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Abstract

In this paper we explore relaxations of (Williams) co-
herent and convex conditional previsions that form
the families of n-coherent and mn-convex conditional
previsions, at the varying of n. We investigate which
such previsions are the most general one may rea-
sonably consider, suggesting (centered) 2-convex or,
if positive homogeneity and conjugacy is needed,
2-coherent lower previsions. Basic properties of
these previsions are studied. In particular, centered
2-convex previsions satisfy the Generalized Bayes
Rule and always have a 2-convex natural extension.
We discuss then the rationality requirements of 2-
convexity and 2-coherence from a desirability perspec-
tive. Among the uncertainty concepts that can be
modelled by 2-convexity, we mention generalizations
of capacities and niveloids to a conditional frame-
work.

Keywords. Williams coherence, 2-coherent previ-
sions, 2-convex previsions, Generalized Bayes Rule.

1 Introduction

In his influential book [16], P. Walley developed a
behavioural approach to imprecise probabilities (and
previsions) extending de Finetti’s [4] interpretation
of precise previsions in terms of coherence. Opera-
tionally, this was achieved through a relaxation of de
Finetti’s betting scheme.

In fact, following de Finetti, P is a coherent pre-
cise prevision on a set S of gambles if and only
if for all m, n € Ny, S1,...,8m, "1,y Tn >
0, X1,...,.Xm,Y1,...,Y, € S, defining G =
Dim1 si(Xi = P(X3)) = 320 (Y — P(Yj)), it holds
that sup G > 0. The terms s,(X; — P(X;)), ;(Y; —
P(Y;)) are proportional (with coefficients or stakes s;,
;) to the gains arising from, respectively, buying X;
at P(X;) or selling Y; at P(Y;). A coherent lower pre-
vision P on & may be defined in a similar way, just
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restricting n to belong to {0,1}. This means that the
betting scheme is modified to allow selling at most one
gamble. Several other betting scheme variants have
been investigated in the literature, either extending
coherence for lower previsions (conditional lower pre-
visions) or weakening it (previsions that are convex,
or avoid sure loss). In particular, a convex lower pre-
vision is defined introducing a convexity constraint
n=1",s =r =1 in the betting scheme. In
[16, Appendix B] n-coherent previsions are studied,
as a different relaxation of coherence.

In this paper, we explore further variations of the be-
havioural approach/betting scheme: n-coherent and
n-convex conditional lower previsions, formally de-
fined later on as generalisations of the n-coherent (un-
conditional) previsions in [16]. Our major aims are:

a) to explore the flexibility of the behavioural ap-
proach and its capability to encompass different
uncertainty models;

b) to point out which are the basic ax-
ioms/properties of coherence which hold
even for much looser consistency concepts.

Referring to b) and with a view towards the utmost
generality, we shall mainly concentrate on the extreme
quantitative models that can be incorporated into a
(modified) behavioural approach. This does not imply
that these models should be regarded as preferable to
coherent lower previsions. On the contrary they will
not, as far as certain questions are concerned. For in-
stance, inferences will typically be rather vague. How-
ever, it is interesting and somehow surprising to de-
tect that certain properties like the Generalised Bayes
Rule must hold even for such models, or that they can
be approached in terms of desirability.

N-coherence and n-convexity may be naturally seen
as relaxations of, respectively, (Williams) coherence
and convexity. These and other preliminary concepts
are recalled in Section 2. Starting from the weakest



reasonably sound consistency concepts, we explore ba-
sic properties of 2-convex lower previsions in Section
3. We supply a characterisation by means of axioms,
on a special set of conditional gambles generalising
a linear space and termed Dpr;yn (Definition 2). In-
terestingly, it turns out that n-convexity with n > 3
and convexity are equivalent on Dy ry. 2-convex pre-
visions exhibit some drawbacks: a 2-convex natural
extension may be defined, but its finiteness is not
guaranteed; the property of internality may fail, as
well as agreement with conditional implication (the
Goodman-Nguyen relation). In Section 4, we show
that the special subset of centered 2-convex previ-
sions is not affected by these problems. In Section 5,
2-coherent lower previsions are discussed and charac-
terised on Dy (Proposition 8). Again, n-coherence
(n > 3) and coherence are equivalent on Dyry. On
generic sets of gambles, n-coherent previsions (n > 3)
have no n-coherent extension on sufficiently large su-
persets whenever the equivalence does not hold. We
show also that 2-coherence should be preferred to 2-
convexity when positive homogeneity and conjugacy
are required. In Section 6 we analyse 2-convexity and
2-coherence in a desirability approach. Generalising
prior work by Williams [17, 18] for coherence, we fo-
cus on the correspondence between these previsions
and sets of desirable gambles, and on establishing the
ensuing desirability rules. Models that can be accom-
modated into the framework of 2-convexity, but not
of coherence, are presented in Section 7. These are
conditional versions of capacities and niveloids. Sec-
tion 8 concludes the paper. Due to spacing con-
straints, proofs of the results are omitted (some can
be partly derived from results in [10, 12]).

