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ABSTRACT  

Objective. Coffee consumption is negatively associated with risk of type 2 diabetes and 1 

cardiovascular mortality. Coffee roasting can greatly modify the quality-quantitative 2 

characteristics of bioactive compounds. We compared the effects of two different roasting 3 

intensities of the same naturally low-caffeine Arabica coffee variety (Laurina), on glucose 4 

and lipid metabolism as well as oxidative stress. 5 

Research Methods & Procedures. We performed a double-blind, crossover intervention 6 

study. 14 healthy male volunteers consumed 4 cups/day of Light Roasted Coffee (LRC) and 7 

Dark Roasted Coffee (DRC) for one-week (intervention period 1 and 2 respectively). One-8 

week washout, with total abstinence from coffee and other possible caffeine sources, preceded 9 

each interventions. Data were collected at the end of washout and intervention periods. 10 

Results. Changes between washout and intervention periods in glucose concentrations at 2-h 11 

post-OGTT, were significantly lower following DRC than LRC intake (-0.6±0.3 and 0.4±0.3 12 

mmol/l, p<0.03). Changes in β-cell function, assessed as insulin secretion-sensitivity index-2 13 

(ISSI2), were significantly greater following DRC than LRC (34.7±25.0 and -18.8±21.0, 14 

p=0.03). The initial (30 minutes) post-OGTT AUC of glucagon-like peptide-1 was 24±9% 15 

greater (p=0.03) after DRC than LRC. LRC or DRC did not affect insulin sensitivity. Changes 16 

from basal of reduced-to-oxidized glutathione ratio (GSH/GSSG) in erythrocytes were 17 

significantly greater after DRC than LRC (+1437±371 and -152±30, p<0.05). The omega-3 18 

index in erythrocyte membranes was 16±4% greater (p<0.001) after DRC than LRC. 19 

Conclusions. DRC consumption improved post-load glucose metabolism by increasing 20 

incretin and insulin secretions. DRC compared to LRC improved redox balance and increased 21 

omega-3 fatty acids. Thus, we suggest greater metabolic benefits related to DRC. 22 

23 
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INTRODUCTION 24 

Coffee is one of the most widely consumed beverages in the world. Several epidemiological 25 

studies have shown clear associations between coffee intake and reduced risk for 26 

cardiovascular and all-cause mortality [1]. Other studies have underlined the potential role of 27 

coffee consumption in reducing the risk of type-2 diabetes mellitus (T2DM), characterized by 28 

an ever-increasing prevalence. Prospective studies in different countries and meta-analyses 29 

have shown an inverse dose-dependent correlation between long-term consumption of coffee, 30 

both regular and decaffeinated, and T2DM risk [2-9]. Even though some studies have shown 31 

that caffeine acutely increases blood glucose and decreases insulin sensitivity [10-13], long-32 

term caffeine intake has positive metabolic effects, such as increased secretion from adipocyte 33 

of adiponectin, a hormone with insulin sensitizing properties. [15]. Coffee, both with or 34 

without caffeine, contributes also to the postprandial insulin secretion by acutely stimulating 35 

the release of glucagon-like peptide-1 (GLP-1), an incretin secreted by the small intestine, 36 

[24, 25], furthermore, coffee contains over a thousand bioactive antioxidant substances, 37 

making this beverage a major dietary antioxidant supplier in western countries [16]. Among 38 

coffee components, chlorogenic acid (GCA), melanoidins, quinides and N-methylpyridinium 39 

(NMP) have clearly shown the potential to affect glucose and insulin metabolism [17-23].  40 

The roasting process has relevant effects on the relative content of coffee biochemicals. Green 41 

beans and light roasted coffee (LRC) have a high content of CGA and trigonelline. These 42 

compounds directly improved insulin sensitivity and secretion, as well as glucose uptake, in 43 

experimental conditions. With roasting, the concentration of CGA and trigonelline decreases, 44 

while that of quinides, NMP and melanoidins, produced by Maillard reaction, increases [26]. 45 

These changes have been shown to influence the antioxidant capacity of coffee and its impact 46 

on physiological systems. The high antioxidant capacity of dark roasted coffee (DRC) has 47 

been especially associated with its melanoidin and NMP content [27]. The gastrointestinal 48 
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tract is the major site of melanoidin antioxidant action. Dietary melanoidins have been 49 

demonstrated to reduce the formation of lipid hydroperoxides and advanced lipid oxidation 50 

end products during meal digestion [18]. NMP has been shown to control oxidative stress 51 

through induction of the nuclear factor E2-related factor 2 (Nrf2) and the antioxidant response 52 

element (ARE) pathway [22]. The effects of quinides and NMP on glucose metabolism have 53 

been poorly investigated in humans. NMP promoted glucose uptake in vitro, while quinides 54 

improved insulin action in rats [20, 23]. 55 

Principal aim of the present study was to compare the effects of two different roasting 56 

intensities of the same naturally low-caffeine Arabica coffee variety (Laurina), on glucose 57 

and lipid metabolism and oxidative stress in healthy volunteers. We used a crossover, double-58 

blind experimental design. Subjects underwent two consecutive study phases, each one lasting 59 

two weeks and each inclusive of one-week washout followed by one-week intervention 60 

period, with the intake of LRC (intervention 1) and DRC (intervention 2) products, as 4 61 

cups/day of espresso coffee per day. 62 

63 
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METHODS 64 

Study participants and design 65 

Fourteen healthy male volunteers were recruited (age 39±2 y; BMI 25.0±0.4 kg/m2) according 66 

to the following inclusion criteria: habitual coffee drinker, absence of chronic and acute 67 

illnesses, no pharmacological treatment and no smoking habits. A physician confirmed the 68 

health conditions of the participants through a complete medical history and physical 69 

examination. The study was approved by the National Ethics Committee of Slovenia. All the 70 

participants signed an informed consent. Measurements were performed at the Institute for 71 

