd d= = , 1, 2, 0AOC AOCd d= =  and 1, 2, 0R Rd d= = . Moreover, the Electric ASC’s were 
assumed to be independent, i.e. EΣ  was specified as a diagonal matrix, so that the Inverse 
Wishart prior distribution was replaced by two i.i.d. half-Cauchy (0; 2.5) priors for the 
standard deviations, E obσ − and E lbσ − . The estimation results are reported in Table 4. 

As Model 1, our preferred model, labelled Model 3, has the random parameters on the car 
attributes Purchase Price, Annual Operating Cost and Range of non-Electric car specified as 
i.i.d. in the population. However, like Model 2, we assumed the Electric ASCs’ to be 
correlated. Moreover, we imposed the restriction that the two electric means were the same 
and equal to Eµ : E ob E lb Eµ µ µ− −= =  (see Table 6 for the estimation results). 

~

~

~

~

~
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behaviour for conventional and alternative fuel cars, this paper uses for the first time an alternative 
approach to Gibbs sampler and M-H algorithm, based on HMC methods (Duane et al., 1987; Neal, 
1994, 2011). The HMC sampler accelerates both convergence to the stationary distribution and sub-
sequent parameter exploration by using the gradient of the log probability function in the leapfrog 
algorithm. Recently, these methods have been implemented by Andrew Gelman, Bob Carpenter 
and a group of researchers (see http://mc-stan.org/team/ for the all list) in a novel package of the R 
software (called rstan) (The Stan Development Team 2014, 2015). HMC methods have the ability 
to overcome some of the problems inherent in Gibbs sampling.

More specifically, the HMC methods implemented in Rstan use the No-U-Turn (NUTS) sampler 
(see Hoffman and Gelman, 2011, 2012, 2014). This sampler demonstrated to be able to efficiently 
solve the problem of tuning parameter of steps, a problem afflicting previous HMC algorithms. In 
fact, the Hamiltonian dynamics simulation requires not only the gradient of the log posterior but 
also two tuning parameters, the step size and the number of steps; moreover, it is very sensitive 
to how they are set. The step size parameter can be tuned during warmup based on Metropolis re-
jection rates, but the number of steps is not so easy to tune while maintaining detailed balance in 
the sampler. The NUTS sampler solves this problem by taking an ever increasing number of steps 
until the direction of the simulation turns around, then uses slice sampling to select a point on the 
simulated trajectory. While implemented HMC methods are more numerically intensive than Gibbs 
sampler and M-H algorithm (with a slow running time), they are highly more efficient. In our appli-
cation, we obtained convergence after only 1,000 warmup draws and high values for the effective 
sample size of parameters. 

4.3 T he HBML estimation results

In this section we report the results of the estimated models using rstan package (version 2.8.0) 
with R (version 3.2.2), based on the simulations of four mutually independent parallel chains, each 
one of length 4,000. We cautiously discarded the first 2,000 draws from each sample as burn-in 
period and retained the subsequent 2,000 draws, so that a total number of 8,000 draws were used 
for estimation. 

As described in section 4.1, we estimated three HBML models (see Table 4, Table 5, and Table 
6). Table 7 (in Annex) reports a brief description of the estimated parameters.

The content of each table is structured as follows: the second column, named mean, contains the 
MCMC estimates of the marginal posterior means for the parameters of interest, computed as the 
average of the saved simulations (i.e. the remaining simulations after warmup); while in the column 
se_mean the standard error of the MCMC estimator of the mean is reported (i.e. the precision of the 
estimated mean). The column named sd shows the MCMC estimate of the standard deviation of the 
posterior marginal distribution for the parameters of interest. Also the following estimated quantiles 
of the marginal posterior distribution are reported: 2.5%, 25%, 50%, 75%, and 97.5%. The effective 
sample size, reported as n_eff, represents a measure of the autocorrelation found in the Monte Carlo 
Markov chains. Without autocorrelation, the effective sample size is equal to the total number of 
simulated values for each parameter after warmup, i.e. the sample size; with autocorrelation, n_eff 
will be lower than the sample size. The larger the autocorrelation is, the lower the effective sample 
size will be, so that the ratio, n_eff over the sample size, measures the degree of mixing of Markov 
chains. The last column, Rhat, contains a statistic for assessing convergence of the chains to the 

http://mc-stan.org/team/
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same stationary distribution. Its value should be close to 1.0 when the chains have all converged to 
the same stationary distribution.

