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Abstract

Rotavirus genome consists of eleven segments of dsRNA, each encoding one single pro-

tein. Viral mRNAs contain an open reading frame (ORF) flanked by relatively short untrans-

lated regions (UTRs), whose role in the viral cycle remains elusive. Here we investigated the

role of 5’UTRs in T7 polymerase-driven cDNAs expression in uninfected cells. The 5’UTRs

of eight genome segments (gs3, gs5-6, gs7-11) of the simian SA11 strain showed a strong

inhibitory effect on the expression of viral proteins. Decreased protein expression was due

to both compromised transcription and translation and was independent of the ORF and the

3’UTR sequences. Analysis of several mutants of the 21-nucleotide long 5’UTR of gs 11

defined an inhibitory motif (IM) represented by its primary sequence rather than its second-

ary structure. IM was mapped to the 5’ terminal 6-nucleotide long pyrimidine-rich tract 5’-

GGY(U/A)UY-3’. The 5’ terminal position within the mRNA was shown to be essentially

required, as inhibitory activity was lost when IM was moved to an internal position. We identi-

fied two mutations (insertion of a G upstream the 5’UTR and the U to A mutation of the fifth

nucleotide of IM) that render IM non-functional and increase the transcription and translation

rate to levels that could considerably improve the efficiency of virus helper-free reverse

genetics strategies.

Introduction

Group A rotaviruses (Reoviridae family) are the major cause of gastroenteritis in infants and
young children worldwide and infect many other animal species [1,2]. Rotavirus genome con-
sists of eleven segments of linear double-stranded RNA (dsRNA). The complementary strands
of each genome segment (gs) are base paired from end to end [3]. The plus strand of the duplex
contains a 5’-terminal m7GpppGm cap and both strands lack poly(A) tails [3,4]. The viral
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RNA-dependent RNA polymerase VP1 transcribes plus-stranded RNAs that act both as mes-
sengers for the synthesis of viral proteins and as templates for the synthesis of new gs. Each
viral messenger contains one single open reading frame (ORF) flanked by rather short
untranslated regions (UTRs) with the exception of gs11 that in some strains encodes a second
protein through an additional ORF [1,2]. UTRs are believed to play a role in genome replica-
tion, genome packaging, and in the regulation of gene expression, as a consequence of either
their primary nucleotidic sequences or their secondary structures. Although UTRs are not
completely conserved among the different gs (and often differ in their length), terminal con-
sensus sequences are common to all eleven gs: the 5’-terminal consensus 5’-GGC(A/U)7−3’
and the 3’-terminal consensus 5’-U(G/U)3(A/G)CC-3’. It has been shown that the 7-nucleotide
long 3’-terminal consensus in the plus strand represents the minimal promoter for the minus
strand synthesis of the genome replication reaction (catalyzed also by the viral polymerase
VP1), with the terminal cytidine residues (CC) essentially required. Additional sequences at
the 5’ end and upstream of the 3’-terminal consensus enhance the process without being essen-
tial [5,6]. Based on secondary structure predictions these additional sequences were proposed
to form a panhandle structure from which the 3’-terminal consensus protrudes as a single-
stranded tail [7], which is possibly bound by VP1 during the replication reaction.

Rotavirus studies have always been affected by the lack of a reverse genetics technique.
Helper virus-free reverse genetics methods based on the introduction of mRNAs into the cyto-
sol were already successful with other viruses belonging to the same family of rotavirus (orbi-
virus or orthoreovirus). In particular, in the case of orthoreovirus, mRNAs were generated by
T7 polymerase-driven transcription of transfected cDNAs [8,9], while in the case of orbivirus
co-transfection of all ten full-length plus-stranded transcripts was successful [10]. These
achievements indicate that the mRNAs of the high-number segmented dsRNA viruses are
infectious and that also for rotavirus the establishment of a helper virus-independent reverse
genetics system is theoretically achievable. Rotavirus, however, appears to be recalcitrant to
these techniques. A few successful strategies have been reported, which unfortunately cannot
be extended to any rotavirus genome segment and are all helper virus-driven procedures [11–
15]. In all these cases, the strategies are based on transfection of viral cDNAs cloned under the
control of the T7 promoter and flanked at the 3’ end by a modified hepatitis delta virus (HDV)
ribozyme; this system ensures transcription of a messenger that perfectly mimics the authentic
ends of rotavirus mRNAs but is limited by the inefficiency in rescuing recombinant viruses
from the background of progeny helper viruses, thus requiring strong selection methods.

The attempts to obtain a recombinant rotavirus after co-transfection of the complete set of
full-length rotavirus transcripts independently of the use of a helper virus have failed [16]. In
this work we show that the low expression levels of most single proteins expressed in vivo are
the consequence of a strong inhibitory motif (IM) present on the 5’UTRs of eight genome seg-
ments (3, 5–6, 7–11) of several RV strains. This could explain, at least in part, the failure of the
systems so far tested.

Materials and Methods

Cells and viruses

MA104 (embryonic African green monkey kidney) and HeLa (human cervical epithelial ade-
nocarcinoma) cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) (Life Tech-
nologies) containing 10% Fetal Bovine Serum (FBS) (Life Technologies) and 50 μg/ml
gentamycin (Biochrom AG). For infection experiments, the following viruses were used: rota-
virus SA11 4F strain (G3P6[1]); T7-recombinant vaccinia virus (strain vTF7.3) [17] that deliv-
ers the T7 RNA polymerase necessary for the production of viral-like messengers; vT7-NE
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virus, an IPTG-inducible recombinant vaccinia virus driving expression of both the T7 RNA
polymerase and a gs11-like construct whose ORF encodes the fusion protein NSP5-EGFP. The
virus vT7-NE was produced as previously described [18].

