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Abstract

The spontaneous localization mechanism of collapse models induces a Brownian motion in all physical systems. This effect is very
weak, but experimental progress in creating ultracold atomic systems can be used to detect it. In this paper, we considered a recent
experiment [1], where an atomic ensemble was cooled down to picokelvins. Any Brownian motion induces an extra increase of the
position variance of the gas. We study this effect by solving the dynamical equations for the Continuous Spontaneous Localizations
(CSL) model, as well as for its non-Markovian and dissipative extensions. The resulting bounds, with a 95% of confidence level,
are beaten only by measurements of spontaneous X-ray emission and by experiments with cantilever (in the latter case, only for
rC ≥ 10−7 m, where rC is one of the two collapse parameters of the CSL model). We show that, contrary to the bounds given
by X-ray measurements, non-Markovian effects do not change the bounds, for any reasonable choice of a frequency cutoff in the
spectrum of the collapse noise. Therefore the bounds here considered are more robust. We also show that dissipative effects are
unimportant for a large spectrum of temperatures of the noise, while for low temperatures the excluded region in the parameter
space is the more reduced, the lower the temperature.
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1. Introduction

The accuracy of experiments testing the quantum properties
of larger and larger systems is improving at a fast pace. Quan-
tum superpositions have been directly observed in a large vari-
ety of mesoscopic systems, ranging from atoms [2, 3] to macro-
molecules [4–6], and optomechanics promises to reach much
larger masses [7–9]. This is interesting and important, since it
helps answering the question whether the quantum superposi-
tion principle, the building block of the theory, holds also at
large scales, or breaks down at some point. Moreover, as most
quantum technologies rely on the superposition principle being
applicable to arbitrarily complex systems, assessing its validity
will impact the future directions of technological research.

On the theoretical side, collapse models [10–15] take into
account, in a quantitative way, the possibility of a progres-
sive breakdown of quantum linearity when the size and com-
plexity of the system increase. More than this, strong argu-
ments [16, 17] show that they are the only possible way of mod-
ifying quantum theory, taking into account such a breakdown.
Therefore, testing these models serve as a benchmark for any
test of the superposition principle.

According to collapse models, material particles interact with
an external classical noise, which induces the collapse of the
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wave function. The effect is negligible for microscopic systems
but, as it scales with the number of particles, macroscopic ob-
jects are always well-localised in space. The most complete
and well studied model is the Continuous Spontaneous Local-
ization (CSL) model [18], which we will consider in this article
together with its non-Markovian (cCSL) [19, 20] and dissipa-
tive (dCSL) [21] extensions.

The CSL model contains two new parameters: λ, which sets
the strength of the interaction with the collapse noise, and rC ,
which defines the resolution of the collapse process. As for
the dCSL model, a third parameter κ, related to the temperature
TCSL of the collapse noise, is introduced. In the cCSL model in-
stead, the third new parameter is the cut-off frequency Ω, which
controls the noise spectrum. Setting a bound on λ and rC (and
on TCSL for dCSL model, and Ω for the cCSL model) is one of
the outputs of experimental tests of the quantum superposition
principle.

In the literature, the following values for λ and rC have been
suggested. According to Ghirardi, Rimini and Weber [10],
rC = 10−7m and λ ' 10−16 s−1. These values come from
the requirement that macroscopic objects must alway be well
localized. In [18], slightly different values were proposed:
rC = 10−7m and λ ' 10−17 s−1. Adler, on the other hand,
suggested stronger values: rC = 10−7m and λ ' 10−8±2 s−1 and
rC = 10−6m and λ ' 10−6±2 s−1, as a result of the analysis of
the process of latent image formation in photography [22]. With
reference to the dCSL model, if the collapse noise is associated
to some cosmological field, a reasonable value of the temper-
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ature of the noise field is TCSL ' 1 K. For the cCSL model,
a reasonable cosmological value for the frequency cut-off is
Ω ' 1010 − 1011 Hz [23].

Upper bounds on the collapse parameters are set by experi-
ments. The direct way of testing them is through interferomet-
ric experiments. The best limits of this kind come from matter-
wave interferometry performed by Arndt’s group [24], which
are reported in Fig. 7. More recently, non interferometric ex-
periments have been pushed forward [25–27]. They all aim at
testing a side-effect of the collapse noise: the Brownian mo-
tion it induces on the dynamics of any system. Two experimen-
tal scenarios of this kind are relevant: cantilevers [28], where
the Brownian motion shows up as a violation of the equiparti-
tion theorem (an anomalous heating), and X-ray detection [29],
where the Brownian motion induces spontaneous photon emis-
sion from matter. The relevant bounds are again reported in
Fig. 7.

A recent experiment [1] succeeded in cooling a cloud of 87Rb
atoms down to pK. This serves as a further test of collapse mod-
els, as we will see. The authors of [1] analyzed the sponta-
neous heating induced by a classical stochastic force acting on
the cloud [30], and set a bound on the heating rate, due to the
stochastic diffusion, equal to 20 ± 30 pK/s.

Aim of this article is to perform an exact calculation of the
predictions of the CSL model for the experiment considered
in [1], and compare these predictions with the experimental
data. We will set bounds on λ and rC of CSL (as well as on
TCSL of dCSL and Ω of cCSL). In the case of dCSL we will
see that there exist values of TCSL such that the noise cools the
system, not heat it.

Instead of computing the change in the energy due to the col-
lapse noise as done in [1], we will compute the change of the
variance in position of the cloud, which is the quantity mea-
sured in the experiment. The associated bounds are reported in
Figs. 6 and 7. As we will see, these bounds are the strongest in
a significant region of the parameter space, as we will discuss
in Section IV.

The paper is organized as follows. In section II we describe
the experimental setup of [1]. In section III we compute the the-
oretical predictions according to the CSL model. In sections IV
and V we study, respectively, the predictions of the non-white
and of the dissipative extensions of the CSL model. Finally,
in section VI we compare the theoretical predictions with the
experimental results, and we derive the upper bounds on the
collapse parameters.

2. Description of the experiment

A gas of 87Rb atoms is cooled down to very low tempera-
tures (T = 50+50

−30 pK) by using a “delta-kick” technique. All
the relevant experimental data are summarized in Fig. 1. The
gas is initially (t=0) trapped by a harmonic potential with stan-
dard deviation in position equal to 56 µm. The cooling process
comprises the following three steps:
Step 1: The harmonic trap is removed and the gas evolves freely
for a relatively long time, ∆t1 = 1.1 s. This allows atoms with

Figure 1: Graphical representation of the experiment reported in [1]. For each
step, the relevant experimental data are given.

the same average momentum to be approximatively at the same
distance from the initial localized state of the gas.
Step 2: Delta-kick. A Gaussian laser beam interacts with the
atoms, the laser-atom interaction being modeled by an exter-
nal harmonic potential. By choosing the proper harmonic fre-
quency and interaction time, the potential reduces the kinetic
energy of the atoms. The interaction lasts for a short time,
δt2 ' 35 ms.
Step 3: The gas evolves again freely for a relatively long time,
∆t3 = 1.8 s. The position variance of the gas is then measured,
from which the temperature of the gas is inferred.

The delta-kick frequency ω plays a critical role in the anal-
ysis. An estimation of ω is given in Eq. (103) of [30] through
a classical calculation. If the initial position and velocity of the
atoms are uncorrelated, the frequency becomes:

ω =

√
1
δtmin

(
1

∆t3
+ (1 − γ2)

1
∆t1

)
(1)

with γ2 = 0.017 and δtmin ≈ 34 ms is the time when the
gas reaches the minimum spread in position (obtained in [1]
through a fit of the experimental data). Inserting all numerical
values, we obtain: ω ≈ 6.53 rad/s.

