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Abstract

We continue our study initiated in [4] of the interaction of a ground state with a potential
considering here a class of trapping potentials. We track the precise asymptotic behavior of
the solution if the interaction is weak, either because the ground state moves away from the
potential or is very fast.

1 Introduction

Consider the nonlinear Schrödinger equation

iut = −∆u+ β(|u|2)u = 0, (t, x) ∈ R× R3. (1.1)

We assume (1.1) posses a family of orbitally stable ground states eiωtϕω(x) parametrized by ω in
some open interval O ⊂ R+. By the translation and Galilean symmetry, (1.1) has a family of
traveling wave solutions

e
i
2v·x−

i
4 |v|

2t+itω+iγ0ϕω(x− vt− y0), (1.2)

parametrized by v, y0 ∈ R3 and γ0 ∈ R. As in [4], we study the the dynamics of solutions of
nonlinear Schrödinger equation with a rapidly decreasing potential

iut = −∆u+ V (x)u+ β(|u|2)u , (t, x) ∈ R× R3, (1.3)

having initial data near (1.2) with t = 0 and |v| ≫ 1 or |y0| ≫ 1 (see Theorem 1.4 for the precise
statement). Since V is rapidly decreasing and we are assuming that the traveling wave is very fast
or far away, we can expect for the solution behavior similar to the traveling wave (1.2). Indeed in
[4], under the assumption that −∆+ V has no eigenvalue, we proved that the solution decomposes
into the traveling wave and a scattering wave ei∆tη+. In this paper, we consider the case −∆+ V
has exactly one eigenvalue e0 < 0. It is well-known that in this case (1.3) posses a family of small
nonlinear bound states Qw ∼ wϕ0 where ϕ0 is the eigenfunction associated to e0 and w ∈ C, |w| ≪ 1
satisfies ẇ = −iEww for some Ew ∼ e0 ∈ R (see Proposition 1.1 below). It is also known that small
solutions of (1.3) decompose into Qw and a scattering wave [10]. Therefore, we cannot expect that
the solution with the initial data near the traveling wave decomposes into the traveling wave and
the scattering solution. However, as naturally expected, in this paper we show that the solution
decomposes into the traveling wave, scattering wave and the small nonlinear bound states Qw.

We now start to state our result in rigorous manner. For the linear potential V and the
nonlinearity β, we assume the following.
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(H1) We assume V ∈ S(R3,R) to be a fixed Schwartz function and the set of eigenvalues σp(−∆+V )
is formed by exactly one element: σp(−∆+ V ) = {e0} with e0 < 0. Further, we assume 0 is
not a resonance (that is, if (−∆ + V )u = 0 with u ∈ C∞ and |u(x)| ≤ C|x|−1 for a fixed C,
then u = 0).

(H2) β(0) = 0, β ∈ C∞(R,R).

(H3) There exists a p ∈ (1, 5) such that for every k ≥ 0 there is a fixed Ck with∣∣∣∣ dkdvk β(v2)
∣∣∣∣ ≤ Ck|v|p−k−1 if |v| ≥ 1.

It is well known that under the above assumptions, (1.3) is locally wellposed.
Let ϕ0 ∈ ker(−∆ + V − e0) be everywhere positive with ∥ϕ0∥L2 = 1. For δ > 0 we set

BC(δ) = {w ∈ C : |w| < δ}. Recall that (1.3) admits small nonlinear bound states, that is the
solutions of the form eiEtQ(x) with E ∈ R and Q(x) > 0. Indeed, we have the following well known
result, see [5].

Proposition 1.1. There exist a constant a0 > 0 and Qw ∈ C∞(BC(a0),H
2) s.t.

(−∆+ V )Qw + β(|Qw|2)Qw = EwQw,

Qw = wϕ0 + qw, ⟨qw, ϕ0⟩ = 0,
(1.4)

where ⟨·, ·⟩ is defined in (1.19) below. We have Ew ∈ C∞(BC(a0),R) with |Ew−e0| ≤ C|w|2, and we
have Qw ∈ C∞(BC(a0),Σk) and ∥qw∥Σk

≤ Ck|w|3 (for Σk see (1.20) below) for any k. Furthermore,
we have the identity

iQw = −w2∂w1Q+ w1∂w2Q where w1 = Rew and w2 = Imw. (1.5)

(1.5) is an immediate consequence of Qw = eiθQr, where w1 = r cos θ and w2 = r sin θ.
We set the continuous modes space as follows:

Hc[w] :=
{
η ∈ L2; ⟨iη, ∂w1Qw⟩ = ⟨iη, ∂w2Qw⟩ = 0

}
. (1.6)

A pair (p, q) is admissible when

2/p+ 3/q = 3/2 , 6 ≥ q ≥ 2 , p ≥ 2. (1.7)

It is shown by [10] that all small solutions decompose into nonlinear bound states given in
Proposition 1.1 and scattering waves (for an analogous result with weaker hypotheses on the spec-
trum see [5]).

Theorem 1.2. There exist δ > 0 and C > 0 such that for ∥u(0)∥H1 < δ then the solution u(t) of
(1.3) can be written uniquely for all times as

u(t) = Qw(t) + η(t) with η(t) ∈ Hc[w(t)] (1.8)

with for all admissible pairs (p, q)

∥w∥L∞
t (R+) + ∥η∥Lp

t (R+,W 1,q
x ) ≤ C∥u(0)∥H1 ,

∥ẇ + iEww∥L∞
t (R+)∩L1

t (R+) ≤ C∥u(0)∥2H1 .
(1.9)
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Moreover, there exist w+ ∈ C with |w+ − w(0)| ≤ C∥u(0)∥2H1 and η+ ∈ H1 with ∥η+∥H1 ≤
C∥u(0)∥H1 , such that

lim
t→+∞

∥η(t, x)− eit∆η+(x)∥H1
x
= 0,

lim
t→+∞

w(t)ei
∫ t
0
Ew(s)ds = w+.

(1.10)

We are interested to a different class of solutions of (1.3). We think of V (x)u as a perturbation
of (1.1). We assume that (1.1) has a family of orbitally stable ground states eiωtϕω(x). By orbital
stability, we mean that for any small ϵ > 0, there exists δ > 0 such that if ∥ϕ− u0∥H1 < δ, then the
solution u of (1.1) with u(0) = u0 exists globally in time and satisfies

sup
t>0

inf
s∈R,y∈R3

∥eisϕ(· − y)− u(t)∥H1 < ϵ.

Specifically we assume what follows, which implies by [20], the existence of orbital stability of the
ground states of (1.1).

(H4) There exists an open interval O ⊂ R+ such that

−∆u+ ωu+ β(|u|2)u = 0 for x ∈ R3, (1.11)

admits a positive radial solutions ϕω for all ω ∈ O. Furthermore the map ω 7→ ϕω is in
C∞(O,Σn) for any n ∈ N.

Remark 1.3. It suffices to assume that the map ω 7→ ϕω is in C1(O,H2). Indeed this implies that
ω 7→ ϕω is in C∞(O,Σn) for any n ∈ N. See Appendix B.

(H5) We have d
dω∥ϕω∥

2
L2(R3) > 0 for ω ∈ O.

(H6) Let L+ = −∆ + ω + β(ϕ2ω) + 2β′(ϕ2ω)ϕ
2
ω be the operator whose domain is H2(R3). Then

we assume that L+ has exactly one negative eigenvalue and the kernel is spanned by ∂xjϕω
(j=1,2,3).

We add to the previous hypotheses few more about the linearized operator Hω defined in (2.38).

(H7) ∃ n and 0 < e1(ω) ≤ e2(ω) ≤ ... ≤ en(ω), s.t. σp(Hω) consists of±ej(ω) and 0 for j = 1, · · · ,n.
We assume 0 < Njej(ω) < ω < (Nj + 1)ej(ω) with Nj ∈ N. We set N = N1. Here each
eigenvalue is repeated a number of times equal to its multiplicity. Multiplicities and n are
constant in ω.

(H8) There is no multi index µ ∈ Zn with |µ| := |µ1|+ ...+ |µk| ≤ 2N1 + 3 such that µ · e(ω) = ω,
where e(ω) = (e1(ω), · · · , en(ω)).

(H9) For ej1(ω) < ... < ejk(ω) and µ ∈ Zk s.t. |µ| ≤ 2N1 + 3, then we have

µ1ej1(ω) + · · ·+ µkejk(ω) = 0 ⇐⇒ µ = 0 .

(H10) Hω has no other eigenvalues except for 0 and the ±ej(ω). The points ±ω are not resonances.
For the definition of resonance, see Sect.3 [2].

(H11) The Fermi golden rule Hypothesis (H11) in Sect. 6, see (6.18), holds.
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We are interested to study how a solution u(t) of (1.3) initially close to a ground state of (1.1)
which moves at a large speed is affected by the potential V . Notice that u(t) at no time has small
H1 norm and so is not covered by Theorem 1.2. Unsurprisingly, in view of [4, 1, 3], we prove that
the ground state survives the impact, but that as t→ ∞ the solution u(t) approaches the orbit of a
ground state of (1.1), up to a certain amount of radiation which satisfies Strichartz estimates, a term
localized in spacetime, and a small amount of energy trapped by the Schrödinger operator −∆+V ,
which behaves like in Theorem 1.2. The difference with [4] is that in [4] we had σp(−∆ + V ) = ∅
while here σp(−∆+ V ) = {e0}.

If the initial ground state (1.2) has velocity v ∈ R3, by setting u(t, x) := e−
i
2v·x−

i
4 t|v|

2

u(t, x+
vt+ y0) we can equivalently assume that the ground state has initial velocity 0 and rewrite (1.3) as

iu̇ = −∆u+ V (x+ vt+ y0)u+ β(|u|2)u , u(0, x) = u0(x). (1.12)

Solutions of the (1.12) starting close to a positive radial solution of (1.11), for some time can be
written as

u(t, x) = ei(
1
2v(t)·x+ϑ(t))ϕω(t)(x−D(t))

+ e−
i
2v·x−

i
4 t|v|

2

Qw(t)(x+ tv + y0) + r(t, x).
(1.13)

Theorem 1.4. Let ω1 ∈ O and ϕω1(x) a ground state of (1.1). Assume (H1)–(H11) and assume
furthermore that u0 ∈ H1(R3). Fix M0 > 1 and v, y0 ∈ R3 with |v| > M0. Fix a ε1 > 0. We set

ϵ := inf
θ∈R

∥u0 − eiθϕω1(·)∥H1 + sup
distS2 (

−→e , v
|v| )≤ε1

∫ ∞

0

(1 + ||v|−→e t+ y0|2)−1dt. (1.14)

Then, there exist an ε0 = ε0(M0, ω1, ε1) > 0 and a C > 0 s.t. if u(t, x) is a solution of (1.12) with

ϵ < ε0, (1.15)

there exist ω+ ∈ O , w+ ∈ C, v+ ∈ R3 , θ ∈ C1(R+;R), y ∈ C1(R+;R3) , w ∈ C1(R+;C) and
h+ ∈ H1 with ∥h+∥H1 + |ω+ − ω1|+ |v+|+ |w+| ≤ Cϵ such that

lim
t↗∞

∥u(t, x)− eiθ(t)+
i
2 v+·xϕω+(x− y(t))

− e−
i
2v·x−

i
4 t|v|

2

Qw(t)(x+ tv + y0)− eit∆h+(x)∥H1
x
= 0,

lim
t↗∞

w(t)ei
∫ t
0
Ew(s)ds = w+.

(1.16)

Furthermore, there is a representation (1.13) valid for all t ≥ 0 such that we have r(t, x) = A(t, x)+
r̃(t, x) such that A(t, ·) ∈ S(R3,C), |A(t, x)| ≤ C(t) with limt→+∞ C(t) = 0 and such that for any
admissible pair (p, q) we have

∥r̃∥Lp
t (R+,W 1,q

x ) ≤ Cϵ. (1.17)

Theorem 1.4 extends to the case of potentials with 1 eigenvalue the result in [4]. Thanks to [5],
which extends Theorem 1.2, we could have considered generic potentials with very few restrictions
on the eigenvalues, but we chose to focus on this case study.

In the literature there are several results concerning the interaction between a linear potential
and a fast ground state or between solitons, see the references in [4]. Here we reference [11, 12, 7],
which consider in the 1–D case a fast soliton of the cubic NLS interacting with V (x) = qδ0(x), q ∈ R
and δ0 the delta function. If q > 0, −∆ + qδ0 has no eigenvalues and if q < 0 it has exactly one
eigenvalue. So, the situation is somewhat similar to our result in [4] and this paper. However in the
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case V (x) = qδ0(x), even though the interaction is fast, it is strong enough to produce a substantial
modification of the soliton, which splits into two distinct solitons, one transmitted and the other
reflected. In particular this means that in some obvious respect the situation is easier in our case
than in [11, 12, 7], whose results, though, are less definite. In particular [11, 12] for q > 0 and [7]
for q < 0 give some control of the solution for long but finite times. In our case, the interaction is
weak, there is no splitting of ground states but we give a very detailed description of the solution for
all times. It is clear that all these results, for different reasons, are very partial and that a general
theory of the interaction between solitons and potentials is an interesting and largely not understood
problem.

Our present paper and [4] are also related to the interaction between distinct solitons. As
mentioned above, using the theory in [5] we could produce a general result on the weak interaction
of a soliton with a generic potential. It is plausible that this analysis could be extended to weak
interactions of pairs or of more general families of solitons. This would yield for families of weakly
interacting and generic solitons a result more detailed than those in [14]. However, such a result
would be very far from providing a sufficiently general theory of multi–solitons for non integrable
systems, which remains unknown. Since currently multi–solitons are well understood in the case of
integrable systems thanks to inverse scattering transform techniques, we think that the approach
with the best chance to produce for some non integrable cases a setup to describe general solutions of
a focusing NLS involves some combined use of inverse scattering and perturbation arguments, in the
spirit of Deift and Zhou [8]. Obviously, the main issue is how to account in the non integrable case for
the destruction of solitons or other patterns and for the appearance of new ones. A number of papers,
like [13, 15, 16] and others quoted therein, contain insightful descriptions of specific non–integrable
phenomena, but they don’t provide yet a general theory for the non integrable setting.

All of this is completely beyond what we do in the present paper, in fact quite beyond of what
exists in the literature, which is very fragmented and partial. Even results like Theorem 1.4 here or
like in [4] require a quite sophisticated framework, which is important to perfect as a preparation
for what will be a more general theory in the future. Notice that the solitons considered here are
generic, while those in [17, 19] obey very restrictive hypotheses.

