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Learning objectives

1. Radiologists can be easily familiar with: a) main concepts of Information Theory (IT);
b) measures of information defined by IT.

2. Radiological diagnosis can be modeled in terms of IT, providing informational
measures of the accuracy of a diagnostic test.

3. Informational measures have the potential to complement and refine standard analysis
of accuracy.

Background

Standard analysis of accuracy

Standard analysis (SA) of the accuracy of a diagnostic test is based on the comparison
between the test result and a standard of reference (e.g., histological examination), that
is on the probabilities that a test really represents the presence or absence of a certain
medical condition [1] ( Fig. 1 on page 3 ).

However, SA shows the limitations illustrated in Fig. 2 on page 4 [1-2], including the
lack of a rigorous quantification of the informational content underlying the diagnostic
process.

Basic questions

1. Can we assess the performance of a diagnostic test in informational terms? In other
words, can we measure whether a test conveys a reasonable amount of information for
performing a diagnosis and/or managing a patient in a certain clinical scenario?

2. Can informational analysis provide summary measures of the accuracy of a diagnostic
test?

The answer is: yes, by using measures of information from the Information Theory (IT).

Information Theory

Foundations of the IT have been built in 1948 by the American mathematician and
engineer C.E. Shannon (1916-2001). IT formalizes the mathematical rules underlying
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telecommunications and defines the general properties that communication systems
should have to transmit information reliably and affordably [3]. Not surprisingly, IT is a
pillar in telecommunication technologies [4].

In order to define rigorous and objective measures of information, Shannon formalized
a general model of communications systems, namely the "binary transmission channel
model", where the "channel" is whatever medium used to transmit a signal from a
transmitter to a receiver. Basic properties of the transmission channel are shown in Fig.
3 on page 5 .

The measure of the information flowing through the channel is named Mutual Information
(MI). MI can be defined as the average quantity of information I(X,Y) that two variables X
and Y exchange each other (e.g., the input and output in the binary transmission channel
model) [5-6]. Properties of MI are summarized in Fig. 4 on page 6 .

Images for this section:
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Fig. 1: Conventional statistical approach to diagnostic accuracy is based on the
comparison between the results of a test and a standard of reference, as exemplified by
the classical 2x2 table.
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Fig. 2: Limitations of standard analysis of diagnostic accuracy.
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Fig. 3: Basic properties of a «binary transmission channel system».
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Fig. 4: Properties of Mutual Information.
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Findings and procedure details

The diagnostic channel

How can we express radiological diagnosis with IT? By modeling the radiological
examination as an asymmetric "diagnostic channel" [3-6]. In this model, information flows
from the source (the disease) to the receiver (the radiologist) through an imaging tool (the
diagnostic channel = CT, MRI, mammography and so on…). It is easy to demonstrate
that the probabilities of correct/incorrect transmission of the signal "disease" (i.e., the
transition matrix of the diagnostic channel) are equivalent to the probabilities calculated
when cross tabulating test results vs. the standard of reference results ( Fig. 5 on page
10 ).

Definition of "accuracy" in informational terms (in three steps)

1. In the above model, a test is as more accurate as more information on the disease is
prompted to the radiologist, that is: the larger the MI, the larger the diagnostic information
I(D,R) exchanged between the disease (D) and the radiologist (R). In mathematical terms,
this translates into (see Appendix I):

I(D,R) = PREV · SE · log SE/PR + PREV · FNR · log FNR/NR + (1-PREV) · FPR · log
FPR/PR + (1-PREV) · SP · log SP/NR

(1),

where PREV = prevalence of the disease in the study population, i.e. the pre-test
probability of disease; SE = sensitivity; SP = specificity; PR and NR = probability of a
positive or negative test result, respectively. The equation tells us that MI depends on
the pre-test probability of disease and the transition matrix of the channel.

2. To build a proper measure of accuracy, we must define now the "Capacity" of the
(binary asymmetric) channel (CBAC), that is the maximum amount of information I(D,R)
flowing through the diagnostic channel, given all possible PREV values (see Appendix II):

CBAC = max MI over all PREV values (2).

CBAC corresponds to the maximum accuracy of a test.

3. Since we don't know in advance whether the PREV in the study population is the one
corresponding to CBAC, informational accuracy should be intended globally as the MI-
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curve, i.e. the area under the curve (AUC) obtained by plotting MI versus all possible pre-
test probabilities of disease ( Fig. 6 on page 11 ) (see Appendix III).

Measures of informational accuracy

The MI-curve is the base to derive summary measures of informational accuracy, namely
the Information ratio (IR) for dichotomous tests and the Global Information Ratio (GIR)
for continuous tests, respectively.

1. The IR IR is the ratio between the MI-curve of a test and the MI-curve of the standard
of reference (SR) (that plots MI variations over the PREV when, by definition, SE = 1.0,
SP = 1.0, TNR = 0 and FPR = 0) ( Fig. 7 on page 12 ). IR is a dimensionless value
expressing, on a range between 0 and 1, how much of the maximum possible information
about the disease the test is able to convey ( Fig. 8 on page 13 ).