Transient transfections

Transient transfections were performed on confluent monolayers of MA104 or HeLa cells
grown in six-well plates (Falcon). MA104 and HeLa cells were infected with vTF7.3 at an MOI of
10 [17,19]. At 1 hour post-infection (h.p.i.) cells were transfected with 2 μg/well of plasmid DNA
using Lipofectamine 3000 (Life Technologies) according to the manufacturer’s instructions. At
16 h.p.i. cells were lysed with 100 μl of reducing SDS buffer (125 mM Tris-HCl pH 6.8, 6% SDS,
40% glycerol, 5% β-mercaptoethanol, 0.04% bromophenol blue) and then sonicated with a
VialTweeter (Hielscher Ultrasonics GmbH) for 1 min (10 W, pulse 0.5 sec) to disrupt DNA.

For the experiments of in vivo translation of pre-synthesized mRNAs, MA104 cells were
electroporated with 3 μg of polyadenylated mRNAs using the Amaxa/Lonza Nucleofector
Technology (U-020 program; V solution); at 4 h post-transfection cells were lysed and treated
as described above.

For combined transfection and rotavirus infections, confluent monolayers of MA104 cells
in twelve-well plates were infected with vT7-NE virus (MOI 100) and 1 h later were induced
with 1 mM IPTG and infected with SA11 (MOI 5). At 9 h post-rotavirus infection cells were
lysed as described above.

Western blot analyses

Samples were separated in 12% SDS-PAGE using Precision Plus Protein Standards molecular
mass markers (Bio-Rad) and then transferred to polyvinylidene difluoride membranes (Milli-
pore, IPVH00010). Membranes were blocked in 5% milk/PBS and then incubated with the
appropriate antibody. Primary antibodies: anti-NSP5 guinea pig serum, anti-VP2 guinea pig
serum, anti-NSP2 guinea pig serum, anti-EGFP mouse monoclonal serum (Santa Cruz Bio-
technology), anti-α-tubulin mouse monoclonal antibody (Calbiochem), anti-α-actinin rabbit
polyclonal antibody (H-300, Santa Cruz Biotechnology). Guinea pig sera for NSP5, NSP2 and
VP2 were previously described [20–22]. Secondary antibodies: HRP-conjugated goat anti-
guinea pig (Jackson ImmunoResearch), goat anti-mouse (Jackson ImmunoResearch), goat
anti-rabbit (Thermo Scientific Pierce). Signals were detected by using the enhanced chemilu-
minescence system (Pierce ECL Western Blotting Substrate, Thermo Scientific).

In vitro transcription

Plasmids (1 μg) linearized with SacII restriction enzyme (NEB) were transcribed by the mMes-
sage mMachine T7 Ultra kit (Life Technologies Ambion) according to the manufacturer’s
instructions. Reaction mixtures were incubated at 37˚C for 2 h and then treated with TURBO
DNase. Polyadenylation of the mRNAs used in nucleofection experiments was performed
after transcription following the poly(A) tailing procedure of the mMESSAGE mMACHINE
kit. In vitro transcripts were purified by the MEGAclear kit (Life Technologies Ambion) and
quantified using the Qubit RNA Assay Kit with the Qubit 2.0 Fluorometer (Thermo Fisher
Scientific).

In vitro transcription/translation

In vitro coupled transcription and translation of plasmids was performed with the 1-Step
Human Coupled IVT Kit–DNA (Thermo Scientific) following the manufacturer’s instructions.
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1 μg of circular DNA or 1 μg of in vitro synthesized mRNAs were used as templates. The reac-
tion mixtures were incubated for 6 h at 30˚C and were stopped with 8 μl loading buffer for
PAGE and Western Blot analysis.

Quantitative real-time PCR

For quantification of transcripts, 1 μg of total RNA from each sample was retro-transcribed
using random hexamers (IDT), and the resulting product used as a template for quantitative
PCR (qPCR) in the SsoFast EvaGreen Supermix (BioRad) and with specific primer sets for
EGFP (forward, 5’-TCAAGGAGGACGGCAACATC-3’; reverse, 5’-TTGTGGCGGATCTT
GAAGTTC-3’). For all amplification reactions, a 7000 ABI Prism instrument (Life Technolo-
gies Applied Biosystems) was used. Relative gene expression was calculated according to the
formula 2^-Ct.

RNA stability assay

The RNA stability assay was performed using the Click-iT1 Nascent RNA Capture Kit (Life
Technologies). 3.5 h after DNA transfection, cells were treated with 10 μg/mL cycloheximide
(Sigma) and 10 μM pactamycin (Sigma). At 4 h post transfection, the medium was replaced
with DMEM containing 0.2 mM 5-ethynyl uridine (EU). 5 μg/mL actynomycin D (Sigma) was
added 90 min post treatment with EU. Samples were collected 1.5, 2 and 4 h post EU incuba-
tion and total RNA was extracted with the RNeasy Plus Mini kit (Qiagen). Labelled RNAs
were conjugated with an azide-modified biotin through a copper catalyzed click reaction.
Streptavidin magnetic beads were used to capture labelled RNAs, which were then used as
templates for reverse transcriptase-mediated cDNA synthesis for subsequent analysis using
qPCR.