Our approach for Theorem 1.4 is the same of [4]. We represent solutions u(t) of (1.12) as a sum
of a moving ground state of (1.1) and a small energy trapped solution of (1.12) in a way similar to
the ansatz in [14, 17].

Thanks to the weakness of the interaction with the potential, we are able to show that this
representation is preserved for all times and that there is a separation of moving ground state and of
trapped energy. Furthermore, we prove that the stabilization processes around the energy trapped
by the potential, described in Theorem 1.2, and around the ground state, described in [3, 4], continue
to hold.

In [4], in the absence of trapped energy, we described u(t) in terms of the local analysis of the
NLS around solitons developed in the series [1, 2, 3]. The main two novelties in [4] consisted in the
fact that the coordinate changes and the effective Hamiltonian in [4] depend on the time variable
and that proof of the dispersion of continuous modes require the theory of charge transfer models
as in [18] instead of the simpler dispersive analysis of [2, 3].

These features of [4] are present here. The additional complication is that, along with a part of
u(t) which has the same description as in [4], u(t) has also a term representing the energy trapped by
the potential. In this paper we will describe in detail in Sect. 2 the decomposition and coordinates
representation of u(t). In the following sections we will focus mainly on the coupling terms between
trapped energy and the rest of u(t), often referring to [4]. In the proof we will assume at first that
additionally

u0 ∈ Σ2, (1.18)
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see right below (1.20). Notice that in [4] it is assumed that u0 ∈ Σn for sufficiently large n, but
inspection of the proof shows easily that (1.18) suffices. We will then show that in fact the result
extends rather easily to u0 ∈ H1.

We will make extensive use of notation and results in [1, 4]. We refer to [4] for a more extended
discussion to the problem and for more references and we end the introduction with some notation.

Given two Banach spaces X and Y we denote by B(X,Y ) the space of bounded linear operators
from X to Y . For x ∈ X and ε > 0, we set

BX(x, ε) := {x′ ∈ X | ∥x− x′∥X < ε}.

We set ⟨x⟩ = (1 + |x|2) 1
2 and

⟨f, g⟩ = Re

∫
R3

f(x)g(x)dx for f, g : R3 → C . (1.19)

For any n ≥ 1 and for K = R,C we consider the the Banach space Σn = Σn(R3,K2) defined by

∥u∥2Σn
:=

∑
|α|≤n

(∥xαu∥2L2(R3) + ∥∂αx u∥2L2(R3)) <∞. (1.20)

We set Σ0 = L2(R3,K2). Equivalently we can define Σr for r ∈ R by the norm

∥u∥Σr := ∥(1−∆+ |x|2) r
2 u∥L2 <∞.

For r ∈ N the two definitions are equivalent, see [3].

From now on, we identify C = R2 and set J =

(
0 1
−1 0

)
, so that multiplication by i in C is

J−1 = −J . Later on, we complexify R2 and i will appear in such meaning. That is for U = t(u1, u2),
iU = t(iu1, iu2). So, be careful not to confuse −J with i which has the different meaning.

2 The Ansatz

We consider the energy

E(u) = E0(u) +EV (u)

E0(u) :=
1

2
∥∇u∥2L2 +EP (u) , EP (u) :=

1

2

∫
R3

B(|u|2)dx

EV (u) :=
1

2
⟨V (·+ vt+ y0)u, u⟩,

(2.1)

with B(0) = 0 and B′(t) = β(t). It is well known that E0 is conserved by the flow of (1.1). For
u ∈ H1(R3,C), its charge and momenta, invariants of motion of (1.1), are defined as follows:

Π4(u) =
1

2
∥u∥2L2 =

1

2
⟨♢4u, u⟩ , ♢4 := 1;

Πa(u) =
1

2
Im⟨uxa , u⟩ =

1

2
⟨♢au, u⟩ , ♢a := J∂xa for a = 1, 2, 3.

(2.2)

The charge Π4 is conserved by the flow of both (1.3) and (1.1). However, Πa, a = 1, 2, 3 are conserved
only by (1.1) but not by the perturbed equation (1.3) which is not translation invariant. We set
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Π(u) = (Π1(u), ...,Π4(u)). We have E ∈ C2(H1(R3,C),C) and Πj ∈ C∞(H1(R3,C),C). Recall the
following formulas

Π4(e
− 1

2Jv·xu) = Π4(u) ;

Πa(e
− 1

2Jv·xu) = Πa(u) +
1

2
vaΠ4(u) for a = 1, 2, 3 ; (2.3)

E0(e
− 1

2Jv·xu) = E0(u) + v ·Π(u) +
v2

4
Π4(u) , v ·Π(u) =

3∑
a=1

vaΠa(u).

By (H5) and (2.2), setting p = Π(e−
1
2Jv·xϕω), we have

∂p

∂(ω, v)
=

(
1
2Π4(ϕω)I3 ∗

0 2 d
dω∥ϕω∥

2
L2

)
,

where I3 is 3×3 identity matrix. Therefore, we have that (ω, v) → p = Π(e−
1
2Jv·xϕω) is a diffeomor-

phism into an open subset of P ⊂ R4. For p = p(ω, v) ∈ P set Φp = e−
1
2Jv·xϕω for p = Π(e−

1
2Jv·xϕω).

2.1 Linearized operator and its generalized null space

We will consider the group τ = (D,−ϑ) → eJτ ·♢u(x) := eiϑu(x−D). The Φp are constrained critical
points of E0 with associated Lagrange multipliers λ(p) ∈ R4 so that ∇E0(Φp) = λ(p) · ♢Φp, where
we have

λ4(p) = −ω(p)− v2(p)

4
, λa(p) := va(p) for a = 1, 2, 3. (2.4)

We set also

d(p) := E0(Φp)− λ(p) ·Π(Φp). (2.5)

For any fixed vector τ0 a function u(t) := eJ(tλ(p)+τ0)·♢Φp is a solitary wave solution of (1.1). We
now introduce the linearized operator

Lp := J(∇2E0(Φp)− λ(p) · ♢) (2.6)

where ∇2E0 ∈ C0(H1, B(H1,H−1)) is the differential of ∇E0 ∈ C0(H1,H−1).
By an abuse of notation, we set

Lω := Lp when v(p) = 0 and ω(p) = ω. (2.7)

We have the following identity, see [1] Sect.7, which implies σ(Lp) = σ(Lω(p)),

Lp = e−
1
2Jv(p)·xLω(p)e

1
2Jv(p)·x, (2.8)

and which follows by

e−
1
2Jv·x(−∆)e

1
2Jv·x = −∆− v · ♢+

|v|2

4
.

Hypothesis (H5) implies that rank
[
∂λi

∂pj

]
i↓ , j→

= 4. This and (H6) imply

kerLp = Span{J♢jΦp : j = 1, ..., 4} and

Ng(Lp) = Span{J♢jΦp, ∂pjΦp : j = 1, ..., 4},
(2.9)
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where Ng(L) := ∪∞
j=1 ker(L

j). Recall that we have a well known decomposition

L2 = Ng(Lp)⊕N⊥
g (L∗

p) , (2.10)

Ng(L∗
p) = Span{♢jΦp, J

−1∂λjΦp : j = 1, ..., 4}. (2.11)

We denote by PNg (p) the projection on Ng(Lp) and by P (p) the projection on N⊥
g (L∗

p) associated
to (2.10).

PNg (p) = −J♢jΦp

⟨
·, J−1∂pjΦp

⟩
+ ∂pjΦp ⟨·,♢jΦp⟩ , P (p) = 1− PNg (p). (2.12)

We now decompose the solution of (1.12) into the large solitary wave given in (H4), small
bound state given in Prop. 1.1 and the remainder part which will belong in both the N⊥

g (L∗
p) and

the galilean transform of Hc[w].

Proposition 2.1. Fix ε1 > 0 and ω1 ∈ O. Let κ ∈ P be s.t. v(κ) = 0 and ω(κ) = ω1. Then there
exists ε2 > 0 s.t. if

sup
distS2 (

−→e , v
|v| )≤ε1

∫ ∞

0

(1 + ||v|−→e t+ y0|2)−1dt < ε2 (2.13)

and for all t ≥ 0, τ0 ∈ BR3(0, ε2 ⟨t⟩)× R and u ∈ eJτ0♢BH1(Φκ , ε2), there exists

(τ, p, w) ∈ C∞(B(ε2);R4 × R4 × R2),

where

B(ε2) := {(t, u) ∈ [0,∞)×H1 | ∃τ ∈ BR3(0, ε2 ⟨t⟩)× R s. t. u ∈ eJτ♢BH1(Φκ , ε2)}, (2.14)

s.t.

p(t, eJτ0·♢ϕω1) = κ, τ(t, eJτ0·♢ϕω1) = τ0 and w(t, eJτ0·♢ϕω1) = 0, (2.15)

Fj(t, u, τ(t, u), p(t, u), w(t, u)) = Gj(t, u, τ(t, u), p(t, u), w(t, u)) = 0 for j = 1, 2, 3, 4 and

Lj(t, u, τ(t, u), p(t, u), w(t, u)) = 0 for j = 1, 2

with

Fj(t, u, τ, p, w) :=
⟨
R̃(t, u, τ, p, w), eJτ♢J−1∂pjΦp

⟩
= 0, j = 1, 2, 3, 4, (2.16)

Gj(t, u, τ, p, w) :=
⟨
R̃(t, u, τ, p, w), eJτ♢♢jΦp

⟩
= 0, j = 1, 2, 3, 4, (2.17)

Lj(t, u, τ, p, w) :=
⟨
R̃(t, u, τ, p, w), eJ(

1
2vx+

t
4 |v|

2)∂wjQw(·+ tv + y0)
⟩
= 0, j = 1, 2 (2.18)

where

R̃(t, u, τ, p, w) := u− eJτ ·♢Φp − eJ(
1
2v·x+

t
4 |v|

2)Qw(·+ tv + y0). (2.19)

Remark 2.2. The solution u which we consider in Theorem 1.4 will always belong to (t, u(t)) ∈ B(ε2)
provided ε0 sufficiently small. Therefore, we can always decompose the solution as

u = eJτ ·♢Φp + eJ(
1
2v·x+

t
4 |v|

2)Qw(·+ tv + y0) + eJτ♢R,

were R̃ = eJτ♢R.
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Proposition 2.1 is a direct consequence of the following two lemmas.

Lemma 2.3. Fix δ > 0. Set

X(τ, t) = max
j,l=1,2,3,4,k,l=1,2,a+b=1

∣∣∣⟨eJ( 1
2v·x+

t
4 |v|

2)Jk−1ϕ0(·+ tv + y0), e
Jτ♢J l−1∂apj

♢b
lΦκ

⟩∣∣∣
and

T (t, δ) = {τ ∈ R4 | X(τ, t) < δ}.

Then, there exists ε = ε(δ) > 0 s.t. if (2.13) is satisfied with ε2 replaced to ε, then

BR3(0, ε ⟨t⟩)× R ⊂ T (t, δ), ∀t ≥ 0.

Lemma 2.4. There exists δ > 0 s.t. for any t0 ≥ 0 and any τ0 ∈ T (t0, δ), there exists (τ, p, w) ∈
C1(X;R4 × R4 × R2), with X := (t0 − δ, t0 + δ) × eJτ0·♢BH1(Φκ , δ), which satisfies (2.15)–(2.19).
Furthermore, in any open subset of X there is only one such function (τ, p, w).

Proof of Lemma 2.3. First, notice that if |v| ≥ Cδ−1 for some constant C > 0, then we have
T (t, δ) = R4. This can be easily shown by integration by parts. Therefore, we can assume |v| ≤
Cδ−1. Notice that there is an M =M(δ) such that, if

inf
distS2 (

−→e , v
|v| )≤ε1

||v|−→e t̃+ y0| ≥M, for all t̃ > 0, (2.20)

then for sufficiently small ε > 0, we have BR3(0, ε ⟨t⟩) × R ⊂ T (t, δ) for all t ≥ 0. Indeed, for any
τ = (D,−ϑ) ∈ BR3(0, ε ⟨t⟩) × R, there exists vε ∈ R3 with |vε| < ε and yε ∈ R3 with |yε| < ε s.t.
D = vεt+ yε. Therefore,

|vt+ y0 −D| = |(v − vε)t+ y0 − yε| ≥
∣∣∣∣|v|( v − vε

|v − vε|

)(
|v − vε|

|v|
t

)
− y0

∣∣∣∣− |yε| ≥M − ε,

where we have used (2.20) with −→e = v−vε

|v−vε| and t̃ =
|v−vε|

|v| t. This in turn implies X(τ, t) < δ for all

t ≥ 0 if M is large enough, and so τ ∈ T (t, δ).
We fix such anM and suppose now that for some t > 0 and some ṽ = |v|−→e with dist§2(

−→e , v
|v| ) < ε1,

we have |ṽt + y0| < M . We will show that for ε small this is incompatible with |v| < Cδ−1. We
have

t2|v|2 + 2tṽ · y0 + |y0|2 −M2 < 0. (2.21)

Next we claim that for ε sufficiently small we have |y0| ≥ A := max
(
16M2

ε21
, 2M + Cδ−1

)
with ε1 > 0

the fixed constant used in (1.14). Indeed, if this is not the case, then∫ ∞

0

⟨|v|t+ |y0|⟩−2dt ≤
∫ ∞

0

⟨ṽt+ y0⟩−2dt ≤ ε⇒ |v| ≥ (
π

2
− arctanA)ε−1. (2.22)

But for ε ∈ (0, ε0), with ε0 > 0 small enough this contradicts with |v| < Cδ−1. So we can assume
|y0| ≥ A. Further, we can assume t ≥ 1 since if 0 < t < 1, then

|ṽt+ y0| ≥ |y0| − |v| ≥ A− Cδ−1 ≥M.

9



For ŷ := y
|y| and v̂ := ṽ

|v| the discriminant of the quadratic in t polynomial in (2.21) is positive:

cos2 α > 1−M2|y0|−2 > 1− ε21
16

where − ŷ0 · v̂ = cos(α) (2.23)

with α = distS2(−ŷ0, v̂) the angle between −ŷ0 and v̂. (2.21) requires also cos(α) > 0, so

cos(α) >
√
1− ε21/16. (2.24)

Since ε1 has been chosen sufficiently small, from (2.24) we obtain α < ε1/3. This implies

ε ≥
∫ ∞

0

⟨−|v|ŷ0t+ y0⟩−2dt = |v|−1

∫ ∞

0

⟨t− |y0|⟩−2dt ≥ π

2
|v|−1. (2.25)

But this again contrasts with |v| < Cδ−1. Hence we conclude that |v| < Cδ−1 and ε sufficiently
small imply |ṽt+ y0| ≥M for all t > 0 for any preassigned M .