As described in section 4.1, the first model we estimated, called Model 1, corresponds to a 
standard random parameters mixed logit model. We set individual-specific random parameters for 
Purchase Price, Annual Operating Cost and Range of non-Electric car attributes. Individuals’ so-
cio-economic variables (female and age of respondents) enter as fixed parameters as well as the 
remaining attributes (Acceleration time, Refuelling Distance and Range of electric car). All random 
parameters (for both ASCs and slopes) are assumed to be i.i.d. Normally distributed in the popula-
tion as well as mutually independent.

Results in Table 4 show that the sign of the population average effects of the car attributes, Pur-
chase Price (-), Annual Operating Cost (-) and Range of non-Electric car (+), are in line with theory 
and significant43 at 5% (see results for 0,PPd , 0,AOCd  and 0,Rd ). Moreover, as expected, for the two 
Electric cars alternatives the attribute Range has not only a positive and significant effect on their 
choice (see β REb ), but also the magnitude of the estimated mean is more than six times the magni-
tude for non-Electric cars (see the mean of 0,Rd ).

From Table 4, we can see that Refuelling Distance affects car choice both negatively and signifi-
cantly: the posterior probability that β RDb is inside the (-0.03,-0.01) interval is equal to 0.95 while the 
posterior mean is -0.01. The only car attribute turning out to be not significant al 5% is Acceleration, 
although the posterior mean as expected is positive. All the aforementioned results are in line with 
the previous ones (Valeri, Danielis, 2015).

Individuals’ socio-economic variables affect car choices of AFVs. Given the negativity and 
significance of the Fc  posterior mean, it turns out that females tend to prefer the gasoline car alter-
native, holding other things constant, including age.

The sign of the relationship is reversed as far as the respondent’s age is concerned: the posterior 
mean of Ac  results to be 0.52 but slightly insignificant at 5%. 

Controlling for these socio-economic effects, only the population means of ASCs for the two 
electric car alternatives turn out to be highly significant. With reference to the Gasoline car alterna-
tive, their population average effects are negative and their magnitudes dominate the other ASCs. 
Finally, their population means look very similar.

We considered two extensions of Model 1 along the following lines:

i)	 The individual-specific random parameters of the car attributes Purchase Price, Annual Operat-
ing Cost and Range of non-Electric car are assumed to be  no more i.i.d. in the population, but 
dependent on both the gender and age of the respondent;

ii)	The two ASCs of the Electric car alternatives are assumed to be correlated in the population.  

Moreover, on the base of Model 1’s results, we checked for the equality of the two population 
means of electric car ASCs.

The estimation results of Model 2 are reported in Table 5. Looking at the results, neither the 
variable female nor the age one seem to be able to explain the individual random parameters 
heterogeneity in the population as modelled in eq. (4). Moreover, the population covariance,  
σ  ,E ob E lbs � �– – , and the population correlation, _rho E , of the two Electric car ASCs are both positive  
 

4   Given that the value zero is outside the reported 95% probability interval, computed from the approximated marginal 
posterior density.
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and near significantly different from zero at 5%. Finally, the difference between their population 
means, _ Ediff mμ REb , is not significant at 5%. 

Therefore, we estimated a third model, named Model 3, for which we set a common mean for 
the two ASCs of the Electric car alternatives and removed all the socio-economic interactions with 
the random parameters.

As we can see from Table 6, the common population mean of the two Electric car ASCs is neg-
ative and highly significant. As in Model 2, the population correlation coefficient is positive and 
near significant at 5%.

From a qualitatively viewpoint, all others results analysed above in depth, when commenting the 
results of Model 1, continue to be confirmed also by the other two models (Model 2 and 3).