Plasmid constructs

The SA11 5’ UTRs were designed for cloning according to the NCBI reference sequences
NC_011500-NC_011510 (RVA/Simian-tc/ZAF/SA11-H96/1958/G3P5B[2]). The plasmid
pVAX-T7-segment11-ribo-T7stop containing the sequence coding for rotavirus segment 11
was obtained as described previously [23]. For segments 2 and 8 the same general scheme of
construct with T7 promoter and ribozyme and T7 terminator (T7-segment-ribozyme-T7term)
was cloned in pUC19 vector (Life Technologies), between BamHI and SacII sites. The various
versions of genetic constructs containing rotavirus genome segments either full-length or lack-
ing one or both UTRs were constructed by PCR amplification. The primers used to this end
are listed in S1 Table. Point mutations and/or deletions or insertions were obtained by site-
specific mutagenesis using the QuikChange II XL Site-Directed Mutagenesis Kit (Agilent).
The primers used to this purpose are listed in S2 Table. The EGFP coding sequence was cloned
in the pVAX-T7-segment11-ribo-T7stop vector [23] replacing segment 11 with the EGFP
ORF. The different UTRs from rotavirus gs were introduced upstream and/or downstream of
EGFP by PCR amplifications (primers in S1 Table). The XhoI restriction site was introduced
by site-specific mutagenesis in the EGFP ORF (primers in S2 Table). The 5’ UTRs of the
remaining rotavirus gs were cloned upstream of EGFP by insertion of the oligonucleotides
listed in S3 Table between the KpnI and XhoI sites.

The constructs pcDNA3-NSP3 and pcDNA3-SV5-NSP3 were engineered by cloning the
SA11 NSP3 ORF between KpnI and EcoRI restriction sites and the N-terminal SV5 tag [24]
between HindIII and KpnI restriction sites of the pcDNA3 vector.
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Results

The 5’UTR of gs11 mRNA downregulates NSP5 expression

Previous results have shown that rotavirus NSP5 is poorly expressed in cells transfected with
plasmids containing the full-length gs11 cDNA, but not with plasmids encoding only the
NSP5 open reading frame (ORF). In order to investigate whether this depended on the 5’ or 3’
untranslated regions (5’UTR, 3’UTR), we engineered plasmid constructs containing either the
full-length sequence of gs11 cDNA or with one (gs11-Δ5’; gs11-Δ3’) or both UTRs deleted
(gs11-Δ5’3’) under the control of the T7 promoter. All plasmid constructs contained the anti-
genomic hepatitis delta virus (HDV) ribozyme sequence followed by a T7 terminator, to medi-
ate precise transcript processing at the 3’ terminal CC dinucleotide. In all constructs, a
dinucleotide GG at the 5’ end of the transcribed mRNA was maintained, as it is present in the
(+)RNAs of all groups of rotavirus. This dinucleotide corresponds also to the terminal part of
the T7 promoter. A schematic representation of the constructs and the sequences at the 5’ ends
are shown in Fig 1A–1C.

The different constructs were tested by transfection into MA104 cells, previously infected
with a T7 RNA polymerase-encoding recombinant vaccinia virus (vTF7.3), and analyzed by
Western blot (WB). As shown in Fig 1D, deletion of both UTRs (gs11-Δ5’3’) or only 16 out
of the 21 nucleotides of the 5’UTR (gs11-Δ5’) produced a conspicuous increase in protein
expression. This increase was not dependent on the nucleotide sequence context of the initia-
tion codon. In fact, the ideal context for efficient translation of vertebrate mRNAs is the
RCCAUGG sequence (R represents purine; start codon in bold), which is known as the
"Kozak sequence" [25]. Nucleotides at positions -3 and +4 are the most important and they
are the same in the mutant gs11-Δ5’ (GUGAUGU) and in the wild-type gs11 construct
(GUGAUGU). In addition, mutation of the translation initiation viral sequence into an opti-
mized Kozak sequence both in wild-type gs11 (GUGAUGU into GCCAUGU, gs11-5’m) and
in gs11 with the viral 5’UTR deleted (GUGAUGU into ACCAUGU, gs11-Δ5’m) did not
improve expression (Fig 1E).

The negative regulatory effect on expression of gs11 5’UTR was observed also in HeLa cells
infected with vTF7.3 (Fig 1F).

To test whether this effect was also dependent on the viral coding region, we obtained
constructs in which the gs11 ORF was replaced by an ORF coding for EGFP. As in the case
of the viral protein, reduced EGFP expression was only observed with constructs containing
both 5’ and 3’ gs11 UTRs or only the 5’UTR (Fig 1G). Also in this case an optimized Kozak
sequence at the AUG initiation codon (EGFP-5’m3’ gs11) did not alter EGFP expression
(Fig 1H, lane 3).

The 5’UTRs of gs2 and gs8

We next tested whether the 5’UTRs of two other rotavirus genome segments shared the same
activity as the gs11 5’UTR. The 46-nucleotide long 5’UTR of gs8 that encodes the nonstruc-
tural protein NSP2 was able to strongly downregulate expression of NSP2 (Fig 2B) as well as of
NSP5 encoded by a chimeric construct with the gs8 5’UTR replacing the 5’UTR of gs11
(5’gs8-gs11) (Fig 2C). A chimeric construct containing a reshuffled nucleotide sequence ver-
sion of the gs8 5’UTR [5’gs8(r)-gs11] was not inhibitory (Fig 2C, lane 3) suggesting that the
inhibitory activity was dependent on the 5’UTR primary sequence.

In contrast to gs8 and gs11, the 14-nucleotide long 5’UTR of gs2 that encodes the structural
protein VP2 did not inhibit protein expression with the ORF of either the full-length viral pro-
tein VP2 (Fig 2D) or EGFP (Fig 2E).
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Fig 1. The 5’UTR of gs11 downregulates NSP5 expression. A) Schematic representation of the genetic constructs used. B) Scheme
of the different gs11 constructs with one or both UTRs deleted. C) 5’UTR sequences of wild-type gs11 and 5’ deletion mutant (gs11-Δ5’)
and of the corresponding variants with mutations on the Kozak sequence (gs11-5’m and gs11-Δ5’m); start codon in bold. D-F) Anti-
NSP5 WB of MA104 cells (D, E) or HeLa cells (F) transfected with the indicated constructs. G, H) Anti-EGFP WB of MA104 cells
transfected with constructs containing the EGFP ORF with or without gs11 5’ and 3’ UTRs (G) and with a construct (EGFP-5’m3’ gs11)
with mutated Kozak sequence (H). Tubulin used as loading control.

