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Abstract 18 

The present study is aimed to enhance the oral bioavailability of ketoprofen by inserting it into the 19 

matrix of poly(vinylpyrrolidone) (PVP) K10, a water soluble polymer, spatially confined into 20 

microcontainers, by means of supercritical CO2-aided impregnation. Microcontainers are 21 

cylindrical reservoirs, with typical sizes in the micrometer range, with a cavity open on one side, 22 

where the drug formulation is loaded. Differently to traditional tablets, microcontainers have a 23 

higher surface area per unit volume, and release the drug only in one direction. This design is 24 

meant to enhance the absorption of problematic drugs, like those with poor solubility in water. In 25 

a previous study we introduced a novel technique for drug loading of microcontainers, based on 26 

inkjet printing and supercritical impregnation (SCI). We showed that SCI produces accurate and 27 

reproducible drug loading for large arrays of microcontainers. In the attempt of enhancing the 28 

throughput of the loading methods, we propose the replacement of polymer inkjet printing with 29 

an easier manual compression of the PVP powder into the microcontainers. As the second step, 30 

the polymer powder filled-microcontainers were submitted to SCI. The separate role of different 31 

impregnation parameters (temperature, pressure, time, drug concentration in the supercritical 32 

phase) was elucidated with respect to the loading capacity. The microcontainer filling was 33 

observed by means of optical macroimaging, X-ray microtomography and scanning electron 34 

microscopy. The physical state of the drug was investigated by means of Raman spectroscopy and 35 

compared with selected representative PVP-ketoprofen physical mixtures. Finally, the drug loading 36 

was estimated by means of in vitro dissolution tests.  37 

The characterization study shows that the present loading method is a valuable alternative to the 38 

one previously described. The drug loading can be controlled with high accuracy and 39 

reproducibility and the impregnated drug is in amorphous state. These results demonstrate that 40 

SCI can be used as a high throughput  loading technique for microfabricated devices for oral drug 41 

delivery.  42 



2 
 

1. Introduction 43 

Among the different drug delivery routes oral administration is still the most preferred one for its 44 

simplicity, minimal invasiveness, and high patient compliance. Nevertheless, the human digestive 45 

system presents a sequence of physiological barriers which drastically reduce the bioavailability of 46 

many active pharmaceutical ingredients (API): enzymatic degradation, hydrolysis in the gastric 47 

acidic environment, thick mucus layer covering the intestinal mucosa, selective transport action of 48 

peptide receptors in the epithelial cells [1]. Such unfavorable conditions are affecting APIs that 49 

exhibit low solubility in water. The solid state properties of drugs have a strong influence on their 50 

solubility. Whilst amorphous drug candidates exhibit an enhanced solubility and dissolution rate 51 

compared to their crystalline counterparts, amorphous forms often suffer from rather short 52 

thermodynamic stability and they spontaneously tend to crystallize [2]. As a result, stabilization of 53 

amorphous forms is necessary in order to preserve the abovementioned advantages [3]. Physical 54 

stabilization of the amorphous form can be achieved by the addition of a polymeric carrier 55 

wherein the drug is confined in supramolecular domains or even molecularly dispersed [4]. 56 

Together with the solid state properties, the solubility and dissolution rate can be improved by 57 

reducing the particle size of the formulation [5]. Among the several formulation approaches [6] 58 

supercritical fluid based technology is a promising technique to produce micro- and 59 

nanoparticulated systems with high drug dispersion and enhanced stability and dissolution 60 

properties [7]. 61 

Beside the properties of the drug formulation, an important role in the therapeutic performance is 62 

often played by the design of the administration form. Conventional oral dosage forms like tablets 63 

provide a omni-directional drug release through their limited interfacial area when exposed to the 64 

physiological fluids. Furthermore, drug release from tablets is often slow compared to the 65 

peristaltic flow in the GI tract, which is the most permeable tissue for drug absorption. As a result, 66 

a large amount of API is not delivered, and patients need to ingest multiple drug doses to receive 67 

the desired therapeutic benefit. This increases the occurrence of potentially harmful side effects in 68 

patients [8]. 69 

In the last 10 years advances in field of micro- and nanofabrication have allowed the development 70 

of alternative drug delivery systems [9]. In particular there has been an increasing interest in 71 

microfabricated devices based on the concept of microcontainers [10] . A microcontainer is a 72 

reservoir with the typical dimensions falling in the micrometer range, composed by a non-73 

permeable and inert shell and a cavity for the drug formulation open on one side from which the 74 

drug is released undirectionally. Several groups developed microcontainers in different shapes, 75 

materials and designs, where fabrication is typically performed on flat silicon chips. By virtue of its 76 

asymmetric shape and by applying appropriate bioadhesive coatings on microcontainers Ainslie et 77 