Proof of Lemma 2.4. We apply the implicit function theorem (Theorem A.1) to X = R ×H1(R3),
Y = R10 and F ∈ C∞([0,∞)×H1 × R4 × P ×BR2(a0),R10) for

F = (F1, ....,F4,−G1, ....,−G4,−L1,L2).

We first compute the Jacobian matrix of F. We compute the derivatives of R̃.

∂τkR̃ = −eJτ♢J♢kΦp, k = 1, 2, 3, 4,

∂pk
R̃ = −eJτ♢∂pk

Φp, k = 1, 2, 3, 4,

∂wk
R̃ = −eJ( 1

2 vx+
t
4 |v|

2)∂wk
Qw(·+ tv + y0), k = 1, 2.

Therefore, we have

∂τkFj = −
⟨
eJτ♢J♢kΦp, e

Jτ♢J−1∂pj
Φp

⟩
+
⟨
R̃, eJτ♢♢k∂pj

Φp

⟩
= δjk +

⟨
R̃, eJτ♢♢k∂pjΦp

⟩
∂pk

Fj = −
⟨
eJτ♢∂pk

Φp, e
Jτ♢J−1∂pjΦp

⟩
+
⟨
R̃, eJτ♢J−1∂pk

∂pjΦp

⟩
=
⟨
R̃, eJτ♢J−1∂pk

∂pjΦp

⟩
∂wk

Fj = −
⟨
eJ(

1
2 vx+

t
4 |v|

2)∂wl
Qw(·+ tv + y0), e

Jτ♢J−1∂pjΦp

⟩
= −

⟨
eJ(

1
2 vx+

t
4 |v|

2)Jk−1ϕ0(·+ tv + y0), e
Jτ♢J−1∂pj

Φp

⟩
−
⟨
eJ(

1
2vx+

t
4 |v|

2)∂wl
qw(·+ tv + y0), e

Jτ♢J−1∂pjΦp

⟩
,

where we have used

−
⟨
eJτ♢J♢kΦp, e

Jτ♢J−1∂pj
Φp

⟩
=

1

2
∂pj

⟨♢kΦp,Φp⟩ = ∂pj
Πk(Φp) = ∂pj

pk = δjk.
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Further, we have

∂τkGj = −
⟨
eJτ♢J♢kΦp, e

Jτ♢♢jΦp

⟩
+
⟨
R̃, JeJτ♢♢k♢jΦp

⟩
=
⟨
R̃, JeJτ♢♢k♢jΦp

⟩
∂pk

Gj = −
⟨
eJτ♢∂pk

Φp, e
Jτ♢♢jΦp

⟩
+
⟨
R̃, eJτ♢♢j∂pk

Φp

⟩
= −δjk +

⟨
R̃, eJτ♢♢j∂pk

Φp

⟩
∂wk

Gj = −
⟨
eJ(

1
2 vx+

t
4 |v|

2)∂wk
Qw(·+ tv + y0), e

Jτ♢♢jΦp

⟩
= −

⟨
eJ(

1
2 vx+

t
4 |v|

2)Jk−1ϕ0(·+ tv + y0), e
Jτ♢♢jΦp

⟩
−
⟨
eJ(

1
2vx+

t
4 |v|

2)∂wk
qw(·+ tv + y0), e

Jτ♢♢jΦp

⟩
,

and

∂τkLj = −
⟨
eJτ♢J♢kΦp, e

J( 1
2 vx+

t
4 |v|

2)∂wjQw(·+ tv + y0)
⟩

= −
⟨
eJτ♢J♢kΦp, e

J( 1
2 vx+

t
4 |v|

2)Jj−1ϕ0(·+ tv + y0)
⟩

−
⟨
eJτ♢J♢kΦp, e

J( 1
2 vx+

t
4 |v|

2)∂wjqw(·+ tv + y0)
⟩

∂pk
Lj = −

⟨
eJτ♢∂pk

Φp, e
J( 1

2vx+
t
4 |v|

2)∂wjQw(·+ tv + y0)
⟩

= −
⟨
eJτ♢∂pk

Φp, e
J( 1

2vx+
t
4 |v|

2)Jj−1ϕ0(·+ tv + y0)
⟩

−
⟨
eJτ♢∂pk

Φp, e
J( 1

2 vx+
t
4 |v|

2)∂wjqw(·+ tv + y0)
⟩

∂wk
Lj = −

⟨
eJ(

1
2vx+

t
4 |v|

2)∂wl
Qw(·+ tv + y0), e

J( 1
2vx+

t
4 |v|

2)∂wjQw(·+ tv + y0)
⟩

+
⟨
R̃, eJ(

1
2 vx+

t
4 |v|

2)∂wk
∂wjQw(·+ tv + y0)

⟩
,

= −
⟨
∂wk

Qw, ∂wjQw

⟩
+
⟨
R̃, eJ(

1
2vx+

t
4 |v|

2)∂wk
∂wjqw(·+ tv + y0)

⟩
,

Now, since Qw = (w1 − Jw2)ϕ0 + qw, and ∂wjqw = O(|w|2), we have

−
⟨
∂wk

Qw, ∂wjQw

⟩
=
⟨
(−J)k−1ϕ0, (−J)j−1ϕ0

⟩
+O(|w|2) = (−1)j

⟨
ϕ0, J

k+j−2ϕ0
⟩
+O(|w|2).

(2.26)

Therefore,(
−∂w1L1 −∂w2L1

∂w1L2 ∂w2L2

)
=

(
⟨∂w1Qw, ∂w2Qw⟩ ⟨∂w2Qw, ∂w2Qw⟩
− ⟨∂w1Qw, ∂w1Qw⟩ − ⟨∂w2Qw, ∂w1Qw⟩

)
+O(|w|2)

=

(
1 0
0 1

)
+O(|w|2)

Therefore, we have

∂F

∂(τ, p, w)
= I10 +A.
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where I10 is the unit matrix and each component in A can be bounded by

C∥u− eJτ ·♢Φp∥L2 + C|w|+X(τ, t), (2.27)

where C is independent of (p, τ, w) ∈ P × R4 ×BR2(0; δ0).
Now, there exists a universal constant δ̃ s.t. if the absolute value of each component of A is

less than δ̃, then (I10 + A)−1 exists and its operator norm is bounded by 2. Now we claim there
exists δ̃1 > 0 s.t. if (τ, p, w) ∈ BR10((τ0,κ, 0), δ̃1) and (t, u) ∈ (t0 − δ̃1, t0 + δ̃1) × BH1(Φκ , δ̃1), we
have ∥(I10 + A)−1∥ ≤ 2. The bounds for C∥u − eJτ ·♢Φp∥L2 + C|w| is obvious so we only consider

the bound of X(τ, t). Notice that if |v| ≥ Cδ̃−1, then since T (t, δ̃) = R4, we only have to consider
the case |v| ≤ Cδ̃−1. In this case, since

|
⟨
eJ(

1
2v·x+

t
4 |v|

2)Jk−1ϕ0(·+ tv + y0), e
Jτ♢J l−1∂apj

♢b
lΦκ

⟩
| (2.28)

= |
⟨
eJ

t−t0
4 |v|eJ(

1
2v·x+

t
4 |v|

2)Jk−1ϕ0(·+ t0v + y0 + (t− t0)v), e
Jτ♢J l−1∂apj

♢b
lΦκ

⟩
| (2.29)

≤ Cδ̃ + C|eJ
t−t0

4 |v| − 1|+ ∥ϕ0(·+ (t− t0)v)− ϕ0∥L2 . (2.30)

Therefore, we see there exists δ̃1 which satisfies the claim.
Finally, setting δ1 = δ2 = δ̃1, by Theorem , there exists δ3, δ4 > 0 independent to the choice of

t0, τ0 s.t. the desired (τ, p, w) ∈ C1((t0 − δ, t0 + δ)× eJτ ·♢BH1(Φκ , δ);BR10((τ0,κ, 0), δ4)) exists.

We choose p0, v0, ω0 such that if u0 is the initial value in (1.12), then

Π(Φp0) = Π(u0), v0 = v(p0) and ω0 = ω(p0). (2.31)

We fix π ∈ P. Now, Proposition 2.1 can be reframed as follows.

Lemma 2.5. For |π − p0| < δ0 and |κ − p0| < δ0 for sufficiently small δ0 and for (t, u) ∈ B(ε2) as
in Proposition 2.1, there exists r ∈ N⊥

g (L∗
p0
) s.t. for the (τ, w) of Propostion 2.1 we have

u = U [t, u] +Q[t, u] where U [t, u] := eJτ ·♢(Φp + P (p)P (π)r) and (2.32)

Q[t, u] := eJΘ·♢Qw for Θ :=
(
−vt− y0, 2

−1v · x+ 4−1t|v|2
)

with
⟨eJτ ·♢P (p)P (π)r, JeJΘ·♢∂wiQw⟩ = 0 for i = 1, 2. (2.33)

Notice that eJΘ·♢Qw(x) = eJ(
1
2v·x+

t
4 |v|

2)Qw(·+ vt+ y0).
Eventually we will set π = Π(U [u(t)]), but for the moment we will take π as a parameter.
We will consider the following notation:

Q̃ := Q[t, u] , U := U [t, u] , H̃ := −∆+ V (·+ vt+ y0). (2.34)

Since w ∈ C∞(B(ε2),R2), w(0, eJτ ·♢ϕω1) = 0 for all τ ∈ T (0, δ1), τj ∈ C∞(B(ε2),R),
τj(0, e

iϑϕω1) = 0 for j ≤ 3 and by the definition of ϵ in Theor. 1.4 we have |w(0, u0)| ≤ cϵ
and |τj(0, u0)| ≤ cϵ for j ≤ 3 for a fixed c. For another fixed c we have

inf
θ∈R

∥U [0, u0]− eiθϕω1(·)∥H1 ≤ cϵ. (2.35)
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2.2 Spectral coordinates associated to Lp

We will summarize in this section a number of facts about equation (1.3) when V ≡ 0 which have
been proved in [1, 4] or which can be easily proved following the ideas therein.

First of all we observe that we have coordinates (τ, p, r) for the quantity U defined by

R4 × {p : |p− p0| < a} × (N⊥
g (L∗

p0
) ∩ Σk) → Σk(R3,R2),

(τ, p, r) → U = eJτ ·♢(Φp + P (p)P (π)r).
(2.36)

(τ, p, r) are coordinates for U in an open set

ℵ = ∪τ∈R4eJτ ·♢BH1(ϕω1 , δ) (2.37)

with δ > 0 sufficiently small. For any U ∈ H1(R3,R2) we have also Πj = Πj(U). Then (τ,Π, r)
is also a system of coordinates in ℵ. The functions (τ,Π) depend smoothly in U while we have
r ∈ Cl(ℵ ∩ Σk,Σk−l). Obviously, if we set (t, u) → U = U [t, u], which is a smooth function,
functions (t, u) → (τ,Π, r) remain defined.

The next task is to further decompose the variable r. This is done in terms of the spectral
decomposition of the operator Lp0 as we explain now.

We now consider the complexification of L2(R3,R2) into L2(R3,C2) and think of Lp and J as
operators in L2(R3,C2). Then we set

Hp := iLp with Hω := Hp when v(p) = 0 and ω(p) = ω. (2.38)

We have

Hω = iJ(−∆+ ω) + iJ

(
β(ϕ2ω) + 2β′(ϕ2ω)ϕ

2
ω 0

0 β(ϕ2ω)

)
. (2.39)

and

M−1HωM = Kω, (2.40)

Kω := σ3(−∆+ ω) +

(
β(ϕ2ω) + β′(ϕ2ω)ϕ

2
ω β′(ϕ2ω)ϕ

2
ω

−β′(ϕ2ω)ϕ
2
ω −β(ϕ2ω)− β′(ϕ2ω)ϕ

2
ω

)
M :=

1

2

(
1 1
−i i

)
, M−1 =

(
1 i
1 −i

)
, σ3 =

(
1 0
0 −1

)
.

Remark 2.6. Notice that M

(
u
ū

)
=

(
Re u
Im u

)
.

We extend the bilinear map ⟨·, ·⟩ and Ω(·, ·) = ⟨J−1·, ·⟩ as bilinear maps in L2(R3,C2). That
is, for u = (u1, u2), v = (v1, v2) ∈ L2(R3,C2), we have ⟨u, v⟩ =

∫
R3 u1v1 + u2v2. In particular, ⟨·, ·⟩

extends into a bilinear form in

S ′(R3,C2)× L2
d(H∗

p) , L
2
d(H∗

p) := Ng(H∗
p)⊕

(
⊕µ∈σp(H∗

p)\{0} ker(H
∗
p − µ)

)
.

Set now (L2
d(H∗

p))
⊥ the subspace of S ′ orthogonal to L2

d(H∗
p).

Lemma 2.7. Let λ be the non-zero eigenvalue of Hp. Then algebraic and geometric multiplicity of
λ coincide. Furthermore, for λ > 0 and ξ ∈ ker(Hp − λ), we have −i

⟨
J−1ξ, ξ̄

⟩
> 0.
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Proof. By (2.8), it suffices to consider p with ω(p) = ω and v(p) = 0. First, we show there are no
ξ ∈ ker(Hp−λ) s.t.

⟨
(∇2E0(Φp) + ω)ξ, ξ

⟩
= 0. Suppose, there exists such ξ. Then, by [9] Corollary

3.3.1 p.171, we have ξ = aJ−1Φp. However, since ξ ∈ Ng(H∗
p)

⊥ and Ng(Hp) ∩Ng(H∗
p)

⊥ = {0}, we
have ξ = 0. So, we see there are no ξ ∈ ker(Hp − λ) s.t.

⟨
(∇2E0(Φp) + ω)ξ, ξ

⟩
= 0. Therefore,

Assumption 2.8 of [6] is satisfied and by [6] Corollary 2.12, we see that −i
⟨
J−1ξ, ξ

⟩
> 0 for λ > 0.

Lemma 2.8. There is a neighborhood Pp0 of p0 in P and a C∞(Pp0 ,Σ
n
m) map (for any preassigned

m) π → (ξ1(π), ..., ξn(π)) such that the following facts hold.

(1) ξj(π) ∈ ker(Hπ − ej) for all j.

(2) −i
⟨
J−1ξj(π), ξk(π)

⟩
= 0 for all j and k and −i

⟨
J−1ξj(π), ξk(π)

⟩
= δjk.

