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Abstract

We consider the impact of the 77 spin correlations in the Higgs boson production in association with top quark pairs
pp — ttH and in the corresponding backgrounds. We study the H — bb and H — vy decay modes. We show that
retaining the 7 spin-correlation effects could significantly improve the LHC sensitivity to the #7H signal, particularly

in the H — vy channel.
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1. Introduction

The Higgs boson discovery in 2012 [1, 2] has been
a great success of the Standard Model (SM) of elec-
troweak (EW) interactions. All measurements are in
quite good agreement with SM expectations for a Higgs
boson mass of 125 GeV, leaving moderate room for
potential new physics contributions. The forthcoming
LHC run at 13 TeV is expected to consolidate both the
indirect and the direct measurement of the Higgs boson
couplings to fermions (Yukawa couplings). This rep-
resents a crucial test for the SM mechanism of chiral
symmetry breaking and fermion mass generation.

In the SM framework, the Higgs Yukawa coupling
to the top-quark (Y;) is of particular phenomenological
and theoretical interest. Being of order O(1), Y, is re-
sponsible for the vacuum stability of the Higgs potential
and EW symmetry breaking [3]-[5], providing one of
the leading contributions to the radiative corrections to
the Higgs potential. On the other hand, the top Yukawa
coupling enters the dominant Higgs production mech-
anism at the LHC through the effective gluon-gluon-
Higgs (ggH) coupling [6] induced by top-quark loops.
It is then crucial to have also direct information on Y,
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since this will allow to either confirm or disprove the
SM mechanism for the origin of top-quark mass. The
latter case would imply the existence of physics beyond
the SM at the TeV scale. As a matter of fact, obtaining
model-independent Y; determinations is not straightfor-
ward at the LHC. Potential one-loop contributions from
unkwown new physics could in principle affect the ef-
fective ggH coupling in the main Higgs-boson produc-
tion mechanism. This makes the top-quark Yukawa cou-
pling determination through the gg — H production
quite model dependent.

A less model-dependent test of Y; at the LHC is pro-
vided by the study of the Higgs-boson production in
association with a #f pair, pp — ttH [7]-[17], where
one can tag the actual presence of top quarks in the fi-
nal state [18, 19]. The small corresponding cross sec-
tion makes the t#H process a quite challenging channel.
On the one hand, the phase-space depletes the heavy
tfH final states, with a production cross section of just
about 130 fb at 8 TeV [20]. On the other hand, disen-
tangling the QCD background for the high-rate Higgs
decay channel H — bb makes the problem even harder.
The QCD backgrounds mainly arises from the ¢7bb and
t1jj final states, whose corresponding fraction is about
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few percents and more than 95% respectively [21]. The
reconstruction of the H — bb resonance is also plagued
by a combinatorial background arising from the incor-
rect b-jet assignment due either to extra b’s from ¢ and 7
decays or misidentified light jets.

The challenge in the study of the high-statistics chan-
nel for (fH motivated dedicated analysis in the rarest
Higgs decays, like H — yy and multi-leptons, where
a more favorable signal-to-background ratio (S/B) can
compensate for the lack of statistics. For instance, with
the present data set at 7 TeV plus 8 TeV, a 95% C.L.
observed upper limit of 5.2 (4.1) times the SM cross
section has been set by CMS [22] (ATLAS [23]) in the
H — bb channel, where CMS result also include the
H — t*1~ channel. This should be compared with the
95% C.L. observed upper limit on the H — yy channels
of 5.4 (5.3) times the SM cross section set by CMS [24]
(ATLAS [25]). It is then crucial to develop new search
strategies aimed to improve the separation of the signal
from the #7H irreducible backgrounds.

The aim of the present study is to explore the poten-
tial of the spin-correlation properties in the associated
Higgs top-pair production at the LHC as a possible strat-
egy to enhance the sensitivity to the t7H signal.

It is well known that ¢ spin correlations can be a
useful tool in different frameworks. For instance, they
could help in disentangling the SM scalar component
from a pseudoscalar non-standard one in the top-Higgs
coupling [26]. In [27], it was emphasized that the rel-
ative impact of spin correlations on the leading-order
(LO) ttH lepton kinematical distributions is much more
dramatic than the impact of the corresponding QCD
NLO corrections [16].

