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Switchable graphene-substrate 
coupling through formation/
dissolution of an intercalated  
Ni-carbide layer
Cristina Africh1, Cinzia Cepek1, Laerte L. Patera1,2, Giovanni Zamborlini2,3, Pietro Genoni4, 
Tevfik O. Menteş5, Alessandro Sala5, Andrea Locatelli5 & Giovanni Comelli1,2,5

Control over the film-substrate interaction is key to the exploitation of graphene’s unique electronic 
properties. Typically, a buffer layer is irreversibly intercalated “from above” to ensure decoupling. 
For graphene/Ni(111) we instead tune the film interaction “from below”. By temperature controlling 
the formation/dissolution of a carbide layer under rotated graphene domains, we reversibly switch 
graphene’s electronic structure from semi-metallic to metallic. Our results are relevant for the design of 
controllable graphene/metal interfaces in functional devices.

Interfacial interactions play a key role in tailoring the properties of graphene and other surface-supported 
two-dimensional (2D) materials. Remarkably, the effect of such interactions is not limited to the film, but extends 
to the structures in contact with it, e.g. adsorbed atoms1,2 and molecules3,4. For instance, substrate interactions 
were recently shown to affect the magnetic order of organic monolayers supported on graphene5, opening the 
possibility to add magnetic functionality to this unique material. The study of substrate and interfacial coupling 
is therefore a technologically very relevant topic, with applications ranging from high performance transistors to 
spintronics6–9. From the perspective of fundamental studies, a model system permitting to reversibly modify the 
graphene-substrate coupling is still missing and thus highly desired, as it would enable characterization of the 
effects of film-substrate interactions on graphene’s properties.

Nickel is an appealing choice in the attempt to engineer such a model system, as it is one of the most techno-
logically relevant substrates for graphene production. Among transition metals, it has a low-cost and is widely 
available; further, it can readily sustain graphene growth by chemical vapour deposition (CVD), with the addi-
tional advantage of requiring lower temperatures than other catalysts10–12. Since the lattice mismatch between 
graphene and Ni(111) is small (~1%), graphene growth occurs preferentially in the top-fcc geometry, main-
taining the same orientation as the substrate13,14. As shown by several studies, rotated graphene phases can also 
be observed on Ni, with relative coverage controlled by a suitable choice of the CVD parameters and substrate 
pre-treatment15. From an application-oriented perspective, a ferromagnetic support opens up possibilities of 
spin-dependent transport phenomena16. In the graphene-nickel system, however, the semi-metal behaviour of 
graphene is hindered due to the chemisorption to the substrate17–19. Several approaches have been devised to 
overcome this limitation, in particular by interposing buffer layers that ensure decoupling20–22. Since such decou-
pling is typically obtained chemically or by intercalation techniques, it is an irreversible process6,20,23.

A striking feature of the nickel-graphene system is the formation of interfacial nickel carbides, which seg-
regate from bulk Ni upon cooling from growth to room temperature (RT) and form exclusively below rotated 
graphene domains15. In the present work, we demonstrate the possibility of reversibly decoupling graphene and 
the substrate “from below”, i.e. by inducing the formation / dissolution of such carbides through the control of 
temperature. To do this, we investigate at the microscopic level the three possible graphene phases on Ni(111), 
i.e. epitaxial graphene (hereafter named EG), rotated graphene (RG), rotated graphene with carbide underneath 
(RGC), and the conversion process between the latter two. In our experiments, we fully exploit an experimental 
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approach combining structure-sensitive low energy electron microscopy and diffraction, with energy-filtered 
x-ray photoemission electron microscopy and microprobe angle-resolved photoemission spectroscopy, which we 
use to characterize the local stoichiometry and electronic structure, respectively.