As a confirmation of this prediction, we verified that, for all
the values of ω outside the range 6-7 rad/s, the predicted in-
crease of the variance 〈x̂2〉t3 is in contradiction with the exper-
imental data even for λ = 0, i.e. even for ordinary quantum
mechanics. Therefore, ω should lay within that interval. Then,
we divided the interval 6-7 rad/s in ten parts, and computed
which of the ten values of ω gives the weakest bounds on λ and
rC; the result is ω = 6.7 rad/s. Since we can not estimate the er-
ror associated to ω, we take a conservative attitude, and choose
this value for the following calculations.

In Fig. 3 of [1], the experimental data are shown. However,
the only experimental value, explicitly reported together with
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error-bars, is the minimum value of the position standard devi-
ation, 120+40

−40 µm, detected at delta-kick time of δt2 = 35 ms,
and shown in the inset of our Fig. 2. This is the experimental
value we will use in section VI to compute the bounds on the
collapse parameters.

3. Expansion of the gas according to the CSL model

We compute the time evolution of the variance in position,
as well as the increase of energy of the gas, during the cooling
process described in the previous section, according to the CSL
model. The effect of CSL is to increase the temperature of the
gas, and consequently its spread in position.

The master equation of the CSL model has the well-known
Lindblad form [18, 31–33]:

dρ̂(t)
dt

= −
i
~

[
Ĥ, ρ̂(t)

]
+

∫
dy

[
L(y)ρ̂(t)L†(y)

−
1
2

{
L†(y)L(y), ρ̂(t)

}]
. (2)

where the Hamiltonian is:

Ĥ =

N∑
α=1

Ĥα :=
N∑
α=1

(
p̂α
2m

+
1
2

mω2x̂2
α

)
. (3)

and the Lindblad operators L(y), for an N-atom system, are [18,
34]

L(y) =

N∑
α=1

L̂α(y) :=

√
λA2

π3/2r3
C

N∑
α=1

e
−
|x̂α−y|2

2r2
C , (4)

=

√
λA28π3/2r3

C

(2π~)3

N∑
α=1

∫
dQ e

i
~ Q·(x̂α−y) e−

r2
C

2~2 Q2
,

where A = 87 is the number of nucleons of each Rubidium
atom, λ and rC are the CSL parameters, and x̂α the position
operator of the α-th atom. In the second line of Eq. (4) we
performed a Fourier transform which simplifies the structure of
the master equation in Eq. (2) and will highlight the connection
with the non-Markovian and dissipative master equations. By
inserting the second line of Eq. (4) in Eq. (2) and performing
the integration over y one obtains:

dρ̂(t)
dt

= −
i
~

[
Ĥ, ρ̂(t)

]
+

λA2r3
C

(
√
π~)3

N∑
α,β=1

∫
dQ e−

r2
C
~2 Q2

×

(
e

i
~ Q·x̂α ρ̂(t)e−

i
~ Q·x̂β −

1
2

{
e−

i
~ Q·x̂β e

i
~ Q·x̂α , ρ̂(t)

})
.

(5)

Given a generic observable Ô, the equation for its expectation
value 〈Ô〉t ≡ Tr{ρ̂(t)Ô} is:

d〈Ô〉t
dt

= −
i
~

Tr
{
ρ̂(t)

[
Ô, Ĥ

]}
+

λA2r3
C

(
√
π~)3

×

N∑
α,β=1

∫
dQ e−

r2
C
~2 Q2 {

Tr
(
ρ̂(t)e−

i
~ Q·x̂βOe

i
~ Q·x̂α

)
−

1
2

Tr
(
ρ̂(t)

{
O, e−

i
~ Q·x̂β e

i
~ Q·x̂α

})}
.

(6)

We are interested in the case where Ô can be written as the sum
of single-atom observables Ôγ,

Ô =

N∑
γ=1

Ôγ. (7)

In such a case, it is easy to show that when the term Oγ of the
sum in Eq. (7) is considered, only the Lindblad terms of Eq. (6)
with indices α = β = γ give a non-vanishing contribution. This,
together with the fact that the Hamiltonian is separable, allows
to reduce the N-atom problem to the single-atom case, i.e. we
can consider the equation

d〈Ôγ〉t

dt
= −

i
~

Tr
[
ρ̂(t)

[
Ôγ, Ĥγ

]]
+

λA2r3
C

(
√
π~)3

×

∫
dQ e−

r2
C
~2 Q2

Tr
[
ρ̂(t)

(
e−

i
~ Q·x̂γOγe

i
~ Q·x̂γ − Oγ

)]
.

(8)

The quantities we need to compute are: the average position
variance

〈X̂2〉t ≡
1
N

N∑
γ=1

(
〈x̂2
γ〉t − 〈x̂γ〉

2
t

)
, (9)

the average momentum variance

〈P̂2〉t ≡
1
N

N∑
γ=1

(
〈p̂2

γ〉t − 〈p̂γ〉
2
t

)
(10)

and the average position-momentum correlation

〈X̂P̂ + P̂X̂〉t ≡
1
N

N∑
γ=1

〈x̂γp̂γ + p̂γx̂γ〉t. (11)

Since all atoms are identical and are in the same initial state, the
average quantities simply correspond to the expectation values
for a single atom, which is what we will focus on, in the follow-
ing. Taking Ôγ = x̂, p̂ in Eq. (8), it is straightforward to prove
that

〈x̂〉t = 〈p̂〉t = 0 (12)

i.e. CSL does not affect the average motion in position and
momentum of the atoms. However, the same is not true for the
standard deviations. In fact, taking Ôγ = x̂2, p̂2 in Eq. (8), one
finds that:

d〈x̂2〉t

dt
=

1
m
〈x̂ · p̂ + p̂ · x̂〉t, (13)

d〈p̂2〉t

dt
=

3λA2~2

2r2
c
− mω2〈x̂ · p̂ + p̂ · x̂〉t. (14)

In a similar way, one can show that the position-momentum
correlation satisfies the equation:

d〈x̂ · p̂ + p̂ · x̂〉t
dt

=
2
m
〈p̂2〉t − 2mω2〈x̂2〉t. (15)

The set of first order differential equations (13)–(15) can be
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solved exactly, the solution being:

〈x̂2〉t = 〈x̂2〉t0 +
1

2ωm

[
B(ω) sin (2ω(t − t0)) − (16)

A(ω) (1 − cos (2ω(t − t0)))
]
,

〈p̂2〉t = 〈p̂2〉t0 + mω2C(ω)(t − t0) −
mω
2

[
B(ω) (17)

× sin (2ω(t − t0)) −A(ω) (1 − cos (2ω(t − t0)))
]

and

〈x̂ · p̂ + p̂ · x̂〉t = A(ω) sin (2ω(t − t0)) + (18)
+ B(ω) cos (2ω(t − t0)) + C(ω),

where the real parameters A(ω), B(ω), C(ω), are fixed by the
initial conditions of the system at the initial time t = t0:

A(ω) = mω〈x̂2〉t0 −
〈p̂2〉t0

mω
,

B(ω) = 〈x̂ · p̂ + p̂ · x̂〉t0 − C(ω),

C(ω) =
3λA2~2

2mr2
Cω

2
(19)

The free evolution (i.e. without the harmonic trap) for 〈x̂2〉t,
〈p̂2〉t and 〈x̂ · p̂ + p̂ · x̂〉t can be obtained by taking the limit
ω→ 0 in Eqs. (16), (17) and (18). In such a case we have:

〈x̂2〉t = 〈x̂2〉t0 +
〈x̂ · p̂ + p̂ · x̂〉0

m
(t − t0) + (20)

+
〈p̂2〉t0

m2 (t − t0)2 +
λA2~2

2m2r2
C

(t − t0)3,

〈p̂2〉t = 〈p̂2〉t0 +
3λA2~2

2r2
C

(t − t0), (21)

and for the correlation

〈x̂ · p̂ + p̂ · x̂〉t = 〈x̂ · p̂ + p̂ · x̂〉t0 + (22)

+
2〈p̂2〉t0

m
(t − t0) +

3λA2~2

2mr2
C

(t − t0)2.