Proof. For the proof of the existence of a such a frame for any fixed π we refer to Lemma 5.2 [1].
Here we discuss the fact that the dependence in π is smooth. Let us pick l1 = 1 < l2 < ... < lk ≤ n
and set lk+1 = n + 1, with ej(ω) = ei(ω) if and only if j, i ∈ [la, la+1) for some a. The numbers
l1, ..., lk do not depend on ω by the constancy of multiplicity in Hypothesis (H7).

By (2.8) we can set ξj(π) = e−
1
2Jv(π)·xξ̂j(ω(π)), with ξ̂j(ω) ∈ ker(Hω − ej(ω(π))) appropriate

vectors dependent now only on ω. It is easy to conclude that it is enough to focus on the case
v(π) ≡ 0.

For ω0 = ω(p0) we can suppose we have a frame {ξ̂j(ω)} satisfying the equalities in claim (2),
that is for ω = ω0, L = n+ 1 and ℓ = 1 we have

−i
⟨
J−1ξ̂j(ω), ξ̂k(ω)

⟩
= δjk for j, k ∈ [ℓ, L). (2.41)

For δVω := Hω − Hω0
we have that ω → δVω ∈ C∞(Iω0

, B(Σm,Σm)) for any m for a small
interval Iω0 with center ω0. Fix now an index la and let γa be a small circle with counter clock
orientation and centered in ela(ω0). By taking Iω0

small we can assume that ela(ω) is for all ω ∈ Iω0

contained in a compact subset of the interior of the disk encircled by γa. Then the following is a
projection on ker(Hω − ela(ω)):

Pa(ω) =
i

2π

∮
γ

1

Hω − z
dz. (2.42)

We have ω → Pa(ω) ∈ C∞(Iω0 , B(Σ−m,Σm)). Now focus on the frame {ξ̂j(ω0)} for j ∈ [la, la+1)

s.t. (2.41) is true for ω = ω0, L = la+1 and ℓ = la We first set ξ̃1(ω) = Pa(ω)ξ̂1(ω0) which we can

normalize into a ξ̂1(ω) s.t. −i
⟨
J−1ξ̂1(ω), ξ̂1(ω)

⟩
= 1. Suppose now that we have for some l < la+1

a frame {ξ̂j(ω) : j ∈ [la, l)} which is C∞ in ω ∈ Iω0
and s.t. (2.41) is true for all ω ∈ Iω0

, for L = l
and ℓ = la. Set now

ξ̃l(ω) = Pa(ω)ξ̂l(ω0) + i
∑

j∈[la,l)

ξ̂j(ω)
⟨
J−1Pa(ω)ξ̂l(ω0)), ξ̂j(ω)

⟩
.

Then
⟨
J−1ξ̃l(ω), ξ̂j(ω)

⟩
= 0 for all j ∈ [la, l). Notice that ξ̃l(ω) depends smoothly on ω and that

ξ̃l(ω0) = ξ̂l(ω0). Then by continuity −i
⟨
J−1ξ̃l(ω), ξ̃l(ω)

⟩
=: a2(ω) > 0. Setting ξ̂l(ω) = a−1(ω)ξ̃l(ω)

we obtain a frame {ξ̂j(ω) : j ∈ [la, l]} which is C∞ in ω ∈ Iω0 and s.t. (2.41) is true for all ω ∈ Iω0 ,
for L = l + 1 and ℓ = la.
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Finally, notice that if ej(ω) ̸= ek(ω), then
⟨
J−1ξ̂j(ω), ξ̂k(ω)

⟩
= 0. So we have built a frame

smooth in ω which satisfies (2.41) for L = n + 1 and ℓ = 1 and for all ω ∈ Iω0 . The identities⟨
J−1ξ̂j(ω), ξ̂k(ω)

⟩
= 0 hold for all j, k, see Lemma 5.2 [1]. So Lemma 2.8 is proved.

The following spectral decomposition remains determined

N⊥
g (L∗

p) = N⊥
g (H∗

p) =
(
⊕µ∈σp(H∗

p)\{0} ker(Hp − µ)
)
⊕ L2

c(p) (2.43)

L2
c(p) := L2(R3,C2) ∩ (L2

d(H∗
p))

⊥.

Correspondingly for any r ∈ N⊥
g (H∗

p0
) with r = r we have, for a z ∈ Cn and an f ∈ L2

c(p0),

P (π)r =
n∑

j=1

zjξj(π) +
n∑

j=1

zjξj(π) + Pc(π)f, (2.44)

with a frame {ξj(π) : j ∈ 1, ...,n} as in Lemma 2.8. Notice that ⟨J−1ξj(π), Pc(π)f
′⟩ = 0. We also

have

Pc(p) = 1− PNg (p) +

n∑
j=1

i
⟨
J−1·, ξj(p)

⟩
ξj(p) + i

⟨
J−1·, ξj(p)

⟩
ξj(p). (2.45)

The representation (2.44) is possible because of the following fact.

Lemma 2.9. Under (H4)–(H7) and (H10), given p0 and for any fixed n ∈ N, there exists a > 0
such that for π ∈ P with |π − p0| < a the maps

Pc(π)Pc(p0) : L
2
c(p0) ∩ Σk(R3,R2) → L2

c(π) ∩ Σk(R3,R2) (2.46)

for all k ≥ −n are isomorphisms.

Proof. Consider the composition Pc(p0)Pc(π)Pc(p0). Then in L2
c(p0) ∩ Σk its restriction equals

Pc(p0)Pc(π)Pc(p0) = 1 + Pc(p0)(PNg (π)− PNg (p0))Pc(p0)

+

n∑
j=1

Pc(p0)
{ (
ξj(π)⟨ , iJ−1ξj(π)⟩ − ξj(p0)⟨ , iJ−1ξj(p0)⟩

)
Pc(p0)

−
(
ξj(π)⟨ , iJ−1ξj(π)⟩ − ξj(p0)⟨ , iJ−1ξj(p0)⟩

) }
Pc(p0).

(2.47)

Using now the fact that ξj(π) ∈ C∞(P,Σk), we conclude that if |π−p0| < ak with ak > 0 sufficiently
small, the operator in (2.47) is an isomorphism in L2

c(p0) ∩ Σk. Similarly, Pc(π)Pc(p0)Pc(π) is an
isomorphism in L2

c(π) ∩ Σk. Finally, by the argument in Lemma 2.3 [1], we can pick a fixed ak for
all k ≥ −n.

3 Change of coordinate

To distinguish between an initial system of coordinates obtained from Lemma 2.5 and the further
decomposition of r due to (2.44) and a ”final” system of coordinates in Theorem 3.5 below, we will
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add a ”prime” to the initial coordinates, except for the pair (Π, w). In particular we have functions
(t, u) → (τ ′,Π, z′, f ′). In particular, with ℵ defined in (2.37), we have

(t, π, U) → f ′ ∈ Cl(R× {|π − p0| < a} × (ℵ ∩ Σk),Σk−l) and

(t, π, U) → z′ smooth.
(3.1)

We introduce now appropriate symbols.

Definition 3.1. LetA be a neighborhood of (p0, p0, 0, 0, 0) in the (π,Π, ϱ, z, f) space with (π,Π, ϱ) ∈
R12, z ∈ Cn and f ∈ L2

c(p0)∩Σ−n(R3,R2). Let I ⊂ R be an interval. Then we say that F ∈ Cm(I×
A,R) is Ri,j

n,m if there exists a C > 0 and a smaller neighborhood A′ of (p0, p0, 0, 0, 0), s.t. in I ×A′

|F (t, π,Π, ϱ, z, f)| ≤ C(∥f∥Σ−n + |z|)j(∥f∥Σ−n |z|+ |ϱ|+ |Π− π|)i. (3.2)

We will write also F = Ri,j
n,m or F = Ri,j

n,m(t, π,Π, ϱ, z, f).

Definition 3.2. A T ∈ Cm(I × A,Σn(R3,R2)), with I and A like above, is Si,j
n,m and we write as

above T = Si,j
n,m or T = Si,j

n,m(t, π,Π, ϱ, z, f), if there exists a C > 0 and a smaller neighborhood A′

of (p0, p0, 0, 0), s.t. in A′

∥T (t, π,Π, ϱ, z, f)∥Σn ≤ C(∥f∥Σ−n + |z|)j(∥f∥Σ−n |z|+ |ϱ|+ |Π− π|)i. (3.3)

Notice that in the coordinates u→ (τ,Π, z, f) introduced using (2.36) and (2.44) (and omitting
the ”primes”), we have we have pj = Πj − ϱj +R0,2

n,m(π,Π, ϱ, z, f) with ϱ = Π(f). Then we have

U = eJτ ·♢Φp +
n∑

j=1

zje
Jτ ·♢P (p)ξj(π) +

n∑
j=1

zje
Jτ ·♢P (p)ξj(π) + eJτ ·♢P (p)Pc(π)f

= S0,0
n,m(π,Π, ϱ, z, f) + S0,1

n,m(π,Π, ϱ, z, f) + eJτ ·♢P (p)Pc(π)f

(3.4)

for arbitrary (n,m) and for ϱ = Π(f).
We introduce now

K0(π,U) := E0(U)−E0 (Φπ) + λ(p(U)) · (Π(U)− π). (3.5)

Definition 3.3 (Normal Forms). A function Z(z, f, ϱ, π,Π) is in normal form if Z = Z0+Z1 where
Z0 and Z1 are finite sums of the following type:

Z1 = i
∑

e(ω(π))·(µ−ν)∈σe(Hπ)

zµzν⟨JGµν(π,Π, ϱ), f⟩ (3.6)

where the vector e(ω) is introduced in (H8) and where Gµν(·, π,Π, ϱ) ∈ Cm(Ũ ,Σk(R3,C2)) for fixed

k,m ∈ N, with Ũ = {p : |p− p0| < a}2 × U and U ⊆ R4 a neighborhood of 0;

Z0 =
∑

e(ω(π))·(µ−ν)=0

gµν(π,Π, ϱ)z
µzν (3.7)

and gµν ∈ Cm(Ũ ,C). We assume furthermore that Z0 and Z1 are real valued for f = f , and hence
their coefficients satisfy the following symmetries: gµν = gνµ and Gµν = −Gνµ.

We have the following elementary fact, proved in Remark 5.6 [5], which tells us that the pairs
(µ, ν) in Def. 3.3 in the case of the polynomials which interest us, do not depend on π.
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Lemma 3.4. Consider the N in (H7). Then there exists an δ0 > 0 such that for |π − p0| < δ0 the
following are independent of π:

(1) the formula ω(π) · (µ− ν) ∈ σe(Hπ) for |µ+ ν| ≤ N + 1;

(2) the equality e(ω(π)) · (µ− ν) = 0 for |µ+ ν| ≤ 2N + 2.

The main result of [1], see also [4], is the following.

Theorem 3.5. There is an ε3 > 0 and a map

τ ′ = τ + T (π,Π,Π(f), z, f) , Π′ = Π ,

z′ = z + Z(π,Π,Π(f), z, f) ,

f ′ = eJq(π,Π,Π(f),z,f)·♢(f + S(π,Π,Π(f), z, f))

(3.8)

which is in

C1(R4 ×BCn(ε3)× (Σ2 ∩BH1(ε3) ∩ L2
c(p0)),R4 × Cn × (H1 ∩ L2

c(p0)) (3.9)

C0(R4 ×BCn(ε3)× (BH1(ε3) ∩ L2
c(p0)),R4 × Cn × (H1 ∩ L2

c(p0)) (3.10)

C0(R4 ×BCn(ε3)× (Σ2 ∩BH1(ε3) ∩ L2
c(p0)),R4 × Cn × (Σ2 ∩ L2

c(p0)), (3.11)

in the sense of (3.10)–(3.11) is a homeomorphism in its image with the image containing R4 ×
BCn( ε32 )× (BH1( ε32 )∩L

2
c(p0)) in the case of (3.10) (resp. R4 ×BCn( ε32 )× (Σ2 ∩BH1( ε32 )∩L

2
c(p0))

in the case of (3.11)) and such that in the new variables (τ,Π, z, f) we have

K0(π,U) = ψ(π,Π,Π(f)) +H ′
2 + Z0 + Z1 +R+EP (f) (3.12)

where we have for k,m ∈ N preassigned and arbitrarily large:

(1) ψ is smooth and with ψ(Π,Π,Π(f)) = O(|Π(f)|2) near 0.

(2) H ′
2 =

n∑
j=1

aj(π,Π,Π(f))|zj |2 −
i

2
⟨J−1HπPc(π)f, Pc(π)f⟩ where we have aj(π,Π,Π(f)) = ej +

O(|Π− π|+ |Π(f)|).

(3) Z0 is in normal form as in (3.7) with |µ+ ν| ≤ 2N + 2.

(4) Z1 is in normal form as in (3.6) with |µ+ ν| ≤ N + 1.

(5) We have R ∈ C1 with ∥∇fR∥Σk
≤ C(|z|N+2 + ∥f∥L2,−k∥f∥H1) near the origin and similarly

with |∇zR| ≤ C(|z|2N+2 + ∥f∥L2,−k∥f∥H1).

(6) The functions q, Tj, Zj in (3.8) are of type R1,2
k,m, see Def. 3.2 above.

(7) The function S in (3.8) is of type S1,1
k,m, see Def. 3.1 above.

(8) For each fixed π, the pullback of Ω = ⟨J−1 , ⟩ by means of the map (3.9) equals

Ω(π) =

4∑
j=1

dτj ∧ dΠj + i

n∑
j=1

dzj ∧ dzj +Ω(Pc(π)df, Pc(π)df). (3.13)
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Here we skip the proof of Theorem 3.5 which is a minor modification of the arguments in [1].
It is important to observe that here and in [4] the role of the fixed p0 in the normal forms argument
is taken by the time varying π(t), with π(t) = Π(u(t)) in [4] and by π(t) = Π(U [t, u(t)]) in here.

It is important to check the dependence of various coordinates on the variables (π, u) and (π, U).

Lemma 3.6. Consider the variables (τ, z, f) in Theorem 3.5. Set ϱ = Π(f). Then, for any preas-
signed pair (k,m), they have the following dependence on (π,U). Then there exists an a > 0 such that
for BR4(κ, a) (resp. BH1(ϕω1 , a)), and for V = ∪τ∈R4eJτ ·♢BH1(ϕω1 , a) = ∪τ∈R4BH1(eJτ ·♢ϕω1 , a),
we have:

(1) τ(π,U), ϱ(π,U) ∈ C1(BR4(κ, a)× V,R4);

(2) z(π,U) ∈ C1(BR4(κ, a)× V,R4);

(3) f(π, U) ∈ Ci(BR4(κ, a)× V,H1−i) for i = 0, 1.