al. [11] showed an increased intestinal retention time for these microdevices and an enhanced 78 

bioavailability for a model poorly water soluble drug. One of the big challenges in the fabrication 79 

of microcontainers concerns the drug loading step. In a previous work [12], we showed the 80 

fabrication of cylindrical microcontainers, fabricated with the epoxy resin SU-8. The microwells 81 

were filled with poly(vinylpyrrolidone) (PVP) by inkjet printing. This method showed high accuracy 82 

and a minimal waste of materials. In a more recent work [13] we proposed the combination of 83 

inkjet printing and supercritical technology to impregnate the polymer-filled microcontainers with 84 

ketoprofen, a poorly water soluble drug. We demonstrated that the supercritical impregnation 85 

technique allows a highly accurate and reproducible drug loading of large arrays of 86 

microcontainers. In an attempt to enhance the throughput of this loading method, we propose a 87 

simplified variant of our previous work. Here the polymer printing was replaced by an easier filling 88 

method, consisting of a manual compression of the polymer powder onto the microcontainer. 89 

Later, the powder filled-containers were submitted to supercritical impregnation (SCI) as 90 

previously described [13]. This process modification enabled a significant reduction in the sample 91 
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preparation time and made it possible to investigate the effect of temperature, pressure and 92 

impregnation times on different aspects concerning the drug loading in more detail.  93 

The loading procedure was characterized with different techniques. X-ray microtomography was 94 

used to measure the level of filling and the polymer morphology of the polymer powder in the 95 

microreservoir cavities before and after the SCI. In addition, microcontainers were visualized by 96 

scanning electron microscopy (SEM) to observe the effect of the impregnation parameters on the 97 

polymer morphology. Raman spectroscopy was used to investigate the drug solid state in the 98 

impregnated matrices and drug-polymer interactions. Finally, in vitro dissolution tests were 99 

carried out and the total drug loading was estimated. The results showed that the replacement of 100 

inkjet printing with the powder filling method enhances the throughput of the microcontainer 101 

loading technique without compromising the accuracy or the reproducibility of the whole loading 102 

process.  103 

2. Materials and methods  104 

2.1 Fabrication of SU-8 microcontainers 105 

2.1.1 Materials and fabrication of microcontainers 106 

Silicon wafers (4-inch b100N n-type) were supplied by Okmetic (Vantaa, Finland). SU-8 2075 and 107 

SU-8 developer were purchased from Microresist Technology GmbH (Berlin, Germany).  108 

Cylindrical microcontainers were fabricated with a similar procedure as previously described [12]. 109 

The microwells were fabricated with the epoxy-based photoresist SU-8 on silicon wafers arranged 110 

in a squared chip containing an array of 25x25 microcontainers. A microcontainer has a cavity of 111 

approximately 300 µm in diameter and 270 µm in depth and an approximated volume of 18 nL. 112 

After the fabrication the wafer was cut into square chips containing 625 microcontainers (DISCO 113 

DAD 321, Automatic Dicing Saw). 114 

2.2 Drug loading of microcontainers  115 

2.2.1 Materials  116 

Ketoprofen (98%, racemate) and polyvinylpyrrolidone (PVP K10, Mw 10,000) were supplied by 117 

Sigma Aldrich. Carbon dioxide was supplied by SIAD (99% purity). Ketoprofen is a nonsteroidal 118 

anti-inflammatory drug (NSAID) with analgesic and antipyretic properties. In several 119 

pharmacopoeias ketoprofen is considered as practically insoluble in water [14]. Its solubility in 120 

pure water at room temperature (22-24°C) was reported to be 0.010 mg/mL [15]. Thus, 121 

ketoprofen is classified as a class II active principle in the biopharmaceutical classification system 122 

(BCS): It exhibits low aqueous solubility and a high intestinal permeability.  123 

 124 
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Figure 1: Chemical structure of (a) ketoprofen, (b) monomer of poly (vinyl 
pyrrolidone) (PVP).  

(a) (b)
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2.2.2 Filling with poly(vinylpyrrolidone) PVP powder 131 

Microcontainers were filled with PVP powder with the following procedure: the powder was 132 

deposited and compacted with a spatula onto the microwells and the residual amount, placed in 133 

between containers, was blown away by means of a pressurized air. The chip was weighed before 134 

and after filling and the average PVP weight per chip was estimated. The level of microcontainer 135 

filling was measured by X-ray microtomography in different positions of the chip. 136 

2.2.3 Supercritical impregnation of polymer filled-microcontainers 137 

After the powder deposition the drug was loaded into the polymer-filled microdevices by means 138 

of supercritical carbon dioxide impregnation. Figure 1.2 depicts a schematic of the high pressure 139 

setup used in the impregnation experiments. The operation was performed in a 100 mL reactor 140 

