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Abstract—We consider the problem of the filtering of Twitter
posts, that is, the hiding of those posts which the user prefers
not to visualize on his/her timeline. We define a language
for specifying filtering policies suitable for Twitter posts. The
language allows each user to decide which posts to filter out
based on his/her sensibility and preferences. Since average users
may not have the skills necessary to translate their filtering needs
into a set of rules, we also propose a method for inferring a policy
automatically, based solely on examples of the desired filtering
behavior. The method is based on an evolutionary approach
driven by a multi-objective optimization scheme. We assess our
proposal experimentally on a real Twitter dataset and the results
are highly promising.

I. INTRODUCTION

Filtering of short text messages is becoming more and more
relevant in these years, where billion of users use online social
networking services to communicate, share and disseminate a
considerable amount of information. Despite the many benefits
that being exposed to this huge amount of information can
bring, there are also many serious shortcomings. One is that
of being exposed to the so called “information overload”1.
Microblogging services are one of the main sources of in-
formation overload [1]. For instance, in [2] it is shown that
two thirds of Twitter users have felt that they receive too
many posts, and over half of Twitter users have felt the
need for a tool to filter out the irrelevant ones. There are
other further reasons for the need of filtering tools. As an
example, a user may want to filter out from his/her timeline
messages with disturbing content (e.g., vulgar), or messages
about specific sensitive topics (e.g., religion, politics). Social
services providers are now trying to cope with this issue.
For instance, Twitter has recently announced that it will start
showing a selection of tweets that a user who has been away
from the service might want to see.

To cope with this issue, in this paper, we first propose a
language for expressing filtering rules on Twitter. We believe
that, like privacy preferences, also filtering rules are very
subjective and may depend on many different dimensions (e.g.,
the tweet contents, the author of the tweet, etc.). However,
the availability of an expressive language, like the one we
propose in this paper, is just one of the key building blocks of
an effective filtering tool. Indeed, average Twitter users will
not have the skills necessary to translate their filtering needs

1The term has been popularized by Alvin Toffler in his book Future Shock,
1970.

into a set of rules [3]. Moreover, they can also not be fully
aware of their filtering needs. Therefore, we complement our
language with a tool able to infer filtering rules automatically,
from selected examples of the required filtering behaviour. At
this purpose, we exploit an evolutionary approach in which
individuals representing filtering rules are evolved according
to a multi-objective optimization scheme; rules are then com-
bined together by means of a separate-and-conquer strategy
which allows to automatically partition examples in suitable
subsets. In general, Evolutionary Computation (EC) fits the
rules inference task, since it is able to handle examples which
are not fully consistent, as it might happen when examples
are provided by unskilled users. Indeed, many applications
of EC to rules inference have been proposed, some of them
concerning security and access control [4], [5], [6], [7].

In the paper, besides presenting our approach, we show the
results of a first experimental evaluation on a real Twitter
dataset, which shows the effectiveness of our method. The
remainder of this paper is organized as follows. Section II
surveys related work, whereas Section III presents the filtering
rules, the inference problem statement and the evolutionary
approach. Section IV discusses the results of the experimental
evaluation on a real Twitter dataset. Finally, Section V con-
cludes the paper.

II. RELATED WORK

Several approaches for reducing information overload in
Twitter have been so far presented. In general, all of them
propose recommendation systems that, according to different
strategies (e.g., collaboration [8], semantic techniques [9],
probabilistic models [10]), aim to recommend a selection of
tweets that better fits the user’s interests. All these solutions
are interesting, but do not consider users’ preferences. Rather
than a system dependent solution, where the filtering strategy
is decided by the service manager, we are interested to help the
user to avoid tweets that, according to his/her sensibility and
preferences, he/she might feel not relevant or inappropriate.
In this sense, the issues to be investigated w.r.t. those in
recommendation systems are different as these require to:
(i) identify a proper language for expressing filtering rules
in Twitter and (ii) design a tool able to infer filtering rules.

Additionally, tweets filtering has been investigated also to
cope with the problem of Twitter spam. Here, several methods
have been presented to detect spammers in Twitter (e.g., [11],
[12], [13], [14] just to mention some of them). However, these



proposals are mainly based on the characteristics of social
networks and do not consider users preferences on filtering
rules. To the best of our knowledge, a language for filtering
posts in social network has been proposed only for Facebook
in [15]. The proposed language makes users able to express
constraints on post contents, on the profile of the author of
the post, and on the relationship between the user specifying
the rule and the post author. With respect to this work, which
inspired our proposal of the filtering language, in this paper
we also address the problem of filtering rules suggestion,
acknowledging the difficulties the average users might have
in modeling their filtering needs.