2 Preliminaries

The starting points for our investigation are the
known consistency concepts of coherent and convex
lower conditional prevision [10, 11, 17, 18]. They both
refer to an arbitrary set D of conditional gambles, that
is of conditional bounded random variables. We de-
note with X|B a generic conditional gamble, where X
is a gamble and B is a non-impossible event (B # ).
It is understood here that X : [P — R is defined on
an underlying partition IP of atomic events w, and
that B belongs to the powerset of IP. Therefore, any
w € IP implies either B or its negation =B (in words,
knowing that w is true determines the truth value of
B, i.e. B is known to be either true or false). Given
B, the conditional partition IP|B is formed by the
conditional events w|B, such that w implies B (im-
plies that B is true) and X|B : IP|B — R is such that
X|Bw|B) = X(w), Vw|B € IP|B. Because of this
equality, several computations regarding X |B can be

performed by means of the restriction of X on B. In
particular, it is useful for the sequel to recall that
sup(X|B) = supg X, and inf(X|B) = infp X.

As special cases, we have that X|Q2 = X is an uncon-
ditional gamble, A|B a conditional event if A is an
event (or its indicator I4 - we shall generally employ
the same notation A for both).

As customary, a lower prevision P is, without fur-
ther qualifications, a map from D into the real line,
P : D — R. However, a lower prevision is often inter-
preted as a supremum buying price [16]. For instance,
if a subject assigns P(X|B) to X|B, he is willing to
buy X, conditional on B occurring, at any price lower
than P(X|B). Under this behavioural interpretation,
Definitions 1, 3, 5 check the consistency of P, depend-
ing on whether it avoids losses bounded away from 0,
according to different buying and selling constraints.

Definition 1. Let P: D — R be given.

a) P is a coherent conditional lower prevision on
D iff, for all m € Ny, VXo|Bo,..., Xm|Bm €
D, Vsg,...,8m real and non-negative, defining
S(s) = V{B; : si # 0,i = 0,...,m} and
G = Y " 5Bi(X; — P(Xi|B;)) — soBo(Xo —
P(Xo|Bo)), it holds, whenever S(s) # &, that
sup{G|S(s)} > 0.

b) P is a convex conditional lower prevision on
D iff, for all m € N, VXq4|By,..., Xm|Bm €
D, Vsi,...,8m real and non-negative such that
Yitisi = 1 (convexity constraint), defining
G, = Y% siBi(X; — P(Xy|B;)) — Bo(Xo —

B(X0|B0)), S(g) == \/{Bz LS 7é O,’L == 1, e ,m},

it holds that sup{G.|S(s) V Bo} > 0.

b1) P is centered convexr or C-convex on D iff it
is conver and, VX|B € D, it is 0|B € D and
P(0]B) = 0.

In the behavioural interpretation recalled above, Def-
inition la) considers buying at most m conditional
gambles X1 |By, ..., X|Bm (also no one, when m =
0) at prices P(X1|B1),...,P(Xm|Bm), respectively,
and selling at most one gamble Xy|By at a supre-
mum buying price P(Xo|By). The gain G is a lin-
ear combination with stakes sq,..., s, of the gains
from these transactions. It is conditioned on S(s),
to rule out both trivial transactions (G = 0, since
$1 =...= 8, = 0) and the case that G = 0 because
no transaction takes place (when By,...,B,, are all
false). Then, coherence requires the non-negativity of
the supremum of G, conditional on at least one non-
trivial transaction being effective. The interpretation
of Definition 1b) is similar: what changes is the con-
vexity constraint on the stakes (sg = 1),51,...,Sm.



This implies that G, is the gain from one selling trans-
action and at least one buying transaction.

The definition of coherent lower prevision is a struc-
ture free version of Williams coherence, discussed in
[11]. It is more general than Walley’s coherence [16],
in particular it always allows for a natural extension
and is not necessarily conglomerable. The notion of
convex lower prevision is still more general, and was
introduced in [10], extending the unconditional con-
vexity studied in [9]. Convex previsions can incor-
porate various uncertainty models, including convex
risk measures, non-normalised possibility measures,
and others. However, the special subclass of C-convex
lower previsions guarantees better consistency prop-
erties. Among these, there always exists a convex
natural extension of these measures, whose proper-
ties are analogous to those of the natural extension
[10, Theorem 9].

Even though coherent and convex lower previsions can
be defined on any set of conditional gambles, they are
characterised by a few axioms on the special environ-
ment Drry defined next.

Definition 2. Let X be a linear space of gambles and
B C X the set of all (indicators of ) events in X. Sup-
pose 1 € B and BX € X,VB € B,VX € X. Setting
B? = B — {2}, define

DL]N:{X|B:X€X,B€BQ}. (1)

The sets Dpyy may be viewed as conditional gen-
eralisations of linear spaces of (unconditional) gam-
bles. In fact, when B = {Q,2}, Drrny reduces to a
linear space of unconditional gambles (including real
constants). Not surprisingly then, characterisations
on Dy rn have an unconditional counterpart on linear
spaces.