doi:10.1371/journal.pone.0166719.g001
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Inhibition depends on 5’UTR primary sequence

The full-length gs11 5’UTR is 21-nucleotide long and for this region the RNAfold software
predicts a stem-loop structure (shown in Fig 3A). We thus addressed whether gs11 downregu-
lation was dependent on the secondary structure or on the primary sequence of the 5’UTR.
Four different gs11 constructs with the 5’UTR modified in different ways were engineered (Fig
3A). In one case the sequence was reshuffled preserving the first two guanines at the 5’ end (to
allow T7 transcription initiation and preserve 5’ end sequence) and the last three nucleotides
immediately upstream of the translation start codon AUG (construct gs11-5’R). This construct
is predicted not to form the stem-loop structure. In a second construct the stem was preserved,
inverting the nucleotides on each arm (construct gs11-5’Inv). A third one contained two

Fig 2. The 5’UTRs of gs2 and gs8. A) Scheme of the constructs used. B-E) WB analysis with the indicated
antibodies of MA104 cells transfected with: gs8 constructs with and without 5’ and 3’ UTRs (B); chimeric constructs
with 5’UTR from gs8 and NSP5 ORF (C); gs2 constructs with or without 5’UTR (D); constructs with EGFP ORF
downstream of the 5’UTR of either gs11 or gs2 (E). Tubulin used as loading control.

doi:10.1371/journal.pone.0166719.g002
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complementary mutations (C3G and G11C) at the base of the stem that should also preserve a
stem-loop structure (construct gs11-5’mut1). A final construct (gs11-5’mut2) contained a
sequence that should also maintain a similar stem-loop structure. When tested in MA104 cells,
only the wt 5’UTR showed strong protein expression impairment (Fig 3B) indicating that the
inhibitory activity was the consequence of a primary sequence contained in the gs11 5’UTR,
hereafter referred to as inhibitory motif (IM).

A 6-nucleotide long motif on 5’UTR

Alignment of the 5’UTRs of gs2, gs8, and gs11 showed homology within the initial 5’ ends of
all three sequences (Fig 4A). An 11-nucleotide long U-A rich motif is conserved between gs8
and gs11, while in gs2 there is a single difference (A5 instead of U5). Since gs2 5’UTR was not
inhibitory (Fig 2D–2E), we tested a construct with an A5U mutation introduced in 5’UTR of
gs2 cDNA (gs2-U5), making this part identical to the motif conserved in gs8 and gs11. As
shown in Fig 4B, the A5U mutation had a strong inhibitory effect on VP2 expression.

In order to map IM, additional mutants on gs11 5’UTR were engineered (Fig 4C, left
panel). An U5A mutation was introduced in the 5’UTR of gs11 to make it identical to gs2
(gs11-A5); in a second mutant the seven nucleotides downstream of the U-A rich motif and up
to the last three nucleotides upstream of the AUG start codon (from C12 to A18) were deleted
(construct gs11-5’Δ7). When tested in MA104 cells, the U5A mutation completely abolished
inhibition, while gs11-5’Δ7 showed strong inhibitory activity (Fig 4C, lanes 1–4). Further map-
ping was carried out by deleting nucleotides within the U-A rich motif on the gs11-5’Δ7
mutant (schemes in Fig 4C). While deletion of the last two or four nucleotides (AG in gs11-
5’m2; AAAG in gs11-5’m3, respectively) still showed expression inhibition (Fig 4C, lanes 6–7),
deletion of the two nucleotides immediately downstream of the initial dinucleotide GG (CU,
gs11-5’m1) allowed high expression levels (Fig 4C, lane 5). Thus, it appears that nucleotides in
positions 3, 4, and 5 are essential components of IM. Indeed, comparative analyses of single U
to A mutations in positions 4 to 7 built on the wild-type gs11 background (constructs gs11-A4,
gs11-A5, g11A6 and gs11-A7) showed that U in positions 4, 5 and 6 are the relevant ones,
although the U-to-A mutation in position 4 determined a lower rescue of protein expression

Fig 3. Inhibition depends on 5’UTR primary sequence. A) Predicted structures of gs11 5’UTR and mutants. B) Anti-NSP5 WB of
MA104 cells transfected with the different mutant constructs shown in A; gs11-Δ5’ was included as a positive control. Tubulin used as
loading control.

doi:10.1371/journal.pone.0166719.g003
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as compared to the same mutations in positions 5 and 6 (Fig 4D). A new set of mutants was
then built on the gs11-5’m3 inhibitory construct, which has the terminal 7 nucleotides of the
U-A rich motif initially identified. As shown in Fig 4E, mutation of C3 into U (GGUUUUU,
gs11-U5), or deletion of C3 (GGUUUU, gs11-U4) showed even stronger inhibition than the

Fig 4. A 6-nucleotide long motif on 5’UTR. A) Alignment of 5’UTRs from gs11, gs8 and gs2. The 11-nucleotide long U-A rich motif is
highlighted (bold). The different nucleotide in position 5 in gs2 is shown in red. B) Anti-VP2 WB of MA104 cells transfected with the
indicated gs2 constructs. C) Right panel: anti-NSP5 WB of cells transfected with the mutant constructs shown on left panel. D) Anti-NSP5
WB of cells transfected with the indicated gs11 U-to-A mutants shown on left panel. E) Anti-NSP5 WB of cells transfected with constructs
containing the 5’ terminal nucleotides of the U-A rich motif and with mutants of the pyrimidine tract. Tubulin used as loading control.

doi:10.1371/journal.pone.0166719.g004
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parental construct containing CU4, while construct gs11-CU3 (GGCUUU) was as inhibitory
as the parental one. Further mutations were performed on gs11 mutating U4, U5 and U6 into
C (GGCCCC, gs11-C4) or the single U6 into C (GGCUUC, gs11-CU2C). While the single U6C
mutation did not show any effect, mutation of also U4 and U5 completely restored protein
expression. Thus, downstream of the 5’ terminal GG dinucleotide present in all rotavirus
mRNAs, IM requires at least one pyrimidine in position 3 followed by two uracils and a pyrim-
idine in position 6.