(KM 20-05 autoclave NWA, Germany) equipped with a magnetic stirrer drive (Mrk MINI 100) 141 

assembled in a sealed housing directly threading into the reactor head. During the impregnation 142 

experiments the reactor was fed with liquid CO2 through an on/off valve (V1) by a high pressure 143 

pump (PM-101NWA, NWA, Germany). At the end of the experiments the reactor was slowly 144 

emptied through an on/off purge valve followed by a lamination valve (V2) and the outlet stream 145 

was connected to a deflux flask were the gaseous CO2 was bubbled through an ethanol solution 146 

(95%) and the ketoprofen concentration was measured. The resulting drug solution was made up 147 

to defined volumes and the drug content was estimated by UV spectroscopy measurements 148 

(Thermo Scientific Evolution 60 - Thermo Fisher Scientific Inc.). Finally, the drug free-CO2 stream 149 

was connected to a flowmeter (SIM Brunt, Italy). 150 

 

Figure 2: Schematic of the high pressure plant. Fi and Vi indicate 0.5 µm filters and on/off valves. 
 151 

The impregnation experiments were carried out in batch conditions with defined steady-state 152 

values of CO2 pressure, temperature and stirring velocity. In each batch, weighted amounts of 153 

crystalline ketoprofen powder and one chip were placed in separate compartments of a sample 154 

carrier placed at the bottom of the reactor. In order to avoid damage to the microcontainers 155 

during the chamber filling with the supercritical fluid, the back of the chips were glued onto the 156 

sample carrier with a carbon pad tape. The reactor was then sealed and heated to the defined 157 

temperature. When the set point temperature was achieved, the inlet valve was gradually opened 158 

and the chamber was slowly filled with CO2, in order to maintain isothermal conditions and avoid 159 

turbulence within the reactor, which could result in detachment of the chip and damaging of the 160 

microcontainers. When the desired pressure was achieved, the inlet valve was closed and the 161 

stirrer was switched on. During the experiment the supercritical CO2 phase dissolved the solid drug 162 

powder and swelled the polymer within the microcontainers. The drug was therefore physically 163 
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conveyed and loaded in the polymer matrices. The impregnations were carried out at a fluid 164 

pressure of 100 and 200 bar, temperatures of 40, 50 and 60°C and durations of 1 and 4 hours with 165 

a stirring velocity of 20 rpm, respectively. 166 

In the experiments run at 100 bar the drug was dissolved under saturation conditions according to 167 

the solubility values of ketoprofen in supercritical CO2 reported by Macnaughton et al. [16] at the 168 

chosen conditions of temperature. In this group of experiments the temperature and time were 169 

modified from batch to batch. Because of the batch conditions, the drug concentration could not 170 

be kept at solubility value over time. In contrast, in the tests performed at 200 bar a fixed amount 171 

of ketoprofen was dissolved, corresponding to the saturation concentration of the compound at 172 

200 bar and 40°C. At 200 bar and 50°C and 60°C the amount of drug was dissolved under 173 

saturation conditions, as the solubility values are higher at these temperatures. In the experiment 174 

performed at 200 bar, the exclusive effect of temperature and time on the microcontainer 175 

impregnation was studied. At the end of the experiment the reactor was depressurized at a 176 

controlled rate for approximately 2 and 3 hours when the operating pressures were 100 and 200 177 

bar respectively. After the experiments the chips were stored in a desiccator until further analysis 178 

were performed. In Table 1 the operating conditions of the experiments are shown. 179 

 180 

Table 1: Mass of ketoprofen [mg] dissolved in the different experimental conditions 181 

Pressure [bar] 
Temperature [°C] 

40 50 60 

100 4.83 2.15 1.31 
200 14.1 14.1 14.1 

 182 

2.3 Characterization methods 183 

2.3.1 X-ray microtomography (XμCT) 184 

For the XμCT measurements a Skyscan 1172/F instrument (Skyscan, Kontich, Belgium, control 185 

software v1.5.13) was used. A source voltage of 60 kV and current of 165 μA were used together 186 

with a 0.5 mm thick Al filter to attenuate the high energy X-rays. For each sample 780 shadow 187 

images were acquired over 180 of rotation. The resulting data acquisition time was 4 h for each 188 

sample. Reconstruction of the cross-section images was performed using the program 189 

NRecon+GPUReconServer (Skyscan, beta v1.6.5) on a single PC using GPU accelerated 190 

reconstruction (Windows 7 64-bit workstation, 2 Intel Xeon X5647 with 4 cores each, 48 GB RAM, 191 

NVIDIA quadro 4000 with 256 cores). Image reconstruction using the Feldkamp algorithm [17] for 192 

cone beam geometry took about 30 min per sample and resulted in, depending on sample size, 193 

about 1450 slices of 2864 x 2876 pixels each (5.2 μm isotropic voxel size). Using the DataViewer 194 