Proposition 1. Let P : Driny — R be a conditional
lower prevision.

a) P is coherent on Dy if and only if [18]
(A1) E(X|B) — P(Y|B) < sup{X —Y|[B},
VX‘B,Y‘B S DL[N,l
(42) POAX|B) = AP(X|B),
VX‘B €Drin, VA > 0.
(A3) P(X +Y|B) > P(X|B) + P(Y|B),
VX‘B, Y‘B €Drin.
(A4) P(A(X — P(X|AA B))|B) =0,
VX € X,VA BeB? :ANB# 2.
b) P is convex on Drrn if and only if (A1), (A4)
and the following axiom hold [10, Theorem 8]

1(A1) may be replaced by P(X|B) > inf(X|B), VX|B €
Drin, thus corresponding to the original version in [18].

(A5) P(AX + (1 — NY|B) > AP(X|B) + (1 —
ANP(Y|B),YX|B,Y|B € Dyrn, VA €]0,1].

Condition (A4) is the Generalised Bayes Rule (GBR),
introduced in [17, 18] and studied also in [16] in the
special case B = ().

Since our discussion will focus on minimal consistency
properties for a conditional lower prevision, we have
to mention a conditional generalisation of the im-
plication (inclusion) relation between events, termed
Goodman-Nguyen relation (<gn). In fact, suppose
A = B (or A C B). Then, asking that u(A) < u(B)
is a really minimal rationality requirement for any pu
aiming at measuring how likely an event is, given that,
whenever event A will turn to be true, B will be true
too. The following extension of the implication to
conditional events was proposed in [8]:

AlB<gnC|D it ANB=CAD 2)
and -CAD = —-AAB.

The Goodman-Nguyen relation <gx was extended to
conditional gambles in [12]:

X|B <gn Y|D iff
IgX + I.pypsup(X|B) < IpY + Igy-pinf(Y|D)

showing that X|B <gny Y|D implies P(X|B) <
P(Y|D) for a C-convex or coherent P [12, Proposi-
tion 10].

3 2-convex lower previsions

In Definition 1, a) and b), there is no upper bound
to m € N. One may think of introducing it as a
natural way of weakening coherence and convexity.
More precisely, let us call elementary gain on X;|B;
any term s, B;(X; — P(X;|B;)), with the proviso that
—By(Xo — P(Xo|Bo)) in Definition 1 b) is also an el-
ementary gain, formally corresponding to s = —1.
Then, we may state that no more than n elementary
gains are allowed in either G (Definition 1, a)) or G,
(Definition 1, b)). When doing so, we speak of n-
coherent or n-convex lower previsions. This approach
extends the notion of n-coherent (unconditional) pre-
vision in [16, Appendix B].

Intuition suggests that the smaller n is, the more the
corresponding consistency concept is looser. In the
extreme cases n may be as small as 1 with coherence,
2 with convexity.

However, 1-coherence is too weak. In fact,
is 1-coherent on D iff, VXo|By € D, Vsy €
sup{soBo(Xo — P(X0|Bo))|Bo} > 0. It is easy to
see that this is equivalent to internality, i.e. to re-
quiring that P(Xo[Bo) € [inf(Xo|Bo),sup(Xo|Bo)],
VX()|BO eD.

P
R,



Since internality alone does not seem enough as a ra-
tionality requirement, we turn our attention in this
section to what seems to be the next weakest consis-
tency notion, that is 2-convexity.?

Definition 3. P : D — R is a 2-convex conditional
lower prevision on D iff, VXo|By, X1|B1 € D, we have
that

SU.p{Bl(Xl — E(X1|Bl))— (3)
Bo(Xo — P(Xo|Bo))|Bo V B1)} > 0.

We explore now some basic features of 2-convex previ-
sions. Some critical aspects are discussed next, show-
ing in Section 4 that they can be solved resorting to
the subclass of centered 2-convex previsions.

A remarkable result in our framework is the charac-
terisation of 2-convexity on a structured set Dpy.

Proposition 2. A conditional lower prevision P :
Drin — R is 2-convex on Drrn if and only if (A1)
and (A4) hold.

To point out an important consequence of Proposi-
tion 2, compare it with Proposition 1 b). It follows at
once that the difference between 2-convexity and con-
vexity, on Dy, is due to axiom (A5). On the other
hand, the proof that a convex prevision on Dy, ;y must
satisfy (A5), given in [10, Theorem 8], only involves
a gain G, made up of 3 elementary gains, i.e. it does
not fully exploit convexity, but only 3-convexity. This
justifies the following conclusion:

On Drrn, n-convexity with n > 3 and convexity are
equivalent concepts.

Hence, the very difference between convexity and n-
convexity reduces to that between convexity and 2-
convexity, at least on Dpyn. Yet, if P is defined on a
set D other than Dy, we may think of extending it
to some Dy D D. If P is n-convex on D, n > 3, and
has an n-convex extension to Dy, then P is convex
on Dy rn and therefore also on D. It ensues that if P
is m-convex (n > 3) but not convex on D, P will have
no n-convex extension on any sufficiently large super-
set of D (any D* including some Drry containing D)
- see also the later Example 2. This is a negative as-
pect of n-convexity, when n > 3. More generally, the
discussion above shows that n-convex previsions are
not particularly significant as an autonomous concept,
when n > 3.