Here we focus on the two channels corresponding to
the H — yy and H — bb decays [28]

pp — ttH (>vyy) (n
pp — tiH (- bb), 2)

where the corresponding irreducible backgrounds #fyy
and tfbb are expected to play a major role with respect
to reducible ones.

Since the top-quark life time is shorter than the char-
acteristic hadronization time scale, top quarks are ex-
pected to decay before their original spin is affected
by strong interactions. This guarantees that the top-
quark spin polarization at production level can be fully
transferred to the top decay products. Hence, by re-
constructing the individual top systems [29] the top-
quark spin properties can be accessed by measuring
suitable angular distributions of the final decay products
int > W+ b — €v(du) + b [30]. Among the top decay

products, the charged lepton (or d quark) angular dis-
tributions has the maximal spacial correlation with the
original top-quark spin axis [31]-[32].

While the top quark and antiquark pairs are mostly
unpolarized in the #f production at hadron colliders,
their spins are strongly correlated. In particular, in the
néive chiral limit for the top mass (m;, — 0), or for very
large values of the #f invariant mass m,; > m,, one ex-
pects that top-pairs are produced in the LR+RL helic-
ity configuration, where L(R) stands for the left(right)-
handed helicity polarization. On the other hand, the
same niive expectation suggests that the 7 helicity con-
figuration should also be correlated in the t#H produc-
tion, but in a complementary way, with a dominant
LL+RR configuration with respect to the LR+RL ones,
the latter being suppressed by terms of order O(m? /m?2).
This is because the Higgs boson emission from the top-
quark line flips its chirality.

The actual helicity-configuration behaviour is shown
in Fig. 1, where we report the results from [28] for the
integrated top pr distributions projected on the ¢7 he-
licity configurations LL+RR and LR+RL (normalized
to the total cross section), for the ¢ (left plot) and #H
(right plot) productions, in the Lab frame.
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Figure 1: Integrated p'TOp distributions for the like-helicity top pairs

(111 + trfg) and unlike-helicity top pairs (7.7 + tgfy) in unpolarised 7
(left plot) and #7h (right plot) samples, versus the hardest-top prT”p cut

at c.m. energy of 14 TeV, in the Lab frame.

top - ..
Here, p7” is the minimum transverse momentum of the

hardest top. As one can see, the helicity correlations are
not quite complementary as expected in the top chiral
limit. This is because the top-quark mass effects and
the presence of an extra massive (Higgs) particle in the
final state spoil the ndive expectations, at least for p'T‘”l7
lower than about 800 GeV. Then, the actual chiral limit
is reached for much higher ptTO” values.

On the other hand, by applying similar nédive chiral-
ity arguments, one might conclude that the 7 spins in
the tfyy and t#bb irreducible backgrounds should also
be correlated, but in a complementary way with respect
to the ¢ spins of the #fH signal. In fact the vector-
like mediated interactions, induced by gluon and photon
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emission from quarks (that are the interactions involved
in the irreducible backgrounds) conserve chirality. We
checked that this expectation is partially confirmed for
the t7yy background, while it is not for the t7bb one. In-
deed, for the latter, the ¢ spin correlations turn out to be
washed out in the integrated cross section, with a simi-
lar fraction of final LL+RR and LR+RL configurations.
By applying basic cuts (that we will define later on), for
the H — yy channel we find that about 61% of the total
ttH cross section corresponds to the LL+RR combina-
tion, with a remaining 39% for LR+RL. As for the tfyy
background, 28% (72%) of the total cross section corre-
sponds to the LL+RR (LR+RL) combination.

Spin correlations in the hadronic #f production mani-
fest in the angular distributions of top decay products in
specific frames and coordinate basis, where they can be
directly measured [33]-[35]. In this work we focus on
the di‘;w distributions, where ¢ stands for the angle be-
tween the three-momenta of one of the top decay prod-
ucts and one of the anti-top decay products. These dis-
tributions are frame dependent. We will consider, apart
from the usual laboratory frame, two further reference
frames where the ¢f spin correlations effects are known
to be particularly enhanced [34]. In particular, we con-
sider the angular distributions corresponding to the an-
gle ¢ between the direction of flight of £* (b) in the # rest
system and £~ (D) in the 7 rest system [34]. In order to
avoid ambiguities, one has to specify the common initial
frame where the Lorentz boosts are applied in order to
separately bring the 7 and 7 at rest. We call Frame-1 and
Frame-2 the two frames where the ¢ and 7 rest systems
are obtained, respectively, by two rotation-free Lorentz
boosts [28], [33]-[35]

e with respect to the #7-pair c.m. frame (Frame-1),
o with respect to the laboratory frame (Frame-2).

