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The Eastern Tyrrhenianmargin (ETM), the active boundary of the Tyrrhenian Sea backarc basin, is the key for un-
derstanding the geodynamics of the central Mediterranean. Numerous seismic tomography studies have been
carried out in this region, proposing different reconstructions of the lower subducting plate and cause of the
slab-break-off existing beneath the Southern Apennines. However, the area andmode of the recent deformation
of the Tyrrhenian Sea are still not fully defined and understood. In this study, we combine the analysis of a recent
seismic tomography model and geological data, in order to understand the relationship between the subducting
lower plate and the tectonic evolution of the sedimentary basins formed on the upper plate.
With this aim, we interpreted a large data set of seismic reflection profiles and several well logs. The results con-
sist in 2D and 3D geological models of the basins, sedimentary infill, and fault networks. Taking into account the
geological data of the ETM and those of the adjacent inner flank of the Apennines, we observe: (i) a system of
linked sedimentary basins developedona narrowdeformation belt bounded by transform fault zones; (ii) a poly-
phase riftingwithin the upper plate; (iii) an abrupt change of the direction of extension (~90°), fromNE-oriented
in the Lower Pleistocene to SE-oriented in the Middle Pleistocene. Since these ETM features are not the typical
expressions of the current backarc extensional models, we propose a link between the evolution of upper plate
and the onset and development of a STEP (Subduction-Transform-Edge-Propagator) fault along the northern
margin of the Ionian slab.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Extension in backarc basins plays a central role in the tectonic evolu-
tion ofmany areas of the Earth (e.g. Schellart and Lister, 2005; Cloetingh
et al., 2013, 2015). Backarc environments are characterized by rift basins
developing in convergent plate boundaries on the concave side of arcs.
They are widely spread around the globe with numerous examples in
the western Pacific and Mediterranean Sea (e.g. Taylor, 1995;
Faccenna et al., 1996). The Tyrrhenian Sea is the youngest backarc
basin of the Western Mediterranean linked to development of the Ioni-
an subduction zone (Fig. 1). The Eastern margin of the Tyrrhenian Sea
(Eastern Tyrrhenian Margin, ETM) is characterized by the opening of
the youngest sedimentary basins and fault activity. Studying the tecton-
ic Quaternary evolution of the ETM greatly improves our understanding
of the geodynamics of the Central Mediterranean, since it records the
mode of extension of a backarc migration toward the continental area
and is located in correspondence of the northern boundary of the Ionian
piannace@unisannio.it
sannio.it (M.M. Torrente).
subducting plate. Such a study makes it also possible to identify the
causes of thepresent-day tectonics,which is of primary societal interest,
as this region is densely populated. Furthermore, the ETM is character-
ized by recent volcanic activity (e.g., Vesuvius and Campi Flegrei) and
thus has a large potential of geo-resources, such as mineral deposits
and geothermal energy (e.g. De Vivo et al., 1989; Serri, 1990; Bodnar
et al., 2007; Lima et al., 2009; Milia, 2010; Milia and Torrente, 2011;
Carlino et al., 2012).

Seismic tomography studies of the central Mediterranean (e.g.
Wortel and Spakman, 2000) revealed an extended high-velocity zone
interpreted as the subducting Adriatic and Ionian slab. The continuity
of the Adriatic slab is interrupted, as observed form the low velocity
zones located in theuppermost part of themantle underlying the south-
ern Apennines. The existence of a gap in the structure of the subducted
slab, interpreted as a slab detachment, was postulated already in 1971
by Isacks and Molnar (Isacks and Molnar, 1971). Afterwards, Wortel
and Spakman (2000) andGovers andWortel (2005) hypothesized a lat-
eral migration of the slab detachment due to tears formation. These au-
thors suggested that the slab edges correspond to Subduction
TransformEdge Propagator (STEP) faults, characterized by a very specif-
ic time-space evolution in the upper plate deformation. Govers and
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Fig. 1. (A)Morpho-bathymetricmapof Italy and Tyrrhenian Sea (fromBrosolo et al., 2012). Dashed green line shows location of the regional section, dashedwhite polygons the study area,
and white numbers the sedimentary basins. The fuchsia square displays the boundaries of Fig. 2. Abbreviations stand as follows: NCM= Northern Campania margin, SCM = Southern
Campania margin, CM = Calabria margin, 1 = Paola Basin, 2 = Salerno Bay Basin, 3 = Salerno Valley, 4 = Salerno-Cilento Basin, 5 = Cilento Basin, 6 = Campi Flegrei-Naples Bay
Basin, 7 = Southern Gaeta Bay Basin, 8 = Campania Plain Basin, 9 = Central Gaeta Bay Basin, 10 = Northern Gaeta Bay Basin. (B) Crustal geological cross-sections from the
Tyrrhenian Sea to the Apennine foredeep, based on the interpretation of seismic profiles CROP04 and M6B (modified after Mazzotti et al., 2000; Roure et al., 2012). Abbreviations
stand as follows: SSZ = strike-slip fault zone. PQ = Plio-Quaternary deposits, APP = Apennine platform unit, LIG = Liguride units, LM = Lagonegro-Molise unit, APU = Apulian
platform unit.
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Wortel (2005) hypothesize the presence of STEP fault as boundary of
narrow subducting oceanic plates locked by continental crust. One of
these examples is in the Mediterranean region, where the Ionian slab
may have two STEP faults in the northern and southern parts. In this
case whereas the southern STEP fault is well represented by the E-W
boundary between the Africa and backarc margin (e.g. Carminati et al.,
1998; Gvirtzman and Nur, 1999; Argnani, 2009), the deformation
zone linked to the northern STEP fault of the Ionian slab is poorly
constrained (e.g. Gvirtzman and Nur, 1999; Marani and Trua, 2002;
Govers andWortel, 2005; Lucente et al., 2006; Rosenbaum et al., 2008).

The stratigraphic and tectonic study of the sedimentary basins locat-
ed on the upper plate provides constraints on the timing and duration of
the rifting phases and overall geometry of rift basins that evolve in re-
sponse to the subducting slab dynamics. Within this frame, the analysis
of this sedimentary basin gives fundamental constraints on the recon-
struction of the geodynamic evolution and clarifies the relationships be-
tween deep and shallow structures in convergent regions.