Kinesiology of the Primorska University (Koper, Slovenia). As reported elsewhere, during 72 

long-term consumption of different coffee products, a sample size lower than that used in the 73 

present study provided 90% power in detecting differences in glucose and lipid metabolism, 74 

with a probability of 0.05 [13, 14]. 75 

Before the study, an expert dietitian assessed eating and physical activity habits of each 76 

participant. To minimize potential individual lifestyle confounding variables, subjects were 77 

asked to followed some simple rules including: exclusion of caffeine containing foods and 78 

drinks, besides the test-coffees, and decaffeinated coffee; maintenance of habitual exercise 79 

levels and eating pattern; avoidance of nutrient supplements, herbal products, and 80 

medications; and daily compilation of food and exercise logs, checked weekly by the 81 

dietitian. 82 

The study lasted four weeks and was organized as a double-blind, crossover intervention, 83 

inclusive of two subsequent phases. Each phase involved a washout period of 7-days, during 84 

which the participants abstained from drinking any coffee or caffeinated products, followed 85 

by an intervention period (7-days), during which subjects drank 4 espresso coffees/day (at 86 

breakfast, midmorning, after lunch and in the afternoon), first as LRC and then as DRC 87 

(Figure 1). 88 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

7 

All LRCs and DRCs used in the study came from the same green coffee batch. Before each 89 

intervention period, subjects were provided with specific coffee capsules, filled with the 90 

coffee type matched to the study phase. To standardize the brewing process, all participants 91 

received the same espresso coffee machine (X7.1 IPERESPRESSO, illycaffè spa, Trieste, 92 

Italia) and were instructed on its proper use.  93 

94 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

8 

Coffee characteristics 95 

The coffee products were obtained from a Coffea Arabica variety known as Laurina (or 96 

Bourbon Pointu), characterized by a lower content of caffeine than other Coffea Arabica 97 

varieties. Green coffee beans were roasted at two different intensities, as determined by color 98 

measurement (Colorette 3B, Probat): LRC (color 108±3 A.U.) and DRC (color 82±3 A.U.). 99 

Bioactive compound content in LRCs and DRCs (Table 1), including quinolactones 100 

(measured as 5-O-caffeoyl-epi-δ-quinide) were measured as previously described [27, 28]. 101 

NMP and niacin levels were determined by 1H-Nuclear Magnetic Resonance. Coffee samples 102 

were prepared by adding 50µL of D2O, containing 3-trimethylsilyl-[2,2,3,3-2H4] propionate 103 

as chemical shift reference, to 500µL of beverage in a 5mm precision glass NMR tubes (535-104 

pp,Wilmad). A Bruker Avance DMX600 spectrometer (Rheinstetten, Germany), operating at 105 

599.90 MHz for 1H and equipped with a 5 mm TXI xyz-triple gradient probe, was used for 106 

quantification (expressed as molar ratio with caffeine). 107 

The coffee component descriptive profiles (Table 2) of LRCs and DRCs were carried out in 108 

duplicate, in a sensory laboratory, designed in accordance with ISO8589, using a consensus 109 

vocabulary, by a panel of eight experts. Scores (0-7) from testing evaluation were statistically 110 

processed (Fizz Network 2.31G Biosystem, Couternon, France). The two products were 111 

described as being significantly (ANOVA) different for 8, out of 11, taste and flavor 112 

attributes. 113 

Metabolic assessment 114 

An OGTT was performed at the end of each washout and intervention periods in study phases 115 

1 and 2. In the morning of the test day, a catheter was positioned in a forearm vein for blood 116 

drawing. Blood samples were collected in the post-absorptive state -30min, -15min and 117 

immediately before the glucose load. Then, each subject received 75g of glucose dissolved in 118 

300 ml of water. Post-load blood samples were collected at 30, 60, 90 and 120min in EDTA 119 
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tubes and immediately centrifuged (3000g, 4°C) for 10 minutes. Plasma, red blood cells and 120 

serum were collected, treated in accordance to the different analytical protocols and stored at -121 