Given the above equations, we can easily compute the evolu-
tion of 〈x̂2〉t during the experiment. From t = 0 to t = t1 the
system evolves freely (ω = 0) accordingly to Eqs. (20)–(22);
from t = t1 to time t = t2 it evolves harmonically as described
in Eqs. (16)–(18) and then again freely up to time t = t3. Im-
posing the continuity condition during the whole process, one
arrives at the final result:

〈x̂2〉t3 = 〈x̂2〉
QM
t3 + 〈x̂2〉CSL

t3 , (23)

where 〈x̂2〉
QM
t is the value of the position variance according to

the standard Schrödinger evolution, and 〈x̂2〉CSL
t is the modifica-

tion induced by CSL. The first term has the form

〈x̂2〉
QM
t3 = AQM(ω, t1, t3, δt2) (24)

+ BQM(ω, t1, t3, δt2) cos(2ωδt2)

+ CQM(ω, t1, t3, δt2) sin(2ωδt2),

where we defined the following quantity:

AQM =

[
〈p̂2〉0 +

(
〈x̂2〉0m2 + 〈p̂2〉0t2

1

)
ω2

] [
1 + (t3 − t2)2 ω2

]
2m2ω2 ; (25a)

BQM = −
〈p̂2〉0 −

[
〈x̂2〉0m2 + 〈p̂2〉0

(
(t3 − t2)2 + 4t1 (t3 − t2) + t2

1

)]
ω2

2m2ω2 +(
〈x̂2〉0m2 + 〈p̂2〉0t2

1

)
(t3 − t2)2 ω2

2m2 ; (25b)

CQM =
〈p̂2〉0

(
t2 − τp

)
−

[
〈x̂2〉0m2 + 〈p̂2〉0t1(t2 − τp)

]
(t3 − t2)ω2

ωm2 . (25c)

The CSL contribution is given by

〈x̂2〉CSL
t3 =

λA2~2

r2
C8m2ω3

[
ACSL(ω, t1, t3, δt2) + BCSL(ω, t1, t3, δt2) cos(2ωδt2) + CCSL(ω, t1, t3, δt2) sin(2ωδt2)

]
(26)

with

ACSL = 6ωt3 + 2ω3
[
t3
2 + 2t3

3 + t3
1 − 3t2

3t2
]

+ 2t3
1 (t3 − t2)2 ω5; (27a)

BCSL = −2ω
[
3(t3 − δt2) + ω2t1(2t2

1 − 3(t3 − δt2)2) + ω4t3
1(t3 − t2)2

]
; (27b)

CCSL = 3 + 3ω2
[
(t3 − t2)2 − 2(t3 − δt2)2

]
+ 2ω4t2

1(t3 − t2)(3t3 − t1 − 3δt2). (27c)
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Figure 2: Position’s standard deviation ∆(x) ≡ 〈x̂2〉
1/2
t3 at the detector (time

t = t3) as a function of the delta-kick time δt2, for three different values of the
collapse rate λ. For each curve, we fixed rC = 10−7 m. The inset shows the
curves near the minimum value detected in [1], ∆(x)EXP = 120+40

−40µm, indicated
by the black bars. The black dotted line shows the quantum-mechanical predic-
tions. The red and blue points represent the experimental data deducted from
Fig. 3 in [1].

We can see that the CSL contribution 〈x̂2〉CSL
t3 to the final vari-

ance is independent from the initial state of the gas (contrary to
〈x̂2〉

QM
t3 ) and depends, in a rather complicated way, only on the

relevant times of the experiment (t1, δt2 = t2 − t1, t3) and the
frequency ω of the delta-kick.

In Fig. 2 we plot the final position variance 〈x̂2〉t3 as a func-
tion of the delta-kick time δt2. To highlight the CSL effect, we
computed the quantum-mechanical prediction and the CSL pre-
dictions for three different values of λ and at fixed rC = 10−7

m.
As we can see, for small λ the quantum-mechanical predic-

tions, compatible with the experimental data, are recovered. For
larger values of λ the variance 〈x̂2〉t3 increases, till it disagrees
with the experimental data. This is the expected behavior: the
larger λ, the stronger the Brownian fluctuations and the larger
the spread of the cloud.

Similarly, in Fig. 3 we plot the average energy of the gas at
the end of the process as a function of δt2, for different values
of λ and again at fixed rC = 10−7 m. We see that the cooling
effect is maximum when the delta-kick last for δt2 ≈ 20 ms,
leading to a theoretical kinetic energy of E ≈ 10−34 J, corre-
sponding to a temperature of order T ≈ 10 pK. This theoretical
value is compatible with the experimental value Tmin = 50+50

−30
pK measured in [1]. We also note that the heating effect due
to CSL becomes significant for λ ≥ 10−7 s−1, leading to an en-
ergy increase greater than 5 × 10−33 J, which is about 5 times
greater than the value of the energy increase measured during
the experiment ((4 ± 6) × 10−34 J).

4. Expansion of the gas according to the non-white CSL
model

We now consider the predictions of CSL with a non-white
noise (cCSL) on the expansion of the gas. The (single particle)
cCSL master equation [19, 20], to the first perturbative order in

0.01 0.02 0.03 0.04 0.05
δt2 [s]

5.×10-33

1.×10-32

1.5×10-32

2.×10-32

2.5×10-32

E[J]

0.018 0.02

2.×10-34

4.×10-34

6.×10-34

8.×10-34

QM

λ = 10-9
s
-1

λ = 10-8
s
-1

λ = 10-7
s
-1

Figure 3: Kinetic energy E ≡ 〈p̂2〉t3/2m at the detector (time t = t3) as a
function of the delta-kick time δt2, for three different values of the collapse rate
λ. For each curve, we fixed rC = 10−7 m. The inset shows the minimum of the
curves, which is E ∼ 10−34J, corresponding to a temperature T ' 10 pK, for
δt2 ≈ 20 ms. The black dotted line shows the quantum-mechanical predictions.

λ, is 1:

dρ (t)
dt

= −
i
~

[
H, ρ (t)

]
− λ8π3/2r3

C A2
∫ t

0
ds f (s) (28)

×

∫
dQg̃(Q)g̃(−Q)

[
e−

i
~ Q·x̂,

[
e

i
~ Q·x̂(−s), ρ (t)

]]
where

g̃(Q) =
1

(2π~)3/2 e−
Q2r2

C
2~2 , (29)

the function f (s) is the time correlation function of the non-
white noise, and x̂(−s) is the position operator in the interaction
picture, evolved backwards to the time −s:

x̂(−s) = e−
i
~ Hs x̂ e

i
~ Hs. (30)

In the white noise limit the correlation function f (s) becomes
a Dirac-delta and the standard CSL master equation (5) with
N = 1 is recovered.