Results and Discussion
To optimize the relative coverage and the size of the rotational domains, we grew graphene on clean Ni(111) by 
exposing the sample to ethylene at 540–610  °C. Subsequently, the sample was cooled to RT with a cooling rate of 
about 1 K/s. Following this procedure, graphene displays coexisting EG, RG and RGC domains. Our microprobe 
low energy electron diffraction (μ -LEED) data show that in micron-sized RG domains, the lattice is preferentially 
oriented ±  17° from one of the Ni main crystallographic directions, even though domains with different rotation 
angles are also observed. A statistical analysis of the distribution of rotational orientation of RG regions can be 
found in the Supplementary Information online. In the following, we will focus on RG domains with 17° orien-
tation but we stress that the behaviour described hereafter is intrinsic to the RG phase, regardless of the specific 
rotation angle (see Supplementary Information online).

The brightfield (BF) LEEM image in Fig. 1(a) illustrates the typical mesoscale morphology of the graphene 
layer at RT. As the primary diffracted beam is employed, here the image contrast does not distinguish between 
equivalent rotational domains. Analysis of the image intensity reveals the presence in the film of three coexisting 
phases, distinguished by different grey levels and labelled I, II and III respectively. Characteristic electron reflec-
tivity (LEEM I-V curve) of each phase is shown in the Supplementary Information. Notably, laterally averaged 
LEED data over the whole area (see Fig. 1b) show only two patterns corresponding to EG and RG, which cannot 
be readily assigned to the three distinct regions in the real-space images. The spots closely surrounding the (00) 
beam are ascribed to double scattering processes between the Ni and RG lattices. Similar diffraction features are 
also found around the first order RG spots, but become clearly visible only at higher electron energies.

To resolve each phase in real space, we imaged the film using darkfield (DF) LEEM, a method that uses sec-
ondary diffracted beams to map the lateral extent of a given surface phase. As shown in Fig. 1(c,d), the images 
obtained using the first-order diffraction of epitaxial and rotated graphene readily identify region I (II) with EG 
(17° RG).

Figure 1. Co-existing graphene domains at the mesoscale. (a) BF-LEEM image at Vstart =  12 V; three 
different graphene phases, appearing in light, neutral and dark grey, can be distinguished as regions I, II and 
III, respectively. A few typical patches of region III are highlighted by red contours. (b) μ -LEED on the same 
surface, Vstart =  55 V; coexisting epitaxial and 17° rotated graphene spots are indicated. (c) DF-LEEM obtained 
using one of the 17° rotated spots in (b), Vstart =  50 V. (d) DF-LEEM using one of the spots aligned with the 
Ni(111) lattice directions in (b), Vstart =  50 V.
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The identification of the small patches labelled III is less straightforward. Their localization within the RG 
phase, small lateral size ( ≤  250 nm) and irregular shape suggest that they correspond to RGC areas, as previously 
imaged by STM15,24. To verify this hypothesis, we performed laterally resolved X-ray photoemission electron 
microscopy (XPEEM) measurements on the same region (see Supplementary Information for further details).  
C 1s core level spectra extracted from a sequence of XPEEM images as a function of photoelectron energy are 
shown in Fig. 2. Here, each data point represents the average image intensity within well-defined areas located 
inside regions I, II, and III (top, central and bottom panel, respectively). Data were fitted according to the pro-
cedure described in ref. 15, using four components which were attributed to specific carbon species, as follows: 
CA (green component, 283.2 eV) - surface nickel carbide; Cdis (light blue component, 283.8 eV) - interstitial car-
bon dissolved into the near surface Ni layers; Cgr (blue component, 284.4 eV, i.e. the same energy as for HOPG 
graphite) - weakly-interacting graphene, identified with the RG domains; and CB (purple, 284.8 eV) - epitax-
ial graphene, used as binding energy scale reference. We note that both components originating from below 
graphene (Cdis and CA) have very low intensity, limited by the low effective photoelectron attenuation length 
(~4.4 Å) at the kinetic energy used25. Surprisingly, the C 1s spectrum of both the EG and RG phases is fitted by 
a single peak corresponding to CB, thus indicating that carbon has a similar interaction with the substrate in the 
two cases. The apparent larger width of the CB peak (~28%) in RG regions is to be expected, considering that, 
while only two distinct sites contribute to the EG phase14, a larger number of adsorption sites is involved when the 
epitaxial match is lost due to rotation. Conversely, the spectrum extracted from region III is remarkably different. 
It still shows a spurious CB peak, originating from the adjacent RG regions, which contribute to the spectrum due 
to the limited lateral resolution of the microscope. However, the main peak is of Cgr type, with a small but evident 
(see inset) carbide component (CA) on the low-binding energy side. Such a component, absent in the spectrum 
from region II (see inset), confirms that region III corresponds to the RGC phase. Notably, the lower value of the 
CGr binding energy with respect to CB is typical of systems characterized by a weak interaction between graphene 
and the metal support26.

