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Molecular response properties for ground and excited states and for transitions between these
states are defined by solving the time-dependent Schrödinger equation for a molecular system in
a field of a time-periodic perturbation. In equation of motion coupled cluster (EOM-CC) theory,
molecular response properties are commonly obtained by replacing, in configuration interaction
(CI) molecular response property expressions, the energies and eigenstates of the CI eigenvalue
equation with the energies and eigenstates of the EOM-CC eigenvalue equation. We show here that
EOM-CC molecular response properties are identical to the molecular response properties that are
obtained in the coupled cluster–configuration interaction (CC-CI) model, where the time-dependent
Schrödinger equation is solved using an exponential (coupled cluster) parametrization to describe
the unperturbed system and a linear (configuration interaction) parametrization to describe the time
evolution of the unperturbed system. The equivalence between EOM-CC and CC-CI molecular
response properties only holds when the CI molecular response property expressions—from which
the EOM-CC expressions are derived—are determined using projection and not using the variational
principle. In a previous article [F. Pawłowski, J. Olsen, and P. Jørgensen, J. Chem. Phys. 142,
114109 (2015)], it was stated that the equivalence between EOM-CC and CC-CI molecular response
properties only held for a linear response function, whereas quadratic and higher order response
functions were mistakenly said to differ in the two approaches. Proving the general equivalence
between EOM-CC and CC-CI molecular response properties is a challenging task, that is undertaken
in this article. Proving this equivalence not only corrects the previous incorrect statement but also first
and foremost leads to a new, time-dependent, perspective for understanding the basic assumptions
on which the EOM-CC molecular response property expressions are founded. Further, the equiva-
lence between EOM-CC and CC-CI molecular response properties highlights how static molecular
response properties can be obtained from finite-field EOM-CC energy calculations. C 2016 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4939183]

I. INTRODUCTION

The equation of motion coupled cluster (EOM-CC)
eigenvalue equation was introduced by Bartlett and co-
workers.1–3 This eigenvalue equation is a matrix representation
of the time-independent Schrödinger equation where a coupled
cluster (CC) similarity-transformed Hamiltonian, rather than
the standard Hamiltonian, is used. The EOM-CC eigenvalue
equation has been widely used to determine total energies
for ground and excited states.1–13 The EOM-CC eigenvalue
equation may be rewritten into a form where excitation
energies are determined directly.1,3 In this form, the EOM-CC
eigenvalue equation is identical to the Jacobian eigenvalue
equation of CC response function theory14,15 for both exact
CC states and CC states truncated at a given excitation

a)Electronic mail: coriani@units.it
b)Electronic mail: filip.pawlowski1@gmail.com

level, as, for example, a CC singles-and-doubles (CCSD)
state. The first calculation of CCSD ground-state energies
was reported by Purvis and Bartlett16 and later extended to
CC states where truncations were carried out at a higher
excitation level.17–22 The first calculation of CCSD excitation
energies was reported by Koch et al.23 and later extended
to CC states truncated at a higher excitation level.7,22,24,25

Excitation energies have also been determined in EOM-CC
theory where CC Jacobians have been truncated using Møller-
Plesset perturbation theory.26–32 Other approximate models
have also been developed for determining excitation energies
within the framework of EOM-CC theory and numerous
applications have been reported using the EOM-CC model
for calculating excitation energies. We refer to the reviews by
Bartlett33 and by Krylov34 where an extensive discussion of
the developments and the applications of EOM-CC theory has
been presented. We also note that by appropriate choices of
the basis for the EOM-CC eigenvalue equation, the EOM-CC

0021-9606/2016/144(2)/024102/10/$30.00 144, 024102-1 © 2016 AIP Publishing LLC
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eigenvalue equation can also be expressed in a form that
allows the direct determination of ionization potentials and
electron affinities.35–41

Molecular response properties are defined in terms of
the response of an unperturbed system to a time-periodic
perturbation where the response is determined by solving
the time-dependent Schrödinger equation.42–46 Molecular
response properties that describe the response of a ground
state to a time-periodic perturbation may be expressed in
terms of ground-state molecular response functions.47–51 For
example, for a time-periodic electric field, first-, second-,
third-, and fourth-order response properties are described by,
respectively, the permanent dipole moment, the frequency-
dependent polarizabilities, the frequency-dependent first
and second hyperpolarizabilities, and may be expressed
in terms of an expectation value, linear, quadratic, and
cubic response functions, respectively. Molecular property
expressions that describe the strength of transitions between
states, and molecular response properties of excited states
may also be determined from the solution of the time-
dependent Schrödinger equation and explicit expressions may
be determined for these properties. Examples of transition
properties are the one- and two-photon transition strengths;52

an example of an excited-state molecular property is the
dipole moment of an excited state. Within a response function
formulation, transition strengths and excited-state molecular
response properties are obtained as residues of the ground-
state response functions.48–50