(Skycan, v1.4.4) the tablet was rotated to align the microwells parallel to the x-axis. 195 

 196 

2.3.2 Scanning electron microscopy (SEM)  197 

The morphology of the impregnated microcontainers was examined using SEM. The investigations 198 

were carried out using a Nova600 NanoSEM from FEI (Eindhoven, the Netherlands). Imaging was 199 

performed in low-vacuum-mode at a pressure of 0.6 mbar and an operation voltage of 5 kV. Prior 200 

to examination, the samples were mounted onto metal stubs and were tilted by approx. 30 201 

degrees. 202 

 203 
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2.3.3 Raman spectroscopy 204 

As described in a previous study [13], Raman spectroscopy can be used to elucidate the presence 205 

of chemical interactions amongst drug molecules and between drug and polymer. The spectra 206 

from the impregnated microcontainers were collected using a Thermo Scientific Raman DXR 207 

microscope equipped with a frequency-stabilized single mode diode laser. The Raman signal 208 

collection time was 5 sec and the signal was averaged three times, using a 25 µm slit and a 1.0 µm 209 

diameter laser post. The Raman DXR microscope was coupled to a single grating spectrometer 210 

with a 5 cm-1 FWHM spectral resolution and a ±2 cm-1 wavenumber accuracy. All Raman spectra 211 

were recorded at a laser power of 10 mW, using a 10X objective lens and a laser excitation 212 

wavelength of 780 nm. In each sample 5 containers, located at different positions on the chip, 213 

were selected and analyzed. The intrinsic fluorescence background was fitted to a polynomial 214 

function and subtracted from the collected signal. 215 

2.3.4 In vitro drug dissolution studies 216 

Dissolution of PVP and ketoprofen from loaded microcontainers was determined in 10 ml DI water 217 

at 37˚ C using a UV spectrophotometer μDISS profiler (Pion, USA). Individual chips were glued with 218 

carbon pads on teflon-coated magnets which stirred at 100 rpm. For the detection of ketoprofen, 219 

the wavelength was set to 259 nm. After dissolution, the microcontainers were observed with an 220 

optical microscope (Zeiss, Germany, 10x magnitude) to confirm complete emptying. The amount 221 

of drug loaded per chip was estimated by the final concentration measured in the dissolution test 222 

at 16 hours. Solubility of ketoprofen at 37 °C in aqueous solutions changes significantly with pH 223 

between 1 and 7 [14]. Nevertheless, even in the test with the highest drug loading, the pH of the 224 

dissolution medium drop below 6.5 as ketoprofen is a weak acid (pKa 4.5). Therefore, according to 225 

solubility data reported in the literature [14], the dissolution tests were performed in conditions 226 

below saturation that is without drug precipitation, which was also confirmed by the non-227 

decreasing monotonic trend of the drug dissolution profiles (data not shown).  228 

3. Results and discussion 229 

3.1 Polymer filling of microcontainers and X-ray microtomography 230 

A picture of arrays of microcontainers filled with PVP powder is shown in Figure 3. The powder 231 

filling required few seconds to be performed and resulted in an accurate deposition inside the 232 

cylindrical cavities of the microwells, with minimal residues in between, as representatively 233 

illustrated by the high color contrast between the dark silicon surface and the brilliant white of 234 

PVP powder. In Figure 4 a scanning electron microscopy image of microcontainers filled with PVP 235 

powder is reported. The polymer granules are compacted inside the microwells and this 236 

confinement prevents them from being removed by the air flow which is used to remove the loose 237 

powder after the filling step.. Figure 5 shows the cross-sections that were reconstructed from the 238 

microtomography data of the XμCT measurements. Using this technique it is possible to measure 239 

the internal microstructure of the PVP powder within the containers and to visualise the effect of 240 

the impregnation on the particle morphology. The images clearly show that the microcontainers 241 

are filled with discrete PVP particles before impregnation and subsequently coalesce following 242 

treatment with supercritical CO2. 243 



7 
 

 

Figure 3: Optical macro images of microcontainers filled with PVP powder by manual compaction: 
(a) detail of the chip corner, (b) arrays in the middle of the chip. 
 

 
Figure 4: SEM images of microcontainers filled with polyvinylpyrrolidone before treatment with 
supercritical CO2. The scalebar indicates 300 µm. 

 244 

 

 
 

 

 
Figure 5: Non-destructive cross-sections acquired by XμCT through the microcontainers filled 
with polyvinylpyrrolidone before treatment with supercritical CO2 (a) and after impregnation (b). 
The original grey scale images are shown together with a binary threshold image to highlight the 
change in polymer morphology. 

