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MOND dynamics consists of a modification of the acceleration with respect to the one provided by 
Newtonian mechanics. In this paper, we investigate whether it can be derived from a velocity-dependent 
deformation of the coordinates of the systems. The conclusion is that it cannot be derived this way 
because of the intrinsic non-local character in time of the MOND procedure. This is a feature pointed out 
some time ago already by Milgrom himself.
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1. Introduction

Astrophysics and cosmology have undergone great experimen-
tal advancements in the last forty years. A nice, recent review of 
all this can be found in ref. [1]. The theoretical explanations for 
several of these phenomena are still open like, for example, the 
anomalous rotation velocity of stars in galaxies, and of galaxies 
themselves in their cluster, the acceleration of the expansion of 
the universe, the inflationary scenario and even, perhaps, some 
possible anomalies in the solar system (for this last see the nice 
review [2]).

In this paper we will address the first of the open problems 
listed above for which essentially two approaches have been used 
by physicists so far. The first approach is the Dark Matter hypoth-
esis which postulates the existence of non-baryonic matter which 
does not interact with electromagnetic radiation while the second 
approach is based on the MOND hypothesis; in this paper we will 
concentrate on this last one.

The MOND hypothesis [3–5] is a modification of Newtonian 
mechanics which should apply to bodies moving with a slow ac-
celeration (less than the threshold value a0 ≈ 1.2 × 10−10 m s−2). 
This modification should describe the anomalous rotation of stars 
around the center of their galaxies which seems to occur at the 
same speed whatever is the distance of the stars from the center 
and the same for the rotation of galaxies around the center of their 
cluster [6]. Actually there are counter-examples and limitations to 
this last statement and also to what MOND achieves, see for ex-
ample [7,8]. In general MOND works if we limit its applicability to 
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the interior of galaxies and not to galaxies in their cluster or to 
larger scale phenomena.

On a larger scale, for example the rotation of galaxies inside 
their cluster or lensing or acceleration of the growth of primordial 
perturbations etc., a better explanation is given by the introduction 
of dark matter which accounts for many other anomalous phenom-
ena.

It is actually emerging that a complete description of all these 
phenomena seems to require a mixture of MOND dynamics and 
Dark Matter (see for example the recent paper [9]). Up to now a 
huge effort has been put in exploring the Dark Matter scenario 
while much less has been done for MOND. If at the end a mixture 
of them will emerge, we think it is worth to put now some more 
effort in studying the MOND hypothesis.

We know that many do not like to change the Newtonian laws 
of motion, like MOND actually does, but this is something that has 
been done before in physics many times. Look at the atoms: in or-
der to describe the motion of the electron around the proton in 
an hydrogen atom we had to abandon the Newtonian laws of mo-
tion and build a new theory called Quantum Mechanics (QM). Not 
only the laws of motion changed in QM with respect to Classi-
cal Mechanics (CM) but even the basic variables to describe the 
system had to be modified. Imagine if, in atomic physics, we had 
resisted from changing the laws of CM and decided instead to in-
troduce some Dark Matter between the electron and the nucleus. 
Maybe we could cook up a distribution of Dark Matter which 
would keep the electron in orbit. Image generations and genera-
tions of chemists forced to describe all the periodic table elements 
not via QM but using CM plus some Atomic Dark Matter.

There have been other changes in Newtonian mechanics (like, 
for example, special and general relativity whose centenary oc-
curred this year [10]) but let us stick here to the changes brought 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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in from QM. Passing from the earth–moon system which is cor-
rectly described by CM down to an atom (correctly described by 
QM) the jump is roughly of 20 orders of magnitude. In going 
upwards from the earth–moon system to the stars rotating in a 
galaxy the jump is also of 20 or more orders of magnitude, so we 
feel that also in this second jump we may have to change the New-
tonian laws of motion like we did in the first jump from CM to QM. 
This is what MOND’s theory does and we are going to describe it 
in section 2. MOND has been the first attempt in this direction. It 
may need several improvements but it is worth to be studied fur-
ther and we do that in section 3. We may even have to change the 
basic variables with whom we describe the systems like it hap-
pens in QM and some ideas on this aspect will be presented in the 
conclusions.