80°C, until measurements. 122 

Analyses and calculations 123 

Glucose, insulin and GLP-1 plasma concentrations were determined in the post-absorptive 124 

state and during OGTT. Glucose and insulin were analyzed by standard procedures in a 125 

certified external laboratory (Synlab Italia Srl, Italy). GLP-1 levels were determined by a 126 

commercially available ELISA kit (TemaRicerca, Bologna, Italia). Insulin resistance in the 127 

post-absorptive state was measured by the HOMA-IR, i.e., HOMA-IR=(fasting-glucose × 128 

fasting-insulin/22.5) [30]. The trapezoid method was used to calculate AUC for glucose, 129 

insulin and GLP-1 during 120min post-OGTT [30]. Early post-OGTT levels of glucose, 130 

insulin and GLP-1 were assessed through calculation of 30min post-OGTT AUC [31]. Insulin 131 

sensitivity was calculated with the Matsuda index (ISOGTT) [32], a measure of whole-body 132 

insulin sensitivity, validated against the euglycaemic-hyperinsulinaemic clamp, as follows: 133 

ISOGTT=[10000/√(fasting-glucose × fasting-insulin × averageOGTT-insulin × averageOGTT-134 

glucose)]; Insulin sensitivity was also determined as ratio between 120min post-OGTT 135 

AUCinsulin and AUCglucose [30]. β-cell function during OGTT was assessed with the insulin 136 

secretion-sensitivity index-2 as follows: ISSI-2=(ISOGTT ×AUCinsulin/AUCglucose) [30, 33]. The 137 

other biochemical indices were measured in the post-absorptive state. Adiponectin levels were 138 

determined using a commercial ELISA kit (BioVendor, Lab. Med. Inc., Brno, Czech 139 

Republic). Total and HDL cholesterol and triglyceride plasma levels were assessed with 140 

standard methods by a certified external laboratory (Synlab Italia Srl, Italy). Homocysteine, 5-141 

oxoproline and amino acid concentrations were assessed by gas-chromatography mass-142 

spectrometry (GC-MS, HP5890, Agilent Technologies, Santa Clara, CA), using the internal 143 

standard technique, as previously described [34, 35]. For each compound, a known amount of 144 
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stable isotope (Cambridge Isotope Laboratories) was added as internal standard to a known 145 

volume of plasma. Silylated derivatives were measured under electron-impact ionization by 146 

selective ion monitoring. Total glutathione concentrations in erythrocytes were evaluated by 147 

GC-MS using the internal standard technique as previously described [36]. The GSH/GSSG 148 

ratio in erythrocytes was determined by a commercially available kit (Prodotti Gianni, 149 

Milano, Italia) [36]. The relative fatty acid (FA) contents in erythrocyte membranes were 150 

determined by gas-chromatography flame-ionization-detection (GC-FID; GC6850 Agilent 151 

Technologies, Santa Clara, CA, USA), as previously reported [37]. Red blood cell membrane 152 

levels of FAs were expressed as percent ratio between AUC of each FA peak and the sum of 153 

all FA peaks. ∆-5 and ∆-9 desaturase indices (arachidonic/dihomo-γ-linolenic acid ratio and 154 

oleic/stearic acid ratio respectively, in erythrocyte membranes) are markers of insulin 155 

sensitivity. The omega-3 index is a marker of cardiovascular risk, defined as sum of 156 

eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids in erythrocyte membranes. 157 

Body weight and composition. At the end of each washout and intervention period, body 158 

weight was recorded and body composition was measured by a mono-frequency bioelectrical 159 

impedance apparatus and its software (BIA101 and Software Bodygram®, Akernsrl, Firenze, 160 

Italy). 161 

Statistics 162 

Data are reported as mean±SEM. In order to evaluate coffee effects and coffee×roasting 163 

interactions, we have used repeated measures ANOVA, or ANCOVA, where appropriate 164 

(washout values were used as covariates). When the results of coffee×roasting interactions 165 

were significant (p≤0.05), the changes induced by the coffee products, evaluated as the 166 

difference between the values obtained at the end of the intervention and the washout periods 167 

(delta values), were assessed through paired T-test. Values were logarithmically transformed 168 
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when appropriate; p<0.05 was considered statistically significant. Statistical analysis was 169 

performed using SPSS software (v12; SPSS, Inc., Chicago, IL). 170 

171 
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RESULTS 172 

All participants were compliant to the study. Body weight and composition, as expected, did 173 

not change significantly throughout the protocol (Table 3).  174 

As shown in Table 4, fasting glucose, insulin and GLP-1 concentrations and HOMA-IR did 175 

not change significantly after the coffee intake phases. 176 

Following OGTT, we found significant coffee×roasting interaction on glucose concentrations 177 

at 120min post OGTT. Changes in the 2h post OGTT glucose values (Figure 2A), comparing 178 

basal with the intervention periods, were significantly lower after DRC intake than after LRC 179 

(-0.6±0.3 and 0.4±0.3 mmol/l, p<0.03, Student paired t-test). Furthermore there was 180 

significant coffee×roasting interaction on delta changes from fasting values of glucose 181 

concentrations. The early (30min) and the total (120min) post-OGTT AUC of plasma glucose 182 

and insulin (Figure 2A and B) and the post-OGTT marker of insulin sensitivity (ISOGTT) were 183 

not significantly modified by the coffee different roasting intensities. 184 

There was a significant coffee×roasting interaction on ISSI2, an index of β-cell insulin 185 

secretion-sensitivity. Absolute delta values of this index, calculated after DRC administration, 186 

were significantly greater than those observed after LRC intake (34.7±25.0 and -18.8±21.0, 187 

p=0.03, Student paired t-test). 188 

During OGTT, in all conditions (washout and intervention periods), GLP-1 plasma 189 

concentrations, at 30min increased by 5-6 times the fasting values and after 60min, decreased 190 

toward basal values. GLP-1 values at 30min were influenced by both coffee intake and 191 

roasting intensity (Figure 2C). One week of DRC significantly increased (5±2%) GLP-1 192 

concentrations (p<0.02, paired Student t-test with Bonferroni correction), similarly a week of 193 

