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Abstract. We consider a Kepler problem, with an additional rotating
external force, and study the existence of periodic solutions when a small
perturbative term is introduced. Surprisingly enough, we always get at
least one of such solutions. Moreover, if a nonresonance assumption is
added, then the existence of a second solution is also proved.

1 Introduction and main result

In this paper we consider the existence of periodic solutions of a second order
differential equation in the plane of the type

ẍ+ γ
x

|x|3
− α e

iωt

|x|β
= εF (t, x, ẋ; ε) . (1)

Hence, x(t) is in R2, which will be identified, to simplify the notation, with the
complex plane C. All constants γ, α, ω and ε are assumed to be positive, and
we take β ∈ [0, 2]. In particular, ω is the frequency of the periodic rotating
external force, which has period T = 2π/ω. Moreover, ε is assumed to be a
small parameter, and F : R × (R2 \ {0}) × R2 × [0, 1] → R2 is a continuous
and T -periodic function, locally Lipschitz continuous in its second and third
variables.

Notice that, when α = 0 and ε = 0, equation (1) is the classical two-
body Kepler problem, for which it is well-known that, for any given period,
there is a continuum of periodic orbits. When α 6= 0, the additional term
αeiωt/|x|β introduces a rotating component which naturally leads to the study
of T -periodic solutions. To our knowledge, such a model has not yet been
considered in the literature.

Equation (1) belongs to the wide family of systems with singularities, that
have been studied without interruption since the very foundation of Celestial
Mechanics, by using a variety of mathematical techniques including analyti-
cal, geometrical, topological and variational methods. Classically, the involved
models are autonomous (i.e., not explicitly depending on time), but more re-
cently there has been an increasing interest on the study of non-autonomous
systems. An additional parametric or external forcing term may model the
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influence of anisotropies, or external periodic gravitational fields. A compre-
hensive revision of the state-of-the-art is virtually impossible, therefore we only
quote some examples of the related literature. The use of topological methods
in the study of singular systems goes back to Poincaré [26]. More recently,
variational methods have been successfully employed in, e.g., [1, 4, 5, 7, 9, 12,
20, 27]. See also the book [2], and the references therein.

Similar problems have already been considered by the authors of this paper.
Radially symmetric systems are studied in [15, 16, 17] by using topological
methods. In this case, the analysis is simplified by the fact that the radial
coordinate is ruled by a scalar equation. In [19, 29] (see also [18]), fixed-point
theorems on compression-expansion of conical sections are applied, leading to
periodic solutions that do not rotate around the origin.

The strategy proposed in this paper is different from the previous ones and
falls into the family of perturbative methods. Generally speaking, Perturba-
tion Theory aims to find solutions close to known solutions of the unperturbed
system. For the importance of Perturbation Theory in natural sciences in gen-
eral and Celestial Mechanics in particular, one can read the excellent historical
reviews [22, 25]. The perturbed two-body problem is a classical topic (see for
instance [24, 28]). Recent works where perturbative arguments are applied to
singular systems are [3, 23]. Concerning the Kepler problem, there seems to
be a still growing interest, as shown by the recent papers [6, 11, 13, 14, 21, 30],
just to quote a few.

In the case under consideration, the aim is to identify periodic solutions
close to circular ones. As we will see, the inclusion of the additional forcing
term αeiωt/|x|β fixes the period and, if ε = 0, only two circular solutions sur-
vive. The objective is then to find conditions to locally continue such solutions
for ε 6= 0 small enough.

Our main result is as follows.

Theorem 1 For any choice of the positive constants γ, α, ω and of β ∈ [0, 2],
there is an ε0 > 0 such that, if ε ∈ [0, ε0], then equation (1) has at least one
T -periodic solution. Moreover, there are at least two T -periodic solutions if
the rotating periodic force is such that

β ∈ [0, 2[ , or β = 2 and α < γ ,

and
ω2(2−β)

α3
6= (a(k) + 1)β+1

γβ+1 a(k)3
, (2)

for every integer k with |k| ≥ 2, where a(k) is defined by

a(k) =


(1− β)k2 − 3 +

√
(β − 3)2k4 + 2(5β − 7)k2 + 9

2(2− β)
if β ∈ [0, 2[ ,

k2(k2 − 1)

k2 + 3
if β = 2 .

(3)
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This is surely true if

γ

(
ω2(2−β)

α3

) 1
β+1

>
19

12
. (4)

The proof of Theorem 1 relies on the spectral analysis of the linearization
around equilibria of the system written in a synodic framework. This will be
done in the next section. Assumption (2) is introduced in order to avoid some
kind of resonance. It is remarkable that it is only needed to guarantee the
existence of a second T -periodic solution, while no such condition is necessary
for the existence of the first one.

At a first sight, it could seem strange that the perturbing function F is
allowed to contain also friction terms. In the case when α = 0, this would
not be possible, since a friction term would lead to dissipation of energy, thus
eventually making the particle fall into the singularity. On the contrary, we
will show that, when α 6= 0, the rotating term αeiωt/|x|β forces the particle
to maintain an almost constant rotation speed, and to remain at an almost
constant distance from the singularity. Detailed information about the role of
dissipative effects on Celestial Mechanics and the most important mechanisms
of dissipation can be found in [8, 23], and the references therein.