5. Summary and future extensions 

In this paper, we analysed the purchase behaviour for conventional and alternative fuel cars, using 
Italian stated preference discrete choice data, and we proposed modelling Multinomial Logit mod-
els under a Bayesian hierarchical framework. We specified a flexible Hierarchical Bayesian Mixed 
Logit model that permit us to take account of possible dependence of the car attribute random 
parameters on individual socio-economic characteristics, like age and gender. Moreover, alterna-
tive-specific and/or common parameters, as well as correlation across alternatives are easily includ-
ed in the model. Instead of relying on traditional Gibbs Sampler or Metropolis-Hastings algorithm, 
we proposed for the first time in the field of purchase behaviour for conventional and alternative 
fuel cars, to use Hamiltonian Monte Carlo methods (Duane et al., 1987; Neal, 1994, 2011). The 
HMC sampler is more efficient than traditional MCMC methods, since it accelerates both conver-
gence to the stationary distribution and subsequent parameter exploration by exploiting information 
coming from the gradient of the log probability function. We have thoroughly shown in the empir-
ical application the usefulness of the proposed method.

In this first study, we assumed the normality of the population density of the random parameters. 
However, as a future extension we would like to consider discrete mixtures of normals (or other 
continuous distributions) for modelling the density of the random parameters, as done by Scaccia 
and Marcucci (2010) for public transport demand.
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Table 4 – Results of the Model 1

 Parameters mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

μ D 0.43 0.01 0.25 -0.05 0.25 0.42 0.6 0.92 391 1

μ CNG
0.24 0.01 0.27 -0.28 0.05 0.24 0.43 0.77 475 1

μ LPG
-0.05 0.02 0.43 -0.91 -0.33 -0.03 0.25 0.76 541 1

μ H 0.07 0.01 0.27 -0.47 -0.1 0.07 0.25 0.59 430 1

μ E—ob
-2.35 0.07 0.84 -4.07 -2.92 -2.32 -1.76 -0.78 149 1.02

μ E—lb
-2.2 0.1 1.05 -4.27 -2.89 -2.16 -1.48 -0.18 109 1.02

σ D 1.13 0.01 0.17 0.81 1.01 1.13 1.24 1.49 902 1

σ CNG
1.29 0.01 0.21 0.89 1.15 1.29 1.43 1.73 772 1.01

σ LPG
2.2 0.02 0.41 1.49 1.92 2.17 2.45 3.09 601 1

σ H 1.42 0.01 0.21 1.04 1.28 1.41 1.55 1.86 1162 1

σ E—ob
2.08 0.04 0.59 0.97 1.68 2.05 2.44 3.3 257 1.01

σ E—lb
1.67 0.03 0.5 0.82 1.3 1.62 1.98 2.77 241 1.02

0,PPd
 -0.42 0 0.03 -0.49 -0.44 -0.42 -0.4 -0.35 1641 1

0,AOCd -2.62 0.01 0.26 -3.15 -2.79 -2.62 -2.45 -2.11 1758 1

0,Rd 1.28 0.02 0.43 0.45 0.99 1.28 1.57 2.14 361 1

σ PP
0.28 0 0.03 0.22 0.25 0.27 0.3 0.34 1268 1

σ AOC
2.27 0.01 0.24 1.84 2.1 2.25 2.42 2.78 1423 1

σ R 2.01 0.02 0.37 1.31 1.76 2 2.24 2.74 383 1

β A 0.03 0 0.03 -0.03 0.01 0.03 0.05 0.09 1992 1

β RD
-0.02 0 0 -0.03 -0.02 -0.02 -0.02 -0.01 8000 1

β RE
7.43 0.25 3.42 0.96 5.11 7.42 9.68 14.29 186 1.01

Ac  0.52 0.01 0.28 -0.02 0.33 0.53 0.72 1.08 869 1

Fc -0.84 0.01 0.29 -1.41 -1.04 -0.84 -0.64 -0.29 886 1
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Table 5 – Results of the Model 2