The present results correct our previous indication of a different binding energy for C atoms in the EG and RG 
phases15. This inconsistency can be explained considering that our previous experiments were performed at RT 
with a conventional X-ray source in a laboratory set-up, thus integrating over large areas (~ 30 mm2) comprising 
domains of both RG and RGC phases.

The π  band dispersion of the three different graphene phases was investigated by microprobe angle-resolved 
photoelectron spectroscopy (μ -ARPES). Since our data are collected from a region measuring about 2 microns 
in diameter, the contributions of the RG or RGC phases in the rotated regions cannot be separated. In Fig. 3 

Figure 2. C 1s core level spectra of the different graphene phases extracted from laterally resolved 
XPEEM measurements (hν = 400eV). Top panel: region I, corresponding to EG phase; mid Panel: region II, 
corresponding to RG phase; bottom panel: region III, corresponding to RGC phase.
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(left), we plot momentum distribution curves (MDC) through one of the K points along a plane normal to Γ -K  
(see insets) for EG (left top) and mixed RG +  RGC (left bottom). In EG regions we find the typical dispersion 
already reported in literature19,27,28, with a single main feature exhibiting linear dispersion crossing 2.66 ±  0.02 eV 
below the Fermi energy EF , plus a number of minor features at lower binding energies, already attributed to nickel 
and hybrid graphene-nickel states7,17. The nature of the strongest structure is presently under debate: it was previ-
ously assigned to the presence of a band-gap induced by the interaction with the substrate, but this feature might 
alternatively be related to a Dirac cone shifted away from EF, as suggested by experiments performed at 40 K27, or, 
as proposed more recently, to the main part of a fragmented Dirac cone29.

In the MDC from mixed RG and RGC regions (Fig. 3 left bottom), two evident structures show up. One of 
them (marked in green) closely resembles the main structure found for EG but is shifted about 0.45 eV towards 
lower binding energy (i.e. 2.20 ±  0.06 eV); the other structure (marked in red) is centred very close to the Fermi 
level (0.19 ±  0.11 eV), indicating the presence of areas with almost zero doping, and thus of quasi-free-standing 
nature. To correctly correlate the MDC features with the different phases, we used the darkfield XPEEM 
(DF-XPEEM) method30, using photoelectrons emitted from graphene’s π  band at the reciprocal space K point, 
close to EF, to image the surface. In the micrographs on the right hand side of Fig. 3, obtained using this method 
for each of the observed features, the image intensity is proportional to the local density of states in the film. 
These images confirm that the MDC single structure at 2.66 eV (yellow) stems from surface areas covered by 
EG, and allow a clear identification of the two MDC structures recorded from the mixed RG +  RGC region to be 
established. The lower energy structure (green), similar to the EG one, is thus assigned to areas of RG phase. The 
cone closer to the Fermi level (red) is instead strictly related to the RGC phase (as demonstrated by the inver-
sion of contrast between bright and dark features) and indicates that the small RGC patches are electronically 
decoupled from the substrate. We note that the 0.45 eV shift in the MDCs from EG and RG phases cannot be due 

Figure 3. μ-ARPES measurements on epitaxial and rotated graphene regions. Left: momentum distribution 
curves; hν  =  40 eV. The corresponding angular distributions of photoelectrons are shown in the insets acquired 
at EB =  3.56 eV and EB =  2.58 eV for epitaxial and rotated graphene regions, respectively. Right: Investigated 
graphene area as imaged by LEEM (top, Vstart =  12 V), and by DF-XPEEM. The dark-field images were acquired 
positioning an aperture at the K point in the diffraction plane, at binding energies corresponding to highlighted 
structures in the MDC curves on the left.
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to a different charge state, which would imply a different Fermi energy (i.e. a different C 1s binding energy) not 
observed in our spectra (see above). Instead, we attribute it to a different overlap of graphene and metal electronic 
orbitals that leads to different hybridization of graphene π  and Ni 3d bands for the two configurations.