2 Proof of Theorem 1.

After the change of variables

s = ωt , z(s) =

(
ω2

α

) 1
β+1

x(t) ,

defining G : R× (R2 \ {0})× R2 × [0, 1]→ R2 as

G(s, z, ζ; ε) =

(
1

αω2β

) 1
β+1

F

(
s

ω
,
( α
ω2

) 1
β+1
z , ω

( α
ω2

) 1
β+1
ζ ; ε

)
,

we get the equivalent equation

z̈ + c
z

|z|3
=

eis

|z|β
+ εG(s, z, ż ; ε) , (5)

with

c = γ

(
ω2(2−β)

α3

) 1
β+1

. (6)

Passing to polar coordinates

z(s) = ρ(s)eiθ(s) ,
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equation (5) becomes(
ρ̈− ρ θ̇2 +

c

ρ2

)
+ i(2ρ̇ θ̇ + ρ θ̈) =

(
eis

ρβ
+ εG(s, ρeiθ, (ρ̇+ iρθ̇)eiθ; ε)

)
e−iθ ,

which is equivalent to the system
ρ̈− ρ θ̇2 +

c

ρ2
=

cos (s− θ)
ρβ

+ εG̃1(s, ρ, θ, ρ̇, θ̇; ε)

2ρ̇ θ̇ + ρ θ̈ =
sin (s− θ)

ρβ
+ εG̃2(s, ρ, θ, ρ̇, θ̇; ε) ,

(7)

where

G̃1(s, ρ, θ, ρ̇, θ̇; ε) = <
(
G(s, ρeiθ, (ρ̇+ iρθ̇)eiθ; ε) e−iθ

)
,

G̃2(s, ρ, θ, ρ̇, θ̇; ε) = =
(
G(s, ρeiθ, (ρ̇+ iρθ̇)eiθ; ε) e−iθ

)
.

(For any complex number w, we denote by <(w) and =(w) its real and imag-
inary parts, respectively.) This change of variables is justified, since the solu-
tions we are looking for never attain the singularity. Setting η = ρ̇, ϕ = s− θ,
v = ϕ̇ and defining

Γ1(s, ρ, η, ϕ, v; ε) = G̃1(s, ρ, s− ϕ, η, 1− v; ε) ,

Γ2(s, ρ, η, ϕ, v; ε) = G̃2(s, ρ, s− ϕ, η, 1− v; ε) ,

we transform (7) into the first order system

ρ̇ = η

η̇ = ρ (1− v)2 − c

ρ2
+

cosϕ

ρβ
+ εΓ1(s, ρ, η, ϕ, v; ε)

ϕ̇ = v

v̇ =
1

ρ

(
2η(1− v)− sinϕ

ρβ
− εΓ2(s, ρ, η, ϕ, v; ε)

)
.

(8)

Let us first consider the unperturbed equation, taking ε = 0. There always
is the equilibrium

E1 = (ρ1, 0, π, 0) ,

where ρ1 satisfies

ρ3
1

(
1− 1

ρβ+1
1

)
= c . (9)

Notice that ρ1 > 1. In this case, the orbit of the solution is tuned in such
a way that the rotating force is always directed in the same direction as the
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gravitational force. For instance, in the particular case β = 2, this equilibrium
corresponds to the solution of (1), with ε = 0, given by

x1(t) = − 3

√
γ + α

ω2
eiωt .

Moreover, if β ∈ [0, 2[ , or β = 2 and α < γ, then there is a second
equilibrium

E2 = (ρ2, 0, 0, 0) ,

where ρ2 satisfies

ρ3
2

(
1 +

1

ρβ+1
2

)
= c . (10)

In this case, the rotating force is always directed in the opposite direction with
respect to the gravitational force. For instance, if β = 2, we have

x2(t) = 3

√
γ − α
ω2

eiωt .

Let us first consider the linearization of system (8) at the equilibrium point
E1, i.e., using (9),

u̇ = A1(u− E1) ,

with

A1 =



0 1 0 0

3− 2− β
ρβ+1

1

0 0 −2ρ1

0 0 0 1

0
2

ρ1

1

ρβ+1
1

0


.

Let us evaluate the eigenvalues of A1, so to see whether they can or cannot be
of the type λ = ik, with k ∈ Z. We have

det(A1 − λI) = λ4 +

(
1− β − 1

ρβ+1
1

)
λ2 +

1

ρβ+1
1

(
3− 2− β

ρβ+1
1

)
.