The EOM-CC eigenvalue equation per se does not
provide information about how molecular response properties
can be evaluated. However, molecular response properties
have been determined in EOM-CC theory by taking CI
molecular property expressions and replacing the eigenvalues
and eigenstates of the CI eigenvalue equation with the
corresponding eigenvalues and eigenstates of the EOM-CC
eigenvalue equation. This replacement may be performed
for exact wave functions as well as for wave functions
that have been truncated at a given excitation level. The
CI→ EOM-CC replacement of energies and eigenstates was
first proposed by Stanton and Bartlett2 to evaluate the one-
photon transition matrix elements between the ground and
excited states and the dipole moments for excited states.
Later, it was proposed to evaluate frequency-dependent
polarizabilities53–55 and first hyperpolarizabilities56,57 using
this strategy. Recently, Nanda and Krylov have applied the
same strategy to determine two-photon transition matrix
elements.58

The approach of Stanton and Bartlett2 for determining
molecular response properties in EOM-CC theory corre-
sponds, within a response function theory formulation, to
taking CI response functions (and residues of CI response
functions) in the diagonal representation and replacing the
CI energies and eigenstates with the corresponding EOM-CC
energies and eigenstates. We denote the response functions
that are obtained by this CI→ EOM-CC replacement of
eigenvalues and eigenstates as “EOM-CC response functions.”
A large variety of molecular response properties have been
successfully determined from EOM-CC response functions
and the residues of these response functions.7,15,54–66

In the approach by Stanton and Bartlett,2 response
functions that are valid in CI theory are thus used to obtain
response functions that can be used in CC theory. CI and
CC theory are, however, very different. In the context of
determining response functions, we note the following.

1. CI response functions are derived under the presumption
that a linear parametrization is used to describe both the
unperturbed state and its time evolution.

Contrary:
In EOM-CC theory, the unperturbed state is described using
an exponential parametrization due to the replacement of
CI eigenstates with EOM-CC eigenstates, whereas the time
evolution of the unperturbed state is described by a linear
parametrization since the structural form of the CI response
functions is retained in the EOM-CC response functions.

2. In CI theory, the variational condition is satisfied and used
to determine CI amplitudes.

Contrary:
In CC theory, projection is used to determine the cluster
amplitude equations.

3. In CI theory, the left eigenstates of the CI eigenvalue
equation are the adjoints of the right eigenstates.

Contrary:
For the EOM-CC eigenvalue equation, the left eigenstates
are not adjoints of the right eigenstates.

A question therefore arises: What implications do the
above differences between CI and CC theory have for the
molecular response functions that are obtained in EOM-CC
theory? For example, does one obtain FCI molecular response
properties when no truncations are performed in the CC state
that enters the EOM-CC eigenvalue equation? Furthermore,
are molecular response properties size extensive,15,54 when
they are obtained using truncated excitation manifolds?

As discussed above, CI response functions are obtained
from the solution to the time-dependent Schrödinger equation
using a linear parametrization to describe both the unperturbed
system and its time-evolution, whereas in EOM-CC theory,
the unperturbed system is described in terms of an exponential
parametrization, and its time evolution is described using a
linear parametrization. In Ref. 51, we therefore introduced
the coupled cluster–configuration interaction (CC-CI) model
where the unperturbed system is described using an
exponential parametrization and the time evolution of the
unperturbed state is described using a linear parametrization.
We further derived explicit expressions for the CC-CI linear,
quadratic, and cubic response functions using the response
function theory framework developed also in Ref. 51. For a
static perturbation, we also showed in Ref. 51 that finite-field
EOM-CC energy calculations give CC-CI molecular response
properties.

Response functions for a CI wave function may be
derived using either a variational or a projection form of the
time-dependent Schrödinger equation.51 When the projection
method is used, an operator that symmetrizes the response
functions with respect to a simultaneous frequency sign
inversion and complex conjugation is introduced, thereby
yielding CI response functions that are identical to those
obtained using the variational condition.51 In Ref. 51,
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we showed that when the CI→ EOM-CC replacement of
eigenstates and eigenvalues is performed for a CI linear
response function that is derived by projection, the obtained
EOM-CC linear response function becomes identical to the
CC-CI linear response function. To see this, equivalence
required a substantial rewrite of the involved response
functions. In Ref. 51, we also stated that the equivalence
between the EOM-CC response functions and the CC-
CI response functions was only valid for linear response
functions, but did not hold for quadratic and higher-order
response functions. This latter statement is incorrect and
in this article, we show explicitly that molecular response
properties obtained from CC-CI response functions and
EOM-CC response functions are identical, provided that
the latter are obtained from CI response functions derived
using projection. EOM-CC molecular response properties
may therefore be obtained from response functions and
residues of response functions that are determined within
the CC-CI framework.51 This offers a first principle way
of deriving analytic expressions for EOM-CC molecular
response properties, and a time-dependent perspective to
examine and understand the basic assumptions that are used
to obtain EOM-CC molecular response properties.