The development of software for 3D modeling has opened a new
frontier in Earth Sciences, leading to a more accurate spatial analysis
of geological structure and to 3D models. Numerous papers deal with
the integration of different kind of data for a 3D reconstruction of sub-
surface structures at a regional scale (e.g., De Donatis, 2001;
D'Ambrogi et al., 2004; Dhont et al., 2005; Smith, 2005; Bigi et al.,
2013). The subsurface data generally used for 3D reconstructions are
the seismic data, integrated with well data logs. Several deep sedimen-
tary basins that are present along the Eastern Tyrrhenian Margin have
been studied separately (e.g., Sacchi et al., 1994; Milia, 1999; Milia et
al., 2009, 2013) and thus a synthesis of the relationships among each
stratigraphic unit between these extensional basins and a complete
analysis of the fault pattern is lacking so far. In this study we construct
a 3D model, providing the detailed structure of the Tyrrhenian margin,
impossible to obtain with only 2D seismic dataset. The results obtained
by integrating multi-source data (seismic reflection profiles and bore-
holes), greatly improves our understanding of the geological structures
of the study area.

The analysis of the crustal deformation of the Southern Campania
Margin, coupled with a review of the Northern Campania Margin ba-
sins and Paola Basin makes it possible to identify: a) the area of the
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youngest deformation of the Tyrrhenian Sea; b) the genetic link be-
tween the deep and rapidly evolving sedimentary basins; c) the ki-
nematic evolution of the study region. In addition, using the results
of this analysis and of the recent regional seismic tomography
model of Koulakov et al. (2009), we propose a model of the tectonic
evolution of the area, finding a link between the shallow and deep
structures.

2. Geologic framework

TheWesternMediterranean is characterized by a complex pattern of
backarc basins in response to migration of the Calabria subduction zone
(Dewey et al., 1989; Mauffret et al., 2004). The formation of these
backarc basins startswith the opening of the Liguro-Provencal basin, be-
tween 30 and 16 Ma (Cherchi and Montadert, 1982; Burrus, 1984;
Séranne, 1999), followed by the Algerian Basin, between 16 and 7 Ma
(vanHinsbergen et al., 2014), and finally the Tyrrhenian basin, between
12Ma and the Present (e.g. Kastens et al., 1987; Sartori, 1990; Milia and
Torrente, 2014).

The tomographic studies of the deep structure of the Tyrrhenian-Ap-
ennine system and the distribution of subcrustal earthquakes (e.g.
Frepoli et al., 1996; Anderson and Jackson, 1987; Cimini and De Gori,
2001) reveal the occurrence in the southern Tyrrhenian sea of a Benioff
zone, associated to the subduction of the Ionian plate below Calabria,
that dips northwestwards from the surface down to 500 km. Further-
more, it has been suggested that a rollback subduction of the Calabrian
slab induced a local scale mantle flow parallel to the trench (Gvirtzman
and Nur, 1999; Civello and Margheriti, 2004; Faccenna et al., 2007).

The geophysical data reveal that the Southern Apennine fold-and-
thrust belt covers the autochthonous Apulian continental crust, 25–
30 km thick (Mostardini and Merlini, 1986; Menardi-Noguera and
Rea, 2000; Roure et al., 1990). In contrast, the Calabria terrane
overthrusts the oceanic Ionian crust, considered a late Paleozoic-Early
Mesozoic oceanic embayment of the Neothetys (Catalano et al., 2001;
Stampfli and Borel, 2004). The oceanic nature of the Ionian crust has
been also confirmed by seismic refraction data (de Voogd et al., 1992).

The Tyrrhenian Sea, at the rear of the Apennine fold-and-thrust belt
is a typical rift basin, characterized by a thinned lithosphere (b30 km)
and continental crust, with a Moho depth b 10 km in the bathyal plain
and ~20 km along its Eastern margin (Ferrucci et al., 1989; Nicolich,
1989; Panza, 1984), numerous normal faults, large Bouguer anomalies
(N250 mGal in the bathyal plain; Mongelli et al., 1975), and high heat
flowvalues (up to200mWm−2; Della Vedova et al., 2001). The features
recognized in the bathyal area also occur in the Campania Margin char-
acterized by high heat flow values and shallowMoho reaching 10 km at
Campi Flegrei (Ferrucci et al., 1989).

The hinge zone between the Southern Apennine/Calabria fold thrust
belt and the bathyal area of the Tyrrhenian Sea corresponds to the East-
ern TyrrhenianContinentalMargin, subdivided into Northern Campania
Margin (NCM), Southern Campania Margin (SCM), and Calabria Margin
(CM) (Fig.1).

The NCM is characterized by the presence of up to 5 km deep basins
filled by Quaternary clastic and volcaniclastic deposits (Ippolito et al.,
1973; Rosi and Sbrana, 1987; Mariani and Prato, 1988; Milia, 1999;
Milia et al., 2003). The NCM is affected by NE-SW, NW-SE, NNE-SSW
and E-W faults. It started to form in the Lower Pleistocene and is charac-
terized by the superposition of the three extensional events (Milia and
Torrente, 1997, 1999, 2011, 2015b; Bellucci et al., 2006; Torrente et al.,
2010; Milia et al., 2013).

The SCM has been studied by few authors who have investigated
mainly the continental shelf area (Bartole et al., 1984; Sacchi et al.,
1994; Casciello et al., 2004). Previous studies of Salerno Bay suggest
that NE-trending normal faults controlled a thick depocenter (N2 km,
Mina 1 well) of the basin (Bartole et al., 1984; Sacchi et al., 1994;
Casciello et al., 2004). The age of these syn-rift deposits is controversial,
Pliocene-Pleistocene according to Bartole et al. (1984) and Sacchi et al.
(1994) or Pleistocene according to Casciello et al. (2004). The Sele
Plain, onshore extension of the Salerno Bay, is characterized by a Pleis-
tocene clastic succession up to 1500 m-thick (Sele 1 well), showing at
the base lower Pleistocene conglomerates (Eboli Fm; Cinque et al.,
1988; Russo, 1990; Brancaccio et al., 1991), displaced by NW-SE and
NE-SW normal faults (Gars and Lippmann, 1984; Zuppetta and Sava,
1992).

The CM is characterized by the Paola Basin, which has a very thick
Plio-Quaternary succession (N4 km, Fabbri et al., 1981), affected byQua-
ternary folding (Argnani and Trincardi, 1988). Recently, Milia et al.
(2009) proposed a poliphased tectonic evolution of the Paola Basin
superimposed to a Serravallian E-W extension: Lower Pleistocene N-S
extension (basin formation), followed NW-SE left lateral strike slip tec-
tonics with associated folding, and Middle-Late Pleistocene NW-SE
right-lateral strike slip tectonics (minor pull-apart basins).