The question now arises whether it is possible to control the population of the RGC phase in order to obtain 
a uniform carbidic buffer and whether this process is reversible. Clearly, such a capability would allow a drastic 
change in the electronic properties of graphene to be obtained and finely controlled. As shown in our previous 
work, the RGC phase is not present during growth, but forms only upon cooling towards RT15. More precisely, 
it nucleates at temperatures between 220 °C and 320 °C (extreme values depending on the concentration of sub-
surface C). Arguably, the amount of time spent in this T range is the key to determine the size of the carbide 
patches underneath rotated graphene domains. On the basis of this assumption, it is possible to devise a strategy 
to decouple larger graphene flakes from the substrate. Indeed, the first frame shown in Fig. 4 (panel a) shows a 

Figure 4. Rotated graphene/substrate coupling and decoupling during temperature cycling. The dissolution 
of carbide underneath graphene (a–d) as the temperature is increased and its re-formation upon cooling  
(e-h) are evidenced by the change in brightness seen in the LEEM sequence (dark =  RGC, bright =  RG). The 
epitaxial domains in the bottom corners, which do not change with temperature, are used as markers. A second 
annealing (i–l) converts RGC in RG again. Vstart =  9 V. (m) I-V curve acquired at RT from the region imaged in 
(a). (n) MDC acquired at RT. (o) I–V curve acquired at 370 °C. (p) MDC acquired at 360 °C.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:19734 | DOI: 10.1038/srep19734

homogeneous RGC region, exhibiting a lateral size of a few microns, obtained after keeping the sample at ~260 °C 
for few hours. The presence of a uniform carbide layer underneath rotated graphene is confirmed by the char-
acteristic I-V curve (panel m, see Supplementary Information for comparison) and the μ -probe ARPES MDC 
(panel n), showing a single Dirac cone at the Fermi level (ED =  EF – Ekin =  0.01 ±  0.06 eV). The Dirac energy ED 
was determined after calculating the intersection point of lines fitting the two branches of the π  band, calculated 
in an energy interval extending 2 eV below EF. These lines were obtained after determining the exact position of 
each point of the π  band branches in the (k//,EB) space. The error bar on ED (95% confidence level) is a conse-
quence of the statistical errors on the intercept and slope of the lines, not of the limited energy resolution of the 
SPELEEM.

Upon annealing (panels a to d, complete LEEM movies provided as Supplementary Videos S1, S2, S3 and S4), 
the carbide dissolves into the bulk and conversion of the initial RGC phase takes place progressively, as revealed 
by the brightness change in the sequence, until a homogeneous RG is obtained, as confirmed by the correspond-
ing I-V curve (panel o, see Supplementary Information for comparison) and by the MDC (panel p), showing that 
at ~360 °C the cone is shifted far away from the Fermi level (–2.13 ±  0.08 eV).

The process appears to be entirely reversible, i.e. the carbide inter-layer forms again when the temperature is lowered 
(panels e-h), dissolves once more when it is raised (panels i-l), and so on. It is therefore possible to reversibly switch 
between the decoupled/coupled states by simply changing the temperature. We note that the switch between RGC and 
RG takes place only in the (220 °C–370 °C) temperature range. The carbide coverage remains constant upon further 
cooling below this range (not shown), while annealing in excess may lead to nucleation of bilayer graphene, as occurs 
for the thin bright stripe in panel (l). The fact that the conversion is active only in a narrow temperature range implies 
that rapid cooling of the sample from growth to room temperature yields an almost completely carbide free graphene 
layer. The temperature range where the switch is active is in agreement with previous investigations on the kinetics of C 
segregation on Ni samples. Indeed, in pioneering experiments, Blakely et al.31 analysed the temperature dependence of 
C segregation on the Ni(100) surface, finding it to be maximum at about 357 °C.