For this and more see Lemmas 6.1–6.2 [4].
Notice that since we initially are assuming (1.18), that is u0 ∈ Σ2, we have u(t) ∈ Σ2 and so

also U(t) := U [t, u(t)] ∈ Σ2 and that for t ∈ [0, T ] for some T > 0 we have that the coordinates
(τ(t, U(t)), p(t, U(t)), z(t, U(t)), f(t, U(t))) belong to the image of the maps in (3.9)–(3.11). Notice
that later we will drop (1.18) and assume only u0 ∈ H1.

4 Equations

Equation (1.12) can be written as ut = J∇E(u) = XE(u) = {u,E} where we have the following
notions:

• the exterior differential dF (u) of a Frechét differentiable function F defined in an open subset
of H1;

• the gradient ∇F (u) defined by ⟨∇F (u), X⟩ = dF (u)X;

• the symplectic form Ω(X,Y ) := ⟨J−1X,Y ⟩;

• the Hamiltonian vectorfield XF of F with respect to a Ω defined by Ω(XF , Y ) = dFY , that is
XF = J∇F ;

• the Poisson bracket of two scalar functions {F,G} := dFXG,

• if G has values in a given Banach space E and is Frechét differentiable with Frechét derivative
dG, and if G is a scalar valued function, then we set {G, G} := dGXG.

We have introduced in Lemma 2.5 the functional B(ε2) ∋ u→ U [t, u] for the set B(ε2) defined
in (2.14). The following elementary lemma relates Poisson brackets associated to Ω in the u and the
U space.
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Lemma 4.1. Consider the map B(ε2) ∋ (t, u) → U = U [t, u] and fix t. Then, given a differentiable

function u → E(u) and a differentiable function U → F (U), we have, for Q̃ := Q[t, u], see (2.32)
and (3.5),

{F (U [t, u]), E} = dUF (U [t, u])J∇uE(u)−
2∑

k=1

{wk, E}dUF (U [t, u])∂wk
Q̃. (4.1)

For E(u) = G(U [t, u]), summing on repeated indices we have

{F (U [t, u]), G(U [t, u])} = dF (U [u])J∇UG(U [t, u])− dwj(J∇UG(U [t, u]))dF (U [t, u])∂wj Q̃

− ⟨∇G(U [t, u]), ∂wk
Q̃⟩dF (U [t, u])∂wk

Q̃+ ⟨∇UG(U [t, u]), ∂wk
Q̃⟩{wj , wk}dF (U [t, u])∂wj Q̃. (4.2)

Proof. We have, summing on repeated indices

{F (U [t, u]), E} = duF (U [t, u])J∇uE with

duF (U [t, u]) = dUF (U [t, u])duU [t, u] = dUF (U [t, u])− dUF (U [t, u])
(
∂wk

Q̃
)
duwk.

This yields (4.1). (4.2) follows for E(u) = G(U [t, u]) if we use also ∇uG(U [t, u]) = ∇UG(U [t, u]) −
⟨∇UG(U [t, u]), ∂wj Q̃⟩∇uwj .

The following lemma will play an important role later.

Lemma 4.2. Set E = E in (4.1), with E the energy in (2.1). Consider a solution u = u(t) of
ut = J∇E(u) with (t, u(t)) ∈ B(ε2) over an interval of time. Then we have

d

dt
F (U [t, u]) = dUF (U)J∇UE(U) + dUF (U)A (4.3)

A := Jf(U, Q̃)− (ẇ1 − Eww2)∂w1Q̃− (ẇ2 + Eww1)∂w2Q̃

where for

β̃(u) := β(|u|2)u (4.4)

we have

f(U, Q̃) :=

∫
[0,1]2

∂ι∂s[β̃(ιU + sQ̃)]dιds. (4.5)

Proof. It is elementary that, summing on repeated indices,

∂tU [t, u] = −∂tQ̃[t, u] = −J |v|
2

4
Q̃+ JeJΘ·♢va♢aQw − ∂twi

∂

∂wi
Q̃,

where Q̃ = eJΘ·♢Qw, see (2.32). By (4.1) for E = E and by ẇi =
d
dtwi = ∂twi + {wi,E}, we get

d

dt
F (U [t, u]) = dUF (U)∂tU [t, u] + {F (U [t, u]),E} = dUF (U [t, u])J∇uE(u)

− ẇidUF (U)∂wiQ̃− dUF (U)J

(
|v|2

4
Q̃− JeJΘ·♢va♢aQw

)
.

(4.6)

We have ∇uE = −∆u+ V (·+ vt+ y0)u+ β(|u|2)u and β(|u|2)u = β(|Q̃|2)Q̃+ β(|U |2)U + f(U, Q̃).
We expand

∇E(u) = ∇E(U) +∇E(Q̃) + f(U, Q̃). (4.7)
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We have

∇E(Q̃) = eJ
v·x
2 +J

|v|2
4 t

(
∇E(Qw(·+ vt+ y0))− v · ♢Qw(·+ vt+ y0) +

v2

4
Qw(·+ vt+ y0)

)
.

(4.8)
By (1.4) we have ∇E(Qw(·+ vt+ y0)) = EwQw(·+ vt+ y0). So various terms cancel and we get

d

dt
F (U [t, u]) = dUF (U)J [∇UE(U) + f(U, Q̃))]− ẇidUF (U)∂wi

Q̃+ EwdUF (U)JQ̃.

We finally obtain (4.3) because by (1.5) we have JQ̃ = w2∂w1Q̃− w1∂w2Q̃.

Using the notation of Lemma 4.2 and of Lemma 2.5 we get the following elementary lemma.

Lemma 4.3. We have, in the notation of Lemma 4.2 and of Lemma 2.5,

β̃(u) = β̃(eJτ ·♢Φp) + β̃(Q̃+ eJτ ·♢P (p)P (π)r′) + f(eJτ ·♢Φp, Q̃+ eJτ ·♢P (p)P (π)r′). (4.9)

4.1 Set up for the discrete mode associated to the potential V

We start stating following elementary and standard fact.

Lemma 4.4. Consider the function Qw of Prop. 1.1. Consider the operator

h̃ := −∆+ v · ♢+ 4−1|v|2 + V (·+ vt+ y0)− Ew

+

(
β(|Q̃|2) + 2β′(|Q̃|2)Re Q̃ 2β′(|Q̃|2)Re Q̃

2β′(|Q̃|2) Im Q̃ β(|Q̃|2) + 2β′(|Q̃|2) Im Q̃

)
.

(4.10)

Then we have the following equality:

h̃
∂

∂wi
Q̃ = (

∂

∂wi
Ew)Q̃. (4.11)

We write equation (1.12) with a special view at the evolution of the variable w. Here we assume
that for a certain interval of time we have (t, u(t)) ∈ B(ε2) with B(ε2) as in Proposition 2.1 . Sub-
stituting (2.32) in (1.12) and using twice an expansion like (4.7) we get for η := eJτ

′·♢P (p′)P (π)r′,

∂t(e
Jτ ′·♢Φp′ + η) + ẇi∂wiQ̃+ J4−1v2Q̃+ eJΘ·♢v · ∇Qw

= J∇E(eJτ
′·♢Φp′) + J∇E(Q̃) + J∇E(η) + Jf(η, Q̃) + Jf(η + Q̃, eJτ

′·♢Φp′).

We substitute ∇E(Q̃) using (4.8), we use (1.5), that is JQ̃ = w2∂w1Q̃− w1∂w2Q̃, and

f(η, Q̃) = ∂sβ̃(sη + Q̃)|s=0 +

∫
[0,1]3

∂s∂s1∂s2 β̃(ss2η + s1Q̃)dsds1ds2.

We then get the following equation:

(ẇ1 − Eww2)∂w1Q̃+ (ẇ2 + Eww1)∂w2Q̃− J h̃η = −∂t(eJτ
′·♢Φp′ + η) + J∇E(eJτ

′·♢Φp′)

+ J∇EP (η) + Jf(η + Q̃, eJτ
′·♢Φp′) +

∫
[0,1]3

∂s∂s1∂s2 β̃(ss2η + s1Q̃)dsds1ds2.
(4.12)
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Notice now that ⟨η, J∂wi
Q̃⟩ = 0 for i = 1, 2 implies ⟨η, Q̃⟩ = 0. So, see [10],

⟨J h̃η, J ∂

∂wi
Q̃⟩ = ⟨η, h̃ ∂

∂wi
Q̃⟩ = ⟨η, Q̃⟩ ∂

∂wi
Ew = 0.

Applying ⟨ , J∂wiQ̃⟩ to (4.12) and using the above remarks and (2.26) we get

(1 +O(w2))

(
ẇ1 − Eww2

−(ẇ2 + Eww1)

)
=

(
⟨rhs(4.12), J∂w1Q̃⟩
⟨rhs(4.12), J∂w2Q̃⟩

)
. (4.13)

In the sequel we will use the following lemma.

Lemma 4.5. (2.33) implies for i = 1, 2

⟨eJτ
′·♢f ′, eJ

1
2v·xϕ0(·+ vt+ y0)⟩ =

∑
i

⟨eJτ
′·♢S0,1

k,m(i), eJ
1
2v·x∂wiQw(·+ vt+ y0)⟩

− cos
(
4−1t|v|2

)
⟨eJτ

′·♢f ′, eJ(
1
2v·x+

t
4 |v|

2)J∂w2
qw(·+ vt+ y0)⟩

+ sin
(
4−1t|v|2

)
⟨eJτ

′·♢f ′, eJ(
1
2v·x+

t
4 |v|

2)J∂w1qw(·+ vt+ y0)⟩

(4.14)

where the S0,1
k,m(i) are S0,1

k,m(t, π,Π,Π(f ′), z′, f ′) symbols in the sense of Def. 3.3. We have similarly

⟨eJτ
′·♢f ′, JeJ

1
2v·xϕ0(·+ vt+ y0)⟩ =

∑
i

⟨eJτ
′·♢S0,1

k,m(i), eJ
1
2v·x∂wiQw(·+ vt+ y0)⟩

+ sin
(
4−1t|v|2

)
⟨eJτ

′·♢f ′, eJ(
1
2v·x+

t
4 |v|

2)J∂w2qw(·+ vt+ y0)⟩

+ cos
(
4−1t|v|2

)
⟨eJτ

′·♢f ′, eJ(
1
2v·x+

t
4 |v|

2)J∂w1qw(·+ vt+ y0)⟩.

(4.15)

Proof. The starting point is (2.33), that is ⟨eJτ ′·♢P (p′)P (π)r′, JeJΘ·♢∂wiQw⟩ = 0. We first have
P (p′)P (π)r′ = P (π)r′ + S0,1

k,m(π,Π,Π(f ′), z′, f ′). We next use (2.44) to get P (π)r′ = Pc(π)f
′ +

S0,1
k,m = f ′ + S0,1

k,m. We therefore get

⟨eJτ
′·♢f ′, JeJ(

1
2v·x+

t
4 |v|

2)∂wiQw(·+ vt+ y0)⟩ = ⟨eJτ
′·♢S0,1

k,m, Je
J 1

2v·x∂wiQw(·+ vt+ y0)⟩.

Now recall from Prop. 1.1 that ∂w1Qw = ϕ0 + ∂w1qw and ∂w2Qw = −Jϕ0 + ∂w2qw. Use also(
cosα − sinα
sinα cosα

)(
eJαϕ0
JeJαϕ0

)
=

(
ϕ0
Jϕ0

)
.

This yields the desired formulas (4.14)–(4.15).

4.2 Set up for Π, τ , z and f

Given a function F (π, u) and if π = π(t) has a given evolution in t, we have

d

dt
F (π, u) = ∂πF (π, u) · π̇ + {F (π, u),E(u)}. (4.16)

By continuity, by Proposition 2.1 we know that there exists a T > 0 and an interval IT = [0, T ] s.t.
(t, u(t)) ∈ B(ε2) for t ∈ IT for all u0 in Theor. 1.4 if ε0 small enough. Then the representation
(2.32) is true for u(t) with t ∈ IT . We set π(t) = Π(U [t, u(t)]).
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The functions Πj(U) are invariant by the changes of variables in (3.8), and so in particular do
not depend on the parameter π. So we have by (4.3)

Π̇j = ⟨∇UΠj , J∇UE(U)⟩+ dUΠjA.

Then we have

Π̇4 = dUΠ4A and for a ≤ 3

Π̇a = −⟨V (·+ vt+ y0)∂xa [Φp′ + P (p′)P (π)r′],Φp′ + P (p′)P (π)r′⟩+ dUΠaA.
(4.17)

We have τ ′ = τ ′(U [t, u]). In particular, by Lemma 4.2 we have

Ḋ′
a = ⟨∇UD

′
a, J∇UE(U)⟩+ dUD

′
aA.

We have D′ = D+R0,2
k,m by Theorem 3.5. Then by Claim 8 in Theorem 3.5, see also Lemma 2.8 [4],

we have

Ḋ′
a − v′a = ∂ΠaK0 +

1

2
∂Πa⟨V (·+ vt+ y0)(Φp′ + P (p′)P (π)r′),Φp′ + P (p′)P (π)r′⟩

+ {R0,2
k,m,K0}+ 2−1{R0,2

k,m, ⟨V (·+ vt+ y0)U,U⟩}+ dUD
′
aA. (4.18)

We similarly have

ϑ̇′ − ω′ − 2−1(v′)2 = {R0,2
k,m,K0}+ 2−1{R0,2

k,m, ⟨V (·+ vt+ y0)U,U⟩}−
∂Π4K0 − 2−1∂Π4⟨V (·+ vt+ y0)(Φp′ + P (p′)P (π)r′),Φp′ + P (p′)P (π)r′⟩+ dUϑ

′A.
(4.19)

We have
żj = −i∂zjK0 + Π̇ · ∂πzj − i2−1∂zj ⟨V (·+ vt+ y0)U,U⟩+ dUzjA. (4.20)

We have
ḟ = Π̇ · ∂πf + (Pc(p0)Pc(π)Pc(p0))

−1J∇fK
′ + dUfA,

∇fK
′ := ∇fK0 + 2−1∇f ⟨V (·+ vt+ y0)U,U⟩.

(4.21)

We couple equations (4.17), (4.18), (4.19), (4.20) and (4.21) with (4.13).

5 Bootstrapping

As in [4], Theorem 1.4 follows from the following Theorem.