III. OUR APPROACH

A. Language for filtering policies

We define the language for specifying filtering policies
basing on a simple model of Twitter posts. Let T be a statically
defined set of topics, i.e., possible subjects of discussion being
mentioned in a post. For instance, T may include “religion”,
“politics”, and so on: the actual set of topics we considered
in our experimentation is detailed in Section IV. Let LP be a
statically defined set of post labels, i.e., possible structural
properties of a post expressed as binary attributes. We set
LP = {hasMedia, hasHashtags, hasURLs}, which correspond,
respectively, to a post containing an image or video, one or
more hashtags, and one or more URLs. Let, finally, LA be
a statically defined set of author labels, i.e., possible binary
attributes of the author of a post. We set LA = {isVIP}, which
we set for Twitter users with 50 000 followers or more.

We associate each Twitter post p with a tuple
〈T p

P , T
p
A, L

p
P , L

p
A〉 where: T p

P ⊆ T is the set containing
all the topics mentioned in p; T p

A ⊆ T is the set containing
all the usual topics of the author of the post (see below);
Lp
P ⊆ LP is the set of the labels of p; and, finally, Lp

A ⊆ LA

is the set of the labels of the author of the post—all 4 sets
may be empty. Without loss of generality, we assume that
the usual topics of an author are those topics which are
mentioned in at least 1

3 of the posts of that author.
We assume that a user may specify the filtering policy for

his/her timeline. The policy describes the posts that cannot
appear on the timeline as a set of filtering rules, as follows.

We define a filtering rule r as a tuple
〈oTP

, T r
P , oTA

, T r
A, oLP

, Lr
P , oLA

, Lr
A〉, where T r

P ⊆ T ,
T r
A ⊆ T , Lr

P ⊆ LP , and Lr
P ⊆ LP are (possibly empty)

sets while oTP
, oTA

, oLP
, oLA

∈ {⊆, 6⊆} are set operators. A
post p is filtered by a rule r if and only if all the following
conditions are met: T r

P oTP
T p
P , T r

AoTA
T p
A, Lr

P oLP
Lp
P , and

Lr
AoLA

Lp
A. A filtering policy ρ is a set of rules. A post p is

filtered by a policy if p is filtered by at least one rule of the
policy.

As an example, a policy which filters all vulgar posts,
all the posts concerning politics not authored by users who
usually tweet about politics, and all the posts concerning sex

containing some media and not authored by a VIP user would
be defined as ρ = {r1, r2, r3} where:

r1 = 〈⊆ {vulgarity},⊆ ∅,⊆ ∅,⊆ ∅〉
r2 = 〈⊆ {politics}, 6⊆ {politics},⊆ ∅,⊆ ∅〉
r3 = 〈⊆ {sex},⊆ ∅,⊆ {hasMedia}, 6⊆ {isVIP}〉

For ease of reading, we write filtering rules by omitting the
comma between the set operator and the corresponding set.
Note that A ⊆ ∅ is satisfied for any set A.

B. Policy inference: problem statement

The language introduced in the previous section allows
defining rather complex filtering policies. On the other hand,
the high expressiveness of the language would require users to
have both knowledge of the language and the ability to model
their filtering needs in a way which can be described with
the language. A tool capable of synthesizing filtering policies
automatically, starting from (possibly few) examples of the
desired filtering behavior would be highly useful.

We specify the policy inference problem as follows. Given
a non-empty set P+ of posts which should be filtered and
a non-empty set P− of posts which should not be filtered, a
policy ρ? has to be generated such that: (a) all posts of P+ are
filtered by ρ?, (b) no post of P− is filtered by ρ?, and (c) ρ?

exhibits the minimal complexity. We quantify the complexity
of a policy with the number |ρ| of rules in the policy but more
elaborate complexity measures could be used, e.g., the sum of
the sizes of sets composing each rule.

We assess the quality of an inferred policy ρ on a pair
P test
+ ⊇ P+, P

test
− ⊇ P− of larger sets by means of False

Acceptance Rate (FAR), i.e., the ratio between the number
of posts of P test

+ which are not filtered by ρ and the size of
P test
+ ; and False Rejection Rate (FRR), i.e., the ratio between

the number of posts of P test
− which are filtered by ρ and the

size of P test
− .

C. Policy inference: evolutionary approach

We propose an approach based on a form of separate-
and-conquer strategy [16] and inspired by [7]. The approach
constructs a policy iteratively, one rule at a time. At each
iteration an evolutionary search constructs a rule with minimal
FAR and FRR on P+ and P−. Posts of P+ which are already
filtered by rules obtained so far are removed before executing
the next iteration.