LRC increased this incretin concentration but not significantly. At 30min post-OGTT, there 194 

was also significant coffee×roasting interaction on delta changes from the fasting GLP-1 195 

values. Furthermore there were significant coffee effects and coffee×roasting interaction on 196 
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early (30min) post-OGTT AUC of GLP-1. Coffee administration at different roasting degree 197 

did not significantly changed total (120min) post-OGTT AUC of GLP-1. 198 

The effects of LRC and DRC consumption, on glutathione availability and redox status in 199 

erythrocytes are shown in Table 5. Coffee consumption significantly increased total 200 

glutathione concentrations in erythrocytes, without a significant coffee×roasting interaction, 201 

which resulted significant for the GSH/GSSG ratio. Absolute delta values of the GSH/GSSG 202 

ratio after DRC administration were significantly greater than those observed after the intake 203 

of LRC (1437±371 and -152±30, p<0.05, Student paired t-test). There were neither coffee nor 204 

coffee×roasting interaction effects on 5-oxoproline plasma concentrations, a precursor of 205 

glutamic acid in the γ-glutamyl cycle. However, we found a significant coffee×roasting 206 

interaction on the 5-oxoproline-to-glutamate ratio (Table 5). Delta changes between washout 207 

and intervention periods of this ratio were significantly greater following DRC than LRC. No 208 

changes were observed in the plasma lipid profile (Table 5). 209 

The effects of LRC and DRC on adiponectin plasma levels are shown in Table 5. Coffee 210 

consumption significantly increased adiponectin concentrations, with no coffee×roasting 211 

interaction. Adiponectin concentrations increased by ~11±2% after both LRC and DRC 212 

intake. C-reactive protein (CRP) concentrations did not change significantly throughout the 213 

study. Table 6 shows the effects of LRC and DRC on plasma amino acids. There was a 214 

significant coffee×roasting interaction on both cysteine and homocysteine plasma 215 

concentrations, which were significantly greater after DRC than LRC consumption. The other 216 

amino acid plasma levels were not influenced by either interventions.  217 

The effects of LRC and DRC on fatty acid relative composition in red blood cell membranes 218 

are shown in Table 7. There was a significant coffee×roasting interaction effect on 219 

erythrocyte membrane content for: DHA, the sum of the measured n-3 polyunsaturated fatty 220 

acids (PUFA) and the omega-3 index. The sum of n-3 PUFAs, DHA concentration and the 221 
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omega-3 index in erythrocytes were significantly higher after DRC than LRC intake, while no 222 

significant changes were observed for other membrane FAs.  223 

224 
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DISCUSSION 225 

Epidemiological studies have shown that long-term, habitual coffee consumption reduces the 226 

risk of T2DM [2-9]. Nonetheless, the mechanisms of such association are not well defined 227 

[17]. Caffeine acutely increases glucose levels [10-13], while it may improve insulin 228 

sensitivity in long-term studies [38]. Besides caffeine, coffee contains a mixture of bioactive 229 

compounds, with antioxidant and/or glucose metabolism regulating properties, whose levels 230 

are influenced by the roasting process [16]. Changes in roasting intensity may modify the 231 

glucoregulatory and antioxidant coffee effects. To perform the present study, we selected a 232 

naturally low-caffeine Laurina coffee variety, to preserve taste and functional effects of 233 

caffeine while, at the same time, minimizing undesirable properties. In our study, caffeine 234 

amount was equivalent in both products (Table 1), the observed different effects between the 235 

two coffees products can be therefore attributed to roasting related changes in bioactive 236 

compounds other than caffeine. 237 

Our results indicate a strong association between DRC intake and improved post-load glucose 238 

metabolism, as shown by lower glucose concentrations, increased insulinogenic index and 239 

enhanced early secretion of GLP-1. In agreement with previous observations [8], coffee had 240 

no effects on fasting glucose metabolism.  241 

Early GLP-1 response during the first 30 minutes after oral glucose intake may be selectively 242 

altered in non-obese subjects with impaired glucose tolerance [31]. This suggests that the 243 

rapidity of GLP-1 response to oral glucose may be delayed in pre-diabetic conditions, that 244 

may lead to a defective insulin secretion. In our study, one-week of DRC intake enhanced 245 

initial post-OGTT GLP-1 secretion, possibly causing the observed increased insulin secretion 246 

and decreased glycaemia. The acute effects of decaffeinated coffee on glucose mediated GLP-247 