Turning again to 2-convex previsions, let us define a
special extension, the 2-convex natural extension.

Definition 4. Given a lower prevision P : D — R

2 2-convex previsions were termed 1-convex in [1, 12]. Here
we prefer the locution ‘2-convex’ by analogy with the rule for
fixing n in ‘n-coherent’ in [16].

and an arbitrary conditional gamble Z|B, let

L(Z|B) = {a - sup{A(X — P(X]A)) "
—B(Z —a)|AV B} <0, for some X|A € D}.

Then the 2-convex natural extension E,. of P on Z|B
18

E,.(Z|B) = sup L(Z|B). (5)

In general, E,.(Z|B) may not be real-valued (i.e.
+00, or —oo when L(Z|B) = (). The results in
the next proposition are helpful in hedging this oc-
currence.

Proposition 3. a) L(Z|B) # 0, if there exists
Y|C € D such that C = B.

b) Let P be 2-convex and such that 0|B € D and
P(0|B) = 0, VX|B € D. Given 0|C ¢ D, the
extension of P on DU{0|C} such that P(0|C) =0
18 2-convex.

¢) When L(Z|B) # 0, L(Z|B) =] - 00, E,,(Z|B)!.

4) If L(ZIB) £ 0 and sup(X|4) > P(X]4),
VX|A € D, then E,.(Z|B) < sup(Z|B), VZ|B.

e) Let P be 2-conver and 0|B € D, VX|B € D.
Then, VX|B € D, sup(X|B) > P(X|B) iff
P(0|B) <0.

Parts a) and b) of Proposition 3 suggest a simple
way to ensure E, (Z|B) # —oo: just add the gam-
ble 0|B to D, putting P(0|B) = 0. To guarantee
E,.(Z|B) # +00, it is sufficient that any 0|C in D (or
added to D) is given a non-positive lower prevision,
by d) and e). Clearly, the simplest and most obvi-
ous choice is to put P(0|C) = 0, V0|C. This would
make P a centered 2-convex lower prevision; in the
remainder of this section we do not however rule out

the possibility that P(0|C) # 0 for some 0|C.

The properties of the 2-convex natural extension are
very similar to those of the natural extension:

Proposition 4. Let P: D — R be a lower prevision,
with D C Drrn. If E,, is finite on Drrn, then

o) By (X|B) > P(X|B), VX|B € D,
b) E,. is 2-convex on Dy

¢) If P* is 2-convex on Dy and P*(X|B) >
P(X|B), VX|B € D, then P*(X|B) >
E,.(X|B),VX|B € Dpin-

d) P is 2-convex on D if and only if E,. = P on D.

e) If P is 2-convex on D, E,. is its smallest 2-
convez extension on Dryy.



In words, the 2-convex natural extension dominates P
(by a)), characterises 2-convexity (by d)) and is the
least-committal 2-convex extension of P (by b), ¢),

e)).

Being rather weak a consistency concept, 2-convexity
may not satisfy a number of properties which neces-
sarily hold for coherent lower previsions. For instance,
the positive homogeneity axiom (A2) of Proposition 1,
P(AX|B) = AP(X|B), with A > 0, may not hold, not
even weakening it to

P(AX|B) > AP(X|B),VYA € [0, 1]. (6)

(Unconditional versions of (6) hold for centered con-
vex previsions.)

It can instead be shown that

Proposition 5. If, given A € R, P is 2-convex on
D D {X|B,\X|B}, then necessarily

inf{(A — 1)X|B} + P(X|B) < P(AX|B) (7)
< sup{(A — 1)X[B} + P(X|B).

Condition (7) seems rather mild, as the next example
points out.

Example 1. Given D = {X|B,2X|B} (A = 2),
where the image of X|B is [—1,1] and P(X|B) = 0.2,
equation (7) gives the bounds P(2X|B) € [—0.8,1.2].
It is easy to check that P is 2-convexr on D whatever
is the choice for P(2X|B) in the interval [—0.8,1.2].
According to the value for P(2X|B) selected in this
interval, it may be P(2X|B) E 2P(X|B).

An annoying feature of 2-convexity is that internality
may fail, i.e. P(X|B) need not belong to the closed
interval [inf(X|B),sup(X|B)]. Thus, 2-convex pre-
visions may not satisfy a property holding even for
1-coherent previsions.

It has to be noticed that 2-convexity permits no com-
plete freedom in departing from internality. There are
two issues to be emphasized with respect to this ques-
tion. The first tells us that lack of internality cannot
be two-sided, because of the following result.

Proposition 6. If P : D — R is 2-convex on
D and P(Y|D) < inf(Y|D) for some Y|D € D,
then P(X|B) < sup(X|B), VX|B € D. Similarly,
P(Y|D) > sup(Y|D) for some Y|D € D implies
P(X|B) > inf(X|B), VX|B € D.