 245 

(a) 
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3.2 Scanning Electron Microscopy of impregnated microcontainers 246 

After the supercritical treatment, the microcontainers were analyzed by scanning electron 247 

microscopy to observe the effects of the impregnation on the polymer morphology. As shown in a 248 

previously [13], the SEM micrographs (see Figure 6) confirm that scCO2 does not visible effects on 249 

the epoxy resin used to fabricate the microcontainers (SU-8) which maintain their size, the 250 

cylindrical shape and the adhesion to the silicon substrate. The supercritical fluid has instead a 251 

much more pronounced effect on PVP. At all the tested conditions, the morphology of PVP 252 

radically changes as the polymer particles undergo swelling and subsequent coalescence as 253 

confirmed by the XµCT images (Figure 5b). By comparing the SEM micrographs of microcontainers 254 

treated at different pressures it is clear that the volume of the polymer visibly increases with 255 

increasing CO2 pressure. This can be explained by an increase of CO2 uptake in PVP with pressure, 256 

in accordance with what was previously reported by Kikic and co-workers [18]. At high pressures, 257 

CO2 has a well-known plasticizing effect on certain polymers [19,20]. The plasticization leads to a 258 

drop in the Tg, which for PVP K10 is around 87 ˚C, a temperature close to the operating 259 

temperature during impregnation. As a result, the polymer gets close to the glass-rubber 260 

transition. The increase of impregnation time in general leads to a higher extent of swelling of the 261 

matrix and to the appearance of holes. At 40 ˚C and 50 ˚C these holes got larger when the pressure 262 

was set at 200 bar, and this fact can be attributed to the release of CO2 from the highly swollen 263 

matrices. At 200 bar and 50 ˚C small spots appear on the polymer surface. At 200 bar and 60 ˚C 264 

these particles clustered in bigger aggregates (see Figures 6(k) and 6(l)) on small number of 265 

containers in the chip. As scCO2 acts as a plasticizer for polymers the viscosity of the CO2 saturated 266 

matrix decreases during impregnation [34] causing spillages, in some cases, from the containers. 267 

This aspect is more pronounced during longer experiments. 268 

 269 
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Figure 6: Scanning electron microscopy images of polymer filled microcontainers impregnated 
with ketoprofen by supercritical CO2 at different pressure, temperature and time. The scalebar 
indicates 300 µm.  
 270 

3.3 Loading of ketoprofen into polymer filled-microcontainers 271 

The solubility of ketoprofen in scCO2 monotonically increases with the fluid density, and therefore 272 

with the fluid pressure at isothermal conditions [16]. Furthermore, for many active compounds 273 

under isobaric conditions the temperature influences the solubility according to the operating 274 

pressure and with respect to the crossover pressures. At the crossover points solubility isotherms 275 

overturn their trend [16]. The upper crossover pressure of ketoprofen in carbon dioxide was 276 

measured between 160 and 180 bar [18,21]. Below this pressure, such as at 100 bar, the drug 277 

solubility decreases with temperature. At higher pressures, such as at 200 bar, the effect of 278 

temperature is the opposite. The impregnation pressures were chosen on different positions 279 

towards the upper crossover point in order to explore the behavior of the supercritical phase on 280 

the drug loading. In figure 7 the resulting weight fraction of ketoprofen (keto) loaded in a chip 281 

containing 625 PVP filled-microcontainers is compared for the different impregnation conditions. 282 

Despite the simplicity of the method the overall accuracy of the loading is similar to the one 283 

previously reported where the polymer was deposited by inkjet printing [12].  284 

In the tests carried out at 100 bar (Figure 7a) the drug was dissolved in saturation conditions. Here 285 

the loading is strongly dependent on the drug concentration in the supercritical phase, which was 286 

higher at 40˚C and lower at 60˚C. There is an increase in drug loading over time for any tested 287 

temperature meaning that after 1 hour the equilibrium is not yet attained. After 4 hours the drug 288 

weight fraction is approximately doubled at all temperatures. To investigate the partition 289 

equilibrium of the drug between the CO2 and the polymer phases an impregnation experiment 290 

was carried out at 40˚C for 24 hours. The attained drug fraction was 0.27, which is very close to 291 

the loading achieved after 4 hours. In the experiments at 200 bar, the impregnation is enhanced 292 

compared to experiments at 100 bar as a result of the combined effect of the higher amount of 293 

drug dissolved (see table 1) and the density of the fluid at this pressure. However, at 200 bar the 294 

loading increased with the temperature which was unexpected, since at this pressure a rise of 295 

temperature leads to an increase of drug solubility and therefore a less favorable drug partition in 296 

the polymer matrix. Moreover, from 40 ˚C to 60 ˚C the fluid density decreases as shown in the 297 

profiles in Figure 8, where the loaded API weights are plotted as a function of the CO2 density. 298 