IM 5’ terminal position is essential

We next examined whether the position of IM within the mRNA is of any relevance for its
inhibitory activity. Thus, the originally identified 11-nucleotide long U-A rich motif
(GGCUUUUAAAG) of gs11 was moved from its original 5’ end terminal position to a posi-
tion either within the 5’UTR, downstream of a 15-nucleotide long arbitrary sequence that does
not inhibit protein expression, or in the coding region or in the 3’UTR of a construct contain-
ing the EGFP ORF and the UTRs of gs11. The resulting constructs, indicated as 5’-dIM, IMORF

and 3’IM, respectively, are schematically shown in Fig 5A. As controls, the 15-nucleotide long
5’UTR without IM (5’ctrl) and IMs with the U5A mutation [IM(A5)ORF, 3’IM(A5)] were used.
Expression downregulation was only present when IM was positioned at the 5’-terminal end
in the 5’UTR, with GG as the initial dinucleotide, while insertion of the wild-type IM or the
U5A control within the ORF or the 3’UTR did not show any difference (Fig 5B). This conclu-
sion was further supported with a single insertion mutant with one additional 5’-terminal G
added in gs11 (gs11-G3), which showed strong expression levels (Fig 5C) thus indicating that
IM strictly requires a 5’ terminal position to downregulate expression. Therefore, IM can be
defined as a 5’ terminal sequence containing two guanines (found in all mRNAs of rotaviruses
of all groups) followed by a pyrimidine in position 3, and, at least in gs11, three uracils in posi-
tions 4–6.

Compromised expression is due to both T7-mediated transcription and
cellular translation

We then determined whether compromised expression was the consequence of inhibition of
transcription or translation. mRNAs were produced in vitro by T7 polymerase from a con-
struct containing the EGFP ORF flanked by gs11 UTRs (EGFP-5’3’gs11) and from the corre-
sponding one containing the U to A mutation in position 5 [EGFP-5’(A5)3’gs11]. Both
mRNAs were produced at similar levels, with the last one transcribed only 1.5 times more (Fig
6A). Transcription in vivo from the same two constructs in MA104 cells infected with vTF7.3
vaccinia virus (determined by qPCR) yielded, however, a five times higher level of the tran-
script from the U5A construct (Fig 6B). When tested in a transcription/translation in vitro sys-
tem derived from HeLa cells, qPCR analysis revealed a difference in the relative amount of
mRNAs comparable to the one detected in vivo (Fig 6D), while the Western blot consistently
confirmed reduced protein expression at a similar extent (Fig 6C). Altogether these data indi-
cate that IM plays a strong effect on T7 transcription only in presence of cytoplasmic compo-
nents (cells or in vitro systems based on cellular extracts).

To establish if IM has also an impact on transcripts stability, an assay of the decay rate was
performed exploiting incorporation of the ribonucleotide homologue ethynyl uridine (EU), in
presence of pactamycin and cycloheximide (two drugs that block translation). EU was fed to
transfected cells for 1.5 hours and then incorporation into newly-made mRNAs was stopped
by addition of the transcription inhibitor actinomycin D. RNA samples were collected at dif-
ferent time points and EU-labelled mRNAs quantified by qPCR. As shown in Fig 6E, there was
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no difference in the relative decay rate of the two types of transcripts. Therefore, while having
an impact on T7-mediated transcription, IM does not affect transcripts stability.

We next evaluated whether IM has an effect on translation. The EGFP-5’3’gs11 construct
and the EGFP-5’(A5)3’gs11 mutant were in vitro transcribed and then equal amounts of tran-
scripts were in vitro translated in a HeLa cell lysate-based protein expression system. As shown
in Fig 6F, the transcript with IM mutated in position 5 was translated 3.8 times more. The dif-
ference in the EGFP levels, however, was not as much as that observed when administering the

Fig 5. IM 5’ terminal position is essential. A) Schematic representation of constructs with the 11-nucleotide long U-A
rich motif (containing IM) positioned within gs11 5’UTR (construct 5’-dIM), in EGFP ORF (construct IMORF) or in gs11
3’UTR (construct 3’IM). Within the 5’UTR the motif was placed in a non 5’-terminal position, downstream of a
15-nucleotide long not inhibitory sequence; as a control, a construct with the same sequence without the U-A rich motif
was used (5’ctrl). In the construct with the motif within the ORF (IMORF), the amino acids encoded by the inserted motif
and by the U5A control mutant [IM(A5)ORF] are shown. Within the 3’UTR, the motif or the U5A control mutant [3’IM(A5)]
were positioned six nucleotides downstream of the stop-codon. B) Anti-EGFP WB of extracts from cells transfected with
the indicated constructs. The EGFP construct with only gs11 3’UTR was used as a negative control while construct
EGFP-5’3’gs11 was used as a positive control. C) Anti-NSP5 WB of cells transfected with a gs11 mutant construct with
an additional 5’-terminal G (gs11-G3). Tubulin used as loading control.