The second is the observation that 2-convexity im-
poses a sort of, so to say, two-component internality.
To see this, note that

Lemma 1. If P : D — R is 2-convez on D, and X|B,
Y|B € D, then
nf(X — Y|B} < P(X|B) — P(Y|B) .
<sup{X — Y|B}.

Recall now that P(X|B) is interpreted as a supre-
mum buying price for X|B, and that Definition 3
ensures that buying X|B for P(X|B) and selling
Y'|B at its supremum buying price P(Y|B) would be
(marginally) acceptable for 2-convexity. Then, equa-
tion (8) tells us that the profit P(X|B) — P(Y|B)
from this two-component exchange (X|B vs. Y|B)
guarantees no arbitrage. For instance, it cannot ex-
ceed sup{X — Y|B}.

As a further critical issue with 2-convexity, we have
that the Goodman-Nguyen relation may not induce
an agreeing ordering on a 2-convex prevision. This
is tantamount to saying that the partial ordering
of some 2-convex conditional previsions may conflict
with the ordering of the extended implication (inclu-
sion) relation <gy.

For instance, from (2), if B = C then 0|C <gn 0|B.
Agreement with the Goodman-Nguyen relation re-
quires P(0|C) < P(0|B) to hold, but it can be proven
that if P(0|B) < 0 and B = C, then 2-convexity asks
instead that P(0|C) > P(0|B) (the inequality may be
strict).

4 Centered 2-convex lower previsions

The critical issues on 2-convexity discussed in the pre-
ceding section can be solved or softened requiring the
additional property

VX|B € D,0|B € D and P(0|B) =0, (9)

i.e. restricting our attention to centered 2-convex con-
ditional lower previsions. This is shown in the follow-
ing proposition.

Proposition 7. Let P : D — R be a centered 2-
convex lower prevision on D. Then,

a) VX|B € D, P(X|B) € [inf X|B,sup X|B].

b) P has a finite 2-convex natural extension Ey, on
any superset of D.

¢) X|B <an Y|D implies P(X|B) < P(Y|D).

Comment. The condition P(0|B) = 0 appears as ob-
vious, and in fact guarantees more satisfactory prop-
erties to 2-convexity. In our view, the main reason for
considering the alternative P(0|B) # 0 is to encom-
pass additional uncertainty models. This is patent
already in the unconditional framework: convex risk
measures, as introduced in [6, 7], correspond to con-
vex, not necessarily centered previsions [9].

Note that by Proposition 7 a) centered 2-convexity
implies 1-coherence, while being obviously implied



by 2-coherence. Hence, the centering condition
P(0|B) = 0 appears as a technical instrument to
guarantee that the lower prevision P satisfies more
properties than a generic 2-convex prevision, without
having to assume the more demanding properties of
2-coherence.

5 2-coherent lower previsions

Our next step is a discussion of which additional prop-
erties are achieved by 2-coherent lower prevision.

Definition 5. P : D — R is a 2-coherent lower previ-
sion on D iff VXo|Bo, X1|B1 € D, Vs1 > 0, Vsp € R,
defining S(s) = V{Bi : s; # 0,i = 0,1} we have that,
whenever S(s) # &,

sup{slBl(Xl —B(X1|Bl))— (10)

s0Bo(Xo — P(Xo[Bo))|S(s)} = 0.
2-coherent lower previsions are characterized on Dy rn
as follows:

Proposition 8. Let P : Driny — R be a conditional
lower prevision. P is 2-coherent on Dy if and only
if (A1), (A2), (A4) and the following axiom hold:

(A6) P(X|B) < —P(-X|B).

Remark 1. Proposition 8 can be equivalently restated
replacing axiom (A1) with

(A7) If X|B,Y|B € Drin, p € R are such that X|B >
Y|B + u, then P(X|B) > P(Y|B) + p.

In fact, it can be easily verified that (A1) and (A7)
are equivalent.

Comment A comparison of Propositions 1 and 8 is
useful in detecting at once two major differences be-
tween (centered) 2-convex and 2-coherent previsions.

One is positive homogeneity (axiom (A2)), a condi-
tion which, on any set D, is necessary for 2-coherence,
but not for 2-convexity. The need for positive ho-
mogeneity depends on the specific model we wish to
consider. We might be willing to reject it in some
instance, typically because of liquidity risk considera-
tions. Basically, this means that for a large positive A
difficulties might be encountered at exchanging A\X|B
at a price P(AX|B) = AP(X|B), because of lack of
market liquidity at some degree.

The second difference is pointed out by axiom (A6).
To fix its meaning, recall that given P(X|B), its con-
jugate upper prevision P(X|B) is defined by

P(X|B) = ~P(~X|B). (11)

Hence, by (11) axiom (A6) ensures that P(X|B) >
B(X|B), VX‘B €DriN-

Therefore, 2-coherence is preferable to 2-convexity
whenever we fix an upper (P) and a lower (P) bound
for the uncertainty evaluation of X|B, while keeping

positive homogeneity.