2. Review of the MOND dynamics

The basic law of MOND dynamics, like in Newton’s mechanics, 
is the one which gives the acceleration a that a body of mass m
feels under a force F (we will stick to one dimensional motion for 
simplicity). While in Newtonian mechanics this law is:

F = ma, (1)

in MOND dynamics the equation above is deformed into the fol-
lowing one:

F = mμ(
a

a0
)a, (2)

where

μ(
a

a0
) ≡ (1 + a0

a
)−1. (3)

a0 is a fixed and very small acceleration of the order given be-
fore. The function μ() is called interpolating function because for 
a0 → 0 it goes to 1 and reproduces the usual Newton’s law. There 
are other interpolating functions with this feature and they have 
been used in the literature [4,5]. We will stick to the one above.

Eq. (2) cannot be considered as a deformation of the mass be-
cause we will see later on that we use the same mass m in the 
centrifugal force. So the μ has to be considered as a deformation 
of the acceleration:

a −→ μ(
a

a0
).

The use of this deformed acceleration turns out to be very use-
ful when we study the rotation of the stars around the center of 
their galaxy. This motion has a very small acceleration: a � a0. In 
this limit eq. (3) gives:

μ(
a

a0
) = a

a0
,

and MOND’s law (2) becomes

F = m
a2

a0
. (4)

Applying this formula when F is the gravitational force gener-
ated by a mass M and indicating with G the Newton’s constant, 
we get:

m
a2

a0
= GmM

r2

or equivalently:

a =
√

GMa0
. (5)
r

The expression of the centripetal acceleration of a body like a 
star rotating with velocity v around the center of its galaxy at a 
distance r is:

a = v2

r
(6)

if we put (5) equal to (6), we get

v = (GMa0)
1
4 .

From this expression we see that the velocity is the same at 
every distance from the center. This is what really happens in na-
ture [6] and for which people have come up with the idea of dark 
matter.

The MOND approach has unfortunately several problems like 
the non-conservation of momentum [11]. This problem could be 
overcome if one restricts the modified acceleration to be only the 
gravitational one and if the associated Poisson equation is also 
modified [12]. One could then say that at those scales there is 
a modification of Newtonian gravity and nothing else. This sec-
ond approach has been christened by Milgrom as Modified-Gravity 
MOND (MG-MOND) while the original one, in which the acceler-
ations of all forces were modified, it was called Modified Inertia 
MOND (MI-MOND) [13]. In this paper we will stick to the MI-
MOND. The fact that the classical momentum is not conserved is 
something that has happened before in passing from a theory to 
a new one for example when we passed from Classical Mechan-
ics to Quantum Mechanics. In this last theory the analog of the 
“momentum” [14] associated to a wave-function ψ(q) is given by:

P ≡ −ih̄
∂ψ

∂q
= Pcl + O (h̄). (7)

This quantum P is conserved but it is different from the classical 
Pcl because there are O (h̄) corrections. So the same may happen 
in MOND where maybe the conserved momentum could be some-
thing different than the old classical one. In ref. [15] we proved 
that quantum mechanics could be obtained from classical mechan-
ics via a deformation of its variables and this most probably is at 
the origin of the fact that the momenta in the two theories are 
different. Maybe we could try the same for the MI-MOND theory, 
that means check if we can obtain it via a deformation of the ba-
sic variables of classical mechanics. That is what we will try in the 
next section.

3. Configuration-space analysis

We have seen so far that MOND dynamics is a deformation of 
the acceleration. It seems natural to expect that this effect is in-
duced by a deformation of the configuration-space of the system. 
This is not only natural but, as we said before, it already happened 
when we had to do the first modification of classical mechanics 
to pass to quantum mechanics. In fact it was proved in ref. [15]
that going from CM to QM or vice versa can be understood as a 
change of variables once the two theories are formulated via path-
integrals. In that formalism we proved that the two theories have 
the same functional weight but what changes are the variables 
over which we integrate in the path-integral. For QM we inte-
grate over trajectories in the configuration space q(t) while in CM 
we integrate over some different variable indicated by Q (t) which 
are deformation of q(t). This deformation is a whole multiplet and 
includes, besides q, the Jacobi-field variables, their symplectic du-
als and the response-field variables (for details see refs. [17,15]). 
Looking at quantization as a deformation of the basic variables 
is a modern version of a very old and rigorous method of quan-
tization called geometric quantization (for a review see ref. [16]). 
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Analogously, may it be that in going now from CM to the MOND 
theory we have to deform Q (t) to a new variable Q̃ (t)?. If so then 
we summarize the whole chain from QM to the MOND theory as 
follows: starting with QM and its variables q(t) we made a defor-
mation and passed to CM and its variables Q (t) [15] and next we 
get to the MOND theory via a further deformation which brings us 
to the Q̃ (t) like in the picture below:

q(t) −→ Q (t) −→ Q̃ (t). (8)

Somehow it is like if, going to larger and larger scales, we had 
to progressively deform the configurational variables we use.