From Eq. (28) it is easy to derive the evolution equation for
a generic operator O:

d〈Ô〉t
dt

= −
i
~
〈[Ô, Ĥ]〉t − λ8π3/2r3

C A2
∫ t

0
ds f (s) (31)

×

∫
dQg̃(Q)g̃(−Q)〈[[Ô, e−

i
~ Q·x̂], e

i
~ Q·x̂(−s)]〉t.

This non-Markovian master equation cannot be solved exactly
for a general non-white noise. We can proceed as follows, not-
ing that any realistic correlation function has a cut-off time τ
(to which a frequency cut-off Ω corresponds). When τ is much
smaller than the typical timescales of the system, the new dy-
namics is expected to be indistinguishable from the white-noise
case. We will assess for which values of τ the white noise limit
is recovered. More precisely we are interested in determining
when we can approximate:

e
i
~ Q·x̂(−s) ' e

i
~ Q·x̂. (32)

1Here we report only the single-atom master equation because, similarly
to the case of white noise CSL model, we only need to focus on single-atom
observables in order to describe the gas.
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Given the harmonic Hamiltonian in Eq. (3), the position op-
erator in the interaction picture evolves as follows:

x̂ (−s) = cos (ωs) x̂ −
sin (ωs)

mω
p̂ (33)

which implies

e
i
~ Q·x̂(−s) = e

i
~ cos(ωs)Q·x̂ e−

i
~

sin(ωs)
mω Q·p̂ e−

i
~

sin(2ωs)
4mω Q2

. (34)

We perform the analysis under the assumption that

τ � t ' 10−2 s, (35)

which is the order of magnitude of the delta-kick time. This
assumption is necessary in order to obtain conditions, which
depend only on the noise cut-off τ and not on the time t of
evolution. Then, according to Eq. (34), the approximation in
Eq. (32) is fulfilled when:

ωτ � 1 ⇒ τ � ω−1 ' 0, 94s, (36)

and:
|Q||pmax|τ

~m
� 1 ⇒ τ � 103

( rC

1m

)
s, (37)

and also:

τ

2m~
Q2 � 1 ⇒ τ � 109

 r2
C

1m2

 s, (38)

where m = 1, 44 × 10−25 Kg is the Rb mass, the maximum
momentum is |pmax| = 〈p̂〉 +

〈
p̂2

〉1/2
' 10−29 Kg m/s (we took

〈p̂〉 = 0 and 〈E〉 =
〈
p̂2/2m

〉
' 10−32 J) and |Q| ≤ ~/rC , which

is imposed by the Gaussian factors g̃(Q) defined in Eq. (29).
Given the assumption in Eq. (35), the condition in Eq. (36)

is always fulfilled, as well as conditions in Eqs. (37) and (38),
as long as rC ≥ 10−5 m. On the other hand, for rC ≤ 10−5

m, the strongest bound comes from the conditions in Eqs. (37)
and (38).

Under these conditions, the evolution equation for a generic
operator O becomes:

d〈Ô〉t
dt

= −
i
~
〈[Ô, Ĥ]〉t −

λ8π3/2r3
C A2 f̃ (0)
2

(39)

×

∫
dQg̃(Q)g̃(−Q)〈[[Ô, e−

i
~ Q·x̂], e

i
~ Q·x̂]〉t

where

f̃ (ω) :=
∫ +∞

−∞

f (s)eiωsds (40)

and where we assumed f (s) = f (−s) and used the fact that for
t > τ∫ t

0
ds f (s) '

∫ ∞

0
ds f (s) =

1
2

∫ ∞

−∞

ds f (s) =
f̃ (0)
2

. (41)

Therefore, under the assumption Eq. (35) and when conditions
Eq. (37) and Eq. (38) are fulfilled, the non-white noise case

is well approximated by the white-noise case discussed in the
previous section, with the replacement λ→ λ f̃ (0)/2.

A more detailed analysis is possible for a system with spatial
extension smaller than rC . In our case

〈
x̂2

〉1/2
≈ 50 µm, imply-

ing that the approximation holds for rC ≥ 10−4 m. Imposing
this condition on the Gaussian factors g̃(Q) defined in Eq. (29)
gives |Q| ≤ ~/rC , which guarantees that we can expand the ex-
ponentials in the second line of Eq. (31) as e−

i
~ Q·x̂ ' 1− i

~Q · x̂,
leading to

3∑
i, j=1

(
1
~2

∫
dQg̃(Q)g̃(−Q)QiQ j

)
〈[[Ô, x̂i], x̂ j(−s)]〉t. (42)

The integration over Q gives the factor

1
~2

∫
dQg̃(Q)g̃(−Q)QiQ j =

δi j

24π3/2r5
C

(43)

and therefore Eq. (31) becomes

d〈Ô〉t
dt

= −
i
~
〈[Ô, Ĥ]〉t −

λA2

2r2
C

∫ t

0
ds f (s) (44)

×

3∑
j=1

〈[[Ô, x̂ j], x̂ j(−s)]〉t.

An explicit calculation is also possible, if we take a specific
expression for the noise correlator, e.g.:

f (s) =
1
2τ

e−|s|/τ. (45)

which, in the limit τ → 0, reduces to a Dirac delta. From
Eq. (44) it is easy to see that the dynamical equations for x̂
and p̂ are not modified by the noise. Similarly, for x̂2 we have:

d
〈
x̂2

〉
t

dt
=
〈x̂p̂ + p̂x̂〉t

m
. (46)

From Eq. (44), it is also straightforward obtain the following
equations:

d 〈x̂p̂ + p̂x̂〉t
dt

=
2
〈
p̂2

〉
t

m
− 2mω2

〈
x̂2

〉
t

+
3λA2~2

mr2
C

∫ t

0
ds

e−
s
τ sin(sω)
2ωτ

; (47)

d
〈
p̂2

〉
t

dt
= −mω2 〈x̂p̂ + p̂x̂〉t +

3λA2~2

2r2
C

∫ t

0
ds

e−
s
τ cos(sω)

2τ
.

(48)
The system of Eqs. (46), (47) and (48) can be
solved exactly. The solution of Eq. (47) is:

〈x̂p̂ + p̂x̂〉t = 〈x̂p̂ + p̂x̂〉0 cos(2ωt) +


〈
p̂2

〉
0

mω
− mω

〈
x̂2

〉
0

 sin(2ωt) +
3λA2~2

2ωmr2
C

∫ t

0
dsg(s) sin(2ω(t − s)), (49)6



where

g(x) =

∫ x

0
dy

e−
y
τ cos(ωy)

2τ
+

e−
x
τ sin(ωx)
2ωτ

. (50)

Using Eq. (49) in Eqs. (46) and (48) we get the related solutions:

〈
x̂2

〉
t
=

〈
x̂2

〉
0

+
1

2mω

sin(2ωt) 〈x̂p̂ + p̂x̂〉0 −


〈
p̂2

〉
0

mω
− mω

〈
x̂2

〉
0

 (1 − cos(2ωt))


+

3λA2~2

2ωm2r2
C

∫ t

0
ds2

∫ s2

0
ds1 g(s1) sin(2ω(s2 − s1));

(51)

〈
p̂2

〉
t
=

〈
p̂2

〉
0
−

mω
2

sin(2ωt) 〈x̂p̂ + p̂x̂〉0 −


〈
p̂2

〉
0

mω
− mω

〈
x̂2

〉
0

 (1 − cos(2ωt))


+

3λA2~2

2r2
C

∫ t

0
ds2

∫ s2

0
ds1

e−
s1
τ cos(ωs1)

2τ
− ωg(s1) sin(2ω(s2 − s1))

 .
(52)

From a direct computation of the function (50), it is possible
to note that, if τω � 1 and τ � t, then the solutions Eqs. (49),
(51) and (52) are practically indistinguishable from Eqs. (16),
(17) and (18) derived in the white noise case. In the experiment
under consideration, we have ω = 6.7 rad/s and t = δt2 ≈ 35
ms. The white noise limit is therefore a good approximation for
any noise with cut-off τ ≤ 10−3s.