Two main tectonic scenarios have been proposed for this backarc
basin:

(1) An approximately E-W direction of extension, as suggested by
fault patterns, which controlled the opening of extensional sedimentary
basins since the Upper Miocene. This extension direction is orthogonal
to Apennine foredeeps and coherent with the eastwards migration of
the Adria-Apennine trench (Sartori, 1989; Patacca et al., 1990;
Doglioni, 1991). The contemporaneous formation of the Tyrrhenian
Sea and Apennine thrust belt migrating eastwards, lead Patacca et al.
(1990) to propose a genetic link between the extensional and compres-
sion tectonics (Fig. 1b). Extension in the Tyrrhenian Sea and shortening
in the Apennine thrust belt, as a result of arcmigration (rollback) driven
by the sinking of the lithosphere, was the mechanism invoked by
Malinverno and Ryan (1986). Doglioni (1991), and more recently
Roure et al. (2012), interpreted the E-W opening of the Tyrrhenian
Sea until the Pliocene/Lower Pleistocene and the contemporaneous
shortening of the Apennines with a model of theWest-dipping subduc-
tion of the Adriatic-Ionian slab beneath the Tyrrhenian Sea. This model
of evolution includes the presence of E-W transform faults across the
Tyrrhenian Sea (Selli, 1981; Lavecchia, 1988; Rosenbaum and Lister,
2004; Finetti and Del Ben, 2005).

(2) Opening of the Tyrrhenian backarc basin toward SE, as indicated
by the age of the oldest sediments drilled and by the sparse data of the
DSDP and ODP in the bathyal area, linked to the rollback of the Ionian
slab toward SE, as imaged by the tomographic models (e.g. Cavinato
and De Celles, 1999; Gvirtzman and Nur, 1999; Wortel and Spakman,
2000; Faccenna et al., 2004, 2007; van Hinsbergen et al., 2014). Further-
more, the entire southern Apennine thrust belt is characterized by a sys-
tem of NW-SE trending left-lateral strike-slip fault zones post-Lower-
Middle Pleistocene in age (Fig. 1b; Catalano et al., 1993, 2004; Cinque
et al., 1993; Schiattarella et al., 2005). This geodynamic scenario of a
NW-SE opening of the Tyrrhenian Sea is consistent with a NW-SE sinis-
tral transform fault located on the eastern Tyrrhenian margin (Wortel
and Spakman, 2000; Marani and Trua, 2002).

Based on the tectono-stratigraphic evolution of the overfilled sedi-
mentary basins located on the eastern margin of the Tyrrhenian Sea, a
different and more complex evolution of the backarc opening has
been recently proposed. Since the Serravallian stage, extension of
backarc and forearc was directed toward the East and affected by a
widespread area of the central Mediterranean (Paleo-Tyrrhenian Sea)
(Milia and Torrente, 2014). During the Messinian stage a dramatic in-
crease in the extension rates occurred (Milia and Torrente, 2015a)
with formation of supradetachment basins (sensu Friedman and
Burbank, 1995). During the Pliocene-Lower Pleistocene time the con-
temporaneous opening of three sedimentary basins with different di-
rection of extension (Vavilov, Marsili, and Paola Basins) affected the
Southern Tyrrhenian Sea, suggesting a mechanism of double-saloon-
doormodel (Milia et al., 2013;Milia and Torrente, 2015b). Successively,
from the Middle Pleistocene, a progressive change in the migration of
extension occurred on the Eastern Tyrrhenian Margin (Milia and
Torrente, 1999, 2011, 2015b).
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3. Data and methods

We constructed a 3-D subsurface model of the basin's basement of
the eastern Tyrrhenianmargin generated through the interpolation be-
tween close and regularly spaced 2D seismic reflection profiles, inte-
grated and calibrated with borehole data (Fig. 2). This work has been
carried out using a seismic and borehole dataset and a Geographical In-
formation System (GIS) software (Kingdom, IHS Inc.), which constructs
a 3D representation of a geologic volume at depth. This study was car-
ried out through the following steps: a) collection of all the available
seismic profiles and boreholes data; b) implementation of a GIS geolog-
ical data base; c) interpretation of the seismic profiles and calibration of
the seismic unit using well-log data; d) construction of 2D and 3D
models of the subsurface.

A total of 6000 km of seismic lines and data from 25 wells were col-
lected in the study area (Fig. 2).We used seismic reflection profiles with
different resolution and penetration: multichannel seismic profiles
(ViDEPI, 2009), CROP seismic profiles (Scrocca et al., 2003) and Sparker
data. Our study uses 1050 km of CROP offshore seismic sections of the
eastern Tyrrhenianmargin (Fig. 2). The Sparker seismic data set was ac-
quired with a Multispot Extended Array System (MEAS). The output
power of the MEAS, transmitted through a 36-tip array, was 16 kJ. Ver-
tical recording scales were 2.0 s with a maximum vertical resolution of
6 m. The data were subsequently processed in order to obtain a consis-
tent dataset: seismic line basemaps and well position were geo-refer-
enced in a common coordinate system (European Datum 50) and
assembled in a dedicated GIS environment (Kingdom, IHS Inc.). Raster
images of the overall seismic profiles were converted to segy format
using image2segy, a free tool developed by Marcel Farran (Instituto de
Cièncias del Mar., Barcelona University) for MATLAB software.

We interpreted the seismic data-set using the seismic stratigra-
phy method: seismic units are groups of seismic reflections, whose
parameters (configuration, amplitude, continuity, and frequency)
differ from those of adjacent groups. Sedimentary units were delin-
eated on the basis of contact relations and internal and external con-
figurations (e.g. Mitchum et al., 1977). The seismic units were
calibrated using the lithostratigraphic and chronostratigraphic data
of offshore and onshore boreholes (Ippolito et al., 1973; Rosi and
Sbrana, 1987; ViDEPI, 2009; Brocchini et al., 2001). Based on seismic
facies, well data analysis and dated units, three unconformity-
bounded units have been identified (Unit A, Unit B, Unit C) in the
basin infills. Notably, we placed in our stratigraphic analysis the
base of the Pleistocene at the base of the Gelasian stage (2.58 Ma),
in agreement with the “Global chronostratigraphical correlation
table for the last 2.7 million years v. 2010” (Cohen and Gibbard,
2010). Thus, the Gelasian succession of the Eastern Tyrrhenian mar-
gin, previously attributed to the upper Pliocene, has been ascribed to
the lower Pleistocene. Faults were interpreted on seismic reflection
profiles, mapped in a GIS environment, and displayed as lines on
structure contour maps and isochron maps. Due to a relatively
close spacing between 2-D seismic lines (1–10 km in NCM, 3–
15 km in SCM, 5–10 km in CM), it was possible to recognize and
link major faults based on their geometry, dip direction and amount
of throw.