For the moment let us limit ourself to the q(t) component of 
the Q (t) variables of CM (for details see ref. [15]) and let us see 
if for the MOND theory we can find a q̃(t) whose acceleration is 
equal to the MOND acceleration am which, according to eq. (4), is:

am ≡ (
d2q(t)

dt2
)2(

1

ao
). (9)

So we would like to find a new configuration-space variable, ̃q(t), 
such that:

d q̃(t)

dt2
= (

d2q(t)

dt2
)2(

1

ao
). (10)

Let us indicate the relation between q(t) and ̃q(t) as follows:

q̃ = F(q, q̇) (11)

where F is a function which should be determined using eq. (10). 
We have chosen the function F to depend not only on q but also 
on q̇ otherwise, as it will be clear from the calculations which fol-
low, there will be no chance of satisfying eq. (10). Let us now use 
(11) to derive the L.H.S. of (10):

d2̃q(t)

dt2
= ∂2F

∂q2
q̇2 + 2

∂2F
∂q̇∂q

q̇q̈ +

+ ∂2F
∂q̇∂q̇

(q̈)2 + ∂2F
∂q̇∂q̈

q̈
...
q +

+ ∂F
∂q

q̈ + ∂F
∂q̇

...
q . (12)

Comparing the R.H.S of eq. (12) with the R.H.S of eq. (10) we 
see that only the third term in the R.H.S of (12) has a form similar 
to the R.H.S. of eq. (10) and from this we get:

∂2F
∂q̇∂q̇

= 1

a0
. (13)

Looking at this equation it is clear why we had to choose an F
depending also on q̇.

If we start “integrating” eq. (13) we get:

∂F
∂q̇

= 1

a0
q̇ + G(q) (14)

where G is a function to be determined. The remaining terms on 
the R.H.S of eq. (12), besides the third one, must sum up to zero 
and using in them the relation (14), we get:

∂2G
∂q2

q̇2 + ∂G
∂q

q̈ + [( 1

a0
)q̇ + G]...q = 0. (15)

If we consider this as a differential equation for G , the fact that 
as “coefficients” in this equation we have terms depending on q̇, q̈, ...
q , implies that as a general solution for G we will get a function 
that will depend, besides q, also on q̇, q̈, 

...
q . But this is contradictory 

because in (14) the G was dependent only on q. So we conclude 
that there is no solution to our equation (11), i.e. there is no man-
ner to build a ̃q(t) from a q(t) which is the thing we wanted to do 
in (11).

The reader may think that by choosing a more general F
in (11), depending also on q̈ and 

...
q , things could be fixed up, but 

this is not true. In fact it turns out that the analog of eq. (15)
would then depend also on 

....
q implying that F would have to de-

pend also on this variable leading in this way to a contradiction.
The reader may think that another way out could be to have 

no G at all in equation (14). In this way many terms in (12) would 
disappear but then, besides the third term, we would be left with 
the last one that is ∂F

q̇

...
q which is not zero and so the problem is 

not solved.
Another attempt could be based on giving more freedom to our 

equations by letting even the time t change and not just q(t). We 
would then have trajectories indicated by ̃q(t′) where t′ is:

t′ = E(t) (16)

with E a free function to be determined together with the func-
tion F from the analog of eq. (10). It is not difficult to prove that 
even in this case we would end up in some contradiction like with 
eq. (15). Let us start by simplifying the calculations via an F de-
pending only on q̇. The equation we get as analog of (12) is:

d2̃q(t′)
dt′2 = ∂2F

∂q̇∂q̇

[
1

E ′
−E ′′

(E ′)2

dq

dt
+

+ 1

(E ′)2

d2q

dt2

]2

+ ∂F
∂q̇

[
d3q(t′)

dt′3

]
. (17)

Remember: we wanted that the expression above be equal to:

1

a0

(d2q

dt2

)2
(18)

and this implies from (17) that:

∂2F
∂q̇∂q̇

1

[E ′]4
= 1

a0
(19)

while all the other terms on the R.H.D. of (17) must sum-up to 
zero, i.e.:

∂2F
∂q̇∂q̇

1

E ′6 (E ′′)2(
dq

dt
)2 − 2

∂2F
∂q̇∂q̇

E ′′

E ′5 q̇q̈ + ∂F
∂q̇

d3q(t′)
dt′3 = 0. (20)

The coefficients of this equation depend not only on q̇ but also on 
q̈ and 

...
q and as a consequence also its solution F will depend on 

these higher derivatives of q while we had made the choice at the 
beginning of having an F depending only on q̇. We could think of 
playing with the E in order to cancel the first two terms of the 
equation (20), but there is no way to eliminate the third term. So 
this is the contradiction which cannot be removed even with the 
presence of the re-parametrization function E .