In standard CC response function theory, an exponential
parametrization is used to describe both the unperturbed
system and its time evolution.14,49,51 As a consequence,
molecular response properties that are obtained using standard
CC response function theory are size extensive. In CC-CI
theory, the unperturbed state is described by an exponential
parametrization and the time evolution of this state is described
by a linear parametrization and therefore the obtained
molecular response properties will not be size extensive.51

The article is organized as follows. In Sec. II, the general
background of EOM-CC theory is summarized. In Sec. III,
static molecular response properties are introduced in terms of
finite field EOM-CC energy calculations. In Sec. IV, CC-CI
response functions are derived both in the elementary basis of
the EOM-CC eigenvalue equation (Sec. IV A) and in the diag-
onal basis of the EOM-CC eigenvalue equation (Sec. IV B).
In Sec. IV C, CI response functions are derived using
projection in the diagonal basis of the CI eigenvalue equation
and it is further shown that CC-CI response functions in
the diagonal basis of the EOM-CC eigenvalue equation are
obtained when in CI response functions, the eigenvalues and
eigenstates of the CI eigenvalue equation are replaced by
the eigenvalues and eigenstates of the EOM-CC eigenvalue
equation. In Sec. V, numerical examples are presented
to illustrate that EOM-CC and CC-CI molecular response
properties are identical, and in Sec. VI, we summarize our
development and give some concluding remarks.

II. THE EOM-CC EIGENVALUE EQUATION

A. The EOM-CC eigenvalue equation
in the elementary basis

Consider a CC parametrization of the ground state,

|0CC
0 ⟩ = eT0|HF⟩, (1)

where |HF⟩ is the Hartree-Fock reference state, T0
=


µk

tµk
τµk

is the cluster operator, tµk
are the cluster

amplitudes, and τµk
are the many-body excitation operators

that carry out excitations from |HF⟩ to its orthogonal
complement set of states, |µk⟩ = τµk

|HF⟩, where k denotes
an excitation level and µk an excitation at this level. The
Hartree-Fock state together with its orthogonal complement
set of states form a complete set,

|B⟩ = |HF⟩, |µk⟩

. (2)

The cluster amplitudes satisfy the CC amplitude equations
and determine the CC ground state energy,

⟨µk |HT0
0 |HF⟩ = 0, (3)

⟨HF|HT0
0 |HF⟩ = CCE0, (4)

where we have introduced the CC similarity-transformed
Hamiltonian,3,67

HT0
0 = e−T0H0eT0. (5)

Introducing the biorthonormal basis (referred to as
elementary)

|BT0⟩ = 
eT0|HF⟩,eT0|µk⟩


, ⟨BT0| = ⟨HF|e−T0,⟨µk |e−T0


,

(6)

the EOM-CC eigenvalue equation becomes a matrix
representation of the time-independent Schrödinger equation,

H0 C = C E, (7a)

C H0 = E C. (7b)

The Hamiltonian matrix, H0, is non-symmetric and has the
block structure,

H0 =
*.
,

⟨HF|HT0
0 |HF⟩ ⟨HF|HT0

0 |νm⟩
⟨µk |HT0

0 |HF⟩ ⟨µk |HT0
0 |νm⟩

+/
-
, (8)

where the ⟨µk |HT0
0 |HF⟩ block vanishes as Eq. (3) is satisfied.

E is a diagonal matrix containing the ground- (CCE0) and
excited-state (CCE1,

CCE2, . . .) energies on the diagonal. The
left and right eigenvectors are assumed to satisfy the
biorthonormalization condition,

C C = I. (9)

We will refer to Eqs. (7)–(9) as the EOM-CC eigenvalue
equation in the elementary basis1–3 of Eq. (6).

B. The EOM-CC eigenvalue equation
in the diagonal basis

The right ground state, |0CC
0 ⟩ [Eq. (1)], is in accordance

with Eqs. (3) and (4) represented in the basis |BT0⟩ as

C0 = *
,

1
0
+
-
, (10)

while the left ground state, ⟨0CC
0 |, is unit-normalized against

the right state and therefore is represented in the basis ⟨BT0|
as

C0 =
(
1 C

⊥
0

)
, (11)
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where C
⊥
0 represents the orthogonal complement component

of the left ground state with elements C
⊥
0µk

satisfying the
standard CC multipliers equation,

µk

C
⊥
0µk

CCJµkνm = −⟨HF|HT0
0 |νm⟩, (12)

where we have introduced the CC Jacobian,

CCJµkνm = ⟨µk |

HT0

0 , τνm
 |HF⟩. (13)

The left ground state may thus be written as

⟨0CC
0 | = ⟨HF|e−T0 +


µk

C
⊥
0µk

⟨µk |e−T0. (14)

The right and left excited state eigenvectors of the time-
independent Schrödinger equation are in the basis |BT0⟩ and
⟨BT0| given by

|0CC
n ⟩ = −


µk

C
⊥
0µk

C⊥µkn
eT0|HF⟩ +


µk

C⊥µkn
eT0|µk⟩, n > 0,

(15)

⟨0CC
n | =


µk

C
⊥
nµk

⟨µk |e−T0, n > 0, (16)

and together with |0CC
0 ⟩ [Eq. (1)] and ⟨0CC

0 | [Eq. (14)] form a
biorthonormal basis,

|Bd⟩ = |0CC
0 ⟩, |0CC

n ⟩, n > 0

, (17a)

⟨Bd| = ⟨0CC
0 |,⟨0CC

n |, n > 0

, (17b)

in which the EOM-CC eigenvalue equation is expressed in a
diagonal form,

⟨0CC
p |H0|0CC

q ⟩ = CCEqδpq, p,q = 0,1,2, . . . , (18a)
0CC
p

���0
CC
q


= δpq, p,q = 0,1,2, . . . . (18b)

The elementary basis [|BT0⟩ of Eq. (6)] and the diagonal
basis [|Bd⟩ of Eq. (17a)] are connected via a non-singular
transformation and therefore span the same space. This is also
true for excitation manifolds of the CC state that are truncated
at a given excitation level.