doi:10.1371/journal.pone.0166719.g005
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Fig 6. Compromised expression is due to T7-mediated transcription and translation. Yield of transcripts and protein products of
constructs containing EGFP ORF flanked by gs11 UTRs in wild-type and the U5A version. A) Comparison of mRNAs yield after in vitro
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two cDNAs to the same in vitro (coupled transcription/translation) expression system
(compare Fig 6F with 6C). In order to confirm impaired translation also in vivo, equal
amounts of in vitro transcribed mRNAs were electroporated into MA104 cells. The three
times difference observed was comparable to that obtained in vitro (Fig 6G). Of note, to
obtain detectable levels of proteins, the mRNAs transfected contained polyA tails that did
not affect IM activity (S1 Fig). Because of the controversial role of the non-structural pro-
tein NSP3 in regulating translation of rotavirus mRNAs [26,27], we tested whether NSP3
was able to increase expression of NSP5 from constructs with the full-length 5’UTR. NSP3
was overexpressed (from constructs without UTRs) in two different versions, un-tagged or
SV5 N-terminally tagged. NSP3 did not revert the inhibitory effect of the 5’UTR on NSP5
expression and did not affect either NSP5 expression from mRNAs with the 5’UTR deleted
(S2 Fig).

In conclusion, the overall IM inhibitory effect on expression is due to an interference with
both T7-mediated transcription and cellular translation.

The UTRs of SA11 strain genome segments

We tested the 5’UTRs of all remaining SA11 genome segments cloned upstream of EGFP.
As expected, the 5’ UTRs of gs 3, 5, 6, 9, and 10 (encoding VP3, NSP1, VP6, VP7 and NSP4,
respectively), which contain an IM identical to that of gs11, inhibited EGFP expression,
whilst those of gs 1 and 4 (encoding VP1 and VP4, respectively) containing an A in position
5 did not (Fig 7). Interestingly, the 5’UTR of gs7 (encoding NSP3) that contains an A in
position 4 also affected EGFP expression (Fig 7, lane 9), suggesting that the nucleotide in
position 4 may be either adenine or uracil. Therefore a more precise definition of IM corre-
sponds to a 5’ terminal sequence containing two guanines followed by a pyrimidine in posi-
tion 3, uracil or adenine in position 4 an uracil in position 5 and a pyrimidine in position 6,
5’-GGY(U/A)UY-3’.

transcription with T7 polymerase in transcription buffer. B) qPCR of the same constructs transfected in MA104 cells. C) WB of EGFP
protein produced following in vitro coupled transcription/translation in a HeLa cell lysate-based kit. D) mRNA yields (by qPCR) from the
same in vitro coupled transcription/translation HeLa cell lysate-based kit. E) Decay rate of transcripts in MA104 cells, quantified by qPCR.
F) Anti-EGFP WB of samples obtained following in vitro translation (in the HeLa cell lysate-based kit) of mRNAs pre-synthesized as in A.
G) Anti-EGFP WB of MA104 cells electroporated with mRNAs pre-synthesized as in A. Tubulin used as loading control.

doi:10.1371/journal.pone.0166719.g006

Fig 7. The UTRs of SA11 strain genome segments. Anti-EGFP WB of cells transfected with constructs containing the EGFP ORF fused to the
5’UTR of the different gs indicated on the left. Tubulin used as loading control.

doi:10.1371/journal.pone.0166719.g007

Rotavirus 5’UTR Inhibitory Motif

PLOS ONE | DOI:10.1371/journal.pone.0166719 November 15, 2016 13 / 20



Thus, a set of cDNA constructs encoding all genome segments under the control of T7 pro-
moter and containing either of the described mutations (addition of an extra 5’ G or mutation
of T5 into A) with exception of gs1, 2 and 4 should provide the basis for a more efficient helper
virus-free reverse genetics system.

Virus infection overcomes IM activity

To test whether rotavirus infection can overcome IM activity, we constructed a recombinant
vaccinia virus (vT7-NE) with inducible expression of both the T7 RNA polymerase and an
NSP5-EGFP fusion (NE) flanked by the gs11 UTRs. This construct was first validated by trans-
fection experiments showing that the gs11 5’UTR inhibited NSP5-EGFP expression, indepen-
dently of the 3’UTR (Fig 8A). Co-infection of MA104 cells with both vT7-NE and SA11 was
close to 100%, according to immunofluorescence with anti-EGFP and anti-NSP4 antibodies
(not shown). As shown in Fig 8B, rotavirus infection partially reverted the inhibitory effect of
the gs11 5’UTR on NSP5-EGFP, indicating that either a viral factor or a virus-induced cellular
factor(s) allows high-level expression of mRNAs containing IM in their 5’UTR.

Discussion

Knowledge of the function of several rotavirus proteins and their precise roles in the viral rep-
lication cycle still presents unclear points. In part this is due to the lack of a broad reverse
genetics system that could be universally applicable to all RV genome segments. Plasmid-
based helper virus-free strategies were already successful with other viruses belonging to the
same family of rotavirus (orbivirus and orthoreovirus) but failed when applied to rotavirus.
One of the main reasons proposed to explain the difficulties encountered in having a helper
virus-free system for rotavirus is the poor expression of transfected mRNAs or cDNAs. Indeed
in the few cases in which recombinant RVs were obtained, robust protein production was
guaranteed by the helper virus infection.

The experience with bluetongue virus and the “double transfection strategy” highlighted
the importance of a strong protein production in order to achieve the recovery of recombinant
virus [28]. It is indeed believed that the first round of transfection supplies the proteins

Fig 8. Rotavirus partially reverts IM-mediated expression inhibition. A) Anti-EGFP and anti-NSP5 WB of MA104
cells transfected with constructs containing the NSP5-EGFP (NE) ORF with or without gs11 5’ and 3’ UTRs, as indicated.
B) Anti-EGFP and anti-NSP5 WB of MA104 cells infected with SA11 and the recombinant vaccinia virus vT7-NE
expressing NSP5-EGFP from an mRNA with gs11 5’ and 3’ UTRs. α-actinin as loading control.

doi:10.1371/journal.pone.0166719.g008
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necessary for the formation of replication complexes, which then act on the transcripts intro-
duced during the second transfection.