1) Evolutionary search: The evolutionary search takes a
pair P+, P− of post sets as input and outputs a single rule
r?. A population of candidate rules (individuals) is iteratively
evolved by combining individuals with genetic operators until
a termination condition is met. Upon the last iteration, the best
individual r? is chosen as outcome of the search.

We designed genetic operators tailored to our application
domain, as follows. We designed a category of mutation
operators (r denotes the individual to be mutated while r′

denotes the mutated individual): (i) set operator flip, r′ is a
copy of r in which one among the 4 set operators chosen at
random is flipped; (ii) item addition, r′ is a copy of r in which,



in one among the 4 sets chosen at random, an item randomly
chosen from the corresponding domain is inserted; (iii) item
removal, r′ is a copy of r in which, in one among the 4 sets
chosen at random, an item randomly chosen is removed. We
designed a category of crossover operators (r1 and r2 denote
the individuals to which the operator is applied and r′ denotes
the resulting individual): (i) item donation, r′ is a copy of
r1 in which, in one among the 4 sets chosen at random, a
randomly-chosen item is inserted from the corresponding set
of r2; (ii) set operator donation, r′ is a copy of r1 in which
one among the 4 set operators chosen at random is set to the
corresponding set operator of r2.

Each individual r is associated with a counter cr, initially set
to 1 and with a fitness f(r) = 〈FRR(r),FAR(r), |r|〉, where
FRR(r) is the FRR of r on P−, FAR(r) is the FAR of r on P+,
and |r| is defined as the sum of the sizes of the sets defining
r, i.e., |r| = |T r

P | + |T r
A| + |Lr

P | + |Lr
A|. The fitness of an

individual measures the ability of the rule represented by the
individual to satisfy the requirements of the policy inference
problem described in the previous section.

Whenever two or more individuals are to be ranked based
on their fitness, we use a lexicographic criterion: the individual
with the lowest FRR comes first (i.e., is better); in case of tie,
the one with the lowest FAR comes first; in case of tie, the one
with smaller |r| comes first—in multi-objective evolutionary
optimization this ranking method is known as multi-layered
fitness [17]. The rationale for this design choice is twofold:
first, it is consistent with the policy composition procedure
(see next section); second, we consider the case in which a
“good” post is filtered worse than the case in which a “bad”
post is not filtered.

Initially, the population is composed of one rule for each
element in P+: for each post p = 〈T p

P , T
p
A, L

p
P , L

p
A〉 ∈ P+ an

individual r = 〈⊆ T p
P ,⊆ T p

A,⊆ Lp
P ,⊆

p
A〉 is constructed and

inserted into the population. The population is then evolved
through the following iterative procedure:

1) choose randomly whether to apply a mutation operator or
a crossover operator, respectively with probability pmutation
and 1− pmutation;

2) choose the specific operator among those in the selected
category, with uniform probability;

3) choose one (with mutation) or two (with crossover)
individuals from the population, using a tournament
selection, i.e., by selecting ntournament individuals in the
population at random and then picking the one with best
fitness;

4) apply the operator to the chosen individual(s) to obtain a
new individual r′: if r′ is present in the population, than
increment its counter cr′ by 1, otherwise, evaluate its
fitness f(r′) and insert it in the population with cr′ := 1;

5) if the population size exceeds npop, then repeatedly re-
move the individual with worst fitness until the population
size is less than or equal to npop.

The procedure is iterated until one of the following conditions
is satisfied: (a) the number of fitness evaluation exceeds neval
or (b) the counter cr? of the best individual exceeds nstop. The

rule in the final population with best fitness is then selected as
output of the evolutionary search. Note that pmutation, ntournament,
npop, neval, and nstop are parameters of the search.

2) Policy composition: The policy composition procedure
takes a pair P+, P− of post sets as input and outputs a full
filtering policy ρ. The procedure consists of a sequence of
evolutionary searches each one operating on a different input,
as follows.

Initially, we set ρ = ∅ and P ′+ = P+. Then, we execute the
following steps:

1) execute an evolutionary search on P ′+, P− and obtain a
rule r?;

2) if FRR(r?) = 0 on P− and FAR(r?) < 1 on P ′+, then
add r? to ρ, otherwise, terminate the procedure;

3) set P ′+ to the set of posts of P+ which are not filtered
by the current policy ρ;

4) if P ′+ 6= ∅, then restart from step 1, otherwise, terminate
the procedure.

The rationale of the procedure is attempting to generate, at
each iteration, one rule r? that filters at least one new post
of P+ which is not filtered by the current policy (second
condition of step 2). Since r? does not filter any post in P−
(first condition of step 2) and rules are or-ed when applying a
filtering policy, it follows that the resulting policy ρ will have:
(a) FRR(ρ) = 0, and (b) FAR which is lower or equal than the
one of its composing rules, i.e., ∀r ∈ ρ,FAR(ρ) ≤ FAR(r).