III. EOM-CC STATIC MOLECULAR PROPERTIES
BY FINITE FIELD CALCULATIONS

In this section, we discuss how static molecular response
properties consistent with the EOM-CC eigenvalue equation
[Eq. (7)] may be obtained as derivatives of E0(ϵ) with
respect to the field strength, ϵ , where E0(ϵ) is a ground-state
solution to the EOM-CC eigenvalue equation containing a
field-dependent Hamiltonian,

H(ϵ) = H0 + ϵX, (19)

where X is a Hermitian time-independent one-electron
operator. The EOM-CC eigenvalue equation containing H(ϵ)
becomes (

H0 + ϵX
)
C0(ϵ) = C0(ϵ) E0(ϵ), (20)

where H0 is given in Eq. (8) and the matrix representation of
the perturbation operator is given by

X = *
,

⟨HF|XT0|HF⟩ ⟨HF|XT0|νm⟩
⟨µk |XT0|HF⟩ ⟨µk |XT0|νm⟩

+
-
. (21)

Numerical differentiation of E0(ϵ) gives the EOM-CC
static molecular response properties. In Ref. 51, we have
shown how the analytic analogue of the EOM-CC finite field
calculations may be obtained using the CC-CI model, and
analytic expressions have been derived for first-, second-,
third-, and fourth-order molecular response properties.

IV. MOLECULAR RESPONSE PROPERTIES

In this section, we describe how EOM-CC molecular
response properties may be obtained using a time-dependent
framework. We consider a molecular system described by a
time-periodic Hamiltonian,

H(t,ϵ) = H0 + V (t,ϵ), (22)

where a Hermitian time-periodic perturbation with the
period T ,

V (t,ϵ) =

j

X jϵX j

(
ωX j

)
exp

(
−iωX j

t
)
, (23a)

V (t + T,ϵ) = V (t,ϵ), (23b)

is added to the unperturbed system. In Eq. (23), X j is
a Hermitian time-independent one-electron operator and
ϵX j

(
ωX j

)
is the associated perturbation strength for the real

frequency ωX j
. ϵ denotes a set of perturbation strengths

ϵX j

(
ωX j

)
. In Ref. 51, we have shown that the time-dependent

Schrödinger equation for the time-periodic Hamiltonian,
H(t,ϵ), may be recasted into an eigenvalue equation,(

H(t,ϵ) − i
∂

∂t
− ḞP0(t,ϵ) − i

d
dt

ln N(t,ϵ)
)
|0I(t,ϵ)⟩

= E(ϵ)|0I(t,ϵ)⟩, (24)

where E(ϵ) is the quasi-energy, FP0(t,ϵ) is the time-periodic
part of the phase of the wave function, N(t,ϵ) is a real time-
periodic normalization constant, and the eigenstate |0I(t,ϵ)⟩
is intermediate normalized against a reference and is time-
periodic.

A. CC-CI molecular response properties
in elementary basis

In the CC-CI model, the unperturbed system is described
by a CC state and the time evolution of this state is described
using a linear parametrization. The perturbation-induced time
evolution of |0I(t,ϵ)⟩ may therefore be expanded linearly in
the elementary basis [Eq. (6)] leading to the CC-CI wave
function,51

|0CC-CI
I (t,ϵ)⟩ = eT0eS(t,ϵ)|HF⟩, (25)
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where the operator S(t,ϵ) is expanded in the state-transfer
operators,

S(t,ϵ) =

µk

sµk
(t,ϵ)|µk⟩⟨HF|, (26)

where sµk
(t,ϵ) are time-periodic expansion coefficients.

Substituting S(t,ϵ) of Eq. (26) in Eq. (25) and using that
S2(t,ϵ) = 0 gives

|0CC-CI
I (t,ϵ)⟩ = eT0|HF⟩ +


µk

sµk
(t,ϵ)eT0|µk⟩, (27)

showing that the CC-CI wave function of Eq. (25) indeed
describes a linear expansion of the time evolution in the
elementary basis [Eq. (6)]. |0CC-CI

I (t,ϵ)⟩ is intermediate
normalized against the |HF⟩ reference state,



HF

�
0CC-CI
I (t,ϵ)� = 1. (28)

Substituting Eq. (25) in Eq. (24), multiplying from the left
by e−S(t,ϵ)e−T0 and projecting against ⟨B | = �|B⟩�† [Eq. (2)]

in the composite Hilbert space,51,68 gives the quasi-energy
and the amplitude equation for determining the time-periodic
expansion coefficients sµk

(t,ϵ) (see Ref. 51 for a detailed
derivation),

E(ϵ) = Re


HF���e
−S(t,ϵ)

(
HT0(t,ϵ) − i

∂

∂t

)
eS(t,ϵ)���HF


T

,

(29a)
µk
���e
−S(t,ϵ)

(
HT0(t,ϵ) − i

∂

∂t

)
eS(t,ϵ)���HF


T

= 0, (29b)

where
�
.
	