 Parameters mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

μ D 0.44 0.01 0.25 -0.05 0.28 0.45 0.61 0.92 567 1.01

μ CNG
0.24 0.01 0.27 -0.31 0.06 0.24 0.42 0.76 657 1

μ LPG
0.04 0.02 0.43 -0.87 -0.23 0.06 0.34 0.85 533 1.01

μ H 0.06 0.01 0.27 -0.47 -0.12 0.06 0.24 0.59 593 1

σ D 1.15 0.01 0.18 0.83 1.03 1.14 1.26 1.51 962 1

σ CNG
1.31 0.01 0.21 0.93 1.16 1.3 1.45 1.74 1133 1

σ LPG
2.07 0.02 0.41 1.32 1.79 2.04 2.32 2.96 599 1.01

σ H 1.48 0.01 0.21 1.1 1.33 1.47 1.61 1.91 1228 1

μ E—ob
-2.97 0.06 0.97 -4.93 -3.63 -2.93 -2.29 -1.21 260 1.02

μ E—lb
-3.05 0.07 1.15 -5.4 -3.79 -3.01 -2.26 -0.92 246 1.02

σ 2E—ob
11.96 0.16 4.02 6.16 9.11 11.28 14 21.64 606 1.01

σ E—lb
3.87 0.1 2.49 -0.18 2.16 3.56 5.23 9.72 662 1

σ E—ob, E—lb
9.74 0.13 3.08 5.22 7.59 9.27 11.34 17.09 586 1.01

2,PPd -0.01 0 0.07 -0.14 -0.06 -0.01 0.04 0.13 4734 1

2,AOCd -0.46 0.01 0.55 -1.55 -0.82 -0.46 -0.09 0.61 5066 1

2,Rd -0.55 0.01 0.68 -1.92 -1 -0.54 -0.09 0.76 2331 1

1,PPd -0.07 0 0.07 -0.21 -0.12 -0.07 -0.03 0.06 4687 1

1,AOCd 0.1 0.01 0.53 -0.94 -0.25 0.1 0.45 1.15 4348 1

1,Rd -0.48 0.01 0.64 -1.76 -0.9 -0.48 -0.06 0.74 2279 1

0,PPd -0.4 0 0.05 -0.5 -0.43 -0.4 -0.36 -0.3 3052 1

0,AOCd -2.63 0.01 0.42 -3.48 -2.9 -2.62 -2.35 -1.83 3085 1

0,Rd 1.73 0.02 0.56 0.65 1.35 1.72 2.11 2.84 902 1

σ PP
0.29 0 0.03 0.23 0.27 0.29 0.31 0.36 1545 1

σ AOC
2.41 0.01 0.25 1.96 2.24 2.4 2.58 2.95 1926 1

σ R 2.17 0.02 0.45 1.31 1.86 2.16 2.47 3.05 593 1.01

β A 0.03 0 0.03 -0.03 0.01 0.03 0.05 0.09 2347 1

β RD
-0.02 0 0 -0.03 -0.02 -0.02 -0.02 -0.01 8000 1

β RE
7.69 0.17 3.47 0.91 5.34 7.73 10 14.4 405 1.01

Ac  0.59 0.01 0.29 0.03 0.39 0.59 0.78 1.16 1205 1

Fc -0.83 0.01 0.3 -1.42 -1.03 -0.83 -0.63 -0.25 1101 1

rho_E 0.34 0.01 0.18 -0.03 0.23 0.36 0.47 0.65 1218 1

diff_μ E  0.01 0.03 0.76 -1.49 -0.49 0.01 0.51 1.48 918 1
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Table 6 – Results of the Model 3