2. In the case of tests expressing the results on an interval or rank scale (e.g., ADC
values, BI-RADS…) we propose, similarly to ROC analysis, to calculate the IR value for
each of the 2x2 tables obtained by varying the threshold # = 1- SP. This leads to: A)
calculate which threshold corresponds to the maximum IR; B) build an Information Ratio
Curve (IRC) and calculate the GIR as a summary measure of accuracy ( Fig. 9 on page
14 ). The GIR expresses, on a range between 0 and 1, how much of the maximum
possible information about the disease the test is able to convey. (See Appendix IV)

Application to a real scenario

REFERENCE STUDY

In order to test the model, we applied it to real data from a celebrated work by Pisano et
al. [7], comparing Digital Mammography (DM) vs. Film Mammography (FM) in diagnosing
breast cancer in a screening population of 42,760 women recruited over 33 referral
centers. The Authors assessed the accuracy of DM and FM with ROC analysis on
the entire study group and several subgroups, using a seven-points scale to classify
mammography findings: 1 = definitely not malignant; 2 = almost definitely not malignant;
3 = probably not malignant; 4 = possibly malignant; 5 = probably malignant; 6 = almost
definitely malignant; 7 = definitely malignant). The standard of reference was breast
biopsy performed within 455 days after the study entry, and/or a follow-up mammogram
obtained at last 12 months after the study entry. In the analysis, scores 4 to 7 were defined
as positive results, while score 1 to 3 were defined as negative results.

We tested the informational model on data showed in Table 3 of the original paper after
recalculating unfitted, empirical operating points [8] of the ROC curve using the 7-point
scale on the entire study cohort after 455 days of follow-up.
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RESULTS AND COMMENTS

1. As shown in Table 1 on page 15, the cut-off of maximum IR for FM corresponded
to the best cut-off of SE/1-SP of ROC analysis. On the other hand, maximum IR for DM
corresponded to a lower cut-off compared to the one associated with best SE/1-SP at
ROC analysis. Our explanation for this finding is that additional information provided by
DM translates into better visibility of subtler anatomic details mimicking malignancy (e.g.,
spicules, microcalcifications…). Thus, complementing ROC analysis with informational
analysis might be of help in understanding "how" information associated to novel
technologies impacts on readers in certain clinical scenarios.

2. We found larger percentage increment in accuracy (DM vs. FM) as assessed by GIR
(+ 14.5%) than ROC analysis (+ 2.45%), suggesting that informational analysis better
emphasized the difference in performance between imaging modalities ( Fig. 10 on page
16 ).

Final remarks

1. The MI-curve tends to zero when the pre-test probability of disease approaches 0 or 1,
since a test applied to a population where all the members are ill (or healthy) carries no
information. The maximum amount of information is associated to a pre-test probability
close to ½.

2. IR results from a MI-curve representing the MI values over all possible pre-test
probabilities of disease. Consequently, IR is independent from the pre-test probability in
a given clinical experiment, expressing the maximum information for all clinical scenarios
at one time.

Mathematical Appendix

Here are some slides with mathematical details underlying the above concepts (Fig. 11
on page 17, Fig. 12 on page 18, Fig. 13 on page 19, Fig. 14 on page 20).

Images for this section:
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Fig. 5: Properties of a diagnostic tool as a «diagnostic channel». We chose the
asymmetric binary channel model (in which # # #), because false-positives and false-
negatives (errors in trasmission) do no strictly have the same probability to occur (see
Fig. 3). In IT, the most widely used model is that of the «symmetric» channel, in which # =
# [6]. PLEASE NOTE: SE, SP, FNR and FPR are expressed under the form of conditional
probabilities (e.g., sensitivity is the probability of "R positive" given "D present").
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Fig. 6: MI-Curves obtained by plotting the MI values I(D,R) of a test versus the pre-test
probability of disease. The blue curve refers to the MI-curve of the standard of reference
(i.e., a test that is always correct), whereas the red curve refers to the MI-curve of a test
showing reported sensitivity and specificity. AUCs represent global accuracy of a test.
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Fig. 7: Information associated to three exemplificative tests A, B and C as compared to
the standard of reference (SR). SE = sensitivity; SP = specificity; FNR = false negatives
rate; FPR = false positives rate; IR = Information ratio.
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Fig. 8: Properties of IR.
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Fig. 9: Properties of GIR.
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Table 1: The table shows IR, SE and 1-SP values for each cut-off point of the 7-point
scale. Calculation was performed based on TP, TN, FP and FN values extracted from the
reference work. In the case of DM, the informational cut-off of best accuracy corresponds
to additional 49 TPs and 2175 FPs as compared to the ROC cut-off.



Page 17 of 24

Fig. 10: Comparison between GIR and AUCs of informational and ROC analysis,
respectively.
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Fig. 11: Mathematical definition of I(D,R) in diagnostic terms.
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Fig. 12: Mathematical definition of the «Capacity» of a diagnostic channel.
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Fig. 13: Mathematical definition of the AUC under the MI-curve.



Page 21 of 24

Fig. 14: Mathematical definition of GIR.
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Conclusion

1. Using concepts from IT (i.e., the most influencing mathematical theory underlying
telecommunication systems), the radiological diagnosis ca be modeled as an
"asymmetric binary transmission channel". In this model, information is "transmitted" from
the disease to the radiologist through a "diagnostic channel" represented by an imaging
tool.

2. Using the above model, the accuracy of a diagnostic test is expressed in informational
terms, i.e. with rigorous mathematical measures of information derived from Mutual
Information (MI).

3. We believe that informational analysis might complement or replace standard analysis
of accuracy when assessing whether the performance of a diagnostic test:

• has been conditioned by definite characteristics of the clinical setting (low prevalence,
selection bias and so on) or rather by intrinsic limits of the amount of diagnostic
information that the test can physically convey;

• can be further improved for a certain clinical scenario, or rather mirrors the maximum
limit of information that can be obtained given the test characteristics. This might lead to
changes in diagnostic strategy.
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