The microprobe ARPES MDCs for the homogeneous RGC and RG phases (panels n and p) provide unequiv-
ocal evidence of the effect of the presence of the surface carbide: while direct strong interaction of graphene with 
Ni induces the formation of hybrid states and a pronounced modification of its electronic structure, carbide for-
mation underneath the graphene sheet decouples microscopic regions of the layer from the substrate24, (almost) 
completely restoring its semi-metal nature. Remarkably, on Ni(111) the same rotated regions exist in two states: 
either decoupled or coupled to the substrate.

Finally, we have measured at high temperature the MDCs of the EG and RG phases (see Supplementary 
Information), observing only a small shift in the position of the cones with respect to the corresponding phases 
at lower temperature. This further confirms that the major changes in the electronic structure are indeed due to 
the presence of interfacial carbide.

In summary, a thorough investigation of the electronic structure of graphene grown on Ni(111) and of its tem-
perature dependence allowed us to devise a strategy to control the graphene-metal coupling. If a surface carbide 
buffer forms above the topmost Ni layer underneath rotated graphene, the 2D carbon network decouples from 
the substrate and its semi-metal nature is almost completely restored. Clear evidence is provided that micro-scale 
carbide domains can be reversibly formed and dissolved by just changing the temperature and deciding the time 
spent by the sample in the narrow temperature range where the conversion is active. A simple way to vary the 
graphene/substrate coupling is therefore provided, with significant implications for functional device fabrication 
and spintronics in particular. The lateral dimension of the switchable regions is only limited by the size of the 
rotated domains. Systematic studies are ongoing to explore the growth parameter space with the aim of obtaining 
rotated domains on the millimetre scale.

Methods
Sample preparation. The Ni(111) surface was cleaned with Ar + sputtering at 2 keV and annealing at 600 °C. 
The cleaning cycles were stopped when the sample did not show any C structure at RT in LEEM and μ -LEED 
measurements. Growth studies were performed in-situ by maintaining the sample at 540-610 °C while back-fill-
ing the chamber with C2H4 (p =  3∙10−6 mbar). The surface evolution during growth was monitored with LEEM.

XPEEM and LEEM Measurements.  The photoemission microscopy measurements were carried out using 
the spectroscopic photoemission and low energy electron microscope (SPELEEM) at the Nanospectroscopy 
beamline of the Elettra synchrotron.32. This instrument combines low energy electron microscopy33 with energy 
filtered X-ray photoemission microscopy34. In the SPELEEM, the electron kinetic energy is controlled by a biasing 
potential on the sample. This bias is referred to as start voltage, Vstart. The kinetic energy of the electrons scattered 
(or emitted) by the sample is equal to Ekin =  eVstart – δ Wi-s, the latter being the work function difference between 
the instrument and the specimen. In our measurements, LEEM was used in both bright and dark-field modes, 
utilizing, respectively, the zero or first order diffraction beam for imaging. The microscope lateral resolution 
approaches a few tens of nanometres in XPEEM mode, 9 nm in LEEM; the energy resolution is better than 0.3 eV. 
Besides imaging, the SPELEEM allows diffraction operation mode. Depending whether the beamline photons or 
low energy electrons are used as probe, μ -ARPES or LEED measurements can also be carried out. The probed area 
is defined by inserting a field limiting or illumination aperture in the first image plane along the optical path of 
the instrument. A 2 μ m diameter field limiting aperture was used for μ -ARPES, while for μ -LEED three different 
illumination apertures were employed (500 nm, 1 μ m, 5 μ m). Part of the ARPES measurements was performed 
using the darkfield PEEM method30 with electrons photoemitted only in a selected region of reciprocal space. In 
the LEEM experiments, the sample temperature was measured with a C-type thermocouple and checked with an 
optical pyrometer.
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