Gridding and contouring were performed on geological horizons to
generate 2D models (contour maps) and isochron maps of the succes-
sion. In order to select the best algorithm and processing parameters, it-
erative testingwas carried out. Thefinal stepwas the construction of the
3D digital model using the Vu-PACK module (Kingdom software) that
Fig. 2. (A) Indexmap of seismic grid and seafloor dredges of the eastern Tyrrhenianmargin.Mu
of deepwells. Abbreviations stand as follows: 650=ODP 650well, MA=Mara1well, CA= Ca
ML=Milena1well, MR=Marta1 well. Cal = Calabride units (Paleozoic), Lig= Liguride units
Pliocene rocks, Bas = basalts, A = Unit A, B = Unit B, C = Unit C, V = volcanics (Quaternary)
permits more accurate interpretations and controls opacity, color, and
lighting of volumes, horizons and faults.
4. Stratigraphy

In order to define the stratigraphic setting of the Eastern Tyrrhenian
Margin, we interpreted a large data set of seismic and wells collected in
the Southern CampaniaMargin and revised the available geological data
in the Northern Campania and Calabria margins. We mapped the pre-
Quaternary basement and three stratigraphic units (A, B, C) of the
basin infills for 350 km along the ETM, to establish a coherent chrono-
stratigraphic framework across the sedimentary basins and to build a
3D model of the study area.
4.1. Basement

In the NCM, the acoustic basement features reflection-free and cha-
otic seismic facies (Figs. 3, 4). It is composed of Meso-Cenozoic carbon-
ate rocks forming the Apennine Platform unit of the thrust belt. These
rocks have been drilled in theMara, Apramo and Trecasewells, dredged
offshoreNaples Bay and outcrop in themountains bounding the Campa-
nia Plain and the Gaeta Bay (Fig. 2) (Milia, 1999; Milia and Torrente,
1999, 2015b; Milia and Torrente, 2011; Milia et al., 2013).

In the SCM, the acoustic basement corresponds to three seismic
units calibrated bywells (Fig. 5): a reflection-free seismic unit bounded
at the top by strong reflectors (Mz), a chaotic seismic facies unit (Lc),
and a seismic unit with strong reflectors (Cg). Units Mz, Lc and Cg cor-
respond, respectively, to Mesozoic rocks of the Apennine Platform
unit, overthrusted by Cenozoic rocks of the Liguride basinal units
(Nord-Calabrese and Parasicilide units; Bonardi et al., 1988; Mauro
and Schiattarella, 1988; Bonardi et al., 2009; Vitale et al., 2011), uncon-
formably overlain by the Cilento Group (Amore et al., 1988; Cavuoto et
al., 2004). This basement has been encountered in the offshore wells
(Mina 1,Milena 1 andMargheritaMare 1; Fig. 2), dredged in the Salerno
through and the Issel ridge (Sartori, 2005), and crop out in the moun-
tains bounding the Sele Plain (Fig. 2). The Liguride units are composed
of highly deformed clays, marls, sandstones with some levels of lime-
stones Paleocene-LowerMiocene in age (Lc), whose thickness increases
from northwest to southeast. They are overlain by Langhian–Lower
Tortonian clays, marls, conglomerates and chalky limestones of the
Cilento Group (Cg).

The acoustic basement of the CMshows reflection-free seismic facies
(Fig. 6) and is made up of high-grade metamorphic and intrusive rocks,
Paleozoic in age. This basement is covered by Serravallian-Messinian
deposits, characterized by high-amplitude and continuous reflectors,
that record the oldest stages of the Paleo-Tyrrhenian opening (Milia et
al., 2009; Milia and Torrente, 2014).

The contour map and the 3-D model of the basement (Figs. 7, 8),
along the Eastern Tyrrhenian Margin, reveal a complex architecture
due to the occurrence of several fault sets (NW-SE, NE-SW, E-W and
NNE-SSW). Thus, this basement presents several structural depressions
with associated basins up to 5/6 km-deep, from North to South: North-
ern Gaeta Basin (NGB), Central Gaeta Basin (CGB), Campania Plain Basin
(CPB), Southern Gaeta Basin (SGB), Campi Flegrei-Naples Bay Basin
(CFNB), Salerno Bay Basin (SBB), Salerno Valley Basin (SVB), Salerno-
Cilento Basin (SCB), Cilento Basin (CB), Sapri Basin (SB) and Paola
Basin (PB).
ltibeammap of the Tyrrhenian Sea from (Marani et al., 2004). (B) Stratigraphic successions
ncello well, AP=Apramowell, SV1= San Vito1 well, TC= Trecase well, M=Mina1well,
(Cenozoic), App= Appennine platform unit (Meso-Cenozoic), MI=Miocene rocks, PL=
, red arrow= thrust fault. See text for further explanation.



Fig. 3.Uninterpreted and interpreted seismic section crossing central and southern Gaeta,modified after Torrente andMilia (2013). The seismic section displays the basement overlain by
units A, B, and C and several normal faults. V0 corresponds to a lower Pleistocene volcano.
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4.2. Unit A (Lower Pleistocene)

Unit A overlies the basement and has been dated Lower Pleistocene
on the base of well logs stratigraphy, outcrop data and sequence stratig-
raphy. It has been identified in the Gaeta Bay basins (Iannace et al.,
2013; Milia et al., 2013), Campania Plain basin (Milia and Torrente,
2015b), Campi Flegrei-Naples Bay basin (Milia, 1999; Milia and
Torrente, 1999, 2011; Milia et al., 2003) and Paola Basin (Milia et al.,
2009).

In the NCM this unit is characterized by parallel reflectors with var-
iable amplitude and frequency and very good continuity seismic facies
Fig. 4.Regional section through theNaples Bay-Campi Flegrei basin and seismic profile crossing
B, C = Unit C, PV = Penta Palummo volcano.
Modified from Milia (1999); Milia and Torrente (2011).
(Figs. 3, 4). This seismic facies corresponds to shallow-water marine de-
posits (Milia, 1999;Milia et al., 2003;Milia and Torrente, 2015b). Unit A
is characterized by an aggradational stacking pattern and its lower
boundary corresponds to an onlap surface, whereas its upper boundary
to an erosional one.