T

denotes time averaging over one period T .
To determine molecular response properties from the

quasi-energy, E(ϵ), we have introduced in Ref. 51 a complex
quasi-energy Lagrangian, where the amplitude equations are
added to the quasi-energy in terms of the undetermined
Lagrangian multipliers, sµk

(t,ϵ). When the time-evolution
of the intermediate-normalized state is expressed in the
elementary basis, the Lagrangian reads [cf. Eq. (29)],

cL =


HF���e
−S(t,ϵ)

(
HT0(t,ϵ) − i

∂

∂t

)
eS(t,ϵ)���HF


T

+

µk


sµk

(t,ϵ)µk���e−S(t,ϵ)
(
HT0(t,ϵ) − i

∂

∂t

)
eS(t,ϵ)���HF


T

, (30)

where the Lagrangian satisfies the stationary conditions that
determine the amplitude and multiplier equations,

∂ cL
∂sµk

(ωK) = 0, (31a)

∂ cL
∂sµk

(ωK) = 0, (31b)

where sµk
(ωK) and sµk

(ωK) are amplitudes and multipliers in
the frequency domain, respectively, andωK is any combination
of the frequencies ωX j

in Eq. (23).51 The perturbation
components of the quasi-energy Lagrangian are defined as
derivatives of cL with respect to perturbation strengths,51

cLX j1· · ·X jn(ωX j1
, . . . ,ωX jn

)

=
dn cL

dϵX j1
(ωX j1

) · · · dϵX jn
(ωX jn

)
������ϵ=0

, (32)

and molecular response properties are obtained as51

⟨⟨X j1; X j2, . . . ,X jn⟩⟩ωXj2
, ...,ωXjn

=
1
2

C±ω cLX j1· · ·X jn(ωX j1
, . . . ,ωX jn

),
n

m=1

ωX jm
= 0,

(33)

where51

C±ω cLX j1· · ·X jn(ωX j1
, . . . ,ωX jn

)
= cLX j1· · ·X jn(ωX j1

, . . . ,ωX jn
)

+ cLX j1· · ·X jn
∗(−ωX j1

, . . . ,−ωX jn
). (34)

Eqs. (30)–(34) determine CC-CI molecular response prop-
erties in the elementary basis [Eq. (6)]. The details of the
derivation are shown in Ref. 51.

B. CC-CI molecular response properties
in diagonal basis

The eigenvalue equation [Eq. (24)] may alternatively
be solved in the diagonal basis [Eq. (17)] where the
time evolution of |0I(t,ϵ)⟩ may be expanded linearly
as

|0CC-CId
I (t,ϵ)⟩ = eW

CC(t,ϵ)|0CC
0 ⟩

= |0CC
0 ⟩ +


n

wCC
n (t,ϵ)|0CC

n ⟩, (35)

where

W CC(t,ϵ) =

n

wCC
n (t,ϵ)|0CC

n ⟩⟨0CC
0 | (36)

and |0CC-CId
I (t,ϵ)⟩ is intermediate normalized against the left

ground state [Eq. (14)],
0CC

0
���0

CC-CId
I (t,ϵ) = 1. (37)

Substituting Eq. (35) in Eq. (24), multiplying from the left
by e−W

CC(t,ϵ) and projecting against ⟨Bd| [Eq. (17b)] in the
composite Hilbert space, gives the quasi-energy and the
amplitude equations,
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E(ϵ) = Re


0CC
0
���e
−WCC(t,ϵ)

(
H(t,ϵ) − i

∂

∂t

)
eW

CC(t,ϵ)���0
CC
0


T

, (38a)
0CC
n
���e
−WCC(t,ϵ)

(
H(t,ϵ) − i

∂

∂t

)
eW

CC(t,ϵ)���0
CC
0


T

= 0. (38b)

As Eq. (25) [or Eq. (27)] and Eq. (35) describe two
different representations of the same state, the two sets of
equations, Eqs. (29) and (38), have the same solution and give
the same quasi-energy.

Molecular response properties may be determined
from the quasi-energy Lagrangian referencing the quasi-
energy and amplitude equations in the diagonal basis
[cf. Eq. (38)],

cL =


0CC
0
���e
−WCC(t,ϵ)

(
H(t,ϵ) − i

∂

∂t

)
eW

CC(t,ϵ)���0
CC
0


T

+

n


wCC

n (t,ϵ)0CC
n
���e
−WCC(t,ϵ)

(
H(t,ϵ) − i

∂

∂t

)
eW

CC(t,ϵ)���0
CC
0


T

, (39)

that satisfies the stationary conditions from which the
amplitude and multiplier equations may be determined,

∂ cL
∂wCC

n (ωN)
= 0, (40a)

∂ cL
∂wCC

n (ωN) = 0, (40b)

where wCC
n (ωN) and wCC

n (ωN) are amplitudes and multipliers
in the frequency domain. CC-CI molecular response pro-
perties may be determined in the diagonal basis [Eq. (17)]
as described by Eqs. (32)–(34), using the Lagrangian of
Eq. (39).