1 secretion have been previously described [24, 25]. We underline that in our study coffee-248 

induced changes in OGTT response were observed at least 12 hours after the intake of the last 249 
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coffee. This suggests an adaptive metabolic mechanism to a prolonged coffee consumption, 250 

rather than an acute response and may explain the favorable association between long-term 251 

coffee intake and T2DM prevention.  252 

Thus, the improved postprandial glucose metabolism, associated with DRC consumption, was 253 

accounted by an enhanced insulin secretion rather than an improved insulin sensitivity. This is 254 

confirmed by the observation that fasting HOMA-IR and post-load indices of insulin 255 

sensitivity (ISOGTT and AUCinsulin-to-AUCglucose ratio) were not significantly affected by coffee 256 

ingestion.  257 

Several cross-sectional studies have tested the associations between a long-term intake of 258 

different types of caffeinated or decaffeinated coffees and indices of insulin secretion and 259 

sensitivity [40, 41] in subjects both healthy or with impaired glucose tolerance. While nearly 260 

all studies observed beneficial effects on post-load glycaemia, results point to mechanisms 261 

other than insulin secretion or sensitivity [17, 20, 23-25, 40, 41], related to differences in 262 

coffee composition and roasting degree. In our study while caffeine content was equivalent 263 

both in DRC and LRC, the proportions of quinides, derived from CGA, and NMP, derived 264 

from trigonelline, were, as expected, much higher in DRC. Evidences in vitro and in animal 265 

models clearly showed that quinides and NMP directly influence glucose metabolism [20, 266 

23]. Quinides seem to inhibit the adenosine membrane transport systems, thus decreasing 267 

adenosine uptake and increasing its extracellular levels [42]. Therefore quinides could 268 

contribute to counteract the caffeine pleiotropic effect mediated by adenosine activity 269 

competition [42]. In the islets of Langerhans, increased extra-cellular adenosine levels may 270 

stimulate insulin secretion as well as β-cell proliferation and survival, through activation of 271 

the A1 adenosine receptors [43, 44]. We hypothesize that, in our study, DRC intake may 272 

have, at least in part, enhanced glucose-mediated insulin secretion through this mechanism. 273 
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Beneficial coffee effects have been also related to the well-known antioxidant activity of its 274 

bioactive compounds. Several factors [45-47] however can influence this effect. With 275 

roasting, the concentrations of different phenolic compounds, including CGA, present in 276 

green coffee, are reduced to various extent [26], while antioxidant properties are maintained 277 

from the higher levels of NMP and melanoidins [48]. In our study, Laurina coffees showed 278 

the expected roasting-induced changes in the quantities of the bioactive compound (Table 1). 279 

Both LRC and DRC intake, in agreement with other studies [49], increased the red blood cell 280 

(RBC) total glutathione concentration, the most relevant antioxidant in the body. It was 281 

suggested that some coffee phenolic compounds might increase GSH concentration through 282 

the γ-glutamyl-cysteine synthetase activation, the rate-limiting enzyme in GSH synthesis [50]. 283 

Other studies have shown a pronounced antioxidant effect in vivo, with dark roasted, NMP 284 

rich, coffee consumption [27]. Moreover several of the polyphenols may become part of the 285 

melanoidins, contributing to the preservation of antioxidant content and capacity of DRC, 286 

even after a decrease in the phenolic compound levels [26]. In our coffee products, the 287 

increased concentration of melanoidins with roasting is evident by the reduction in 288 

colorimetric values [51], as reported in the section on “coffee characteristics”. Our data show, 289 

as in other studies [49, 52], that DRC specifically increased the availability of the reduced 290 

form of glutathione, as indicated by the higher GSH/GSSG ratio (Figure 3). In addition, we 291 

have observed changes in plasma concentration of precursor amino acids involved in the GSH 292 

synthesis. In particular, plasma levels of cysteine, the glutathione key precursor, were 293 

significantly enhanced after a week of DRC intake, while glycine and glutamic acid, the other 294 

two glutathione precursors, showed an increase without achieving statistical significance. 295 

Furthermore, plasma concentration of 5-oxoproline, an intermediate in the γ-glutamyl cycle, 296 

considered a marker of glutathione catabolism in vivo [35, 53], was significantly reduced in 297 

relation to its product, glutamic acid (Figure 3). 298 
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Homocysteine is synthetized from methionine through a transmethylation reaction. Its 299 

metabolic fate includes recycling to methionine, though remethylation, or transulphuration to 300 

cystathionine and ultimately to cysteine (Figure 3). In parallel to cysteine concentration 301 

changes induced by DRC, we have observed also, in agreement with other authors, significant 302 

increases in homocysteine plasma levels [52, 53]. The mechanism of such association is 303 

unknown. However, given the beneficial effects of coffee intake on cardiovascular mortality 304 

[1] coffee-related increases in homocysteine levels do not seem to represent a risk factor. 305 