These latter results can be explained by considering that the effect of temperature on drug-scCO2 299 

diffusivity prevails over the reduced fluid density. A temperature increase also results in  enhanced 300 

mobility of the polymer chains, which is suggested by the visible swelling observed in Figures 6(d), 301 

6(h) and 6(l). In contrast to the results at 100 bar, at 200 bar more limited loading gains for 302 

impregnation time were achieved. This might be due to the proximity of the drug concentration in 303 

the polymer to the saturation, which can slow down the impregnation process. 304 

 305 
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Figure 7: Mass fraction of ketoprofen (keto) impregnated in polymer filled 625 microcontainers at 
different temperatures and times: (a) at 100 bar in saturation conditions (b) at 200 bar with a fixed 
amount of drug dissolved in scCO2(N=3). 
 306 

 
Figure 8: Mass of ketoprofen impregnated at 200 bar in 625 microcontainers at different 
temperatures and times (N=3) as function of the CO2 density. 
 307 

Table 2: Drug loading of impregnated microcontainers. The drug weight refers to total loaded 308 

mass on individual chips (625 microcontainers) and is normalized with respect to the polymer 309 

mass in the microwells (N = 3). 310 

T( C) P(bar) Time (h) Loaded drug per 
chip (mg) 

Drug weight fraction 
(keto/(PVP+keto)) 

40 
100 

1 0.33 ± 0.09 0.15 ±0.03 

4 0.58 ± 0.02 0.26 ±0.02 

200 
1 0.53 ± 0.07 0.23 ±0.03 
4 0.58 ± 0.01 0.27 ±0.03 

50 
100 

1 0.19 ± 0.02 0.10 ±0.01 
4 0.40 ± 0.04 0.18 ±0.02 

200 
1 0.55 ± 0.03 0.26 ±0.01 
4 0.71 ± 0.04 0.27 ±0.03 

60 
100 

1 0.08 ± 0.03 0.04 ±0.01 
4 0.16 ± 0.04 0.06 ±0.01 

200 
1 0.77 ± 0.06 0.26 ±0.03 
4 1.05 ± 0.03 0.33 ±0.01 

 311 
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3.4 Raman spectroscopy 312 

Another important aspect for a drug delivery device is the API solid state properties and the 313 

stabilization of the amorphous phase in a polymer matrix. For this purpose, Raman scattering 314 

spectroscopy was utilized to detect the presence of amorphous ketoprofen and the molecular 315 

interactions with the polymer. In order to elucidate the presence of drug-polymer interactions, 316 

additional Raman spectra were collected from microcontainers filled with physical mixtures (PMs) 317 

of the polymer and drug. Raman scattering spectra of both fresh ketoprofen:PVP PMs and 318 

mixtures prepared by supercritical CO2 are shown in Figure 9. In the ketoprofen:PVP PM case, the 319 

Raman scattering spectra from both compounds are added together and retain all characteristics 320 

of isolated ketoprofen and PVP, see Figure 9(a). To illustrate this, the inter-ring ketoprofen 321 

carbonyl [C=O] stretching mode [22] found at 1657 cm-1 is examined for different drug/PVP ratios. 322 

In all cases the Raman intensity of the ketoprofen C=O stretching mode compared to the 1602 cm-
323 

1 C-C stretching mode is I1657/I1602 > 1. The Raman vibration can be fitted to two Lorentzian 324 

functions outlining modes that belong to both ketoprofen and PVP. The FWHM of the C=O 325 

stretching mode is similar to the one recorded for pure ketoprofen shown in the bottom part of 326 

Figure 9(a). The PM result indicates no observable intermolecular interaction between the two 327 

compounds [13]. The 1657 cm-1 Raman mode for supercritical CO2 impregnated ketoprofen:PVP 328 

mixtures behaves differently, i.e. the vibrational mode intensity is reduced and the FWHM is 329 

significantly increased, see Figure 9(b). In this case, the two Lorentzian fits yield essentially a single 330 

Raman peak without a clear contribution from PVP and I1657/I1602 < 1 almost for all drug/PVP 331 

ratios. Since there is no observable frequency shift, the result suggests that this carbonyl group is 332 

not involved in the formation of hydrogen bonds with PVP molecules. The recorded change rather 333 

indicates rearrangement of ketoprofen molecules into a less organized solid state, and a similar 334 

effect was previously observed for aged ketoprofen:PVP PM mixtures [13]. The presence of 335 

amorphous ketoprofen was previously confirmed by X-ray diffraction [13]. It is also expected that 336 

the CO2 assisted impregnation of PVP with ketoprofen breaks or reduces the interaction between 337 

adjacent ketoprofen molecules and induces the formation of the hydrogen bonds between oxydryl 338 

groups of ketoprofen molecules and carbonyl groups of PVP [23].  339 

 340 
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Figure 9: Raman spectra of (a) physical mixtures of PVP and crystalline ketoprofen in different 
representative weight percentages and (b) spectra of PVP impregnated with the same 
ketoprofen weight percentages at different experimental conditions (see table 2). 
 341 