Theorem 5.1. Consider the constants 0 < ϵ < ε0 of Theorem 1.4. Then there is a fixed and we
have C > 0 such that we have (t, u(t)) ∈ B(ε2) for all t ∈ I = [0,∞)

∥f∥Lp
t (I,W

1,q
x ) ≤ Cϵ for all admissible pairs (p, q), (5.1)

∥zµ∥L2
t (I)

≤ Cϵ for all multi indices µ with e · µ > ω0, (5.2)

∥zj∥W 1,∞
t (I) ≤ Cϵ for all j ∈ {1, . . . ,n} (5.3)

∥ω′ − ω0∥L∞
t (I) ≤ Cϵ , ∥v′ − v0∥L∞

t (I) ≤ Cϵ (5.4)

∥(ẇ1 − Eww2, ẇ2 + Eww1)∥L∞
t (I)∩L1

t (I)
≤ Cϵ. (5.5)

22



Furthermore, there exist ω+ and v+ such that

lim
t→+∞

ω′(t) = ω+ , lim
t→+∞

v′(t) = v+ (5.6)

lim
t→+∞

Ḋ′(t) = v+ , lim
t→+∞

ϑ̇′(t) = ω+ + 4−1v2+ (5.7)

lim
t→+∞

z(t) = 0. (5.8)

Theorem 5.1 will be obtained as a consequence of the following Proposition.

Proposition 5.2. Consider the constants 0 < ϵ < ε0 of Theorem 1.4. There exist a constant c0 > 0
such that for any C0 > c0 there is an ε0 > 0 such that if (t, u(t)) ∈ B(ε2) for all t ∈ I = [0, T ] for
some T > 0 and the inequalities (5.1)–(5.5) hold for this I and for C = C0, and if furthermore for
t ∈ I

∥Ḋ′ − v′∥L1(0,t) < Cϵ⟨t⟩ , (5.9)

∥p′ − p0∥L∞(I) < Cϵ, (5.10)

then in fact for I = [0, T ] the inequalities (5.1)–(5.5) hold for C = C0/2 and the inequalities (5.9)–
(5.10) hold for C = c with c a fixed constant.

The proof of Theorem 5.1 and of Proposition 5.2 is very similar to the proof of Theorem 6.6
and Proposition 6.7 in [4].

5.1 Proof that Proposition 5.2 implies Theorem 5.1

We start with the following lemma from [4].

Lemma 5.3. Assume the hypotheses of Proposition 5.2 and consider a fixed S0,0
2k,0 where k > 3 and

a fixed q ∈ S(R3). Then for ε0 small enough there exists a fixed constant c dependent on c1, S
0,0
2k,0

and q s.t.
∥q(·+ vt+D′ + y0)S

0,0
2k,0∥L1((0,T ),Lp

x) ≤ cϵ for all p ≥ 1. (5.11)

Proof. This is Lemma 7.3 [4] but we reproduce the proof partially. We have by k > 3 and Sobolev
embedding,

∥q(·+ vt+D′ + y0)S
0,0
2k,0∥Lp

x
≤ Cq,k∥S0,0

2k,0∥Σ2k
⟨D′(t) + tv+ y0⟩−k.

Then for a fixed C = Cq,k,S

∥q(·+ vt+D′ + y0)S
0,0
2k,0∥L1((0,T ),Lp

x) ≤ C∥⟨D′(s) + sv+ y0⟩−k∥L1(0,T ),

∥⟨D′(s) + sv+ y0⟩−k∥L1(0,T ) = ∥⟨D′(0) + sv+ I(s) + y0⟩−k∥L1(0,T ) where

I(s) := sv0 +

∫ s

0

(Ḋ′(τ)− v0)dτ , |İ(s)| ≤ 3C0ϵ,
(5.12)

where |İ(s)| ≤ 3C0ϵ follows by (5.9)–(5.10) and by |v0| . ϵ. Then (5.11) follows by Lemma 5.5
below.

By D′(0) = (τ1(0, u0), τ2(0, u0), τ3(0, u0)) we get |D′(0)| < Cϵ for fixed C by (1.15) and Propo-
sition 2.1, see also the discussion at the end of Sect. 2.1. After Lemma 2.9 [4] the following is
proved.
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Lemma 5.4. For ε0 in (1.15) small enough we have

sup
distS2 (

−→e , v
|v| )≤ε1

∫ ∞

0

(1 + ||v|−→e t+D′(0) + y0|2)−1dt < 10ϵ. (5.13)

We now prove the following lemma.

Lemma 5.5. For ε0 > 0 in (1.15) sufficiently small, we have for a fixed c

∥⟨D′(s) + sv + y0⟩−k∥L1(0,T ) < cϵ. (5.14)

Proof. Set d0 := D′(0) + y0. If |⟨d0 + sv⟩| ≥ 6C0ϵs for all s > 0, then since |I(s)| ≤ 3C0ϵs by (5.12)
we get ⟨D′(s) + sv + y0⟩ ∼ ⟨d0 + sv⟩ with fixed constants for all s > 0. Then (5.14) follows from
(5.13).
Suppose for an s0 > 0 that |d0 + s0v| < 6C0ϵs0 . Squaring this inequality and for C1 = (6C0)

2|v|−2

we get
|v|2(1− C1ϵ

2)s20 + 2d0 · vs0 + |d0|2 < 0.

This implies (d0 · v)2 > |d0|2 |v|2(1− C1ϵ
2) for the discriminant and

d0 · v < −|d0| |v|
√
1− C1ϵ2.

This implies d0 ̸= 0 and distS2(− d0

|d0| ,
v
|v| ) = O(ϵ2). From (5.13) we get

|v|−1∥⟨d0 −
d0
|d0|

s⟩−k∥L1(R+) = |v|−1∥⟨|d0| − s⟩−k∥L1(R+) < 10ϵ.

For ϵ0 > 0 in (1.15) small, we get |v|−1 < κϵ for κ = 20/∥⟨t⟩−k∥L1(R). We have

∥⟨D′(s) + sv + y0⟩−k∥L1(0,T ) ≤ |v|−1∥⟨d0 + s+ I1(s/|v|)⟩−k∥L1(0,|v|T ),

where d
ds [I1(s/|v|)] ≤ 3C0ϵ/|v|. We complete the proof of (5.14) by

∥⟨D′(s) + sv + y0⟩−k∥L1(0,T ) ≤ |v|−1∥⟨d0/|v|+ s+ I1(s/|v|)⟩−k∥L1(0,|v|T )

≤ 2|v|−1∥⟨t⟩−k∥L1(R) < 40ϵ for 3C0ϵ0/|v| < 1/2.

Lemma 5.6. Let 0 < ε4 < ε2 and let B(ε4) an open neighborhood of ϕω1 in H1(R3,R2) defined like
(2.14) but with ε4 instead of ε2. Then under the hypotheses of Prop. 5.2 for the ε0 > 0 in (1.15)
sufficiently small we have τ ′(t) ∈ T (t, δ) (where δ > 0 is given in Lemma 2.4) and (t, u(t)) ∈ B(ε4)
for t ∈ [0, T ].

Proof. By Lemma 5.4 and by the argument in Lemma 2.3 for any preassigned M > 0 if ε0 > 0 in
(1.15) is sufficiently small we either have |v| ≥ ϵ−

1
2 or |D′(0) + vt + y0| ≥ M . Furthermore, the

argument in Lemma 5.5 shows that either ⟨D′(s) + tv + y0⟩ ∼ ⟨D′(0) + vt + y0⟩ in [0, T ] for fixed
constants or |v| ≥ coϵ

−1 for a fixed co > 0. In any case, we conclude that for any fixed δ1 > 0 for
ε0 > 0 sufficiently small we have τ ′(t) ∈ T (t, δ1) for t ∈ [0, T ].
Since (5.1)–(5.5) and (5.9)–(5.10) imply for ε0 > 0 sufficiently small that u(t) ∈ eJτ

′(t)·♢BH1(ε4) for
all t ∈ [0, T ] we conclude (t, u(t)) ∈ B(ε4) for t ∈ [0, T ].
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Lemma 5.7. Under the hypotheses of Proposition 5.2 and for ε0 small enough we have ∥Π̇j∥L1(I) ≤
cϵ for a fixed c for all j.

Proof. We have ∥⟨V (·+vt+y0)∂xa(Φp′+P (p′)P (π)r′),Φp′+P (p′)P (π)r′⟩∥L1(I) ≤ cϵ by an argument
in [4]. We focus now on the additional terms not already present in [4]. We have

|dUΠjA| ≤ |⟨U, f(U, Q̃)⟩|+ |ẇ1 − Eww2||⟨U,♢j∂w1Q̃⟩|+ |ẇ2 + Eww1||⟨U,♢j∂w2Q̃⟩|.

By (3.4)

U = S0,0
n′,m′(π,Π, ϱ

′, z′, f ′) + eJτ
′·♢P (p′)Pc(π)f

′.

with ϱ′ = Π(f ′). Composing with the map in (3.8) we obtain

U = S0,0
n,m(π,Π, ϱ, z, f) + eJτ ·♢eJR

0,2
n,m·♢P (p)Pc(π)f. (5.15)

with ϱ = Π(f) for any preassigned pair (n,m). This is obtained by taking both n′ and m′ sufficiently
large, using the fact that the pullback of symbols Si,j

n′,m′ and Ri,j
n′,m′ are symbols Si,j

n,m and Ri,j
n,m for

any n ≤ n′ − CN1 and m ≤ m′ − CN1 for a fixed C. Furthermore we have p′ = p +R0,2
n,m. For all

this, see [1]. We now have

∥⟨U, f(U, Q̃)⟩∥L1
t
≤
∫
[0,1]2

∥⟨S0,0
n,m + eJτ ·♢eJR

1,2
n,m·♢P (p)Pc(π)f, ∂ι∂s[β̃(ιU + sQ̃)]⟩∥L1

t
dιds.

We have
∥⟨S0,0

n,m, ∂ι∂s[β̃(ιU + sQ̃)]⟩∥L1
t
≤ ∥S0,0

n,mQ̃∥L1
tL

2
x
∥β̃′′(ιU + sQ̃)U∥L∞

t L2
x
.

We have ∥β̃′′(ιU + sQ̃)U∥L∞
t L2

x
≤ c1 for a fixed c1 by (H3) and by (5.1)–(5.3) and (5.10). These

imply also ∥S0,0
n,mQ̃∥L1

tL
2
x
≤ c2ϵ for a fixed c2 by Lemma 5.3.

We have

∥⟨eJτ ·♢eJR
1,2
n,m·♢P (p)Pc(π)f, ∂ι∂s[β̃(ιU + sQ̃)]⟩∥L1

t

≤ ∥f∥L∞
t L2

x
∥β̃′′(ιU + sQ̃)Q̃S0,0

n,m∥L1
tL

2
x

(this is O(ϵ2) )

+ ∥f∥L2
tL

6
x
∥β̃′′(ιU + sQ̃)Q̃eJτ ·♢eJR

1,2
n,m·♢P (p)Pc(π)f∥

L2
tL

6
5
x

(this is O(∥f∥2L2
tL

6
x
) = O(ϵ2) ).

Then we conclude ∥⟨U, f(U, Q̃)⟩∥L1
t
≤ cϵ for a fixed c.

We consider

∥ẇ1 − Eww2∥L2
t
∥⟨U,♢j∂w1Q̃⟩∥L2

t

≤ Cϵ
(
∥⟨S0,0

n,m,♢j∂w1Q̃⟩∥L2
t
+ ∥⟨eJτ ·♢eJR

1,2
n,m·♢P (p)Pc(π)f,♢j∂w1Q̃⟩∥L2

t

)
.

This is O(ϵ
3
2 ) because for a fixed C and using Lemma 5.3

∥⟨eJτ ·♢eJR
1,2
n,m·♢P (p)Pc(π)f,♢j∂w1Q̃⟩∥L2

t
≤ C∥f∥L2

tL
6
x
≤ CC0ϵ

∥⟨S0,0
n,m,♢j∂w1Q̃⟩∥2L2

t
≤ ∥⟨S0,0

n,m,♢j∂w1Q̃⟩∥L1
t
∥⟨S0,0

n,m,♢j∂w1Q̃⟩∥L∞
t

≤ Cϵ.
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Lemma 5.8. Under the hypotheses of Prop. 5.2 for ε0 > 0 sufficiently small, for any preassigned
c > 0 we have in [0, T ]

∥ẇ1 − Eww2∥L1∩L2 + ∥ẇ2 + Eww1∥L1∩L2 ≤ cϵ. (5.16)

Proof. We will bound only the first term in the left. We use (4.13). Furthermore we will only bound

∥⟨rhs(4.12), J∂w1Q̃⟩∥L1∩L∞ ≤ cϵ. (5.17)

All the other terms can be bounded similarly. By Lemma 5.3 we have, see (4.4) for β̃,

∥⟨J∇E(eJτ
′·♢Φp′), J∂w1Q̃⟩∥L1 ≤ cϵ.

Schematically, omitting factors irrelevant in the computation, we have

⟨J∇EP (e
Jτ ′·♢P (p′)P (π)r′), J∂w1Q̃⟩ ∼ ⟨β̃(P (p′)P (π)r′), ϕ0(·+D′ + y0)⟩

= ⟨β̃(S0,1
k,m + eJR

0,2
k,m·♢f), ϕ0(·+D′ + y0)⟩ = ⟨β̃(S0,1

k,m), ϕ0(·+D′ + y0)⟩

+ ⟨β̃(eJR
0,2
k,m·♢f), ϕ0(·+D′ + y0)⟩+ ⟨f(eJR

0,2
k,m·♢f,S0,1

k,m), ϕ0(·+D′ + y0)⟩.

Then bounding one by one the terms in the r.h.s. by routine arguments and using Lemma 5.3, we
get

∥⟨J∇EP (e
Jτ ′·♢P (p′)P (π)r′), J∂w1

Q̃⟩∥L1∩L∞ ≤ cϵ.

Similarly ∫
[0,1]3

dsds1ds2∥⟨∂s∂s1∂s2 β̃(ss2eJτ
′·♢P (p′)P (π)r′ + s1Q̃), J∂w1Q̃⟩∥L1∩L∞ ≤ cϵ

and

∥⟨Jf(eJτ
′·♢P (p′)P (π)r′ + Q̃, eJτ

′·♢Φp′), J∂w1Q̃⟩∥L1∩L∞ ≤∫
[0,1]2

dιds∥⟨β̃′′(ι(eJτ
′·♢P (p′)P (π)r′ + Q̃) + seJτ

′·♢Φp′)eJτ
′·♢P (p′)P (π)r′Q̃, ∂w1Q̃⟩∥L1∩L∞ ≤ cϵ .