We identified unit A for the first time in the SCM. It occurs in awide-
spread area, covers unconformably the Cenozoic tectonic unit and is
wedge-shaped (Fig. 5). Unit A is characterized by parallel and/or sub-
parallel internal reflections configuration,with high tomoderate ampli-
tude, good tomoderate continuity and an increase of reflectors frequen-
cy upwards. Unit A, drilled in Mina 1 and Milena 1 wells (Fig. 2), has a
Naples Bay.Mz=Mesozoic rocks forming the basement of the basin, A=Unit A, B=Unit



Fig. 5. Interpreted seismic sections E-117 and E-204 calibrated bywell logs displaying the stratigraphic infill of the Salerno Basin (units A, B, C), overlying the acoustic basement (units Cg,
Lc and Mz). Thrust faults, normal faults (F1, F3, F3) and transfer faults (Tf2, Tf4) are also shown.
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Lower Pleistocene age (biozone MPL6) and is composed of silty clays,
marly clays, marls interbedded with fine sands and polygenic conglom-
erates, and abundance of carbonaceous materials. These deposits pass
upwards to gravels interbedded with sandy clays, marly clays and fine
sands and abundance of carbonaceous materials (Sele 1 and Mina 1
wells) Lower Pleistocene in age (biozone post-MPL6). According to
our interpretation, Unit A was deposited in Southern Campania Margin
between 2.3 and 0.7Ma and its sedimentary facies changed from coastal
shallow-water environment sediments to shelf environment. This strat-
igraphic evolution witnesses a syn-sedimentary tectonic subsidence.

Unit A is made up of parallel reflectors with aggradational stacking
pattern and reaches a thickness of 2.5 s in the CM (Fig. 6). The age of
this unit, drilled in theMartawell (Fig. 2), is Pliocene-Lower Pleistocene.
Its upper part displays a wedge-shaped external form thickening to-
ward E/NE. Stratal architecture, growth fold geometry and slumps sug-
gest a syn-sedimentary deformation. According to the sequence
stratigraphic analysis of Milia et al. (2009) the age of the syn-sedimen-
tary wedge is 1.0–0.7 Ma.

The isochron map of the Unit A (Fig. 9) features seven thickness
maxima (N1.5 s, twtt): four in the NCM (Northern Gaeta Basin and Cen-
tral Gaeta Basin, Campania Plain, Campi Flegrei-Naples Bay basin); two
in the SCM (Salerno Bay basin and Cilento basin) and one in the CM
(Paola basin). These fault-bounded basins are characterized by high
sediment supply and depositional rates that balanced the tectonic
subsidence.

4.3. Unit B (Early Middle Pleistocene)

Unit B is the intermediate part of the Quaternary succession of the
Eastern Tyrrhenian Margin and was dated 0.7–0.4 Ma using well logs
stratigraphy, outcrop data, and sequence stratigraphy. It has been previ-
ously identified in the NCM (Gaeta Bay basin, Iannace et al., 2013; Milia
et al., 2013; Campania Plain basin, Milia and Torrente, 2015b; Campi
Flegrei-Naples Bay basin, Milia, 1999; Milia and Torrente, 1999, 2011;
Milia et al., 2003) and CM (Paola Basin, Milia et al., 2009). Its stratal ar-
chitecture, with the exception of the Paola Basin, shows progradational
stacking patterns. In the Northern Gaeta Basin Unit B corresponds to a
0.8 s-thick sigmoid-oblique prograding complex that covers the sub-
horizontal strata of Unit A, suggesting the infill of an undeformed
basin. Instead, in the Campi Flegrei-Naples basin Unit B overlies an an-
gular unconformity at the top of the tilted Unit A (Fig. 4). The stratal pat-
tern, facies architecture, and thickness of unit B in the Campania Plain
suggest a rapid tectonic subsidence of the area. The normal faults, that
caused this basins subsidence, trend NE-SW.

In the CM the sediments coeval to Unit B reveal a dramatic change in
the basin fill (Fig. 6): (i) basal onlap surface indicating an abrupt modi-
fication in the stratigraphic architecture occurred at the 0.7 Ma se-
quence boundary; (ii) distal stratal terminations of Unit B onlapping
the flank of the fold and filling of the synformal basin; (iii) parallel seis-
mic configuration indicating a horizontal filling of the basin as younger
strata thin toward the coast suggesting an uplift of the coastal area.

We identifiedUnit B for thefirst time in the SCM,where is character-
ized by a complex sigmoid-oblique progradational configuration with
high to moderate amplitude, moderate frequency and good continuity
reflections. This unit, drilled in the Sele 1, Mina 1 and Milena 1,
Margherita Mare 1 wells, reposes on the sub-horizontal strata of the
Unit A, indicating sediments aggradation/progradation from the coast
during a relative tectonic stability of the area (Fig. 5). It is composed of
gravels, sands, clays and marly clays Middle Pleistocene in age. In con-
trast, in the deep basin, Unit B shows a parallel and/or sub-parallel inter-
nal reflections configuration, with variable amplitude and frequency
and good-continuity reflections (Fig. 10). This seismic facies indicates
the deposition of pelagic/hemipelagic sediments interbedded with tur-
bidites. The reflectors are convergent southeastwards, suggesting a fault
controlled block tilting. The isochron map of the Unit B shows several
thickness maxima (Fig. 11).



Fig. 6. a) Interpreted seismic section CROPM27 crossing the Paola basin. CAL = Paleozoic
crystalline rocks; SM = Serravallian-Messinian clastics; MU = Messinian Unconformity,
A = Unit A, DS 1.0 = Depositional Sequence 1.0, B = Unit B, C = Unit C. The
architecture of the syn-sedimentary folds reveals that the lower part of Unit A (below
DS 1.0) is pre-kinematic, the upper part of unit A is syn-kinematic and units B and C are
post-kinematic (modified from Milia et al., 2009). b) The 3-D digital model inserted into
the spatial-oriented grid of the 1.0 surface displaying a main synform coupled with en
échelon antiforms (black-arrowed lines) The white line corresponds to the Calabrian
coast. View is toward the South.
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4.4. Unit C (Late Middle Pleistocene to present)

Unit C represents the upper part of the Quaternary succession of the
Eastern Tyrrhenian Margin and was dated post-0.4 Ma on the base of
well logs stratigraphy, outcrop data and sequence stratigraphy. It has
been formerly identified in the NCM (Gaeta Bay basin, Iannace et al.,
2013; Milia et al., 2013; Campania Plain basin, Milia and Torrente,
2015b; Campi Flegrei-Naples Bay basin, Milia, 1999; Milia and
Torrente, 1999, 2011; Milia et al., 2003) and CM (Paola Basin, Milia et
al., 2009). We recognized Unit C for the first time in the SCM.

Along the ETM Unit C displays two different architectures:
prograding units filling pre-existing accommodation space and syn-tec-
tonicwedges related to different stages of subsidence. TheNorthern and
Central Gaeta basins and the Salerno Bay and Salerno-Cilento basins are
characterized by a thick regressive succession, featuringhigh-continuity
reflectors with variable amplitude and progradational architecture. This
seaward lateral migration of the sedimentary deposition that covers the
sub-horizontal top of Unit A, indicates a period of relative tectonic sta-
bility (Fig. 5).