The CC-CI wave functions in Eq. (27) and in Eq. (35)
describe the time evolution of the same state in two different
bases that span the same space, namely, the elementary
basis in Eq. (6) and the diagonal basis in Eq. (17a). We
therefore obtain the same molecular response properties
whether they are determined from response functions obtained
in the elementary or in the diagonal basis, even though
the formal expressions for the response functions look very
different.

C. EOM-CC response functions from CI
response functions

We will now demonstrate that the EOM-CC response
functions obtained by replacing, in the CI response functions,
the CI energies and states with the EOM-CC energies
[Eq. (18)] and states [Eqs. (17a) and (17b)] become identical
to the CC-CI response functions as expressed in the diagonal
basis, provided that the CI response functions are determined
not using the variational condition but using projection
(see Ref. 51).

In CI theory, the eigenstates of the Hamiltonian for
the unperturbed system, H0, are linearly expanded in
the basis |B⟩ [Eq. (2)] and the eigenstates form the
basis,

|Bd
CI⟩ =

|0CI
0 ⟩, |0CI

n ⟩, n > 0

, (41)

that satisfies

⟨0CI
p |H0|0CI

q ⟩ = CIEqδpq, p,q = 0,1,2, . . . , (42a)
0CI
p
���0

CI
q


= δpq, p,q = 0,1,2, . . . . (42b)

The time evolution of |0I(t,ϵ)⟩ may be linearly expanded in
the diagonal CI basis, |Bd

CI⟩ [Eq. (41)],

|0CId
I (t,ϵ)⟩ = eW

CI(t,ϵ)|0CI
0 ⟩ = |0CI

0 ⟩ +

n

wCI
n (t,ϵ)|0CI

n ⟩, (43)

where

W CI(t,ϵ) =

n

wCI
n (t,ϵ)|0CI

n ⟩⟨0CI
0 |. (44)

|0CId
I (t,ϵ)⟩ is intermediate normalized against the ground

state, 
0CI

0
���0

CId
I (t,ϵ) = 1. (45)

Note the similarity between the time evolution of the CI
state described by Eqs. (43)–(45) and the time evolution of
the CC-CI state in Eqs. (35)–(37). Substituting Eq. (43) in
Eq. (24), multiplying from the left by e−W

CI(t,ϵ) and projecting
against the basis

⟨Bd
CI| =

�|Bd
CI⟩

�†
=
⟨0CI

0 |,⟨0CI
n |, n > 0


(46)

in the composite Hilbert space, gives equations similar to
Eq. (38) where the label CC is replaced by the label CI.
In CI theory, molecular response functions may therefore be
derived from the Lagrangian in Eq. (39) where the label CC
is replaced by the label CI.

In deriving the CI response functions, simplifications
occur in the Lagrangian for the term containing the
unperturbed Hamiltonian, H0, since Eq. (42a) is satisfied.51

For the CC-CI Lagrangian [Eq. (39)], similar simplifications
may be introduced since Eq. (18a) is satisfied. In CI theory,
we further have that

⟨0CI
n |H0|0CI

0 ⟩† = ⟨0CI
0 |H0|0CI

n ⟩, n > 0, (47)

which has no counterpart in CC theory,

⟨0CC
n |H0|0CC

0 ⟩† , ⟨0CC
0 |H0|0CC

n ⟩, n > 0. (48)
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However, Eq. (47) cannot be used in CI theory to obtain
simplifications when the CI response functions are derived.
The CC-CI Lagrangian in the diagonal basis of Eq. (17) and
the CI Lagrangian in the diagonal basis of Eq. (41) have
therefore the same structural form. Consequently, the CC-CI
Lagrangian in the diagonal basis may be obtained from the
CI Lagrangian replacing the CI eigenvalues and eigenstates of
Eqs. (41) and (46) by the EOM-CC eigenvalues and eigenstates
of Eqs. (17a) and (17b). A presumption is of course that the
CI response functions are determined via projection, as it is
described above, and thus contain the 1/2C±ω operator of
Eq. (34).

The EOM-CC response functions introduced by Stanton
an Bartlett2 will thus become identical to the CC-CI response
functions in the diagonal basis. Since CC-CI molecular
response properties are independent of the basis in which
they are expressed if the bases span the same space, the EOM-
CC response functions will thus give molecular response
properties that are identical to the CC-CI molecular response
properties in the elementary basis. This is also the case

for molecular response properties that are determined from
residues of the response functions.

In Ref. 51, we showed explicitly that the EOM-CC linear
response function and the CC-CI linear response function
in the elementary basis give identical molecular response
properties, which required a substantial rewrite of the involved
equations. However, we did not recognize that the equivalence
between the EOM-CC and CC-CI was also valid for quadratic
and higher-order response functions, as has been shown in
this section.

The EOM-CC molecular response properties may thus
be determined from the CC-CI response functions and
from the residues of these response functions. For static
perturbations, the CC-CI molecular response properties
are also identical to the molecular response properties
that are obtained from the finite-field EOM-CC energy
calculations, as discussed in Sec. III. The CC-CI model
thus constitutes a first principle and simple time-dependent
framework for deriving EOM-CC molecular response
properties.