We feel that what we have derived has a lot to do with the 
“non-locality” in the time “t” which Milgrom [18] discovered as a 
peculiar feature of the MI-MOND. This non-locality implies the de-
pendence of the transformations on all the higher order derivatives 
of q. This is the same we would be forced to do in our case in or-
der to have a consistent solution to our equations. To discover that 
non-locality Milgrom instead had to impose that the MI-MOND 
equation should be derivable from a Galilei invariant action. For 
us instead the request was that the MOND configuration variables 
should be derivable from deformation of the Newtonian ones. Both 
approaches point in the same direction: the non-locality in “t” in-
trinsic in the MI-MOND theory.
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4. Conclusions and outlook

The conclusions we can draw from the calculations of the pre-
vious sections on the MI-MOND theory seem rather depressing but 
there may be a way out. As we said in the Introduction, in ref. [15]
we showed that the true important coordinates of CM seem to be a 
set of variables whose configurational part we indicated with Q (t)
in order to distinguish it from q(t). The Q (t) is a full multiplet 
which contains not only the q(t) but also the Jacobi fields, which 
we indicated with the symbol c(t), its symplectic dual, c̄(t), and 
what is known in statistical mechanics as the response field λ(t). 
For more details on these variables see ref. [17].

We indicated in formula (8) that it is this Q (t) which should 
be deformed into a Q̃ (t) in order to go into the MI-MOND theory. 
This would imply that the transformation of the first component 
of Q̃ (t) which is ̃q(t) would not be anymore of the form (11) but 
would have in F also a dependence on the other components of 
Q that we indicated above with c, c̄ and λ. This more general F
may lead to a solution of our problem.

The reader may wonder why we insist so much in deforming 
the Q . These variables were studied in ref. [15] from a mathe-
matical point of view but we feel they have also a very important 
physical meaning which is now under investigation. What seems 
to emerge is that Q , together with its momenta P , do not repre-
sent points in phase-space like q, p but blocks of phase-space of 
dimension 	 h̄. These blocks are the true degrees of freedom of 
CM because CM cannot handle objects in phase-space which have 
a volume less than h̄. Applications of this idea have been done 
in ref. [19]. Being these the true degrees of freedom of CM they 
are the correct objects which had to be deformed to get to the 
MI-MOND theory. Most probably we were not getting the correct 
MI-MOND variables because we did not start from the true-degrees 
of freedom of CM.

In ref. [15] we described a mathematical procedure to go from 
QM (whose path-integral variables were indicated with q(t), p(t)) 
to CM whose path-integral variables were Q (t), P (t). As these last 
seem to be blocks of phase space [19], the original mathematical 
steps [15] to go from QM to CM can most probably be rewritten in 
physical terms as a “renormalization-group-like” procedure where 
the Q(t) are the analog of the block-spin variables in the renormal-
ization process. This procedure requires the construction of what 
are known as the β and γ functions (for a review see for exam-
ple [20]). In ref. [15] we basically proved (in a different language) 
that the β-function is identically zero. This is related to the fact 
that the masses and the couplings of the theory remain invariant, 
i.e. they do not change in going from QM to CM. In fact in ref. [15]
we proved that the path-integrals in CM and QM have the same 
weight but with different fields. This actually implies that what is 
different from zero is the γ -function. In fact the γ -function tells 
us how the field changes under this renormalization group. Our 
field changes from q(t) in QM to Q (t) in CM so our γ -function 
must be different from zero.