4. Conclusions 342 

The present study investigates the use of CO2-aided impregnation to load ketoprofen into 343 

microcontainers filled with PVP by tuning temperature, pressure, time, and drug concentration in 344 

the fluid phase. The characterization study shows that drug loading can be controlled with high 345 

accuracy and reproducibility and the impregnated drug is in the amorphous state. At any tested 346 

pressure there is an increase of drug loading over time for any tested temperature meaning that 347 

after 1 hour the equilibrium between the polymer and the CO2 phases is not yet attained. From 348 

the tests at 100 bar it was observed that the loading is strongly dependent on the drug 349 

concentration in the impregnating medium. Unexpectedly, in the tests at 200 bar the loading 350 

increased with the temperature despite the increasing drug solubility in the scCO2. This was 351 

attributed to the predominance of drug diffusivity in the polymer matrix. In contrast, at 200 bar 352 

more limited loading gains for increasing impregnation time were obtained probably due to the 353 

proximity of drug saturation in the polymer. The Raman scattering spectra of the impregnated 354 

matrices indicate a rearrangement of ketoprofen molecules into a less organized state. However, 355 

no observable frequency shift  in was noticed for the spectral modes typically ascribed to drug-356 

polymer interactions, which suggests that the drug molecule is unlikely to be involved in the 357 

formation of hydrogen bonds with PVP molecules.  358 

Our results demonstrate that the combination of powder loading and SCI can be used as a high 359 

throughput loading technique for microfabricated devices for oral drug delivery. 360 

 361 



13 
 

5. Acknowledgements 362 

This project was developed within the Center for Intelligent Drug Delivery and Sensing Using 363 

Microcontainers and Nanomechanics (IDUN) Danmarks Grundforskningsfonds og Villum Fondens 364 

(Denmark). The authors would like to acknowledge support by the K. K. Engineering and Physical 365 

Science Research Council (EP/K503721/1). The authors also thank Prof. Mario Grassi (University of 366 

Trieste) for the fruitful discussions and the valuable inputs given to the research work. 367 

 368 

5. Bibliography 369 

[1] B. Steffansen, C.U. Nielsen, B. Brodin, A.H. Eriksson, R. Andersen, S. Frokjaer, Intestinal 370 

solute carriers: an overview of trends and strategies for improving oral drug absorption, Eur. 371 

J. Pharm. Sci. 21 (2004) 3–16. doi:10.1016/j.ejps.2003.10.010. 372 

[2] M. Yoshioka, B.C. Hancock, G. Zografi, Crystallization of indomethacin from the amorphous 373 

state below and above its glass transition temperature, J. Pharm. Sci. 83 (1994) 1700–1705. 374 

doi:10.1002/jps.2600831211. 375 

[3] R. Laitinen, K. Löbmann, C.J. Strachan, H. Grohganz, T. Rades, Emerging trends in the 376 

stabilization of amorphous drugs., Int. J. Pharm. 453 (2013) 65–79. 377 

doi:10.1016/j.ijpharm.2012.04.066. 378 

[4] E.B. Basalious, W. El-Sebaie, O. El-Gazayerly, Rapidly absorbed orodispersible tablet 379 

containing molecularly dispersed felodipine for management of hypertensive crisis: 380 

development, optimization and in vitro/in vivo studies., Pharm. Dev. Technol. 18 (2013) 381 

407–16. doi:10.3109/10837450.2012.659258. 382 

[5] N. Rasenack, H. Hartenhauer, B.W. Müller, Microcrystals for dissolution rate enhancement 383 

of poorly water-soluble drugs, Int. J. Pharm. 254 (2003) 137–145. doi:10.1016/S0378-384 

5173(03)00005-X. 385 

[6] D.Z. Nicola, C. Angelo, K. Ireneo, M. Mariarosa, D. Solinas, Pharmaceutical and Nutraceutical 386 

Applications of Supercritical Carbon Dioxide, in: J. Osborne (Ed.), Handb. Supercrit. Fluids 387 

Fundam. Prop. Appl., NOVA Science, New York, 2014: pp. 79–103. 388 

[7] A. Martín, M.J. Cocero, Micronization processes with supercritical fluids: fundamentals and 389 

mechanisms., Adv. Drug Deliv. Rev. 60 (2008) 339–50. doi:10.1016/j.addr.2007.06.019. 390 