In the Southern Gaeta Bay and Campania Plain basins a post-0.4 Ma
thick succession of clastic deposits and volcanics (Fig. 3) was emplaced
during fault activity (Bellucci et al., 2006; Milia et al., 2006; Torrente et
al., 2010; Torrente andMilia, 2013; Milia and Torrente, 2015b). The iso-
chron map of Unit C (Fig. 12) features two striking depocenters (N2 s,
twtt) filled by voluminous volcanic units in the Southern Gaeta Bay
and Campi Flegrei basins. In contrast, others thickness maxima (up to
1 s, twtt), roughly parallel to the coast, exist in the Northern Gaeta
Bay-Central Gaeta Bay area and offshore Cilento, reflecting the shelf
margin of the coastal progradation. During the deposition of the Unit
C the Paola Basin experienced the deposition of a relatively thick slope
front fill unit.

5. Tectonics

The interpretation of the seismic data reveals a complex fault pattern
along the Eastern Tyrrhenian Sea due to a polyphase tectonic evolution.
The 2-D and 3-D models of stratigraphic surfaces, faults and isochron
maps of the stratigraphic units reveal that the major faults bounding
the basins correspond to normal faults and strike-slip transfer faults
(Figs. 7-9, 11-12). The process of lithospheric extensionwithin the East-
ern Tyrrhenian Sea produced tilted blocks/half grabens (sensu
Wernicke and Burchfiel, 1982). Active extensional faulting and sedi-
mentation are intimately linked during basin evolution because tecton-
ics controls the creation of the accommodation space, sediment supply
and variation of the ratio between subsidence and sedimentation
(White et al., 1986; Blair and Bilodeau, 1988; Schlische and Olsen,
1990; Muto and Steel, 1997). We recognized in the Eastern Tyrrhenian
Sea positive inversion structures superimposed on previous extensional
basins. Even if several studies (Cooper and Williams, 1989; Coward,
1994; Buchanan and Peter, 1995; Tavarnelli, 1996; Sandiford, 1999;
Tavarnelli and Peacock, 1999; Tavarnelli et al., 2001; Turner and
Williams, 2004; De Paola et al., 2005; Henk and Nemčok, 2008) claim
that the positive inversion structure involves the reversal of extensional
fault movement during contractional tectonics, some examples from
basin research show that positive inversion involves flexural arching
of prior lows or sedimentary basins and is not dependent on fault slip
for its development (Harding, 1985; Corfield et al., 1996). In fact, some
theoretical and case studies demonstrate that the reverse-sense fault
displacement of major faults does not appear in mild-inversion, until
all the normal-sense displacement is lost beyond the null-point inmod-
erate-to-strong-inversion (Cooper and Williams, 1989; Song, 1997;
Turner andWilliams, 2004; Jackson et al., 2013). Therefore, the changes
of structural relief from previous lows (outlined by thick deposits) to
highs (outlined by flexural arching or uplift) indicates the structural in-
version in seismic lines, even if without reverse-reactivation of pre-
thrusting normal faults (e.g. Tavarnelli, 1996).

The recognition of the syn-kinematic strata in thebasin infill, and the
analysis of the interplay between stratigraphic horizon and faulting en-
abled us to assign an age to fault activity in the Eastern Tyrrhenian Sea.
Here we divided the fault structures into three groups according to
their age.

5.1. Lower Pleistocene structures

Along the Campania margin the deposition of Unit A was mainly
controlled by NW-trending graben and NE-SW transfer faults (Fig. 9).
In the North there is a triangular basin (Northern Gaeta Bay), bounded
by NNE-trending faults and NW-trending faults, with the apex located
in the northern coast, and by an E-W transform fault (Milia et al.,
2013). Unit A filled also two thick and large NW-SE trending graben:
the Campania Plain and Campi-Flegrei-Naples Bay basins (Milia et al.,
2013; Milia, 1999; Milia and Torrente, 1999, 2015b). Two thickness
maxima N1.9 s (twtt) are present in the Salerno Bay and Cilento basins
(Fig. 9). The Salerno Bay Basin, covering an area of approximately 365
Km2, is characterized by an array of NW-trending normal faults that
forms graben structures (Fig. 5). These normal faults end abruptly to-
ward northwest and southeast against NE-trending high-angle transfer
faults (Figs. 5, 9). The Cilento Basin, located on the slope in the offshore
of the Cilento Promontory, covers an area of approximately 345 Km2

and is NW-SE elongated (Fig. 9). Furthermore, other NW-trending nor-
mal faults were active in the Campania Margin, offshore Capri Island



Fig. 7. Structure contour map of the acoustic basement. NGB = Northern Gaeta Bay, CGB = Central Gaeta Bay, SGB = Southern Gaeta Bay, CPB, Campania Plain Basin, CFNB = Campi
Flegrei-Naples Bay Basin, SBB = Salerno Bay Basin, SVB = Salerno Valley Basin, SCB = Salerno-Cilento Basin, CB = Cilento Basin, SB = Sapri Basin and PB = Paola Basin. Contour
interval is 0.20 s.
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and in the Sorrento Peninsula, during the Lower Pleistocene (Milia and
Torrente, 1997). A geological link between the Southern CampaniaMar-
gin (Cilento offshore) and bathyal Marsili basin is presented by the
CROP M6B seismic profile (Fig. 13b). The oldest structures correspond
to normal faults (F16, F15, F14) bounding the Tyrrhenian bathyal
zone. Themultibeammap of the Tyrrhenian Sea (Marani et al., 2004) re-
veals that these structures trend NW-SE and correspond to the Sartori
Lineament Auct. These boundary faults down throw the basement at a
depth N5 s (approximately 3800 m) and are responsible for the crustal
thinning linked to the formation of the bathyal region. The age of sedi-
ments that onlap the acoustic basement and these faults has been cali-
brated using the stratigraphy of the ODP Site 650 drilled in the Marsili
basin, that is characterized, from older to younger, by 32 m of vesicular
basalts overlain by a 602 m-thick succession of Pleistocene, where the
oldest sediments are 2.0 Ma-old (biozone MPL6/NN18; Channell et al.,
1990). Thus, these NW-SE faults (F16, F15, F14) date from the Lower
Pleistocene.

Unlike the Campania Margin, in the Calabria Margin, the structures
controlling the deposition of the Unit A (Fig. 9), are E-W trending syn-
sedimentary faults (Milia et al., 2009) and pre-existing upper Miocene
NNW-SSE trending normal faults (Milia and Torrente, 2014). Unit A is
folded and presents in its upper part a syn-sedimentary wedge
(Fig. 6). 3-D architecture of the folds and their relationships with the
tectonically enhanced unconformities were reconstructed. The 3-D
model of the 1.0 surface shows (Fig. 6b) folds with en échelon pattern
corresponding to large antiforms and a main synform that deepens in
the central part of the basin. The en échelon fold pattern is consistent
with the occurrence of a NW-SE sinistral shear zone (Milia et al.,
2009). In conclusion, the Calabria Margin recorded a change in the tec-
tonic regime from extension to strike slip regime.