In western countries, coffee-drinking accounts for a significant proportion of daily antioxidant 306 

intake [16], however other factors such as physical exercise, nutrition and energy balance can 307 

affect glucose metabolism and oxidative stress. In our study these variables were standardized 308 

and monitored throughout the washout and intervention periods by an expert dietitian, using 309 

food and activity logs, filled daily by the volunteers. 310 

The Omega-3 index, a recently introduced marker, inversely related with the cardiovascular 311 

risk [55], was significantly affected by the roasting intensity. A higher omega-3 index was 312 

significantly associated with DRC consumption in comparison with LRC intake. This is in 313 

accordance with previous evidence showing that a higher plasma antioxidant capacity is 314 

positively associated with PUFA n-3 concentration in RBC membranes [56]. 315 

In agreement with previous studies, we found that one week of coffee consumption increased 316 

adiponectin plasma concentration [57]. Caffeine, CGA, NMP and other coffee compounds 317 

have the potential to stimulate adiponectin secretion from adipose tissue. It has been 318 

suggested that this hormone, through modulation of inflammation and insulin resistance, may 319 

mediate some of the beneficial coffee effects [15]. We found that roasting intensity did not 320 

significantly affected adiponectin concentrations. 321 

This was a crossover, double-blind intervention study. Because of technical reasons, related to 322 

the manufacturer, we could not follow a randomization protocol, however we found no 323 
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significant differences between baseline values obtained at the end of each washout period, of 324 

the same length, which preceded both intervention periods. 325 

In summary DRC, as compared to LRC, both derived from naturally-low caffeine Laurina 326 

coffee, showed positive effects on glucose metabolism, oxidative stress and cardiovascular 327 

risk markers. In addition, DRC presented more desirable organoleptic characteristics (Table 328 

2). 329 
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Table 1. Daily intake of coffee bioactive compounds. 

Bioactive compounds a 
Coffee roasting intensity 

LRC DRC 
Caffeine 197 197 
Caffeic acid 1.6 1.2 
Ferulic acid 0.4 0.4 
Mono-caffeoylquinic acid isomers  430 226 
Mono-feruloylquinic acid isomers 42.4 30.0 
Di-caffeoylquinic acid isomers 11.2 2.8 
Trigonelline 334 191 
5-O-caffeoyl-epi-δ-quinide 1.59 2.00 
N-methylpyridinium 17.2 35.2 
Niacin 10.0 10.9 

a mg of bioactive compounds in the total volume of coffee drank daily during the intervention 
periods; error between 5 - 10%. LRC, light roasted coffee; DRC, dark roasted coffee 
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Table 2. Components of the descriptive profile of coffee. 

Descriptive profile Coffee roasting intensity p-valuea 
LRC DRC 

Bitter 4.44 5.37 <0.001 
Sour 5.71 4.64 <0.001 
Sweet 4.69 4.39 0.06 
Texture 4.73 5.52 <0.01 
Global aroma 5.56 6.12 0.07 
Chocolate 2.8 4.04 <0.001 
Caramel 2.35 3.08 <0.01 
Toasted bread 1.78 2.94 <0.001 
Flower/fruit 2.27 1.71 0.06 
Burnt 1.31 2.25 <0.05 
Global quality 4.61 5.95 <0.05 

a p-values (ANOVA). Results are expressed as mean of scores, from 0 to 7, given by a panel 
of eight experts. LRC, light roasted coffee; DRC, dark roasted coffee 
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Table 3. Effect of Coffea Arabica variety Laurina coffee at different roasting intensity on 
body composition and anthropometric data. 

 Study phase 1 Study phase 2 p-valuea 

 Washout LRC Washout DRC 
Coffee 
effect 

Coffee × roasting 
intensity 

Weight (kg) 79.8±2.3 80.1±2.2 80.1±2.2 79.8±2.2 0.92 0.39 
FFM (kg) 61.6±1.7 60.9±1.9 62.2±1.5 61.5±1.5 0.14 0.52 
FM (kg) 18.2±1.2 17.9±1.4 17.9±1.3 18.3±1.3 0.24 0.50 

N=14. Data are expressed as mean ± SEM. aANOVA or ANCOVA (washout values as 
covariates) were used where appropriate. Values were log transformed when appropriate. 
LRC, light roasted coffee; DRC, dark roasted coffee; FFM, Fat-Free Mass; FM, Fat Mass. 
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Table 4. Effect of Coffea Arabica variety Laurina coffee at different roasting intensity on 
glucose metabolism. 

 Study phase 1 Study phase 2 p-valuea 

 Washout LRC  Washout DRC 
Coffee 
effect 

Coffee × 
Roasting 
intensity 

FASTING STATE       
Glucose (mmol/L) 5.3±0.1 5.4±0.1 5.4±0.1 5.5±0.1 0.06 0.67 
Insulin (pmol/L) 43.2±6.6 41.8±3.5 46.3±6.1 43.3±5.2 0.80 0.95 

GLP-1 (mg/dL) 2.0±0.5 2.3±0.3 2.1±0.4 2.8±0.5 0.18 0.70 
Insulin resistance       

HOMA-IR 0.6±0.1 0.6±0.01 0.6±0.1 0.6±0.1 0.77 0.88 
ORAL GLUCOSE 

TOLERANCE TEST 
      

Glucose       
120-min concentration 

(mmol/L) 
5.1±0.2 5.6±0.3 5.7±0.4 5.0±0.2 0.57 <0.02 

∆ 120min concentration 
(mmol/L) 

-0.2±0.2 0.1±0.2 0.3±0.4 -0.4±0.2 0.32 0.03 

30min AUC  3.2±0.1 3.3±0.1 3.3±0.1 3.4±0.1 0.20 0.95 
120min AUC  13.2±0.5 12.9±0.6 13.5±0.6 13.1±0.3 0.21 0.67 