In the free evolution limit ω → 0, Eqs. (51), (49) and (52)
reduce to: 〈

p̂2
〉

t
=

〈
p̂2

〉
0

+
3λA2~2

2r2
C

[
t − τ

(
1 − e−

t
τ

)]
; (53)

〈x̂p̂ + p̂x̂〉t = 〈x̂p̂ + p̂x̂〉0 +
2
〈
p̂2

〉
0

t

m
(54)

+
3λA2~2

2mr2
C

[
t2 − τt

(
1 − e−

t
τ

)]
;

〈
x̂2

〉
t
=

〈
x̂2

〉
0

+
〈x̂p̂ + p̂x̂〉0 t

m
+

〈
p̂2

〉
0

t2

m2 (55)

+
3λA2~2

m2r2
C

[
t3

6
−

tτ
2

(
1
2

+ e−
t
τ

)
+
τ3

2

(
1 − e−

t
τ

)]
.

In this case the white noise limit is recovered when τ � t. The
free time evolution is t ≈ 1s, which implies τ ≤ 10−2s.

To conclude, we can safely say that the bounds we obtain for
the CSL model shown in Fig. 7 hold also for a more general and
realistic non-white noise extension of the model if

τ ≤ 10−3 s =⇒ Ω ≥ 103 Hz (56)

for rC ≥ 10−5 m,

τ � 103
( rC

1m

)
s =⇒ Ω � 10−3

(
1m
rC

)
Hz (57)

for 10−6 ≤ rC ≤ 10−5 m,

τ � 109
 r2

C

1m2

 s =⇒ Ω � 10−9
1m2

r2
C

 Hz (58)

for rC ≤ 10−6 m. Taking into account that typical cosmolog-
ical cut-offs are of order 1010 − 1011 Hz, our analysis shows
that for rC ≥ 10−10 m and for a typical cosmological collapse
noise, the cCSL predictions (therefore also the upper bounds)
are indistinguishable from the standard CSL predictions.

5. Expansion of the gas according to the dCSL model

Another possible way of generalizing the CSL model is of-
fered by the dCSL model [21], which includes dissipative ef-
fects in the dynamics, to tame the energy increase. More pre-
cisely, a finite temperature is associated to the collapse-noise,
and every physical system slowly thermalizes to that tempera-
ture. If the noise has a cosmological origin, a temperature of
∼ 1K is expected, meaning that in general the energy of mate-
rial objects should actually decrease, not increase as predicted
by CSL. Since the effect we are discussing in this paper is di-
rectly related to the energy increase, a dissipative modification
of CSL is expected to change the bounds on the collapse pa-
rameters. This is what we will consider now.

In the dCSL model, the Lindblad operators L(y) are defined
as follows:

L(y) =

√
λA28π3/2r3

C

(2π~)3

N∑
α=1

∫
dQ e

i
~ Q(x̂α−y)×

e−
r2
C
~2 |(1+k)Q+2kP̂α|,

(59)

where the new parameter

k =
~2

8mkBTCSLr2
C

, (60)
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controls the temperature TCSL of the collapse noise. In the limit
TCSL → ∞ (k → 0), the standard CSL Lindblad operators of
Eq. (4) are recovered.

As in the case of the standard CSL model, it is easy to prove
that for a gas of non-interacting atoms, the problem can be
reduced to the study of single-atom observables. The dCSL
model master equation for a single atom trapped in an harmonic
potential is given by Eq. (2), with L defined as in Eq. (59) and
with N = 1. After performing an integration over the variable y
we arrive at [21]:

dρ̂
dt

= −
i
~

[
p̂2

2m
+

1
2

mω2x̂2, ρ̂

]
+

λA2r3
C

(
√
π~)3∫

d3Q
(
e

i
~ Q·x̂L(Q, p̂)ρ̂(t)L(Q, p̂)e−

i
~ Q·x̂

−
1
2

{
L2(Q, p̂), ρ̂

})
,

(61)

where

L(Q, p̂) = e−
r2
C

2~2 |(1+k)Q+2kp̂|2 . (62)

With the help of the above equation, we can easily derive the
equation for the variance in position:

d〈x̂2〉t

dt
=

1
m
〈x̂ · p̂ + p̂ · x̂〉t −

λA2r3
C

2(
√
π~)3

×

∫
d3Q Tr

{
ρ̂[[x̂2, L(Q, p̂)], L(Q, p̂)]

}
.

(63)

After a long but straightforward calculation, one finds that

[[x̂2, L(Q, p̂)], L(Q, p̂)] =

−
8k2r4

C

~2

[
(1 + k)Q j + 2kp̂ j

]2
L2(Q, p̂).

(64)

Using Eq. (64) in Eq. (63), and performing the trace over the
momentum eigenvectors, the following integration appears:∫

d3Q
∫

d3 p
[
(1 + k)Q + 2kp

]2 e−
r2
C
~2 [(1+k)Q+2kp]2

×

× ρ̂(p, p, t) =
3
2

( √
π

1 + k

)3 (
~
rC

)5 (65)

Collecting all results, we get:

d〈x̂2〉t

dt
=

1
m
〈x̂ · p̂ + p̂ · x̂〉t +

6λA2r2
Ck2

(1 + k)3 . (66)

Note that for k → 0 Eq. (13) is recovered. In order to solve
Eq. (66) we need to find 〈x̂ · p̂ + p̂ · x̂〉t. The equation for 〈x̂ · p̂〉t
is:

d〈x̂ · p̂〉t
dt

=
1
m
〈p̂2〉t − mω2

〈
x̂2

〉
t
+

λA2r3
C

(
√
π~)3∫

d3Q
(
Tr

{
e

i
~ Q·x̂L(Q, p̂)ρ̂(t)L(Q, p̂)e−

i
~ Q·x̂x̂ · p̂

}
−

1
2

Tr
{{

L2(Q, p̂), ρ̂
}

x̂ · p̂
})

(67)

Using the ciclycity of the trace together with

e−
i
~ Q·x̂ x̂ · p̂ e

i
~ Q·x̂ = x̂ · (p̂ + Q) (68)

we can rewrite the trace as

Tr
{
e

i
~ Q·x̂L(Q, p̂)ρ̂(t)L(Q, p̂)e−

i
~ Q·x̂x̂ · p̂

}
−

−
1
2

Tr
{{

L2(Q, p̂), ρ̂
}

x̂ · p̂
}

=

= Tr {ρ̂(t)L(Q, p̂)x̂ ·QL(Q, p̂)} −

−
1
2

Tr
{
ρ̂(t)

[[
x̂ · p̂, L(Q, p̂)

]
, L(Q, p̂)

]}
(69)

The term in the last line gives no contribution since the double
commutator is zero. The integration over Q of the other term
can be rewritten as follows:∫

d3Q Tr {ρ̂(t)L(Q, p̂)x̂ ·QL(Q, p̂)} =

=
1
2

∫
d3Q Tr

{
L2(Q, p̂)ρ̂x̂ ·Q

}
+

1
2

∫
d3Q Tr

{
L2(Q, p̂)x̂ ·Qρ̂

}
,

(70)

and expanding the trace over the momentum eigenstates we get

=
1
2

3∑
j=1

∫
d3 p

(∫
d3QL2(Q,p)Q j

)
〈p|

(
ρ̂x̂ j

)
|p〉

+
1
2

3∑
j=1

∫
d3 p

(∫
d3QL2(Q,p)Q j

)
〈p|

(
x̂ jρ̂

)
|p〉.