In this work we revealed that the 5’UTR of several (but not all) genome segments of rotavi-
rus contain an inhibitory motif (IM) that downregulates expression of rotavirus cDNAs when
expressed exploiting a T7 polymerase-encoding recombinant vaccinia virus. This is the pre-
ferred system used in all attempts to generate a recombinant rotavirus since the T7 promoter
coupled with the HDV ribozyme provides bona fide 5’ and 3’ terminal sequences of viral
mRNAs.

Rotavirus mRNAs are known to form secondary structures involving interaction between
5’ and 3’ UTRs [7,29], but IM activity proved to be independent of the ORF and the 3’UTR
sequence; indeed, the simple addition of an IM-containing 5’UTR upstream any ORF
sequence was sufficient to inhibit protein expression. The effect was tested on the ORFs of sev-
eral viral proteins (NSP5, NSP2, VP2) and of EGFP, used as a reporter protein. Furthermore,
IM activity is dependent on the primary sequence and not related to secondary structures in
5’UTR, as proved by constructs gs11-5’R, gs11-5’Inv, gs11-5’mut1, gs11-5’mut2 (Fig 3), but
also by construct gs11-5’mut3 (Fig 4C), which maintains the IM sequence but whose second-
ary structure has been disrupted by deletion of eleven nucleotides. The IM sequence that we
have identified includes at least four nucleotides after the initial GG dinucleotide present in all
genome segments of all rotavirus groups. Since the addition of a single G at the 5’ end was suf-
ficient to abolish IM inhibitory effect, we defined IM as the 5’ terminal hexanucleotide 5’-GGY
(U/A)UY-3’. Interestingly, the 5’ terminal ends of genome segments of orthoreovirus and
bluetongue virus do not have sequence homology with rotavirus IM since their conserved
sequences are 5’-GCUA-3’ and 5’-GUUAAA3’, respectively. Besides, a single U to A mutation
in position 5 of gs11 5’UTR was enough to make IM no longer functional and A5 is naturally
present in gs1, gs2 and gs4 of strain SA11, whose 5’UTRs indeed did not downregulate protein
expression. Exploiting EGFP as a reporter protein, we instead confirmed inhibitory activity of
the 5’UTRs of the remaining eight SA11 rotavirus genome segments that contain IM (gs3, 5, 6,
7, 8, 9, 10 and 11).

According to our studies, IM activity is the consequence of impairment of both transcrip-
tion and translation. Quantification of the relative levels of mRNAs showed that in vivo there
is a higher rate of transcription of the cDNAs in which IM was mutated in position 5. T7 poly-
merase is a single subunit enzyme that does not require protein co-factors. The T7 promoter is
composed of two domains: the binding region and the catalytic domain. Since the binding
region is located upstream position -5, IM is unlikely capable of interfering with the proper
tight binding of the polymerase with its promoter [30]. During the first phase of transcription,
T7 polymerase produces short transcripts of 2–6 nucleotides and only after the synthesis of 10/
12-nucleotide long RNAs, it enters the elongation phase that stabilizes the polymerase-DNA
complex [31]. In this step, T7 polymerase rearranges creating a channel that accommodates a
7-nucleotide long hetero-duplex, and a tunnel for the exit of transcripts [32]. The IM nucleo-
tide sequence could interfere with the processivity of transcription and T7 polymerase could
therefore indulge in abortive falloff after incorporation of U, while sequences with either three
5’ terminal G or an A in position 5 might help T7 polymerase in the transition from the initia-
tion to the elongation phase [33].

Interestingly, the quantification of mRNA levels using two different in vitro transcription
kits presented a discrepancy. The mRNA levels in the coupled transcription-translation HeLa
cell lysate-based system reflected what was observed in vivo (also for the level of expressed pro-
tein), while in the in vitro transcription kits containing only T7 enzyme and an adequate tran-
scription buffer, transcripts of cDNAs containing non-functional IM were only slightly more
abundant than the counterpart. We questioned if this yield disparity could be explained by a
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major rate of degradation that could occur in vivo to IM-containing mRNAs. Our results
showed no differences in mRNA stability. Since the difference in transcription levels was
detectable only in presence of cellular cytoplasmic extracts, a possible explanation hypothesizes
the presence of a cytoplasmic factor that can specifically bind to IM and therefore interfere
with transcription.

The presence of IM affects also translation since mRNAs containing non-functional IM
increase protein expression by 3 times compared with the ones containing functional IM. This
difference was observed both in vivo, transfecting in vitro synthesized transcripts into cells,
and in vitro, using HeLa cell lysate-based in vitro protein expression systems fed with pre-
formed mRNAs. This effect on translation upon deletion of the 5’UTR from gs11 was not due
to a change of the nucleotide context of the start codon. Optimization of the nucleotides
upstream the AUG codon did not modify expression of gs11 nor of the mutant lacking the
5’UTR. In both constructs, the nucleotide in position +4, which is not optimal in gs11 (U
instead of G), was not changed. In a recent work with gs4 Gratia et al. reported that optimisa-
tion of both positions -3 and +4 is important for expression efficiency [34]. However, the
strong difference in expression of the two constructs with start codons sharing the same nucle-
otide context (GUGAUGU), strongly suggests that the IM inhibitory activity on translation
cannot be ascribed to a less effective start codon recognition. The UTRs of a number of viruses,
such as JEV [35], HIV-1 [36], HCV [37–40], and poliovirus [41] are bound by cellular proteins
(such as protein La) with an effect of translational enhancement. This binding occurs via a
polypyrimidine tract inserted in the context of specific secondary structures (i.e. IRES) in close
proximity to the AUG codon. Our data show that the 5’UTR secondary structure of rotavirus
mRNAs does not affect translation efficiency. Interestingly, however, those cellular proteins
that affect viral protein translation of the above mentioned viruses also regulate translation of
a class of cellular mRNAs containing a motif similar to IM, the so-called TOP mRNAs
(TOP = Terminal OligoPyrimidine) [42]. These mRNAs encode various components of the
translational machinery (such as some ribosomal proteins and elongation factors) and contain
a rather short 5’UTR that starts with a C followed by an uninterrupted tract of 4–14 pyrimi-
dines, generally located upstream of a CG-rich sequence (reviewed in [42]). Although the
molecular mechanisms regulating TOP mRNA translation are still poorly defined, the TOP
motif is recognized by specific trans-acting factors, some with positive and others with nega-
tive effects [43–45]. A common feature of the TOP motif and IM is the requirement of the 5’
end terminal position [46]. In fact, we observed that IM loses its translation downregulation
activity when moved from the 5’ end terminal position, suggesting a regulatory role at the initi-
ation step of translation.