Insulin        
30min AUC  75.9±12.0 78.7±6.5 82.3±8.2 94.2±10.9 0.12 0.52 
120min AUC  502.6±57.3 459.2±38.6 478.4±44.9 508.6±39.6 0.80 0.21 

Insulin sensitivity       
ISOGTT 7.74±1.04 7.02±0.63 6.78±0.67 6.80±0.57 0.54 0.25 

Insulin resistance       
AUCinsulin/AUCglucose 

ratio 
37.6±3.6 36.3±3.3 35.5±3.0 39.0±2.9 0.43 0.26 

β-cell function       

ISSI2 261.0±25.9 242.2±21.2 220.4±13.7 255.1±21.5 0.70 0.03 
GLP-1 response       

30min concentration 20.1±3.5 21.9±2.7 21.8±2.8 26.8±3.3 0.08 <0.01 

∆ 30min concentration 
(mg/dL) 

18.1±3.2 19.6±2.6 19.7±2.6 24.0±3.0 0.16 0.03 

30min AUC  5.5±0.9 6.1±0.7 6.0±0.8 7.4±0.9 0.05 <0.01 
120min AUC  38.7±4.3 38.2±3.5 37.4±3.6 39.3±3.6 0.07 0.29 

N=14. Data are expressed as mean ± SEM. aANOVA or ANCOVA (washout values as 
covariates) were used where appropriate. Values were log transformed when appropriate. 
LRC, light roasted coffee; DRC, dark roasted coffee; GLP-1, glucagon-like peptide-1; ISOGTT, 
insulin sensitivity or Matsuda index; ISSI2, insulin secretion-sensitivity index-2 
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Table 5. Effect of Coffea Arabica variety Laurina coffee at different roasting intensity on 
indices of oxidative stress, inflammation and lipids metabolism. 

 Study phase 1 Study phase 2 p-valuea 

 Washout LRC  Washout DRC 
Coffee 
effect 

Coffee × 
roasting 
intensity 

Oxidative stress       

Total glutathione (µmol/L RBC) 2190±55 2257±57 2287±63 2326±61 0.03 0.47 

GSH/GSSG (ratio) 614±202 463±172 942±343 2380±714 0.14 <0.05 
Inflammation       
CRP (mg/L) 0.10±0.03 0.07±0.02 0.27±0.14 0.07±0.02 0.16 0.23 
Adiponectin (µg/mL) 6.39±0.69 7.01±0.73 6.79±0.67 7.40±0.70 0.002 0.98 
Lipid metabolism       
HDL cholesterol (mg/dL) 58.0±3.9 56.2±3.7 56.9±4.3 56.6±4.0 0.30 0.45 
LDL cholesterol (mg/dL) 109±9 104±7 108±9 103±6 0.12 0.90 
Triglycerides (mg/dL) 63±7 73±7 62±6 67±6 0.15 0.45 

N=14. Data are expressed as mean ± SEM. aANOVA or ANCOVA (washout values as 
covariates) were used where appropriate. Values were log transformed when appropriate. 
LRC, light roasted coffee; DRC, dark roasted coffee; GSH/GSSG, ratio between reduced and 
oxidized glutathione; RBC, red blood cell; CRP, C reactive protein. 
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Table 6. Effect of Coffea Arabica variety Laurina coffee at different roasting intensity on 
major fatty acids in erythrocyte membranes (%). 

 Study phase 1 Study phase 2 p-valuea 

 Washout LRC  Washout DRC 
Coffee 
effect 

Coffee × 
roasting 
intensity 

Saturated fatty acids       
Myristic 14:00 0.25±0.03 0.27±0.02 0.25±0.02 0.25±0.03 0.70 0.53 
Palmitic 16:00 23.0±0.5 23.9±0.5 22.6±0.4 22.5±0.5 0.17 0.12 
Stearic 18:00 19.5±0.3 19.9±0.3 19.1±0.3 19.1±0.3 0.19 0.23 
Sum 42.8±0.7 44.1±0.8 42.0±0.6 41.8±0.7 0.15 0.14 
       
Monounsaturated fatty 
acids 

      

Palmitoleic 16:1 n-7 0.23±0.02 0.26±0.01 0.23±0.01 0.23±0.01 0.40 0.27 
Oleic 18:1 n-9 15.6±0.3 16.1±0.3 15.3±0.3 15.3±0.3 0.11 0.15 
Elaidic trans 18:1n-9 1.1±0.03 1.2±0.04 1.1±0.02 1.1±0.02 0.10 0.84 
Eicosenoic 20:1n-9 0.32±0.04 0.30±0.02 0.28±0.01 0.27±0.01 0.59 0.70 
Sum 17.3±0.3 17.8±0.4 16.9±0.3 16.9±0.3 0.11 0.18 
       
n-3 Polyunsaturated 
fatty acids 

      

Eicosapentaenoic 20:5n-3 0.46±0.04 0.43±0.04 0.51±0.05 0.52±0.06 0.79 0.26 
Docosapentaenoic 22:5n-3 2.11±0.10 1.94±0.10 2.20±0.08 2.23±0.10 0.14 0.09 
Docosahexaenoic 22:6n-3 4.62±0.25 4.23±0.29 4.78±0.27 4.88±0.31 0.15 0.04 
Sum 7.19±0.33 6.61±0.39 7.49±0.35 7.63±0.42 0.18 0.05 
       
n-6 Polyunsaturated 
fatty acids 

      