5.2. Early Middle Pleistocene structures

The isochron map of the Unit B shows several thickness maxima
(Fig. 11). On the base of the stratal architecture, we distinguished two
basin styles: (i) basins characterized by low to moderate symmetrical
subsidence, whose sediments prograde from the coast toward the sea
filling the depocenters (Northern Gaeta Bay Basin, Salerno Bay Basin,
Paola Basin; (Fig. 5); (ii) half graben basins featuring asymmetrical
high subsidence controlled byNE-SWnormal faults (Figs. 3, 4). This sec-
ond category includes the Campi Flegrei-Naples Bay basin featuring
basal angular unconformity and basin architecture that documents a
block faulting coeval to the deposition of Unit B. Because the Campi
Flegrei-Naples Bay basin is underfilled by Unit B sediments, it is easily
identified in the contour map of horizon 0.7 (Fig. 14), but it is not evi-
dent in the isochron map (Fig. 11). During this time, it started the for-
mation of the Central Gaeta Bay and Campania Plain basins, Salerno
Valley basin, Capri Basin, and Salerno-Cilento basin, with the deposition



Fig. 8. The 3-D digital model inserted into the spatial-oriented grid of the acoustic basement in the Eastern Tyrrhenian Margin. The view is from south-west and the vertical scale is in
seconds.

Fig. 9. Isochron map of Unit A in the Eastern Tyrrhenian margin. Contour interval is 0.20 s.

136 A. Milia et al. / Tectonophysics 710–711 (2017) 127–148



Fig. 10. Interpreted seismic section across the Salerno Valley basin. A=Unit A, B=Unit B,
C = Unit C.
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of their sediments as syn-kinematics wedges. In particular the CROP
M36 seismic profile displays (Fig. 13): (i) asymmetrical fault blocks dip-
ping toward NW and bounded by NE trending normal faults (BFF, F8,
F9); (ii) two structural highs bounding the Salerno Valley and the Saler-
no-Cilento basins; (iii) a main angular unconformity between Lower
and Middle Pleistocene deposits, marking the tilting of the fault blocks.
It is worth noting that the activity of NE-trending faults during the de-
position of the unit B was limited to the area between the Central
Gaeta Bay Basin to the North and offshore Salerno bay to the South.
Fig. 11. Isochron map of Unit B in the Eastern Ty
Prominent pop up and inversion structures were recognized off Na-
ples Bay and in the Salerno Bay. Offshore Naples Bay, the interpretation
of both multibeam bathymetry (Fig. 2) and CROP M30 seismic profile
(Fig. 15) reveals a NW-SE, 40 km-long and 5 km-wide, pop-up structure
(Sirene Seamount) bounded by high-angle reverse faults displacing
Unit A. Its morphology displays an approximately 700m high structural
relief confined on both side by two symmetrical sedimentary basins
[floored respectively, from NE to SW, at 1500 s (approximately
1000 m of water depth) and 1800 s (1350 m of water depth)], filled
by Middle-Late Pleistocene deposits that cover unconformable the
Lower Pleistocene deposits. According to the results of analoguemodels
(Schellart and Nieuwland, 2003), we assume that the NW-SE Sirene
Seamount pop up structure developed above a parallel basement strike
slip fault. TheNW-SE Sirene pop-up structure forms thewestern bound-
ary of the Middle Pleistocene NE trending faults affecting the Campania
margin. Because these NE-SW normal faults are absent in the contigu-
ous Tyrrhenian bathyal zone, we interpret the Sirene structure as a
transform fault developed at the boundary of the Middle Pleistocene
SE-directed extension of the continental margin. In Salerno Bay the in-
terpretation of seismic profile E-117 suggests that inversion structures
formed after the sedimentation of the Unit A strata (Fig. 5). These strata,
indeed, resulted folded, faulted and bounded at the top by an erosional
surface covered by Unit B. Many folds and faults affect only the silico-
clastic sedimentary succession (basinal Liguride units andMiocene clas-
tic deposits) that covers the carbonatic basement, suggesting a Pleisto-
cene reactivation of the oldest thrust surface. Therefore, during the
rrhenian margin. Contour interval is 0.20 s.



Fig. 12. Isochron map of Unit C in the Eastern Tyrrhenian margin. Contour interval is 0.20 s.
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inversion tectonics, decoupling levels were activated in correspondence
of the thrust fault and a disharmonybetween the stiff lower unit and the
overlying thin-skinned covers unit was created. Similar structures have
been documented in the Maracaibo basin (Roure et al., 1997).

It should be noted that the Salerno Bay basin changed from syn-rift
to post-rift stage at lower/middle Pleistocene boundary, producing an
angular unconformity. The undeformed prograding units (B and C
Units) of the Salerno basin (seismic line E-204, Fig. 5) post-date the in-
version tectonics and indicate a tectonic stability of the basin.

5.3. Late Middle Pleistocene-present structures

During this stage the extensional tectonics is only localized in the
Campania Margin (Campania Plain, Southern Gaeta Bay and Sapri ba-
sins; Fig. 13). The stratigraphic signature of this rifting episode in the
Campania Plain corresponds to a basal angular unconformity and an
abrupt increase in water depth. A very rapid subsidence of the basin
permitted the deposition of c. 500 m of prodelta mudstones that cov-
ered abruptly infra-littoral deposits (Cancello well, Milia and Torrente,
2015b). Voluminous volcanic activity and eastwards migration of
fault-controlled asymmetrical subsidence from the Southern Gaeta
Bay basin to the Campi Flegrei-Naples Bay basin occurred during the de-
position of Unit C (Milia and Torrente, 2007, 2011; Torrente and Milia,
2013). The eastwards migration of extension is documented by a
geological section (Fig. 16), displaying two stages of tectonic subsi-
dence: (i) normal faults active between 0.4 and 0.1–0.15 Ma in the
Southern Gaeta Bay basin (Milia et al., 2013; Torrente and Milia,
2013); (ii) normal faults younger than 0.1 Ma at Campi Flegrei-Naples
Bay basin (Milia, 2000; Bellucci et al., 2006; Milia et al., 2006; Torrente
et al., 2010; Milia and Torrente, 2011). In the Bay of Naples the lower
part of Unit C shows a rapid seawards progradation whereas its upper
part is characterized by a thick volcanoclastic wedge deposited during
a younger, post-0.1 Ma, tectonic subsidence stage (Figs. 4, 16) (Milia,
1999, 2000; Milia et al., 2006).