Considering that∫
d3QL2(Q,p)Q j = −

2kp j

(1 + k)

(
~
√
π

(1 + k) rC

)3

, (71)

the dCSL contribution to Eq. (67) is

λA2r3
C

2(
√
π~)3

∫
d3Q Tr

(
ρ̂(t)L(Q, p̂)x̂ ·QL(Q, p̂)

)
=

= −
λA2k

(1 + k)4 〈x̂ · p̂ + p̂ · x̂〉t .
(72)

So, the equation for 〈x̂ · p̂〉t is:

d 〈x̂ · p̂〉t
dt

=
1
m

〈
p̂2

〉
t
−mω2

〈
x̂2

〉
t
−

λA2k
(1 + k)4 〈x̂ · p̂ + p̂ · x̂〉t (73)

which implies that:

d 〈x̂ · p̂ + p̂ · x̂〉t
dt

=
2
m

〈
p̂2

〉
t
− 2mω2

〈
x̂2

〉
t

−
2λA2k

(1 + k)4 〈x̂ · p̂ + p̂ · x̂〉t .
(74)
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The last equation we need is that for the momentum variance〈
p̂2

〉
t
. This has been already derived in [21]:

d
〈
p̂2

〉
t

dt
= −mω2 〈x̂ · p̂ + p̂ · x̂〉t − χ

〈
p̂2

〉
t
+ χ

〈
p̂2

〉
as
, (75)

where

χ :=
4kλA2

(1 + k)5 ,
〈
p̂2

〉
as

:=
3~2

8kr2
C

. (76)

In the limit of free evolution (i.e. ω → 0),
the solutions of Eqs. (66), (74) and (75) are:

〈
x̂2

〉
t
=

〈
x̂2

〉
t0

+
2(

〈
p̂2

〉
t0
−

〈
p̂2

〉
as

)

m2(B − χ)

(
1 − e−χ(t−t0)

χ
−

1 − e−B(t−t0)

B

)
+

〈x̂ · p̂ + p̂ · x̂〉t0 −
2
〈
p̂2

〉
as

mB

×
×

1 − e−B(t−t0)

mB
+

α +
2
〈
p̂2

〉
as

m2B

 (t − t0); (77a)

〈x̂ · p̂ + p̂ · x̂〉t =
2(

〈
p̂2

〉
t0
−

〈
p̂2

〉
as

)

m(B − χ)

(
e−χ(t−t0) − e−B(t−t0)

)
+

2m
〈
p̂2

〉
as

mB
+ e−B(t−t0)×

×

〈x̂ · p̂ + p̂ · x̂〉t0 −
8m

〈
p̂2

〉
as

B

 ; (77b)

〈
p̂2

〉
t
=

〈
p̂2

〉
as

+ e−χ(t−t0)
(〈

p̂2
〉

t0
−

〈
p̂2

〉
as

)
, (77c)

where B := 1+k
2 χ and α := 6λA2r2

Ck2

(1+k)3 .
We should study also the case of an harmonically trapped

atom (ω , 0). The system of Eqs. (66), (74) and (75) can still
be solved exactly. However, the solutions are too complicated
and of little practical use. In fact, the duration of the delta-
kick is much shorter than the free evolution and, as shown in
the Appendix, the dCSL effects during the delta-kick can be
neglected and safely be replaced by the standard quantum me-
chanical evolution.

We can now derive the position variance 〈x̂2〉t3 at the final
time t3 as predicted by the dCSL model. During steps 1 and 3
of the experiment (free expansion of the gas) we use the exact
solutions given in Eqs. (77a), (77b) and (77c), while during step
2 (the delta-kick) we use the quantum mechanical solution for
an harmonic oscillator. In a similar way, one can compute the
time evolution of the average kinetic energy. We do not report
explicitly the final formula for 〈x̂2〉t3 since it is very long and
does not help in getting any insight on the physics.

In Fig. 4 and Fig. 5 the minimum values of the final position
variance and of the average kinetic energy are plotted as a func-
tion of the noise temperature TCSL for different values of λ, while
keeping rC = 10−7m, and for fixed values of the delta-kick time
(we took the values of δt2 which maximize the delta-kick ef-
fects). We can see that in both cases the effect of dissipation
is to reduce the increase of the variance and of the energy due
to the CSL noise. In particular, for the values of rC and λ here
considered, when TCSL < 10−7 K the effect of the noise is negli-
gible and the predictions are practically equivalent to the stan-
dard quantum ones. In the range 10−7 K < TCSL < 10−6 K the
noise effects are present but are reduced by dissipation. When
TCSL > 10−6 K the effects of dissipation become negligible and
the predictions are indistinguishable from the TCSL = +∞ case

2.×10-7 4.×10-7 6.×10-7 8.×10-7 1.×10-6
TCSL[K]

0.12

0.14

0.16

0.18

0.20

0.22

Δ(x)[mm]

QM

λ = 10-9 s-1

λ = 10-8 s-1

λ = 10-7 s-1

Figure 4: Position’s standard deviation ∆(x) ≡ 〈x̂2〉
1/2
t3 at the detector (time t =

t3) as a function of the CSL noise temperature TCSL, for three different values
of the collapse rate λ. For each curve, we fixed rC = 10−7 m and the delta-kick
time δt2 = 35 ms, which corresponds to the smallest measured value (black
point in Fig. 2). We plot also the quantum-mechanical value for comparison.

(CSL).

5.1. dCSL model with boost
The dCSL model is not Galilei invariant, since the noise se-

lects a preferred reference frame, the one where it is at rest.
In the previous section, we implicitly considered the situation
where the lab reference frame was at rest with respect to the
noise. This is unlikely. If the noise has a cosmological origin,
then much likely it is at rest with the cosmic frame, with respect
to which the Earth moves. In this section we analyse the case
where the collapse noise is moving with some velocity u with
respect to the laboratory system.

The master equation for the boosted dCSL model has the
same structure as that in Eq. (61) with L(Q, p̂) in Eq. (62) re-
placed by:

L(Q, p̂,u) = e−
r2
C

2~2 |(1+k)Q+2k(p̂−mu)|2 . (78)
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Figure 5: Kinetic energy E ≡ 〈p̂2〉t3/2m at the detector (time t = t3) as a
function of the CSL noise temperature TCSL, for three different values of the
collapse rate λ. For each curve, we fixed rC = 10−7 m and δt2 = 20 ms,
associated to the theoretical minimum of the momentum standard deviation
(see Fig. 3). We plot also the quantum-mechanical value for comparison.

It is convenient to introduce the boosted momentum operator:

p̂u := p̂ − mu (79)

which allows to rewrite the boosted dCSL master equation as

dρ̂
dt

=
dρ̂dCSL

dt

∣∣∣∣∣
p̂→p̂u

−
i
~

[
p̂u · u, ρ̂

]
(80)

where the first term is the master equation of the dCSL as given
by Eq. (61), with p̂u in place of p̂. Note that p̂u has the same
commutation relations as p. The equation for the time evolution
of a generic operator O is:

d 〈O〉t
dt

=
d 〈O〉dCSL

t

dt

∣∣∣∣∣∣
p̂→p̂u

−
i
~

〈[
O, p̂u · u

]〉
t (81)

where 〈O〉dCSL
t is the expectation value of the operator O given by

the dCSL dynamics without boost, again with p̂u in place of p̂.
Therefore, we can now write the equations for the expectation
values 〈x̂2〉t, 〈p̂2

u〉t and 〈x̂ · p̂u + p̂u · x̂〉t using the results already
derived for the dCSL model without boost; we only need to
compute the extra commutator of Eq. (81).