[8] K.M. Woessner, M. Castells, NSAID single-drug-induced reactions., Immunol. Allergy Clin. 391 

North Am. 33 (2013) 237–49. doi:10.1016/j.iac.2012.12.002. 392 

[9] F.J. Martin, C. Grove, Microfabricated Drug Delivery Systems: Concepts to Improve Clinical 393 

Benefit, Biomed. Microdevices. 3 (n.d.) 97–108. doi:10.1023/A:1011442024658. 394 

[10] C.B. Fox, H.D. Chirra, T.A. Desai, Planar bioadhesive microdevices: a new technology for oral 395 

drug delivery., Curr. Pharm. Biotechnol. 15 (2014) 673–83. 396 

doi:10.2174/1389201015666140915152706. 397 

[11] K.M. Ainslie, R.D. Lowe, T.T. Beaudette, L. Petty, E.M. Bachelder, T.A. Desai, Microfabricated 398 

devices for enhanced bioadhesive drug delivery: attachment to and small-molecule release 399 



14 
 

through a cell monolayer under flow., Small. 5 (2009) 2857–63. 400 

doi:10.1002/smll.200901254. 401 

[12] P. Marizza, S.S. Keller, A. Boisen, Inkjet printing as a technique for filling of micro-wells with 402 

biocompatible polymers, Microelectron. Eng. 111 (2013) 391–395. 403 

[13] P. Marizza, S.S. Keller, A. Müllertz, A. Boisen, Polymer-filled microcontainers for oral 404 

delivery loaded using supercritical impregnation, J. Control. Release. 173 (2014) 1–9. 405 

[14] I.E. Shohin, J.I. Kulinich, G. V Ramenskaya, B. Abrahamsson, S. Kopp, P. Langguth, et al., 406 

Biowaiver monographs for immediate-release solid oral dosage forms: ketoprofen., J. 407 

Pharm. Sci. 101 (2012) 3593–603. doi:10.1002/jps.23233. 408 

[15] T. Loftsson, D. Hreinsdóttir, Determination of aqueous solubility by heating and 409 

equilibration: a technical note., AAPS PharmSciTech. 7 (2006) E4. doi:10.1208/pt070104. 410 

[16] S.J. Macnaughton, I. Kikic, N.R. Foster, P. Alessi, A. Cortesi, I. Colombo, Solubility of Anti-411 

Inflammatory Drugs in Supercritical Carbon Dioxide, J. Chem. Eng. Data. 41 (1996) 1083–412 

1086. doi:10.1021/je960103q. 413 

[17] L.A. Feldkamp, L.C. Davis, J.W. Kress, Practical cone-beam algorithm, J. Opt. Soc. Am. A. 1 414 

(1984) 612. doi:10.1364/JOSAA.1.000612. 415 

[18] I. Kikic, M. Lora, A. Cortesi, P. Sist, Sorption of CO2 in biocompatible polymers: experimental 416 

data and qualitative interpretation, Fluid Phase Equilib. 158-160 (1999) 913–921. 417 

doi:10.1016/S0378-3812(99)00063-1. 418 

[19] P. Alessi, A. Cortesi, I. Kikic, F. Vecchione, Plasticization of polymers with supercritical 419 

carbon dioxide: Experimental determination of glass-transition temperatures, J. Appl. 420 

Polym. Sci. 88 (2003) 2189–2193. doi:10.1002/app.11881. 421 

[20] I. Kikic, F. Vecchione, P. Alessi, A. Cortesi, F. Eva, N. Elvassore, Polymer Plasticization Using 422 

Supercritical Carbon Dioxide:  Experiment and Modeling, Ind. Eng. Chem. Res. 42 (2003) 423 

3022–3029. doi:10.1021/ie020961h. 424 

[21] A. Stassi, R. Bettini, A. Gazzaniga, F. Giordano, A. Schiraldi, Assessment of Solubility of 425 

Ketoprofen and Vanillic Acid in Supercritical CO 2 under Dynamic Conditions, J. Chem. Eng. 426 

Data. 45 (2000) 161–165. doi:10.1021/je990114u. 427 

[22] M.L. Vueba, M.E. Pina, F. Veiga, J.J. Sousa, L.A.E.B. de Carvalho, Conformational study of 428 

ketoprofen by combined DFT calculations and Raman spectroscopy., Int. J. Pharm. 307 429 

(2006) 56–65. doi:10.1016/j.ijpharm.2005.09.019. 430 

[23] L. Manna, M. Banchero, D. Sola, A. Ferri, S. Ronchetti, S. Sicardi, Impregnation of PVP 431 

microparticles with ketoprofen in the presence of supercritical CO2, J. Supercrit. Fluids. 42 432 

(2007) 378–384. doi:10.1016/j.supflu.2006.12.002.  433 

 434 