Schematically we have

⟨∂t(eJτ
′·♢P (p′)P (π)r′), J∂w1

Q̃⟩ ∼ ⟨τ̇ ′P (p′)P (π)r′,♢ϕ0(·+D′ + y0)⟩
+ ⟨(∂tP (p′)P (π))r′ + P (p′)P (π)ṙ′, ϕ0(·+D′ + y0)⟩.

(5.18)

We have p′ = p +R0,2
k,m, see [1]. We also have τ ′ = τ +R0,2

k,m by (3.8). For the time derivatives we

use also the equations in Sect. 4. In particular we have (∂tP (p
′)P (π))r′ = S0,1

k,m and one by one the
terms in the r.h.s. of (5.18) satisfy the desired bounds. Similarly it is elementary to see also

∥⟨∂teJτ
′·♢Φp′ , ∂w1Q̃⟩∥L1∩L∞ ≤ cϵ .

Lemma 5.9. Under the hypotheses of we can extend u(t) for all t ≥ 0 with (t, u(t)) ∈ B(ε2).
Furthermore (5.1)–(5.5) hold for a fixed C in [0,∞) and we have lim

t↗∞
z(t) = 0.
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Proof. We can apply a standard continuity argument, Prop. 5.2 and Lemma 5.6 to conclude that
(t, u(t)) ∈ B(ε2) for all t ≥ 0 and that (5.1)–(5.5) hold on [0,∞). The fact that limt↗∞ z(t) = 0
follows by Lemma 7.1 [4].

Lemma 5.10. There is a fixed C and f+ ∈ H1 and a function ς : [0,∞) → R4 such that for the
variable f in (5.1) we have

lim
t↗∞

∥f(t)− eJς(t)·♢e−Jt∆f+∥H1 = 0. (5.19)

Proof. The proof of Lemma 5.10 is the same of Sect. 11 in [4] and is a standard consequence of the
estimates (5.1)–(5.3), of (6.9) and (6.3) below in I = [0, T ) = [0,∞) applied to (6.13) below, where

h =M−1e
1
2Jv0·xf .

We can now apply [4] which proves the following facts, that yields Theor. 5.1 assuming Prop.
5.2.

• For ε0 small enough, (5.10) holds for C = c < C0/2 with c a fixed constant. Furthermore,
(5.4) holds for C = c < C0/2 with c a fixed constant.

• We have
|D′(t) + tv + y0| ≥ t2−1|v| − |D′(0) + y0| (5.20)

• We have
lim

t→+∞
(Ḋ′ − v′) = 0 , lim

t→+∞

(
ϑ̇′ − ω′ − 4−1(v′)2

)
= 0. (5.21)

• There exist ω+ and v+ such that the limits (5.6) are true.

6 Proof of Proposition 5.2

Lemma 6.1. Assume the hypotheses of Prop. 5.2. Then there is a fixed c such that for all admissible
pairs (p, q)

∥f∥Lp
t ([0,T ],W 1,q

x ) ≤ cϵ+ c
∑

e·µ>ω0

|zµ|2L2
t (0,T ) (6.1)

where we sum only on multiindices such that e·µ−ej < ω0 for any j such that for the j–th component
of µ we have µj ̸= 0.

Proof. Compared to [4], the one additional term in (4.21) here is the term dUfA, which we now
analyze. By the fact that the inverse of (3.8) has the same structure (the flows which yield (3.8)
when reversed yields the inverse of (3.8), see Lemma 3.4 [4]) we have

f = eJR
0,2
k,m(π,Π,Π(f ′),z′,f ′)·♢f ′ + S1,1

k,m(π,Π,Π(f ′), z′, f ′).

Hence

dUf = eJR
0,2
k,m·♢dUf ′ + JdUR0,2

k,m · ♢(f − S1,1
k,m) + dUS

1,1
k,m.

Notice that we have dUR0,2
k,m ∈ B(Σ−k′ ,R4) and dUS

1,1
k,m ∈ B(Σ−k′ ,Σk′) with norms

∥dUR0,2
k,m∥B(Σ−k′ ,R4) ≤ C∥r′∥Σ−k′

∥dUS1,1
k,m∥B(Σ−k′ ,Σk′ ) ≤ C(|π −Π|+ |Π(f ′)|+ ∥r′∥Σ−k′ ).
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Then

∥dUS1,1
k,mf(U, Q̃)∥L1

tH
1+L2

tH
1,S . C0ϵ

∫
[0,1]2

dιdκ∥β̃′′(ιU + κQ̃)Q̃U∥L1
tL

2,−S+L2
tL

2,−S

. C0ϵ

∫
[0,1]2

dιdκ(∥Q̃S0,0
n,m∥L1

tL
2
x
+ ∥Q̃eJτ ·♢eJR

0,2
n,m·♢P (p)Pc(π)f)∥L2

tL
2
x
) = O(ϵ2)

and similarly

∥dUR0,2
k,mf(U, Q̃)∥L∞

t +L1
t
. C0ϵ

∫
[0,1]2

dιdκ∥β̃′′(ιU + κQ̃)Q̃U∥L∞
t L2,−S+L1

tL
2,−S = O(ϵ2).

So we conclude

JdUR0,2
k,mf(U, Q̃) · ♢f − dUR0,2

k,mf(U, Q̃) · ♢S1,1
k,m + dUS

1,1
k,mf(U, Q̃) = A · ♢f +R1 +R2 (6.2)

with for any preassigned c

∥A∥L∞(0,T )∩L1(0,T ) + ∥R1∥L1([0,T ],H1) + ∥R2∥L2([0,T ],H1,S) ≤ cϵ. (6.3)

We have

dUf
′ = (Pc(π)Pc(p0))

−1Pc(π)P (p0)dUr
′,

dUr
′ = (P (p′)P (π)P (p0))

−1P (p′)
[
e−Jτ ′·♢ − J♢jP (p

′)r′ dUτ
′
j − ∂p′

j
P (p′)r′ dUp

′
j

]
.

Proceeding like above we conclude that

eJR
0,2
k,m·♢dUf ′f(U, Q̃) = eJ(R

0,2
k,m−τ ′)·♢Pc(p0)f(U, Q̃) +A · ♢f +R1 +R2,

where the last three terms are like those in the r.h.s. of (6.2). We have

∥f(U, Q̃)∥L1
tH

1+L2
tH

1,S ≤
∫
[0,1]2

dιdκ∥β̃′′(ιU + κQ̃)Q̃U∥L1
tH

1+L2
tH

1,S

≤ C∥Q̃S0,0
n,m∥L1

tL
2
x
(1 + ∥f∥L1

tH
1
x
) + ∥Q̃(eJτ ·♢eJR

0,2
n,m·♢P (p)Pc(π)f)

2∥L2
tH

1
x

≤ cϵ+ ∥Q̃∥L∞
t W 1,3

x
∥f∥L2

tW
1,6
x

≤ cϵ+ C(C0)ϵ
2.

Therefore f(U, Q̃) is of the form R1 +R2 with the estimate in (6.3).

Summing up, for h =M−1e
1
2Jv0·xf with M defined in (2.40), we have

iḣ = Kω0h+ σ3Pc(Kω0)V (·+ vt+ y0 +D′ +R0,2
k,m)h+ σ3A4(t)Pc(Kω0)h

−
3∑

a=1

iAa(t)Pc(Kω0)∂xah+
∑

|e·(µ−ν)|>ω0

zµzνGµν(t,Π(f)) +R1 +R2 ,
(6.4)

where:

Gµν(t,Π(f)) :=M−1eJ
v0·x

2 Gµν(t,Π(f)), (6.5)

with Gµν(t,Π(f)) the coefficients of Z1, see (3.12) and where (6.3) are satisfied.

Notice that in (6.4) we can drop R0,2
k,m from the argument of V , absorbing the difference inside

R1 +R2, so that σ3Pc(Kω0)V (·+ vt+ y0 +D′)h becomes the second term in the r.h.s of (6.4).
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Set D := vt+ y0 +D′. Set

g̃(t)u(t, x) := eiσ3(− t
4v

2− v·x
2 )u(t, x+D(t)). (6.6)

Recall that
g̃(t)−1u = eiσ3(

t
4v

2+
v·(x−D(t))

2 )u(t, x−D(t)),

[g̃(t)−1, i∂t −K0]u = i(Ḋ− v) · ∇x(g̃
−1(t)u),

[g̃(t)−1, ∂xj ]u = −iσ3
vj

2
g̃−1(t)u.

(6.7)

Set now g(t) = g̃(t)eiσ3

∫ t
0
φ̂(s)ds for a φ̂ which will be introduced later. Then, irrespective of the φ̂,

we have V (·+D) = g̃V g̃−1. We now set

PD := gPg−1 where P := ϕ0⟨ , ϕ0⟩+ σ1ϕ0⟨ , σ1ϕ0⟩ . (6.8)

Then, for a fixed δ > 0, we add to (6.4) the term iδPDh− iδPDh = 0. We will think of −iδPDh as a
damping term in (6.4) and iδPDh as a reminder term, since it can be absorbed inside the reminder
R1 +R2, as we show now.

Lemma 6.2. Under the hypotheses of Prop. 5.2, for ε0 small enough we have for any preassigned
c > 0 and irrespective of the φ̂,

∥PDh∥L1([0,T ],H1)+L2([0,T ],W 1,6) ≤ cϵ. (6.9)

Proof. Obviously it is enough to prove

∥⟨e−iσ3

∫ t
0
φ̂(s)dsg̃−1h, ψ⟩∥L1(0,T )+L2(0,T ) ≤ cϵ for ψ = ϕ0, σ1ϕ0. (6.10)

We will consider the case ψ = ϕ0. The other case is similar. We have from h =M−1e
1
2Jv0·xf

⟨e−iσ3

∫ t
0
φ̂(s)dsg̃−1h, ϕ0⟩ = ⟨M−1eJ

v0·x
2 f, eiσ3(

t
4v

2+ v·x
2 −

∫ t
0
φ̂(s)ds)ϕ0(·+D)⟩

= ⟨eJ
v0·x

2 f, (M−1)T eiσ3(
t
4v

2+ v·x
2 −

∫ t
0
φ̂(s)ds)MT (M−1)Tϕ0(·+D)⟩

= ⟨eJ
v0·(x+D)

2 f, eJ(
t
4v

2+ v·x
2 +

v0·D
2 −

∫ t
0
φ̂(s)ds)(M−1)Tϕ0(·+D)⟩

= ⟨f, eJ( t
4v

2+
v0·D

2 + v·x
2 −

∫ t
0
φ̂(s)ds)(M−1)Tϕ0(·+D)⟩+O(ϵ∥f∥L6

x
).

(6.11)

We used (M−1)T iσ3M
T =M iσ3M

−1
= J. We have ∥O(ϵ∥f∥L6

x
)∥L2(0,T ) ≤ C(C0)ϵ

2.
Ignoring the O(ϵ∥f∥L6

x
) term, we can write the last line in (6.11) in the form

⟨f, eJ v·x
2 eJλ(t)ϕ0(·+D)⟩+ i⟨f, eJ v·x

2 eJλ(t)Jϕ0(·+D)⟩
= e−iλ(t)⟨f, eJ v·x

2 ϕ0(·+D)⟩+ (sinλ(t) + i cosλ(t))⟨f, eJ v·x
2 Jϕ0(·+D)⟩,

(6.12)

for some real valued function λ(t).
By the fact that ϕ0 is a Schwartz function and by Lemmas 4.5 and 5.3, we conclude that the

L1(0, T )+L2(0, T ) norm of (6.12) is bounded by C(C0)ϵ
2, independently of λ(t) . This yields (6.10)

for ψ = ϕ0. The case ψ = σ1ϕ0 is similar.
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We can rewrite (6.4)

iḣ = Kω0h+ σ3Pc(Kω0)V (·+ vt+ y0 +D′)h− iδPDh+ σ3A4(t)Pc(Kω0)h

−
3∑

a=1

iAa(t)Pc(Kω0)∂xah+
∑

|e·(µ−ν)|>ω0

zµzνGµν(t,Π(f)) +R1 +R2 ,
(6.13)

Then the proof of Lemma 6.1 is exactly the same as in [4] using Theorem 7.1 below.
We set now

g = h+ Y , Y :=
∑

|e·(µ−ν)|>ω0

zµzνR+
Kω0

(e · (µ− ν))Gµν(t, 0). (6.14)

Lemma 6.3. Assume the hypotheses of Prop. 5.2 and let T > ε−1
0 . Then for fixed s > 1 there

exist a fixed c such that if ε0 is sufficiently small, for any preassigned and large L > 1 we have
∥g∥L2((0,T ),L2,−s

x ) ≤ (c+ C0L
−1)ϵ.

Proof. The proof is exactly the same of Lemma 8.5 in [4].

Lemma 6.4. There is a set of variables ζ = z +O(z2) such that for a fixed C we have

∥ζ − z∥L2
t
≤ CC0ϵ

2 , ∥ζ − z∥L∞
t

≤ Cϵ3 (6.15)

∂t

n∑
j=1

ej |ζj |2 = −Γ(ζ) + r (6.16)

and s.t., for a fixed constant c0 and a preassigned but arbitrarily large constant L, we have

Γ(ζ) := 4
∑
Λ>ω0

Λ Im

⟨
R+

Hω0
(Λ)

∑
e·α=Λ

ζαGα0(t, 0), σ3
∑

e·α=Λ

ζ
α
Gα0(t, 0)

⟩
,

∥r∥L1[0,T ] ≤ (1 + C0)(c0 + C0L
−1)ϵ2.

(6.17)

For the proof see [4, 2]. By [2] Lemma 10.5 we have Γ(ζ) ≥ 0. We make now the following
hypothesis:

(H11) there exists a fixed constant Γ > 0 s.t. for all ζ ∈ Cn we have:

Γ(ζ) ≥ Γ
∑

e·α>ω0
e·α−ek<ω0
∀ k s.t. αk ̸=0

|ζα|2.
(6.18)

Then integrating and exploiting (6.15) we get for t ∈ [0, T ] and fixed c∑
j

ej |zj(t)|2 + 4Γ
∑

α as in (H11)

∥zα∥2L2(0,t) ≤ c(1 + C0 + C2
0L

−1)ϵ2.