Actually, to get a good estimate of the effect of the boost, it
is sufficient to analyze the equations for 〈x̂〉t and 〈p̂〉t, instead
of those for the variances, which are much more complicated.
The first equation can be easily derived, while the second one
involves lengthier calculations, which however are analogue to
those carried out in the previous section, when deriving the
equation for 〈x̂ · p̂〉t. The final result is:

d 〈x̂〉t
dt

=
〈p̂u〉t

m
+ u,

d 〈p̂u〉t

dt
= −B 〈p̂u〉t , (82)

where B is the parameter defined after Eq. (77c). The solution
of this system of equations for a free gas (ω = 0) with initial av-
erage position 〈x̂〉t0 and initial average momentum 〈p̂〉t0 , written
in terms of the real momentum p̂, are:

〈x̂〉t = 〈x̂〉t0 + u(t − t0) +

(
〈p̂〉t0

m
− u

)
1 − e−B(t−t0)

B
; (83)

〈p̂〉t = 〈p̂〉t0 e−B(t−t0) + mu
(
1 − e−B(t−t0)

)
; (84)

Figure 6: Exclusion plot for the boosted dCSL model, considering a boost with
|u| = 107 ms−1 for four different values of the dCSL temperature TCSL.

We can now argue as follows. The change of the average po-
sition of the gas must be smaller than the measured standard
deviation, as in [1] no significant variation to the average po-
sition of the center-of-mass of the cloud was observed. From
Eq. (83), taking into account that for the experiment considered
here 〈p̂〉t0 = 0 and t − t0 ≈ 3 s, and that for any value of the
parameters of the dCSL model B(t − t0) � 1, we can safely say
that

1
2
|u| B(t − t0)2 ≤ 1 µm. (85)

where B = 2λA2k/(1 + k)4. Considering, for example, the stan-
dard values for the dCSL parameters λ = 10−17 s−1, rC = 10−7

m and TCSL = 1 K, we obtain the bound:

|u| ≤ 1013 m s−1. (86)

From cosmological arguments [24] a possible value of the noise
boost is |u| = 107 ms−1. Using this value in Eq. (85) an exclu-
sion plot in the parametric space λ − rC is found, as shown in
Fig. 6.

6. Discussion: comparison with experimental data and
bounds on the collapse parameters

We now discuss the bounds on the collapse parameters
against the experiment here considered. We compare the posi-
tion’s standard deviation, computed for each particular model,
with the experimental value ∆(x)EXP = 120+40

−40 µm reported
in [1]; we refer to this value since it is the only one with ex-
plicit error bars associated to it. Assuming that this value is
distributed according to a normal distribution with mean value
µ = 120 µm and σ = 40 µm, then ∆(x) ∈ [42; 198] µm with
a confidence level of 95% The exclusion plots in Fig. 7 and
Fig. 8 show which points in the parameters space predict a
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Figure 7: Exclusion plot for the CSL model. The red region shows the excluded
area, according to the analysis here performed. The picture shows also the
bounds coming from matter-wave interferometry [24], cantilevers [28], heat-
ing effect on Bose-Einstein Condensates (BECs) [34], and spontaneous X-rays
emission [29]. The black points and bars represents the reference values pro-
posed by GRW [10] and Adler [22].

CSL-induced position’s standard deviation outside the consid-
ered range (with a TCSL dependence in the dCSL case).

We start with analysing the CSL model. As shown in
Eq. (26), the increase of the position variance at the final time
t = t3 due to the CSL noise is:

〈x̂2〉CSL
t3 =

λ

r2
C

K (87)

where K is a function of the initial state of the gas, the times
t1, δt2, t3 and the frequencyω of the external harmonic potential,
but otherwise contains no dependence on the CSL parameters.
By inserting the numerical values, we arrive at the bound:

λ

r2
C

< 5 × 106 m−2s−1. (88)

This result is in agreement with the plot in Fig. 7, where a
comparison with bounds coming from other relevant experi-
ments is shown. As one can see, the bound is better than that
coming from matter-wave interferometry [24] and that related
to BECs [34] while, for rC ≤ 10−7, it is beaten only by X-
rays experiments [29]. Here a comment is at order. As shown
in [35, 36], CSL predictions for spontaneous photon emission
are very sensitive to the type of noise and, when a frequency
cut-off is introduced in its spectrum, the CSL effect is signifi-
cantly decreased. In particular, for X-ray detection, any cutoff

smaller than 1018 Hz washes the effect away. Since typical cut-
offs of cosmological spectra are significantly smaller than 1018

Hz [23], and assuming that the CSL noise has the properties of
a typical cosmological random background, then one expects

Figure 8: Exclusion plot for the dCSL model. The red area represents the
excluded region for the CSL model (T = ∞) and for any dCSL model with noise
temperatures TCSL > 106 K (due to the finite parametric region considered).
Bounds for dCSL for three different noise temperatures are also represented: in
yellow the case with TCSL = 1 K, in green that for TCSL = 10−6 K, and in brown
TCSL = 10−12 K. The black points and bars represents the parametric values
proposed by GRW [10] and Adler [22].

bounds related to spontaneous X-ray emission not to play a sig-
nificant role. On the other hand, our result is robust against
changes in the noise. As shown in Sec. 4, providing rC ≥ 10−7

m, for any cutoff larger than 106 Hz (which is the case of cos-
mological noises), the effect is equivalent to that of the standard
CSL model.

The situation si different for the dCSL model. The result is
reported in Fig. 8, for three different temperatures of the noise:
TCSL = 1, 10−6, 10−12 K. As one can see, the smaller the temper-
ature, the smaller the exclusion region. The reason is that dissi-
pation reduces the Brownian motion fluctuations of the atoms,
therefore also the extra spread of the position variance predicted
by CSL. The case TCSL = 10−12 is significant. In fact, a noise
temperature of the order of 1 picokelvin is lower than the sys-
tem’s temperature, and the dissipative dynamics cools the sys-
tem, reducing its position and momentum spread. For this rea-
son, the excluded area in the parameter spaces it is fundamen-
tally different from the other, high-temperature situations.

Also the shape of the curve for TCSL = 10−12 K is different
from the other cases. This can be better seen in Fig. 9 where,
for fixed TCSL and λ = 10−3.5 s−1, the final position variance
〈x̂2〉t3 is plotted as function of rC .