TABLE I. Polarizability (α), first hyperpolarizability (β), and transition strengths (|M0m |2) for the lowest al-
lowed dipole transition of excitation energy ωm = (Em−E0), calculated in CC-CISD, EOM-CCSD, and standard
CCSD models using a cc-pVDZ basis.70,71 As discussed in the text, analytical CC-CISD and EOM-CCSD results
have been obtained using two independent implementations. However, as they yield the same numbers, analyt-
ical CC-CISD and EOM-CCSD results are presented together in the fourth column. For frequency-dependent
properties, the frequency ω = 0.072 002 75 a.u., corresponding to the wavelength λ = 632.8 nm, is used, and
the second-harmonic generation process is calculated for β(ω). EOM-CCSD finite field results are obtained by
numerical differentiation of E0(ϵ) of Eq. (20) (see text for details). Internuclear distances are given in the text. All
results in a.u.

CCSD CC-CISD/EOM-CCSD EOM-CCSD
Molecule Property analytical analytical finite fielda

HeH+ αzz(0) 1.516 561 3 1.516 561 3 1.516 561 3b

αzz(ω) 1.524 379 9 1.524 379 9
βzzz(0) 2.735 420 5 2.735 420 5 2.735 420 3c

βzzz(ω) 2.826 846 8 2.826 846 8
|M0m |2 0.603 593 1 0.603 593 1
ωm 0.954 335 1 0.954 335 1

H2 αzz(0) 6.328 305 6 6.328 305 6 6.328 305 6d

αzz(ω) 6.450 984 6 6.450 984 6
|M0m |2 1.532 534 0 1.532 534 0
ωm 0.511 157 0 0.511 157 0

HF αzz(0) 4.205 217 4 4.230 323 0 4.230 323 0e

αzz(ω) 4.245 302 4 4.270 617 6
βzzz(0) 13.269 879 13.285 769 13.285 80f

βzzz(ω) 14.455 227 14.487 462
|M0m |2 0.633 398 5 0.636 506 2
ωm 0.573 677 2 0.573 677 2

N2 αzz(0) 12.810 904 13.058 818 13.058 816g

αzz(ω) 12.935 645 13.186 343
|M0m |2 1.861 109 0 1.915 835 7
ωm 0.624 583 0 0.624 583 0

aNumerical derivatives were calculated using Newton’s forward interpolation formulas75 containing n terms with n = 1,2, . . .,20.
A scan over 20 different values of the differencing interval (h) has been performed for each formula. In this way optimal values
of h and n, in the sense of yielding the smallest uncertainty ∆, have been found for each molecule and property.
bh = 0.01 a.u., n = 7, ∆≈ 2 × 10−9 a.u.
ch = 0.01 a.u., n = 7, ∆≈ 2 × 10−7 a.u.
dh = 0.01 a.u., n = 9, ∆≈ 6 × 10−9 a.u.
eh = 0.01 a.u., n = 8, ∆≈ 8 × 10−8 a.u.
f h = 0.01 a.u., n = 7, ∆≈ 3 × 10−5 a.u.
gh = 0.001 a.u., n = 3, ∆≈ 2 × 10−6 a.u.
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V. ILLUSTRATIVE CALCULATIONS

In this section, we present numerical illustration of the
theoretical findings discussed in Secs. II–IV. For comparison,
we also report results for molecular response properties
calculated using standard CC response theory.14,49,51

We will report calculations of frequency-dependent
polarizabilities (α), first hyperpolarizabilities (β), and
transition strengths (|M0m|2) for the lowest allowed dipole
transition of excitation energy ωm = Em − E0, for HeH+,
H2, HF, and N2 molecules at internuclear distances of
1.5 a.u., 1.401 214 813 a.u.,69 1.732 650 075 a.u.,69 and
2.074 408 909 a.u.,69 respectively, using a cc-pVDZ basis.70,71

The calculations have been performed using a development
version of the D programme suite.72,73 The expressions
that have been implemented to compute the CC-CI and EOM-
CC polarizabilities and first hyperpolarizabilities are given
in Ref. 51. The expressions that have been implemented for
transition moments are given in Ref. 74. The finite field EOM-
CC eigenvalue equation calculations have been performed as
described in Sec. III and numerical derivatives have been
obtained applying Newton’s forward interpolation formulas75

to the EOM-CC field-dependent energy of Eq. (20). Estimates
will also be given of the uncertainties of the numerical
derivatives.

The results of the calculations are given in Table I. We
first note that the numerical values of the polarizabilities,
hyperpolarizabilities, and transition strengths calculated using
the implementation of either the CC-CI or the EOM-CC
analytic expressions are identical and are therefore presented
together in the fourth column of Table I. The expressions
that have been implemented for the CC-CI polarizabilities
and first hyperpolarizabilities are Eqs. (340) and (343)
of Ref. 51, respectively. The EOM-CC polarizability and
first hyperpolarizability expressions are Eqs. (407) and (408)
of Ref. 51. For transition strengths, the CC-CI and EOM-CC
expressions in Ref. 74 have been implemented. Note again
that the CC-CI and EOM-CC expressions for a molecular
property look very different. As we have shown in Sec. IV C,
however, these different expressions lead in CC-CI and EOM-
CC theory to identical molecular response properties, as also
confirmed by the calculations reported in Table I.