 Parameters mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

μ D 0.46 0.01 0.27 -0.08 0.28 0.46 0.64 0.97 353 1.01

μ CNG
0.25 0.01 0.28 -0.33 0.06 0.26 0.44 0.79 446 1.01

μ LPG
0.02 0.02 0.46 -0.96 -0.27 0.05 0.34 0.86 538 1

μ H 0.08 0.01 0.29 -0.5 -0.11 0.09 0.28 0.64 394 1

σ D 1.15 0 0.17 0.83 1.03 1.14 1.26 1.51 1251 1

σ CNG
1.32 0.01 0.22 0.92 1.17 1.32 1.46 1.79 991 1

σ LPG
2.13 0.02 0.42 1.41 1.83 2.09 2.39 3.01 678 1.01

σ H 1.47 0.01 0.21 1.09 1.33 1.46 1.6 1.9 1304 1

μ E(ob&lb)
-3.02 0.05 0.9 -4.82 -3.61 -2.99 -2.41 -1.34 323 1.01

σ 2E—ob
11.51 0.1 3.47 6.13 9.03 11.01 13.44 19.61 1118 1

σ E—ob, E—lb
3.65 0.07 2.37 -0.2 2.02 3.4 4.91 9.23 1282 1

σ 2E—lb
9.41 0.08 2.73 5.19 7.45 9.02 10.99 15.67 1126 1

0,PPd -0.43 0 0.04 -0.5 -0.45 -0.43 -0.41 -0.37 1909 1

0,AOCd -2.71 0.01 0.27 -3.25 -2.89 -2.71 -2.53 -2.2 2869 1

0,Rd 1.33 0.02 0.44 0.45 1.03 1.33 1.62 2.2 698 1.01

σ PP
0.29 0 0.03 0.23 0.26 0.28 0.31 0.36 1525 1

σ AOC
2.37 0.01 0.25 1.92 2.19 2.36 2.53 2.89 1755 1

σ R 2.07 0.03 0.47 1.14 1.76 2.08 2.39 2.97 342 1.02

β A 0.03 0 0.03 -0.03 0.01 0.03 0.04 0.08 4036 1

β RD
-0.02 0 0 -0.03 -0.02 -0.02 -0.02 -0.01 8000 1

β RE
8.12 0.15 3.29 1.86 5.85 8.03 10.33 14.65 490 1

Ac  0.53 0.01 0.29 -0.04 0.33 0.53 0.73 1.11 646 1

Fc -0.84 0.01 0.3 -1.42 -1.04 -0.84 -0.63 -0.25 833 1

rho_E 0.34 0 0.17 -0.02 0.23 0.35 0.46 0.64 1678 1
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Annex

Table 7 – Description of the estimated parameters

 Parameter Parameter description

μ D Population mean of the ASC in the Diesel car alternative

μ CNG
Population mean of the ASC in the CNG car alternative

μ LPG
Population mean of the ASC in the LPG car alternative

μ H Population mean of the ASC in the Hybrid car alternative

μ E—ob
Population mean of the ASC in the Electric car (with owned battery ) alternative

μ E—lb
Population mean of the ASC in the Electric car (with leased battery) alternative

μE(ob&lb)
Common mean of the ASC’s in the two Electric cars’ alternatives

σ D Population Standard deviation of the ASC in the Diesel car alternative

σ CNG
Population Standard deviation of the ASC in the CNG car alternative

σ LPG
Population Standard deviation of the ASC in the LPG car alternative

σ H Population Standard deviation of the ASC in the Hybrid car alternative

σ E—ob
Population Standard deviation of the ASC in the Electric car (with owned battery ) alternative

σ E—lb
Population Standard deviation of the ASC in the Electric car (with leased battery) alternative

σ 2E—ob
Population variance of the ASC in the Electric car (with owned battery ) alternative

σ  E—ob, E—lb
Population covariance between the ASC’s in the two Electric car alternatives

σ 2E—lb
Population variance of the ASC in the Electric car (with leased battery) alternative

0,PPd  Hyper-parameter (constant term) of the hierarchical model for Purchase Price random parameter

0,AOCd Hyper-parameter (constant term) of the hierarchical model for the Annual Operating Cost random parameter

0,Rd Hyper-parameter (constant term) of the hierarchical model for the Range (non-Electric cars) random parameter

1,PPd  Hyper-parameter (Female parameter) of the hierarchical model for the Purchase Price random parameter

1,AOCd Hyper-parameter (Female parameter) of the hierarchical model for the Annual Operating Cost random parameter

1,Rd Hyper-parameter (Female parameter) of the hierarchical model for the Range (non-Electric cars) random parameter

2,PPd  Hyper-parameter (Age parameter) of the hierarchical model for the Purchase Price random parameter 

2,AOCd Hyper-parameter (Age parameter) of the hierarchical model for the Annual Operating Cost random parameter

2,Rd Hyper-parameter (Age parameter) of the hierarchical model for the Range (non-Electric cars) random parameter

σ PP
Population Standard deviation of the Purchase Price random parameter

σ AOC
Population Standard deviation of the Annual Operating Cost random parameter

σ R Population Standard deviation of the Range (non-Electric cars) random parameter

β A Acceleration parameter (fixed parameter)

β RD
Refuelling Distance parameter (fixed parameter)

β RE
Range (electric cars) parameter (fixed parameter)

Ac  Coefficient of the respondent’s Age (1 = age>29, 0 = otherwise) variable (fixed parameter)

Fc Coefficient of the respondent’s Gender (1 = female, 0 = otherwise) variable (fixed parameter)

rho_E Population Correlation between the ASCs of the two Electric car alternatives

diff_μ E  Difference of the population means between the ASCs of the two Electric car alternatives
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