As an aside to the above discussion, we note that 2-
coherence requires a weak form of homogeneity when
A<O:

Proposition 9. Given A < 0, if P is 2-coherent
on D D {\X|B, X|B}, then necessarily P(AX|B) <
AP(X|B).

Compare Propositions 8 and 1, a). Recalling that any
2-coherent lower prevision satisfies internality (being
1-coherent too), while (A6) is a necessary condition
for coherence, only the superlinearity axiom (A3) dis-
tinguishes 2-coherence and coherence on Dy ry. From
this, deductions on the role of n-coherence, n > 3,
can be made which are quite analogue to those on n-
convexity in Section 3. This time, it can be shown
that any n-coherent lower prevision, n > 3, must sat-
isfy (A3), and hence that:

On Dpin, n-coherence with n > 3 and coherence are
equivalent concepts.

And again, we may in general argue that n-coherence
has no special relevance, compared to coherence, when
n > 3. In particular, n-coherent extensions of an n-
coherent P exist on sufficiently large sets if and only
if P is coherent.

The latter concept is illustrated in the next example,
elaborating on Example 2.7.6 in [16].

Example 2. Let IP = {a,b,c,d} be a partition of
the sure event ). Define P on the powerset of IP as
follows:

e P(0)=1

e P(E) =3 if E is made up of 2 or 3 elements of
IP, one of which is a.

e P(E) =0 otherwise.

It is shown in [16] that P is not coherent, while being
3-coherent, and hence also 3-convex. We show now
that P has no 3-convex extension to the linear space
L(IP) of all gambles defined on IP.

In fact, suppose a 3-convex extension, also termed P,
exrists, and define A = a, B =aVb C =aVeg,
D = aVvd. Note that, by applying (7) with A = %,
X = Aand B = Q, we get P(34) < P(4) = 0.
Therefore, also the 3-convex extension of P to %(B +
C+ D —1) = LA should be non-positive. However,



by applying axiom (A5) as a necessary condition of
3-convexity and noting that (7) (with A = =1, X =
1 and B = Q) ensures also that P(—1) = —1, we
obtain P(X(B+ C + D — 1)) = P(3(iB +
Y401 2 4GB0 LU ) > |
iP(C)+3P(D)+ 3P(-1)>3-7-5—3
contradiction.

From what we have just proven, we may conclude that:

a) the given P on the powerset of IP has no 3-convex
extension to L(IP);

b) P (viewed now as 3-coherent on the powerset of
IP) has no 3-coherent extension on L(IP) either:
if it had one, this extension would be 3-conver
too, contradicting a).

We may thus conclude that centered 2-convexity and
2-coherence appear to be the most significant weak-
enings of (centered) convexity and coherence.

6 Weak consistency in a desirability
approach

In this section we examine centered 2-convexity and
2-coherence from the viewpoint of desirability. This
is an alternative approach to rationality concepts for
uncertainty measures going back to [17] in the case of
conditional imprecise previsions. It has been recently
applied to a variety of other situations, see e.g. the
discussion in [13] and the results in [14].

Roughly speaking, a set A of gambles is considered.?
It is such that its gambles are regarded as desirable or
acceptable. We may in general be willing to establish
some rationality criteria, requiring that certain gam-
bles do, or do not, belong to A. The basic problem
we shall consider here is: which is the correspondence
between the rationality criteria we adopt and the con-
sistency concepts of centered 2-convexity or alterna-
tively 2-coherence? More specifically, the following
two questions arise:

Q1) Which rationality criteria should be required to
the elements of a set A, so that a conditional
lower prevision P may be obtained from A that
is 2-coherent (alternatively, 2-convex)?

Q2) Conversely, given a 2-coherent (alternatively, 2-
convex) P, does it determine a set A’ with certain
rationality properties?

In the case that P is coherent, the answer to Q1)
and Q2) was given by Williams in [17]. Our approach

3As will appear later, A is included into some fixed linear
space of gambles.

to solving Q1) and Q2) was largely influenced by his
work. Preliminarily, some notation must be intro-

duced.

Definition 6. Let X be a linear space of gambles,
B C X a set of (indicators of ) events, B° = B—{2}.
We suppose Q € B and BX € X,VBec B, VX c x4
Define then

X7 ={XeX infX >0}, 12)
X3 ={X € X :supX <0},

and, VB € B,

R(B) = (X € X: BX = X},
R(B)~ = {X € R(B) : inf{X|B} >0},  (13)
R(B)" ={X € R(B) : sup{X|B} < 0}.

If S and T are subsets of X, their Minkowski sum is
S+T={X+Y:XeSYeT}

We shall use similar compact notation later. For in-
stance, A\S + uT C U, YA\, i > 0, means: VX € S,
VY eT,VApu>0, A X +puY eld.

The following proposition answers question Q1) com-
pletely for 2-coherence:

Proposition 10. Let A C X be such that

a) M +R(B)" C A, YA >0, VB € B;
b) R(B)*NA=0,VBecB.