To conclude, the bounds on the CSL parameters coming from
the experiment in [1] are among the strongest so far analysed,
stronger than direct tests based on matter-wave interferometry.
They are robust against changes in the spectrum of the noise,
so in this sense they are the strongest for rC < 10−7 m. They
become weaker when dissipation is included, still remaining
strong down to very small temperatures.
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Figure 9: Position’s standard deviatio of the gas at the detector (time t = t3),
as a function of rC . Four different curves are represented, each corresponding
to a different value of the noise temperature TCSL. In each case, λ = 10−3.5
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Appendix A. dSCL evolution during the delta-kick

We prove that during the delta-kick, the dCSL contribution
to the dynamics is negligible with respect to the other effects.
We start by rewriting the system of Eqs. (66), (74) and (75) in
terms of the dimensionless vector ~x(t) ∈ R3 :

~xt :=


mω
~

〈
x̂2

〉
t

1
~ 〈x̂ · p̂ + p̂ · x̂〉t

1
~mω

〈
p̂2

〉
t

 , (A.1)

so that they take the form:

d
dt
~xt = ~f + M~xt, (A.2)

where

M =

 0 ω 0
−2ω −B 2ω

0 −ω −χ

 (A.3)

and

~f =


mωα
~
0

χ〈p̂2〉as
~mω

 . (A.4)

The formal solution of Eq. (A.2) is given by

~xt = eMt~x0 +

∫ t

0
ds eM(t−s) ~f . (A.5)

We prove that the error done by neglecting the noise contribu-
tions (χ = B = α = 0) is negligible, i.e. that the exact solution

Eq. (A.5) is well approximate by the quantum mechanical solu-
tion:

x̃t = eM̃t~x0, (A.6)

where

M̃ =

 0 ω 0
−2ω 0 2ω

0 −ω 0

 . (A.7)

While the quantum mechanical evolution (A.6) is given by an
unitary transformation 2, the dCSL dynamics involve a transient
phase (until equilibrium is reached) expressed by the decaying
exponential. In fact, the matrix (A.3) has three distinct eigen-
values m1 ∈ R and negative, and m2 = m∗3 ∈ C with negative
real parts, which are roots of the characteristic third-order poly-
nomial:

m3 + m2(B + χ) + m(Bχ + 4ω2) + 2χω2. (A.8)

In Figs. A.10 and A.11, the real parts of the eigenvalues mi, i =

1, 2, 3 are shown as function of the dCSL parameter k and with
a relatively high collapse rate, λ = 10−5s−1.

The quantum mechanical solution as given by Eq. (A.6) well
approximates the exact dCSL solution as given by Eq. (A.5) if,
for all components i = 1, 2, 3,

|(~xi
t − ~x

i
0) − (x̃i

t − x̃i
0)|

|x̃i
t − x̃i

0|
=
|~xi

t − x̃i
t |

|x̃i
t − x̃i

0|
� 1, (A.9)

where we used the equality ~xi
0 = x̃i

0.
We start by noting that the numerator is limited by |~xi

t − x̃i
t | ≤

‖~xt − x̃t‖, where ‖·‖ is the usual Euclidean norm:

‖~y‖ =

3∑
i=1

|yi|
2. (A.10)

To proceed, it is convenient to use the matrix norm. From
the Euclidean norm defined in Eq. (A.10), the following ma-
trix norm can be defined (see [37] for all the relevant properties
of the matrix norm, as well as for the notation):

‖A‖ = sup
~x∈R3

‖A~x‖
‖~x‖

= max
m∈σ(A†A)

|m|, (A.11)

where σ(B) is the spectrum of the matrix B. In particular,
we will need the following properties of the Euclidean matrix
norms:

‖A~x‖ ≤ ‖A‖‖~x‖, (A.12)
‖AB‖ ≤ ‖A‖‖B‖, (A.13)

together with the triangular inequality

‖A + B‖ ≤ ‖A‖ + ‖B‖. (A.14)

Taking into account the unitarity of the quantum evolution, and
the exponential decay induced by dCSL, the following relation
holds

‖eMt‖ ≤ ‖eM̃t‖ ≤ 2. (A.15)
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Figure A.12: Error functions defined in Eq. (A.21) as functions of the CSL
temperature TCSL. Here we used λ = 10−5 s−1, rC = 10−7 m, δt2 = 35 ms.

The last inequality in Eq. (A.15) is obtained through a direct
computation of the matrix norm defined in Eq. (A.11). Using
Eqs. (A.5) and (A.6) together with the triangular inequality in
Eq. (A.14), we get:

‖~xt − x̃t‖ = ‖
(
eMt − eM̃t

)
~x0 +

∫ t

0
ds eM(t−s) ~f ‖

≤ ‖
(
eMt − eM̃t

)
~x0‖ + ‖

∫ t

0
ds eM(t−s) ~f ‖.

(A.16)

Let us focus on the first term on the right hand side of

2The eigenvalues of the matrix (A.7) are 0, ±2iω.
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Figure A.13: Log-plot of the error functions defined in Eq. (A.21) as functions
of the delta-kick time δt2. Here we used λ = 10−5 s−1, rC = 10−7 m, TCSL = 1
K.

Eq. (A.16). Using the following identity,

eMt − eM̃t =

∫ t

0
ds

d
ds

(
eMseM̃(t−s)

)
=

∫ t

0
ds eMs

(
M − M̃

)
eM̃(t−s),

(A.17)

we can write:

‖
(
eMt − eM̃t

)
~x0‖ ≤ ‖~x0‖×

×

∫ t

0
ds ‖eMs

(
M − M̃

)
eM̃(t−s)‖

≤ ‖~x0‖

∫ t

0
ds ‖eMs

(
M − M̃

)
‖

≤ ‖~x0‖ ‖M − M̃‖
∫ t

0
ds ‖eMs‖

≤ ‖~x0‖max(B, χ)2t.

(A.18)

where in the first line we used Eq. (A.12), in the second and the
third line Eq. (A.13) together with ‖eM̃t‖ ≤ 2, and in the last line
Eq. (A.15) and the matrix norm definition in Eq. (A.11) for the
diagonal matrix M − M̃.

We now consider the second term in the second line of
Eq. (A.16). With a similar calculation as that in Eq. (A.18),
the following relation is found:

‖

∫ t

0
ds eH(t−s) ~f ‖ ≤ 2t‖ ~f ‖. (A.19)

Then, using the inequalities in eqs. (A.16), (A.18) and
(A.19), the following upper bound on the error functions in
Eq. (A.9) is found

|~xi
t − x̃i

t |

|x̃i
t − x̃i

0|
≤

2t
(
‖~x0‖max(B, χ) + ‖ ~f ‖

)
|x̃i

t − x̃i
0|

(A.20)

With reference to eq. (A.1), we define the error bounds found
in eq. (A.20) as follows:

2t
(
‖~x0‖max(B, χ) + ‖ ~f ‖

)
|x̃i

t − x̃i
0|

=


δ
〈
x̂2

〉
t
, i = 1;

δ 〈x̂ · p̂ + p̂ · x̂〉t , i = 2;
δ
〈
p̂2

〉
t
, i = 3.

(A.21)
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The values of the error functions defined in Eq. (A.21) as a
function of the delta-kick time δt2 and the noise temperature
TCSL are showed respectively in fig. A.13 and fig. A.12. Despite
having taken the strongest possible value for the collapse rate
λ = 10−5 s−1 (as discussed in the introduction, larger values
are excluded by other experiments), the relative error is always
below 0.14, confirming the fact that the noise effects can be
neglected during the delta-kick.
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[34] F. Laloë, Franck, W. J. Mullin and P. Pearle, Phys. Rev. A 90 (5), 052119

(2014).
[35] S.L. Adler and F.M. Ramazanoglu, J. Phys. A 40, 13395 (2007); J. Phys.

A 42, 109801 (2009).
[36] S. Donadi, D.-A. Deckert and A. Bassi, Annals of Physics 340, 70-86

(2014).
[37] F. Strocchi (2008). An introduction to the mathematical structure of quan-

tum mechanics: a short course for mathematicians (Vol. 28), Appendix A.
World Scientific.

14


	Introduction
	Description of the experiment
	Expansion of the gas according to the CSL model
	Expansion of the gas according to the non-white CSL model
	Expansion of the gas according to the dCSL model
	dCSL model with boost

	Discussion: comparison with experimental data and bounds on the collapse parameters
	dSCL evolution during the delta-kick