We consider the following variables, that are par-
ticularly sensitive to spin correlations, namely cos 6y,
where 6, is the three-dimensional polar angle between
the £* and ¢~ directions of flight, and analogously, the
cos 6,5 variable that involves the two b quarks from ¢
and 7 decays.

In the following we will show a few particularly sig-
nificant plots for the signal (background) angular distri-
butions, detailed through red (green) lines, while spin-
correlated (-uncorrelated) cases will be reported through
solid (dashed) lines. A more complete study, can be
found in [28]. For both signal and background the
t — blv decay has been performed in MadGraph5 [36]
by retaining the full spin information, while, in the un-
correlated case, the spin polarization effects have been

Figure 2: The cos 6z, distribution for the signal fH(H — vyy) (red)
and tfyy background (green), with (solid) and without (dashed) spin
information, in Frame-1 (left) and Frame-2 (right). The cuts p)T,]‘2 >
20 GeV, Iny,| < 2.5 and ARy, > 0.4 have been imposed on pho-
tons, in addition to the invariant mass cut 123 GeV < m,,, < 129 GeV.

neglected in the decay by interfacing MadGraph5 with
PYTHIA [37] before the tf decays. Our analysis does
not include shower nor hadronization effects. All distri-
butions that will be presented are normalized to 1.

2. Top spin correlations in the ¢¢yy channel

We consider now the signal and irreducible back-
ground for the ##yy channel in both correlated and un-
correlated analysis. In this case, we impose the fol-
lowing kinematical cuts on the photons’ transverse mo-
menta, p;"z > 20 GeV, pseudorapidities, [17,,,| < 2.5,
and isolation, AR, ,, > 0.4, in addition to a diphoton

invariant mass cut 123 GeV < m,, < 129 GeV, where

AR,’j is as usual ARl'j = ’7][21 + ¢121’ with r]ij(¢ij) the ra-
pidity (azimuthal) separation.

Final results for the cos 6, distribution for the signal
ttH(H — 7yy) and tfyy background are shown in Fig.2.
One can see that, neglecting spin correlations, the angu-
lar distributions for the signal and background are both
flat in cos 6y, in both reference frames. On the contrary,
when the spin information is taken into account, the sig-
nal and background distributions are different and quite
complementary. In particular, the signal (background)
distribution is monotonically increasing (decreasing) as
a function of cos 6. This is a consequence of the afore-
mentioned complementarity in the #7 helicity correla-
tions of the signal and irreducible background for the
H — vy channel, previously discussed. Although the
correlation effect is remarkable both in Frame-1 and
Frame-2, the separation between the correlated cos 6y,
distributions for signal and background is maximized in
Frame-1, where one gets an improvement in S/B (com-
puted by integrating angular distributions over the range
0 < cosbp < 1) of about 17%, compared to the un-
correlated case. The corresponding distributions in the
cos 6,5 variable in Frame-1 are all approximately flat,
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and no significant effect is found in this case. Analo-
gous results hold in Frame-2.

We also considered for comparison various distribu-
tions in the laboratory frame (Lab Frame), where the
variables studied are more straightforward to recon-
struct experimentally. Although in the Lab Frame the
inclusion of spin correlations increases the difference
in distribution shapes between signal and background,
the relative effect is quite smaller than in Frame 1 and
Frame 2 for leptonic distributions. This is shown in
Fig. 3, where we present the correlated and uncorre-
lated distributions in cos 8;, and An, (top), and cos 6,;,
and Arn, (bottom) (where An, = s+ — ne-|, and
Anp = |np — 13-

tih(y) : corr
Lab Frame tih(yy) : uncor

tryicom
03 thyy < uncor

06 02 02 06 1 0 05 1 L5 2 25 3

Figure 3: The cos 6, (top left), An, (top right), cos 6, (bottom left),
and An;, (bottom right) distributions for the signal ##H(H — yy) (red)
and #fyy background (green), with (solid) and without (dashed) spin
information, in the Lab frame. Same cuts as in Fig.2 have been im-
posed.