¢) (R(B1) N A) + (R(B2) N A) C
R(By V By) \ R(B1 V By)=,VBy, B, € B.

Deﬁne, VX‘B €Drin,

P(X|B) = sup{z:B(X —z) € A} (14)

Then, P is 2-coherent on Drrn.

Unlike the case of coherent conditional lower previ-
sions examined in [17, Section 3.1], A does not need
to be a cone in Proposition 10: given X,Y € A, A > 0,
neither X +Y nor AX are guaranteed to belong to A.
Actually, condition a) represents a weakening of the
cone axioms: if X € A, Y € R(B)” and A > 0, then
AX +Y € A. This implies also R(B)” C AVB € B,
a condition that, like also b), is required for coherence
as well (see (C1’), (C2) in [17, Section 3.1]).

The interpretation of b) is that of an avoiding partial
loss condition: we can expect no gain from owning
a gamble in R(B)~, when B is true, therefore such
gambles cannot be included into A.

4Note that if X € X and B € B?, X|B € Drn in the
notation of the preceding sections.



As for c), writing it in an extended form, it tells us
that: if X1, X5 € .A, B1 X, = X1, Bo Xy = X5, then
(Bl \/BQ)(Xl +X2) = X1 +X2 and sup(X1 +X2‘Bl vV
Bs) > 0. Note that if X; € R(B;) and X € R(Bs),
it always holds that X7 + Xo € R(B; V Bsy), without
having to impose it by means of axiom c). In fact, we
have that (Bl vV BQ)(Xl + XQ) = (Bl \Y Bg)(Ble +
By Xs3) = (B1VB2)B1 X1+ (B1VB2)B2Xo = B1 X1+
By Xo = X1 4+ X5, so that X1 + X5 € R(Bl V Bg).

Therefore, the essential condition in axiom c) is that
if X7, X5 are desirable (belonging to A), this does
not imply that X; + X5 € A (which is required for
coherence in [17, 18]), but only that X; + X5 is not
necessarily discarded by resorting to b). To illustrate
this concept, let for instance By = By = 2 in ¢), so
Then, c) implies X; 4+ X5 ¢ R(Q)~, making impos-
sible to apply b) in order to discard X; + X3 from
A.

As for question Q2), an answer is given by the follow-
ing proposition, when P is 2-coherent.

Proposition 11. Let P : Dy — R be 2-coherent.
Define

A = {)\B(X—{E)-FY : X|B € Drin,

2 < P(X|B),Y € X=,) > 0}. (15)

Then the set A’ is such that:

a’) aA +Xx= C A, Ya>0;
b) X304 = {0);
¢’) (A" +A)\{0} C X\ X=;

d’) P(X|B) = sup{z : B(X —z) € A'}, VX|B €
Drin-

Proposition 11 states the existence of a set of desirable
gambles A’, in accordance with a given 2-coherent
conditional lower prevision P and satisfying the ra-
tionality criteria a’), b’), ¢’). Comparing a’), b’) with
a), b) in Proposition 10, a clear similarity comes ev-
ident: essentially, the sets R(B)~, R(B)~, B € B,
have been replaced with XZ, X= respectively. As a
consequence, note that 0 € A'.

The interpretation of ¢’) is similar to c) in Proposi-
tion 10. It tells that: if X1, Xo € A, X1 + X5 # 0,
then sup(X;+X2) > 0. Again, coherence would allow
the stronger implication X;,X, € A" — X; + X5 €
A’, while 2-coherence only ensures that X7 + X5 does
not belong to the (near) rejection set X'=.

Actually, a’), b’) ¢’) prove to be stronger than a),
b), ¢). This means that any 2-coherent conditional
prevision can be represented through a set of desirable

gambles A’ satisfying the necessary axioms a’), b’),
¢’), but also that, at the same time, A’ satisfies the
weaker axioms a), b), ¢) in Proposition 10.

A comparison between (3) in Definition 3 and (10) in
Definition 5 intuitively suggests that we can get an
answer to Q1) for 2-convexity from a reduced form
of Proposition 10, with A = 1. More precisely, the
following proposition holds:

Proposition 12. Let A C X be such that

a) A+R(B)~ C A, VB € B;
b) R(B)<NA=0,VB € B.

Deﬁne, VX‘B € DLIN;

P(X|B) = sup{z:B(X —z) € A} (16)

Then, P is 2-convex on Dprn. Moreover, P is cen-

tered iff R(B)” C AVB € B.

An analogously reduced form of Proposition 11 allows
us to answer question Q2) for 2-convexity.

Proposition 13. Let P : Dy — R be 2-conver.
Define

A/:{B<X—$)+YZX|BEDL[N, (17)
r < P(X|B),Y € X~}.
Then the set A" is such that:

a) A+ X7 CA;
b) X< A =0 iff P(O|B) <0, VB ¢ B

¢) P(X|B) = sup{z : B(X —z) € A'}, VX|B €
Drin-

Further, P is centered iff R(B)” C A’ VB € B.