We feel that QM must be an ultraviolet fixed point of this 
γ -function because up to now no violations to the laws of QM 
have been found so we should consider it the correct theory at the 
smallest possible scale (in phase-space) and this is equivalent to 
saying that QM is an ultraviolet stable fixed point. For CM instead 
there are many indications (like for example the rotation curves of 
stars) that it may not be the correct theory at the largest possi-
ble scale, so most probably it is not the infrared stable fixed point 
of the γ function that we mentioned before. This infrared stable 
fixed point will be given by the MOND theory (or some modifica-
tions of it). We say “some modifications of it” because we know 
that the MOND theory does not work well at scales larger than a 
galaxy.
Let us summarize: we start from the variables q(t) of QM on 
the ultraviolet fixed point and then proceed with the block-spin 
procedure to the variables Q (t) of CM. By continuing with the 
block-spin procedure we should arrive at the infrared stable fixed 
point which is MI-MOND (or some modification of it) with its de-
grees of freedom Q̃ (t). From this renormalization-group procedure 
it is clear why we say that, to get to the MI-MOND theory, we have 
to deform the whole Q (t) and not just its component q(t) as we 
did in this paper. They are in fact the Q (t) the variables that we 
get in CM via the renormalization-group and from these we have 
to start to continue with the same procedure in order to get to the 
infrared stable fixed point, that is the MI-MOND (or some modi-
fication of it). As the Q of CM are blocks of phase-space 	 h̄ we 
envision that the MOND- Q̃ will be huge blocks of phase space like 
those of a star or a galaxy. To understand how to deform the Q
we need to know the γ function and at the moment we have no 
idea on how to get it, but it must be a derivation as simple as the 
derivation of the β function that we implicitly performed (without 
realizing) in [15] and proved to be identically zero.

In this picture CM is somehow in between QM and MI-MOND 
theory and it is not the infrared stable fixed point of the γ func-
tion. If so then CM should be unstable under the renormalization 
group flow. Actually It seems to be unstable under the change 
of some extra parameters [15] entering Q (t), parameters which 
are formally two partners of time but whose product has the di-
mension of the inverse of an action. These parameters were never 
before introduced in CM and that is the reason nobody realized 
that CM was unstable. This whole analysis is also bringing to light 
the special role that the action plays in physics. We know that 
when the action gets very small, of the order of h̄, we have to 
change the laws of motion from those of CM to the one of QM. 
The study we are performing on the γ function indicates that also 
for very large value of the action we may have to change the laws 
of motion and pass from CM to the MI-MOND (or some modifica-
tion of it). The very large action we talk about are those of a galaxy 
or a cluster of galaxies which have some of the largest value of the 
action among the objects present in the universe.

Another project worth pursuing is the following one. The MG-
MOND [12,13] theory does not present the non-locality problems 
of the MI-MOND besides being a theory where all conservation 
laws are respected. So it would be nice to see if it can be obtained 
via a deformation of the standard Poisson equation. Basically the 
MG-MOND [12] postulates a different Poisson equation with re-
spect to the Newtonian one relating the gravitational potential 
U (x) to the matter density ρ(x). It has the form:

∇ × {
μ(

‖∇U‖
a0

)∇U (x)
} = 4πGρ(x). (21)

G is Newton gravitational constant, μ(·) is an interpolating 
function like in the MI-MOND theory and when μ = 1 we get the 
Poisson equation of the Newton Theory. Eq. (21) is a non-linear 
equation which gives rise to very peculiar phenomena in physics. 
The most interesting one is the so called “External Field Effect” or 
(EFE) [12]. It basically says that, differently than in Newtonian or 
Einstein gravity, an object at a distance r from a center O does not 
only feel the gravitational force created by the matter inside the 
sphere of radius r with center in O but also the external gravita-
tional field created by other objects lying outside the sphere. For 
example for a planet of the solar system it would feel also the ex-
ternal field created by the galaxy. Note that this effect would take 
place on objects, like the solar planets, which have an acceleration 
which is not small with respect to a0 of the MOND laws. There 
is an extensive literature on this topic [21]. The EFE effect is in 
principle also present in the MI-MOND but, due to the non-local 
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features of this formulation, it is more difficult to calculate it and 
in some model it could even be brought to zero [13].

Using MG-MOND an effect of EFE on the internal planets of the 
solar system would manifest itself for example with a retrograde 
motion of the perihelion of Saturn and extensive numerical calcu-
lations of the modified Poisson equation have been performed [22]. 
From the latest data on Saturn the effect is unfortunately very very 
small. Where instead the effect should not be small is on the Oort 
cloud and some very interesting work has been done [23]. In par-
ticular it turns out that the orbits of objects in the Oort cloud 
would be quite deformed.

We should remind the reader that there are also other MOND-
like effects [24]. In general many of these MOND-like effects could 
be similar to those generated by a distant planet [25] and a lot of 
interesting work is being performed at the moment on this issue.

As most of the work on these MG-MOND effects is numerical, it 
would be nice to find the analytic deformation transformation that 
bring the modified Poisson equation into the standard Newtonian 
one. All the physical effects that we mentioned have to be buried 
into this transformation.

This project and the previous one presented in these conclu-
sions are under investigations and we hope to come back soon 
with more details.
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