From the last inequality and from Lemma 6.1 we conclude that for ε0 > 0 sufficiently small and any
T > 0, (5.1)–(5.3) in I = [0, T ] and with C = C0 imply (5.1)–(5.3) in I = [0, T ] with C = c(1 +√
C0 + C0L

− 1
2 ) for fixed c.

We bound the r.h.s. of (4.13). By Lemma 5.3 we have for a fixed c
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∥⟨|∂teJτ
′·♢Φp′ |+ |∇E(eJτ

′·♢Φp′)|+ J |f(η + Q̃, eJτ
′·♢Φp′)|, J |∂wiQ̃|⟩∥L1

t
≤ cϵ.

We have

∥⟨∇EP (η), ∂wiQ̃⟩∥L1
t
= ∥⟨β(|eJτ

′·♢P (p′)P (π)r′|2)eJτ
′·♢P (p′)P (π)r′, ∂wiQ̃⟩∥L1

t
.

Next, r′ = S0,1
k,m + eJR

0,2
k,m·♢f . Then the above can be bounded by

∥⟨∇EP (e
Jτ ′·♢S0,1

k,m), ∂wiQ̃⟩∥L1
t
+ ∥⟨∇EP (e

J(R0,2
k,m+τ ′)·♢f), ∂wiQ̃⟩∥L1

t

+ ∥⟨f(eJτ
′·♢S0,1

k,m, e
J(R0,2

k,m+τ ′)·♢f), ∂wiQ̃⟩∥L1
t
≤ cϵ.

This completes the proof of Proposition 5.2.

7 Linear dispersion

Set K0 = σ3(−∆ + ω0), K1 = Kω0 = K0 + V1, K2 = H0 + V2 where V2 = σ3V . Set VD
2 (t, x) :=

V2(x+D(t)) Pc := Pc(K1), K(t) = K0 + V1 + VD
2 (t) We have the following result.

Theorem 7.1. Consider for PcF (t) = F (t) and Pcu(0) = u0 the equation

iu̇− PcK(t)Pcu− iPcv(t) · ∇xu+ φ(t)Pcσ3u = F − iδPDu (7.1)

for (v(t), φ(t)) ∈ C1([0, T ],R3 × R). Fix δ0 > |e0 + ω0|. For v the vector in Theor.1.4, set

c(T ) := ∥(φ(t), v(t))∥L∞
t [0,T ]+L1

t [0,T ] + ∥v − Ḋ(t)∥L∞
t [0,T ]. (7.2)

Then for any σ0 > 3/2 there exist a c0 > 0 and a C > 0 such that, if c(T ) < c0, σ > σ0 and δ > δ0,
then for any admissible pair (p, q), see (1.7), we have for i = 0, 1

∥u∥Lp
t ([0,T ],W i,q

x ) ≤ C(∥u0∥Hi + ∥F∥L2
t ([0,T ],Hi,σ

x )+L1
t ([0,T ],Hi

x)
). (7.3)

Proof. Consider the problem

iu̇−K0u− iv(t) · ∇xu+ φ(t)σ3u = VD
2 u+Gu− iδPdu− iδPDu , u(t0) = u0, (7.4)

where Pd = 1− Pc and
G(t) := V1 − PdK(t)Pc −K(t)Pd.

By the proof of Theorem 9.1 in [4], Theorem 7.1 is a consequence of Proposition 7.2 below.

Proposition 7.2. Let U(t, t0) be the group associated to (7.4). Then for σ > 3/2 there exists a
fixed C > 0 such that for all 0 ≤ t0 < t ≤ T

∥⟨x− x0⟩−σU(t, t0)⟨x− x1⟩−σ∥L2→L2 ≤ C⟨t− t0⟩−
3
2 ∀ (x0, x1) ∈ R6. (7.5)

and ∫ T

0

|| ⟨x− x(t)⟩−σ
U(t, t0)u0||2L2

x
dt ≤ C||u0||2L2

x
∀ x(t) ∈ C0([0, T ],R3). (7.6)
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The proof is the same of Proposition 9.2 in [4] with a small difference. Notice that in [4]
the operator σ3(−∆ + ω0 + V ) does not have eigenvalues, while here it does have the eigenvalues
±(e0 + ω0), with projection on the vector space generated by the eigenspaces given by the operator
P introduced in (6.8).

Now, the proof is exactly the same of Proposition 9.2 in [4] except for the following modification.
The analogue of (9.43) [4] is now

(i∂t −K0)g
−1u− iv̂(t) · ∇xg

−1u+ iδPg−1u = σ3V g
−1u

+ g−1V1 − iδPd −K1Pd + Pdσ3V (·+D)Pc − σ3V (·+D)Pd]u
(7.7)

where g(t) = g̃(t)eiσ3

∫ t
0
φ̂(s)ds like after (6.7), where we choose the same φ̂ of [4] and where σ3V (x) =

g−1(t)σ3V (x+D)g(t) and by (6.8) we have P = g−1(t)PDg(t).
The operator of formula (9.46) in [4] has to be changed into

T1f(s) :=W2

∫ s

t0

e−i(s−τ)σ3(−∆+ω0+V )−(s−τ)δPW1f(τ)dτ,

where W1W2 = σ3V − iδP. Then, for

T0f(s) :=W2

∫ s

t0

e−i(s−τ)(−∆+ω0)W1f(τ)dτ

we have (1− iT1)(1 + iT0) = 1. Furthermore, we have for a fixed Cσ for any σ > 5/2

∥⟨x− x0⟩−σe−itσ3(−∆+ω0+V )−tδP⟨x− x1⟩−σ∥L2→L2 ≤ Cσ⟨t⟩−
3
2 ∀t ≥ 0 and (x0, x1) ∈ R6

which follows by the condition δ ≥ δ0 > |e0 + ω0|. Then the proof in [4] yields Proposition 7.2.

8 Dropping the hypothesis u0 ∈ Σ2

Up to now we have assumed u0 ∈ Σ2, that is (1.18), to guarantee that as we remark at the end of
Sect. 3 the coordinates of U [t, u(t)] belong to the image of the map (3.8) in the sense of (3.9)–(3.11).
For the same reason in the series [2, 3, 4] it is assumed that u0 ∈ Σℓ for fixed ℓ≫ 1 with depends on
the N = N1 in Hypothesis (H7). This is used only in order to make sense of the pullback by means
of (3.8) of the form Ω discussed in claim (8) of Theorem 3.5. However everywhere in [2, 3, 4] and
here the distance of u(t) and of u0 from ground states is measured only with the metric of H1(R3).

Now we discuss briefly the fact that we can drop (1.18) and assume only u0 ∈ H1. Let u0 ∈ H1

with u0 ̸∈ Σ2 and let {un(0)}n≥1 be a sequence with un(0) → u0 in H1 and with un(0) ∈ Σ2 for
any n ≥ 1. We can apply our result to each solution un(t). By the well posedness of (1.3) and by
the continuity of the maps defined in Proposition 2.1, in (2.36) and at the beginning of Sect. 3 we
have for the coordinates of un(t) and of u(t)

(τ ′n(t), p
′
n(t), z

′
n(t), f

′
n(t), wn(t))

n→∞→ (τ ′(t), p′(t), z′(t), f ′(t), w(t)) (8.1)

in R8×Cn×H1×C. Furthermore, since (3.8) is a local homeomorphism of R4×Cn×(H1∩L2
c(p0)),

see (3.10) and the comments immediately below (3.10), we also have a limit

(τn(t), pn(t), zn(t), fn(t), wn(t))
n→∞→ (τ(t), p(t), z(t), f(t), w(t)) (8.2)

with on the left the final coordinates of un(t). Notice that on the right of (8.2) we have the final
coordinates of u(t) since map (3.8) makes them correspond to the initial coordinates of u(t).
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No use in Sections 5–7 is made of the hypothesis that u0 ∈ Σ2. Hence Theorem 5.1 holds also
for the coordinates on the right in (8.2). From this and Lemma 2.5 we conclude that

u(t) = eJτ
′(t)·♢(Φp′(t) + P (p′(t))P (Π(t))r′(t)) + eJ(

1
2v·x+

t
4 |v|

2)Qw(·+ vt+ y0),

p′(t) = Π(t) +R0,2
k,m(Π(t), t, z(t), f(t)),

r′(t) = eJR
0,2
k,m(Π(t),z(t),f(t))·♢(f + S0,1

k,m(Π(t), z(t), f(t))),

(8.3)

where we are making use of (3.8) and of claims (6)–(7) of Theorem 3.5.
Finally, the proof that (8.3) yields (1.16) is in [4], especially in Sect. 12. Notice that the proof

in [4] of the facts we list now makes only use of u0 ∈ H1.
The facts needed to obtain (1.16) are Lemma 5.7, lim

t↗∞
S0,1
k,m = 0 in H1, lim

t↗∞
R0,2

k,m = 0 in R4

and lim
t↗∞

(τ ′(t) + ς(t)) = ζ0 for ς the function in Lemma 5.10 and for some ζ0 ∈ R4. This is proved

in [4].

A Implicit function theorem

Theorem A.1. Let F ∈ C∞(BX(0, δ0) × BY (0, δ0);Y ) with F (0, 0) = 0. Further, assume there
exists δ1, δ2 > 0 s.t.

sup
(x,y)∈BX(0,δ1)×BY (0,δ2)

∥DyF (x, y)
−1∥ ≤ 2. (A.1)

Now, set δ3 ∈ (0, δ1) s.t.

sup
x∈BX(0,δ3)

∥F (x, 0)∥ ≤ 1

8
δ4, (A.2)

where

δ4 := min

δ2, 1
8

(
sup

x∈BX(0,δ1),y∈BY (0,δ2)

∥DyyF (x, y)∥

)−1
 . (A.3)

Then there exits a function y(·) ∈ C∞(BX(0, δ3);BY (0, δ4)) s.t. for any x ∈ BX(0, δ3) and for
y ∈ BY (0, δ4) we have F (x, y) = 0 if and only if y = y(x).

Proof. First, for (x, y) ∈ BX(0, δ1)×BY (0, δ2), we have

F (x, y) = 0 ⇔ y = y − (DyF (x, 0))
−1
F (x, y).

So, we set

Φ(x; y) := y − (DyF (x, 0))
−1
F (x, y)

and seek for the fixed point of Φ.
Now, set

y0 = 0, yn+1 = Φ(x; yn−1) for n ∈ N.

We show
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• ∀n ∈ N, yn ∈ BY (0, δ4)

• yn converges.

Indeed, by the continuity of F w.r.t. y, lim yn is the fixed point of Φ(x; ·).
Now, let y, y′ ∈ BY (0, δ4), we have

Φ(x; y)− Φ(x, y′) = (DyF (x, 0))
−1
∫ 1

0

(DyF (x, 0)−DyF (x, y
′ + t(y − y′))) (y − y′) dt

= − (DyF (x, 0))
−1
∫ 1

0

∫ 1

0

(DyyF (x, s(y
′ + t(y − y′)))(y′ + t(y − y′))) (y − y′) dsdt.

Therefore, we have

∥Φ(x; y)− Φ(x, y′)∥ ≤ ∥ (DyF (x, 0))
−1 ∥

×
∫ 1

0

∫ 1

0

∥ (DyyF (x, s(y
′ + t(y − y′)))(y′ + t(y − y′))) ∥ dsdt∥y − y′∥

2

(
sup

x∈BX(0,δ1),y∈BY (0,δ2)

∥DyyF (x, y)∥

)
δ4∥y − y′∥

≤ 1

4
∥y − y′∥.

On the other hand,

∥y1∥ = ∥Φ(x; 0)∥ = ∥DyF (x, 0)F (x, 0)∥ ≤ 2 sup
x∈BX(0,δ3)

∥F (x, 0)∥ ≤ 1

4
δ3.

Therefore, we have

∥yn∥ ≤
n∑

k=1

∥yk − yk−1∥ ≤
n∑

k=1

4−k∥y1∥ ≤ 2∥y1∥ ≤ 1

2
δ3.

Therefore, for all n ∈ N, yn ∈ BY (0, δ3). Further, we by

∥yn − ym∥ ≤
n∑

k=m+1

∥yk − yk−1∥ ≤
n∑

k=m+1

4−k∥y1∥.

{yn} is a Cauchy sequence so it has a limit.
Finally, if there exist two y, y′ ∈ BY (0, δ3) s.t. F (x, y) = F (x, y′) = 0 we have

∥y − y′∥ = ∥Φ(x; y)− Φ(x; y′)∥ ≤ 1

4
∥y − y′∥

So, we have y = y′. This gives the uniqueness.

B ω 7→ ϕω in C1(O, H2) implies ω 7→ ϕω in C∞(O,Σn) for any
n ∈ N

Proposition B.1. Assume (H1)–(H3), (H6) and
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(H4)′ There exists an open interval O ⊂ R+ such that equation (1.11) admits a positive radial
solution ϕω ∈ H2 for ω ∈ O. Further, assume ω 7→ ϕω is in C1(O,H2).

Then, the map ω 7→ ϕω is in C∞(O,Σn) for arbitrary n ∈ N.

Proof. (Sketch). By a standard bootstrapping argument one can show ϕω ∈ Hn for arbitrary n.
Further, by maximum principle, one can show ϕω decays exponentially. Therefore, ϕω ∈ Σn for
arbitrary n. Further, ω 7→ ϕω is in C0(O,Σn).

Next, fix ω0 ∈ O. Differentiating

0 = −∆ϕω + ωϕω + β(ϕ2ω)ϕω,

with respect to ω, we have

−ϕω =
(
−∆+ ω + β(ϕ2ω) + 2β′(ϕ2ω)ϕ

2
ω

)
∂ωϕω. (B.1)

Now, set

A := −∆+ ω0 + β(ϕ2ω0
) + 2β′(ϕ2ω0

)ϕ2ω0

Bε := ε+ β(ϕ2ω0+ε) + 2β′(ϕ2ω0+ε)ϕ
2
ω0+ε − β(ϕ2ω0

)− 2β′(ϕ2ω0
)ϕ2ω0

Then, A is invertible as an operator on A : L2
rad(R3) → L2

rad(R3). Since (B.1) can be written as

−ϕω0+ε = (A+Bε)∂ωϕω0+ε.

Therefore, since B0 = 0, for sufficiently small ε, we have

∂ωϕω0+ε = −

( ∞∑
k=0

(−1)k(A−1Bε)
k

)
A−1ϕω0+ε. (B.2)

Now, we can show that if ω 7→ ϕω is in Cm(O,Σn), then ϵ → (A + Bε)
−1 is Cm with values in

B(Σn,Σn). By induction, one can show ω 7→ ϕω is in C∞(O,Σn).
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