Recently, it has been reported that certain adenosines within the 5’UTRs of cellular mRNAs
are preferentially methylated under stress conditions and this post-transcriptional modifica-
tion was found to promote translation initiation [47]. Although of different nature, the pres-
ence of A instead of U in position 5 of some viral 5’UTRs might represent a factor that favors
translation.

We found that rotavirus infection partially reverts IM-mediated expression inhibition sug-
gesting that a viral component (or a cellular factor induced upon infection) interferes with the
inhibitory mechanism in uninfected cells. It can be hypothesized that while in uninfected cells
a trans-acting negative regulator has free access to the viral mRNAs containing an IM, in
infected cells it is displaced from viral messengers possibly through binding competition with
specific viral proteins. In this respect, we performed co-expression experiments with a panel of
viral proteins (VP1, VP2, VP3, VP6, NSP2, NSP4, NSP5). So far, we have not identified any
individual viral protein able to revert IM inhibitory activity. Not even NSP3 could rescue pro-
tein expression. In the context of viral infection, specific changes in subcellular distribution
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and in quantity of the translation apparatus components, [48–50] result in a complex interac-
tion network between multiple viral and cellular factors mediating efficient translation of all
viral mRNAs. In fact, during rotavirus infection most cellular mRNAs are confined to the
nucleus, where become hyperadenylated and unable to reach the cytoplasm [48]. In addition,
several signalling pathways are activated that can affect the cellular translation apparatus.
Overexpression of a single viral protein appears not to be sufficient to revert expression.

IM and its non-functional versions are highly conserved among the same genome seg-
ments of different group A rotavirus strains (S4 Table). The presence of the inhibitory motif
in 8 out of the 11 genome segments, with the consequent low level of viral mRNAs and pro-
teins, can easily explain why transcripts of rotavirus cDNAs are not infectious. Addition of
support plasmids engineered to enhance RV protein expression has already been proposed
[51]. Our data suggest the possibility of reaching the same goal with either of two single
base mutations (addition of a third G upstream 5’UTR/T5A mutation) in order to generate
RV cDNAs that could sustain a more robust production of both mRNAs and proteins.
These plasmids can be employed in the attempt to recover recombinant rotavirus upon
transfection of the eleven cDNAs, reproducing the strategy that was already successful with
mammalian orthoreovirus. Importantly, incorporation into an infectious viral particle of a
genome segment with an additional or two additional G upstream 5’UTR of gs 8 was already
observed [14].

In conclusion, our study is a deep analysis of the mechanisms underlying poor protein
expression from rotavirus cDNAs and considers their possible involvement in the failure of
helper virus-free reverse genetics strategies applied to rotavirus. We mapped two distinct single
base mutations that increase both mRNA transcription and protein translation, which are
likely compatible with genome segment packaging in infectious particles. The increased yields
of mRNAs and proteins could be the key to obtaining infectious virus from cells transfected
with all eleven genome segments.

Supporting Information

S1 Fig. The poly-A tail does not affect downregulation by gs11 5’UTR. Anti-NSP5 WB of
cells transfected with polyadenylated versions of gs11 constructs, with or without 5’UTR. The
polyadenylated mRNAs were T7-polymerase transcribed, derived from a synthetic gene frag-
ment containing 30 adenines downstream of the 3’UTR. Tubulin used as loading control.
(TIF)

S2 Fig. NSP3 does not affect downregulation by gs11 5’UTR. A-B) Anti-NSP5 WB of
MA104 cells co-expressing different gs11 constructs with or without NSP3, either un-tagged
(A) or SV5-tagged (B). In B anti-SV5 WB revealing expression of SV5-NSP3. Tubulin used as
loading control.
(TIF)

S1 Table. Primers used to construct plasmids containing rotavirus genome segments,
either full-length or lacking one or both UTRs.
(XLS)

S2 Table. Primers used for site-specific mutagenesis.
(XLS)

S3 Table. Oligonucleotides for construction of plasmids containing the 5’UTRs of the indi-
cated genome segment upstream the EGFP ORF.
(XLS)
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S4 Table. IM in genome segments encoding structural and non-structural proteins of five
different tissue culture-adapted (simian SA11, porcine OSU, simian RRV, human Wa,
human DS-1) and one circulating human wild-type (RVA/Human-wt/BGD/Dhaka16/
2003/G1P[8]) group A rotavirus strains, shown in bold (GenBank accession numbers:
SA11, NC_011500-NC_011510; OSU, KJ45084-KJ45094; RRV, EU636924-EU636934; Wa,
JX406747-JX406757; DS-1, HQ650116-HQ650126; wt RVA, DQ492669-DQ492679).
Nucleotides that render IM non-functional are indicated in red; genome segments containing
a functional IM are marked with a tick. ALL indicates the six strains.
(TIF)
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