Comparing Propositions 10 and 11 with, respectively,
Propositions 12 and 13, we note that, in addition to
the constraint A = 1, 2-convexity requires no condi-
tion like ¢) and ¢’) in Propositions 10 and 11 respec-
tively. Referring, for instance, to ¢’), this means that,
given X,Y € A with X +Y # 0, 2-convexity does
not guarantee sup(X +Y) > 0: summing up two in-
dividually desirable gambles could therefore give rise
to a partial or even to a sure loss. Moreover, a non-
centered 2-convex P suffers from a more serious short-
coming: if R(B)” C A’ does not necessarily hold,
then a non-negative gamble X = BX (X # 0) exists,
that is considered non-desirable. The main drawbacks
of 2-convexity relative to 2-coherence are therefore
clearly pointed out by a comparison through desir-
ability axioms.



7 Weakly consistent uncertainty
models

As mentioned in the Introduction, a motivation for
studying the loose forms of consistency introduced
in this paper is their capability of encompassing or
extending uncertainty models already investigated in
the literature. Even though these models may de-
part also considerably from coherence and convexity,
they can nevertheless be accommodated into a unify-
ing betting scheme, ranging from 2-convex to coherent
lower previsions.

Focusing on 2-convexity, we first recall a few defini-
tions and some results concerning unconditional 2-
convex lower previsions.

Definition 7. Given a finite partition IP, and denot-
ing with 2% its powerset, a mapping c : 2F — [0, 1] is
a (normalised) capacity whenever ¢(&) =0, ¢(Q) =1
(normalisation) and YAy, Ay € 2% such that A; =
As, ¢(A7) < ¢(Az) (1-monotonicity).

Definition 8. Given a linear space L of random vari-
ables, a niveloid [2, 5] is a functional N : L — R =
R U {—o00, 400} which is translation invariant and
monotone, i.e. such that

NX+p)=NX)+p, VX € L,Vy € R;

X >V implies N(X) > N(V),vx,v e £. (18

As well-known, capacities are uncertainty mea-
sures with really minimal quantitative requirements.
Niveloids can be viewed as a generalisation of theirs
to linear spaces of random variables which preserves
their minimality properties. Strictly speaking, this is
true for centered niveloids, i.e. such that N(0) = 0.
In fact, the centering condition N(0) = 0 does not
ensue from the definition of niveloid. Note also that
niveloids apply to random variables which may be un-
bounded too.

It has been proven in [1, Section 4.1]° that:

Proposition 14. a) Let P be defined on 2. Then
P is a centered 2-convex lower prevision if and
only if it is a capacity.

b) Let P be defined on a linear space L of bounded
random wvariables (gambles). Then P is a 2-
convez lower prevision if and only if it is a (finite-
valued) niveloid.

Hence, an unconditional 2-convex lower prevision is
equivalent to a capacity or a niveloid, on structured
sets (27 or L respectively). On non-structured sets,
it extends these concepts.

5See Footnote 2.

2-convex conditional lower previsions are natural can-
didates to define conditional capacities and niveloids
on arbitrary sets of, respectively, conditional events
or gambles. To the best of our knowledge, such con-
ditional versions have not been considered yet in this
general conditional environment, but rather in more
specific cases. For instance, [3] focuses on updat-
ing rules for ‘convex’ capacities, which means for 2-
monotone lower probabilities, while considering a sin-
gle conditioning event.

Thus 2-convex previsions may provide an appropri-
ate framework for such extensions, guaranteeing some
minimal properties like the existence of a 2-convex
natural extension (when being centered). Take for in-
stance centered 2-convex conditional lower probabili-
ties. They satisfy the properties one would require to
a conditional capacity: P(0|B) =0, P(Q|B) =1 (this
follows from Proposition 7, a)), and A|B <gny C|D
implies P(A|B) < P(C|D) (Proposition 7, ¢)). Sim-
ilarly, centered 2-convex lower previsions ensure gen-
eralisations of properties (18) (see especially Proposi-
tion 2 and Remark 1 for the first property, Proposition
7, ¢) for the second).

8 Conclusions

N-convex and n-coherent conditional lower previsions
broaden the spectrum of uncertainty measures that
can be accommodated into a behavioural approach to
imprecision, including, for instance, conditional ex-
tensions of capacities and niveloids when n = 2. This
choice for n is the most neatly distinguished from
coherence, the other extreme in the spectrum, and
that retaining more interesting properties. Among
these the GBR must still hold. Centered 2-convex
and 2-coherent previsions also have a clear meaning
in terms of desirability. Further work is necessary to
investigate additional properties, like the possible ex-
istence of envelope theorems, or properties of already
defined notions. In particular, we conjecture that the
2-convex natural extension may simplify computing
the convex natural extension. As a further general-
isation of this work, the consistency notions defined
here could be extended to the case of unbounded con-
ditional random variables. This has been done in [15]
for coherent conditional lower previsions, while, to the
best of our knowledge, a similar investigation for con-
vex conditional previsions is still missing.
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