Finite field EOM-CC results for static molecular response
properties are also given in Table I together with estimated
uncertainties of the numerical derivatives. The uncertainty of
the numerical differentiation of course increases for the higher
derivatives. However, the finite field results in Table I clearly
demonstrate that the numerical differentiation of the EOM-CC
field-dependent energy of Eq. (20) corresponds exactly to the
analytic CC-CI/EOM-CC static molecular response properties.

In Table I, we also give results for standard CC
response calculations, i.e., calculations where an exponential
parametrization is used to describe both the unperturbed
system and its time evolution. For two-electron systems, CC
theory containing all single and double excitations gives FCI
results, independent of whether a linear or an exponential
parametrization is used to describe the time evolution of
the unperturbed state. The CCSD and CC-CISD/EOM-CCSD
results in Table I are therefore identical for HeH+ and H2. For

HF and N2, the CC-CISD/EOM-CCSD results differ from the
CCSD results but the differences are relatively small (up to a
few percent). This reflects that small changes are introduced in
a molecular system by applying the time-periodic perturbation
and that these small changes for small molecular systems can
be described quite well by a truncated linear expansion. Note
also that the excitation energies are the same for the CCSD
and CC-CISD/EOM-CCSD models, not only for two-electron
systems but also for systems of an arbitrary size.

VI. SUMMARY AND CONCLUSIONS

EOM-CC molecular response properties are commonly
obtained by taking the CI response functions (and residues
of the CI response functions) and replacing the energies and
eigenstates of the CI eigenvalue equation with the energies
and eigenstates of the EOM-CC eigenvalue equation.2 We
have here demonstrated that EOM-CC molecular response
properties are identical to the ones determined using a
CC-CI time-dependent framework, also when truncations
are introduced in the excitation manifold. However, the
equivalence holds only if the CI→ EOM-CC replacement
of energies and eigenstates is performed in the CI response
functions (and residues of the CI response functions) obtained
using projection, and not in those obtained using the
variational principle. The equivalence between EOM-CC and
CC-CI response properties holds for all orders of the response
functions and not, as incorrectly stated in Ref. 51, only for
molecular response properties that can be described in terms
of linear response functions.

The CC-CI approach offers a first-principle, time-
dependent perspective to derive the EOM-CC molecular
response property expressions and to analyze and understand
the basic assumptions on which these expressions are founded.
The equivalence between EOM-CC and CC-CI molecular
response properties also facilitates the determination of EOM-
CC static molecular response properties from finite-field
EOM-CC energy calculations.

In CC-CI theory, the time-dependent Schrödinger
equation is solved using an exponential parametrization to
describe the unperturbed state and a linear parametrization to
describe the time evolution of this state. As the time-dependent
Schrödinger equation is solved in CC-CI theory, EOM-CC
molecular response properties become identical to FCI
molecular response properties when no truncation is carried
out in the excitation manifold in the CC-CI calculations.

In standard CC response theory, both the unperturbed
system and its time evolution are described in terms of
an exponential parametrization and size extensive molecular
response properties are therefore obtained. In CC-CI theory,
the time evolution of the unperturbed state is described in
terms of a linear parametrization and the EOM-CC molecular
response properties therefore are not size extensive when
truncations are carried out in the excitation manifold that
enters the EOM-CC eigenvalue equation. For small molecular
systems, there is little difference between describing the time
evolution of the unperturbed system in terms of an exponential
or a linear truncated expansion since the energy contributions
from the added time-periodic perturbation are small compared
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to the ground-state total energy. The size-extensivity problems
therefore are not severe for small molecular systems and the
deviations between molecular response properties that are
calculated using CC-CI/EOM-CC and conventional CC theory
are small for small molecular systems. For large molecular
systems, the size-extensivity problems may become severe and
lead to non-physical results, e.g., negative transition strengths,
as shown in Refs. 15 and 76.
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74CC-CI transition strengths are obtained by taking a residue of the linear
response function and, in the notation of Ref. 51, are given by

|M0m |2 = lim
ωXj2

→ωm

(
ωX j2

−ωm

) 


X j1; X j2

��
ωXj2

=
1
2


S
X j1X j2
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)∗
,

where ωm = (Em − E0) is an excitation energy corresponding to an
excited state C⊥m and

S
X j1X j2
0m = T

X j1
0m T

X j2
m0 .

The CC-CI transition moments read
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EOM-CC transition strengths are obtained by taking the CI transition
strength expressions (in the diagonal representation) and replacing the
eigenstates of the CI eigenvalue equation with the eigenstates of the
EOM-CC eigenvalue equation,

|M0m |2 = ⟨0CC
0 |X j1|0CC

m ⟩⟨0CC
m |X j2|0CC

0 ⟩,
and the EOM-CC transition moments consequently read

T
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
νn

C
⊥
mνn

⟨νn |XT0
j2
|HF⟩.

The EOM-CC and CC-CI expressions for right transition moments T
X j2
m0

are identical, whereas those for the left moments T
X j1

0m look different.
However, by modifying the left CC-CI transition moment expression to
comply with the 2n + 1 rule, an expression identical to the EOM-CC
expression is obtained.
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