In Fig.4, we show the effects induced when including
the contributions of photon emission from the ¢ and 7
charged decay products in the irreducible yy continuum,
in Frame-1 and Frame-2. To this end, additional kine-
matic cuts are required for photon and b-jet isolation,
namely for transverse momenta pl;’”'z > 20 GeV, p? >
10 GeV, rapidities 7| < 4.7, 1n°] < 2.7, "] < 2.5, an-
gular separations AR(bb, t,yy,b{,by,ly) > 0.4, and
invariant mass m,, of the diphoton system 123 GeV <
m,, < 129 GeV. From Fig.4, we can see that the cos 6,
distributions for the signal are basically unaffected by
the new selection cuts. On the other hand, in the back-
ground the extra photon radiation tends to reduce the
gap between the correlated and uncorrelated cos 0y, dis-
tributions. In particular, for Frame-1, one gets now an
improvement by 14% in S/B.

Analogous results, but for the Lab Frame, are re-
ported in Fig.5, where we show the cos 8y, (top left), An,

Figure 4: The cos 6, distribution for the signal fH(H — vyy) (red)
and full yy background (green) [including radiation from ¢, decay
products, as defined in the text], with (solid) and without (dashed) spin
information, in Frame-1 (left) and Frame-2 (right). Cuts described in
the text have been applied to both signal and background.
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Figure 5: The cos 8¢, (top left), An, (top right), cos 6,5 (bottom left),
and An, (bottom right) distributions for the signal tfH(H — 7yy) (red)
and full yy background (green) [including radiation from #7 decay
products, as defined in the text], with (solid) and without (dashed)
spin information, in the Lab frame. Same cuts as in Fig.4 have been
imposed.

(top right), cos 6,5 (bottom left) and Ar,, (bottom right)
distributions, including extra photon radiation from the
decay products of top quarks, and the selection cuts just
described above. One can see that for the Lab frame, the
effects of photon emission from the top decay products
do not dramatically affect the results where these con-
tributions are ignored (cf. Fig. 3). Differences mainly
show up for low separations of lepton and b pairs (that
is for cos Oy, cos 6,5 ~ 1 and Ang, Any, < 1), where the
new set of cuts is more effective.

We have also studied spin correlations in the chan-
nel tfH(H — bb), assuming to be able to distinguish
the b quarks coming from top (anti top) decays from
the b quarks coming from other sources (notably, from
either Higgs decay or gluon radiation). Although spin-
correlations affect considerably both signal and back-
ground distributions also in this case, they tend to dif-
ferentiate the signal and the background less than in the
ttH(H — 7y) channel. A detailed discussion on the



S. Biswas et al. / Nuclear and Particle Physics Proceedings 273-275 (2016) 721-726 725

ttH(H — bb) case can be found in [28].

3. Conclusions

We have investigated the advantages of taking into
account 7 spin-correlation effects in the measurement of
the tH process versus its irreducible backgrounds. We
have considered the tfH(H — 7yy) and tfH(H — bb)
channels, where irreducible backgrounds are expected
to become more and more relevant in the LHC studies
at 13 TeV. We showed that for the t7H(H — 7yy) chan-
nel there is a significant advantage in employing a full
tf spin-correlated analysis, which enhances the signal
sensitivity with respect to the irreducible background.
We found that there are indeed angular variables defined
in dedicated reference frames, which could sizably in-
crease the separation of signal and background, with a
gain of up to 30% in S/B, in particular phase-space re-
gions.

The present study suffers from a series of limitations
that have to be overcome in order to quantify the ac-
tual potential of the proposed optimization strategy. We
have not included reducible backgrounds, although ir-
reducible backgrounds will get more and more impor-
tant in future LHC analyzes. Next-to-Leading Order
(NLO) QCD corrections, as well as parton-shower ef-
fects, should be included. Furthermore, we have as-
sumed a 100% top-system reconstruction efficiency, al-
though we are considering the challenging dilepton final
state containing two neutrinos. Detection and resolution
experimental effects can partly wash out our results in a
more realistic environment, as discussed in [38] for the
tf production. In the t7h case, the lower top-pair pro-
duction statistics will make the top reconstruction even
harder. On the other hand, the top reconstruction issues
should mildly affect the spin-correlation results in the
Lab frame, which anyhow is not the optimal frame to
inplement the present strategy.

In conclusion, we have found that spin-correlation
features in the tfH production are a quite promising tool
for enhancing the signal sensitivity over the irreducible
background. They should then be taken into account
in a more systematic way in future analyzes of the (7H
process at the LHC at higher integrated luminosities.
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