Setting r1 = 1/ρβ+1
1 and λ2 = ξ, we have to solve the second order equation

ξ2 + (1− (β − 1)r1)ξ + r1(3− (2− β)r1) = 0 , (11)

whose discriminant is

∆ = (1− (β − 1)r1)
2 − 4r1(3− (2− β)r1) .
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If ∆ < 0, the solutions of (11) are nonreal, hence the eigenvalues of A1 are
complex with nonzero real part. Otherwise, if ∆ ≥ 0, the two solutions ξ1, ξ2
of (11) are real, and, since

ξ1ξ2 = r1(3− (2− β)r1) > 0 ,

(recall that ρ1 > 1, hence r1 < 1), they have the same sign. Being

ξ1 + ξ2 = (β − 1)r1 − 1 ∈ ]− 2, 0[ ,

the only possibility of resonance is that ξi = −1, for some i = 1, 2. But, if
this would happen, substituting in (11) would imply that β < 2 and r1 =
(2 + β)/(2− β), which is impossible, since r1 < 1. We thus conclude that the
matrix A1 can never have eigenvalues of the type λ = ik, with k ∈ Z.

Let us now assume that β ∈ [0, 2[ , or β = 2 and α < γ, and consider the
linearization of system (8) at the equilibrium point E2, i.e., using (10),

u̇ = A2(u− E2) ,

with

A2 =



0 1 0 0

3 +
2− β
ρβ+1

2

0 0 −2ρ2

0 0 0 1

0
2

ρ2

− 1

ρβ+1
2

0


.

Let us evaluate the eigenvalues of A2. We have

det(A2 − λI) = λ4 +

(
1 +

β − 1

ρβ+1
2

)
λ2 − 1

ρβ+1
2

(
3 +

2− β
ρβ+1

2

)
.

Setting r2 = 1/ρβ+1
2 and λ2 = ξ, we have to solve the second order equation

ξ2 + (1 + (β − 1)r2)ξ − r2(3 + (2− β)r2) = 0 ,

whose discriminant is

∆ = (1 + (β − 1)r2)
2 + 4r2(3 + (2− β)r2) > 0 .

Hence its two solutions ξ1, ξ2 are real, and, since ξ1ξ2 < 0, one of them, say ξ1,
is negative, with

ξ1 = −1
2
(1 + (β − 1)r2 +

√
∆) .

A direct computation shows that ξ1 < −1. Moreover, for every k ∈ Z with
|k| ≥ 2, we have

ξ1 = −k2 ⇐⇒ (2− β)r2
2 + ((β − 1)k2 + 3)r2 + k2(1− k2) = 0 .

This second order equation has two real solutions, of which only one is positive.
If we denote it by r2(k), it is explicitly given by (3).

6



By (6), since r2 = 1/ρβ+1
2 , we have the corresponding values of c, given by

c(k) =
r2(k) + 1

r2(k)
3

β+1

. (12)

It is possible to prove that r2(k) is strictly increasing with k ≥ 2, and that
limk r2(k) = +∞. So, c(k) is strictly decreasing, and

lim
k→+∞

c(k) =

{
0 if β ∈ [0, 2[ ,
1 if β = 2 .

In particular, for every k ≥ 2,

c(k) ≤ c(2) =


f(β) if β ∈ [0, 2[ ,

19

12
if β = 2 ,

with

f(β) =
5− 6β +

√
16β2 − 56β + 97(

1− 4β +
√

16β2 − 56β + 97
) 3

β+1

(4− 2β)
2−β
β+1 .

One can further prove that f(β) is strictly increasing in β ∈ [0, 2[ , and that
limβ→2− f(β) = 19

12
(see Figure 1) .

0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 1: The function f(β).

Now, we can conclude the proof. If ε = 0, the linearized system at the
equilibrium point E1 is always non resonant, i.e., the eigenvalues of A1 are
never of the type ik, with k ∈ Z. Therefore, since, for j = 1, 2, the functions
Γj(s, ρ, η, ϕ, v; ε) are locally Lipschitz continuous in (ρ, η, ϕ, v), a classical per-
turbation theorem applies (see, e.g., [10, Chapter 14, Theorem 1.1]), providing
the existence of a 2π-periodic solution of (8), for ε small enough. Correspond-
ingly, by the changes of variables made above, we have a T -periodic solution
of (1).
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On the other hand, if β ∈ [0, 2[ , or β = 2 and α < γ, there is a second
equilibrium point E2 for ε = 0. The analysis of the linearized system at this
equilibrium point shows the existence of some resonant values c(k) for the
constant c, given by (12), with r2(k) is defined as in (3). Since c is defined
as in (6), condition (2) (where a(k) = r2(k)) is needed in order to avoid
these resonant values. In this case, the above mentioned perturbation theorem
applies, and one concludes analogously.

Since c(k) ≤ 19
12

for every β ∈ [0, 2] and every k ∈ Z with |k| ≥ 2, if (4) is
assumed, then (2) surely holds. The proof is thus concluded.

References

[1] A. Ambrosetti and V. Coti Zelati, Perturbation of Hamiltonian systems
with Keplerian potentials. Math. Z. 201 (1989), 227–242.

[2] A. Ambrosetti and V. Coti Zelati, Periodic Solutions of Singular La-
grangian Systems. Birkhäuser, Boston, 1993.
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Universidad de Granada
Campus de Fuentenueva
18071 Granada
Spain
e-mail: ptorres@ugr.es

Mathematics Subject Classification: 34C25

Keywords: periodic solutions; Kepler problem; perturbative methods.

10