IV. EXPERIMENTAL EVALUATION

We aimed at both (a) verifying the ability of our proposed
language to express filtering policies of realistic complexity
and (b) experimentally assessing the effectiveness of our
inference method in generating a policy from examples of the
desired filtering behavior.

To this end, we collected a dataset of Twitter posts which
we processed in order to annotate each post as required in
our model, i.e., with topics and attributes. We first assembled
a large set of 2 156 344 Twitter posts authored by 11 254
different Twitter users, by means of an automatic procedure
exploiting the Twitter APIs. Then, we discarded non-English
posts and randomly selected a subset of the most active users,
obtaining a set composed of 27 089 posts authored by 3877
users. We applied the EgoCentric text classifier [18] to each of
the 27 089 posts in order to associate each post with its topics:
EgoCentric was specifically designed to operate on short text
and pre-configured to assign topics in the set T including
vulgarity, religion, politics, sex, work, alcohol, school, holiday,
and health. Finally, we selected a subset P composed of 1707
posts including all the 707 posts with at least one topic and
1000 randomly-selected posts with no topic.

Having constructed the dataset P , we defined 5 different fil-
tering scenarios. For each scenario, we manually built a target
policy ρ? representing specific filtering needs. The scenarios
differ in complexity of the corresponding target policies, which
range from |ρ?| = 1 to |ρ?| = 4. We applied each ρ? to
P obtaining sets P 0

+ and P 0
− that contain, respectively, posts

which are filtered and which are not filtered by ρ?.



On P+, P− On P test
+ , P test

−
# |ρ?| |P 0

+| |P 0
−| FRR FAR FRR FAR |ρ|

1 1 110 1597 0.00 0.00 0.00 0.00 1
2 1 9 1698 0.00 0.00 0.00 0.00 1
3 2 196 1511 0.00 0.00 0.00 0.00 3
4 3 166 1541 0.00 0.00 0.00 0.00 3
5 4 32 1675 0.00 0.00 0.00 0.06 2

Avg. 0.00 0.00 0.00 0.01

TABLE I: Results for l = 0.5. Each row corresponds to a
different filtering scenario.

We executed 3 experiments for each of the 5 scenarios by
varying the proportion of posts of P 0

+ and P 0
− used as exam-

ples. We set l ∈ {1, 0.5, 0.1}, where l = |P+|
|P 0

+|
= |P−|
|P 0
−|

. Each
experiment consisted of an execution of our inference method
on sets of examples P+, P− constructed by random sampling
followed by measuring FAR and FRR of the resulting policy
on P test

+ = P 0
+, P test

− = P 0
−. We repeated each experiment 3

times, with different random seeds, and averaged the results
of each experiment across the 3 repetitions. We executed
our inference method with pmutation = 0.5, ntournament = 3,
npop = 100, neval = 2500, and nstop = 100, as suggested
in [7]. Execution of each experiment took a few seconds on
commodity hardware.

Table I presents the results for l = 0.5. It can be seen
that the policy inferred by our method automatically is indeed
able to capture the examples (FAR and FRR are always equal
to 0 on sets P+, P−). Most importantly, results on testing
data demonstrate that the policy is able to generalize beyond
the examples available for inference: FAR in scenario 5 is
very small with all the other indexes corresponding to an
ideal filtering behavior. Data for l = 1, 0.1 allow drawing the
very same conclusions: FAR = FRR = 0 on the examples;
FRR = 0 on P test

− = P 0
−; average FAR on P test

+ is 0 and 0.08,
respectively.

V. CONCLUDING REMARKS AND FUTURE WORK

We have investigated the feasibility of an approach for
enabling users to define personalized strategies for filtering
Twitter posts, i.e., for defining which kinds of tweets should
not appear on their timeline according to their interests, pref-
erences and sensibility. This problem is becoming increasingly
relevant due to the huge amount of information that is shared
and disseminated on online social networking services.

We have proposed a language that, despite its simplicity,
allows defining rather complex filtering policies and a tool
capable of synthesizing filtering policies automatically, based
solely on examples of the desired filtering behavior. The ex-
perimental evaluation on a real Twitter dataset and 5 different
filtering scenarios has suggested that the proposed approach is
indeed able to generate filtering policies that are effective and
that generalize beyond the provided examples. Furthermore,
the time for inferring a policy is so short to allow devising an
implementation of the approach in the form of an interactive
tool, e.g., as a browser plugin.

Although our preliminary assessment is certainly to be
validated on a larger scale, we believe that our results are
highly promising.
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