Linoleic 18:2 n6 11.0±0.3 11.1±0.2 11.0±0.2 10.9±0.3 0.64 0.34 
Eicosadienoic 20:2n-6 0.28±0.01 0.29±0.01 0.29±0.01 0.30±0.01 0.10 0.76 
Dihomo-γ-linolenic 20:3n-
6 

1.74±0.06 1.65±0.06 1.83±0.05 1.81±0.05 0.03 0.29 

Arachidonic 20:4n-6 15.3±0.5 14.4±0.6 15.8±0.4 16.0±0.5 0.22 0.14 
Adrenic 22:4n-6 3.6±0.3 3.3±0.2 3.8±0.3 3.8±0.2 0.09 0.03 
Docosapentaenoic 22:5n-6 0.8±0.04 0.9±0.1 0.9±0.04 0.9±0.04 0.33 0.53 
Sum 32.7±0.7 31.5±0.8 33.6±0.7 33.6±0.7 0.23 0.34 
       
Omega-3 index 
(20:5 n-3 + 22:6 n-3) 

5.08±0.26 4.66±0.33 5.29±0.32 5.40±0.37 0.19 0.04 

       
∆9-Desaturase index 
(18:1 n-9 / 18:00) 

0.80±0.02 0.81±0.02 0.80±0.02 0.80±0.02 0.68 0.57 
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∆5-Desaturase index 
(20:4 n-6 / 20:3 n-6) 

8.86±0.39 8.73±0.40 8.74±0.36 8.97±0.41 0.54 0.13 

N=14. Data are expressed as mean ± SEM. aANOVA or ANCOVA (washout values as 
covariates) were used where appropriate. Values were log transformed when appropriate. 
LRC, light roasted coffee; DRC, dark roasted coffee; 
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Table 7. Effect of Coffea Arabica variety Laurina coffee at different roasting intensity on 
plasma amino acids concentrations. 

 Study phase 1 Study phase 2 p-valuea 
Plasma 

amino acid 
(µmol×L -1) 

Washout LRC  Washout DRC 
Coffee 
effect 

Coffee × 
roasting 
intensity 

Alanine 379±20 382±14 400±22 395±16 0.93 0.69 
Cysteine 554±43 520±42 538±38 590±44 0.63 0.04 
Glutamic acid 142±12 125±8 136±6 139±7 0.25 0.12 
Glutamine 548±34 518±26 555±32 575±36 0.76 0.10 
Glycine 660±41 605±36 672±48 678±24 0.47 0.12 
Leucine 153±8 143±6 161±10 167±10 0.77 0.18 
Methionine 30.3±1.8 28.4±1.2 32.4±1.8 34.1±2.7 0.92 0.12 
Phenylalanine 73.6±4.9 71.4±4.7 77.5±5.3 77.9±4.7 0.74 0.59 
Proline 229±14 245±18 249±14 274±21 0.15 0.55 
Serine 208±11 194±12 211±12 221±10 0.84 0.39 
Threonine 172±8 166±7 182±8 192±8 0.78 0.14 
Tyrosine 106±8 100±4 108±6 115±6 0.95 0.09 
5-oxoproline 149±14 186±20 174±18 168±14 0.21 0.14 
Homocysteine 20.8±5.7 20.2±5.8 21.4±6.1 23.1±6.3 0.14 0.001 
5-oxoproline/glutamate 

1.06±0.03 
1.54±0.1

8 
1.25±0.09 

1.20±0.0
7 

0.08 <0.02 

N=14. Data are expressed as mean ± SEM. aANOVA or ANCOVA (washout values as 
covariates) were used where appropriate. Values were log transformed when appropriate. 
LRC, light roasted coffee; DRC, dark roasted coffee; 
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FIGURES AND FIGURE LEGENDS 
 
 

 

Figure 1. Study protocol. 
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Figure 2. Effect of Coffea Arabica variety Laurina coffee at different roasting intensity on 
glucose metabolism during OGTT. 
Plasma insulin (A), glucose (B) and glucagon-like peptide-1 (GLP-1) (C) concentrations. 
--△--: washout period before dark roasted coffee (DRC); —▲—: intervention period with 
DRC; 
--○--: washout period before light roasted coffee (LRC); —●—: intervention period with 
LRC.  
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Figure 3. Dark roasted coffee (DRC) effects on the γ-glutamyl cycle. 
DRC enhanced the availability of reduced glutathione (GSH). Glycine, cysteine and 
glutamate are direct GSH precursors. Thick-lines indicate potentially up-regulated metabolic 
pathways; thin-lines indicate potentially down-regulated precursors. 
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HIGHLIGHTS 
 

• Long-term coffee intake modifies glucose metabolism and redox balance in 
humans 

• Coffee benefits are most likely mediated by compounds other than caffeine 
• Roasting intensity modulates the content of coffee bioactive compounds 
• Dark roasted coffee showed greatest metabolic benefits and taste 

characteristics 