Offshore Cilento the entire stratigraphic succession is affected by
folding and a wide deformation zone, approximately trending E-W,
formed during Late Middle Pleistocene-Present (see map of Fig. 13).
This deformation zone, going southwards corresponds to a restraining
band and a releasing band of a strike-slip fault zone affecting the base-
ment. In particular, folds and flexural arching, converging to amain ver-
tical fault, visible in the CROP seismic profiles (Fig. 13a, central part of
M36; Fig. 13b, northern part of M6B), can be linked to a positive struc-
tural inversion, while a negative flower structure occurs in the southern
part of CROP seismic profile M36. Toward the South, in the Paola Basin,
NW-SE dextral faults (see map of Fig. 13) were active and produced
small pull apart basins (Milia et al., 2009). One of these features is im-
aged at the southern end of the CROP M36 seismic profile (Fig. 13c). It
displays a flexural arching converging toward the main fault,



Fig. 13. Interpreted seismic sections CROP in the Eastern Tyrrhenianmargin. A=Unit A, B=Unit B, C=Unit C. A) SectionM36 across the SCM. Asymmetrical extensional structures (Early
Middle Pleistocene), followed by strike-slip related features (LateMiddle Pleistocene-Present flexural arching converging to a main vertical fault, linked to a positive structural inversion,
and negative flower structure), occur in the western, central, and eastern part of the profile, respectively. Lc = acoustic basement. B) Section M6B across the SCM showing that the
boundary between the Marsili Basin and the SCM corresponds to a Lower Pleistocene normal fault escarpment (Sartori Lineament), whereas the upper slope-shelf region (Cilento) is
affected by flexural arching (positive structural inversion) converging to a main vertical fault. C) M36 across the CM showing a flexural arching (positive structural inversion)
converging to a main vertical fault. CAL = Paleozoic crystalline rocks.
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corresponding to an anticlinorium crest, and striking different seismic
features North and South of this fault. This overall geometry confirms
a lateral movement of the fault blocks.

6. Discussion

Interpreting the data discussed above togetherwith the results of re-
centmodels of seismic tomography carried out in the ETM, allows to an-
alyze the kinematic link existing between the lower and upper plate. In
this way, we get a complete picture of the tectonic evolution of the ETM,
lacking so far, despite the large amount of seismic and geological studies
carried out in this area in the last fifteen years.

6.1. Seismic tomography models of the subduction zone

Knowledge of the mantle velocity structure beneath Apennine and
Tyrrhenian Sea has been significantly improved in the last ten years
using seismic tomography techniques. Despite intrinsic differences be-
tween local and regional tomography (i.e., model parameterization,
ray tracing, approach to the inverse problem solution, and model reli-
ability assessment), all recent models of the area are consistent on a
large scale (e.g., Lucente et al., 1999; Bijwaard and Spakman, 2000;
Piromallo and Morelli, 2003; Montuori et al., 2007; Chiarabba et al.,
2008; Di Stefano et al., 2009; Koulakov et al., 2009; Neri et al., 2009;
Giacomuzzi et al., 2012). They show an active subduction process of
the Ionian oceanic slab, dipping ~70 NW beneath the Calabrian arc
and southern Tyrrhenian, down to N600 km. This process, associated
with large positive velocities anomalies, is also confirmed by the distri-
bution of the intermediate and deep seismicity. In contrast, strong neg-
ative velocity anomalies, observed beneath the central and southern
Apennines down to 200–250 kmdepth, togetherwith the absence of in-
termediate seismicity, indicate zones of unperturbedmantle, which has
been interpreted as a gap in the subducted Adriatic slab.

The features discussed above are also visible in the recent regional
seismic tomography model of Koulakov et al. (2009), available from
open sources (http://www.ivan-art.com/science/REGIONAL/index.
html). The model covers an area within 30°N, 55°N; 5°W, 40°E and ex-
tends to a depth of about 700 km. The initial data used by this model

http://www.ivan-art.com/science/REGIONAL/index.html
http://www.ivan-art.com/science/REGIONAL/index.html


Fig. 14. Structure contour map of horizon 0.7. Contour interval is 0.20 s.
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included travel times of P and S bodywaves reported by the Internation-
al Seismological Center (ISC, 2001). All seismic events in the time period
from 1964 to 2001 were localized using the algorithm described in
Koulakov and Sobolev (2006), which has as a major advantage the de-
tection and rejection of the outliers present in the ISC catalogue. The
crustal corrections were computed using EuCRUST-07, which provides
estimates of depths and velocities of the upper/lower crust (Tesauro
et al., 2008). We can observe from cross-section 1 (Fig. 17), drawn per-
pendicular to the strike of the belt, negative velocity anomalies (up to
−3.5%) underlying the southern Apennines up to a depth of ~250 km.
These anomalies indicate the flow of the asthenosphere between the
lithosphere of the Adriatic plate, ~100 km thick, and the detached part
of the slab, sinking up to the bottom of the transition zone, which are
in turn identified by positive velocity anomalies up to ~2.5% (cross sec-
tion 1, Fig. 17). Above the detached slab, beneath the Tyrrhenian Sea,
there are strong negative anomalies (up to−3–4%), which have a ther-
mal origin, being coincident with the location of Quaternary volcanos
and areas of high heat flow (e.g., Zito et al., 2003). These observations,
together with estimates of low subcrustal velocities (e.g., Di Stefano et
al., 2009), shallow Moho depth (e.g., Panza, 1984), and S-wave attenu-
ation (e.g., Marone et al., 2004) evidence significant crustal extension
and asthenospheric upwelling.

The gap in the Adriatic slab tends to be progressively reduced to-
ward the South and closes beneath the central part of the Calabrian
Arc, where we can observe positive anomalies (up to ~2.5%), showing
the active subduction of the Ionian slab (cross-section 2, Fig. 17). The
latter tends to narrow in its uppermost part (at a depth ~100 km) up
to b100 km, where the positive anomalies are reduced to b1%. Even if
the fading of the positive anomalies at the same depths of the width re-
duction of the slab makes questionable its continuity, the occurrence of
the earthquakes in this area confirms that the slab is undetached and
subduction is still active. Southward the Calabrian Arc, beneath north-
eastern Sicily, there are negative anomalies up to −2.5% down to
~250 km (cross-section 3, Fig. 17), indicating the presence of a gap
wide ~100 km, which induces asthenospheric upwelling between the
Ionian and the African slab.

The origin of the slab break-off beneath the central and southern Ap-
ennines, which has likely caused magmas generation with transitional
geochemical signatures, between arc type and ocean-island basalt
(OIB) type, of the Quaternary Campania Province (Campi Flegrei, Vesu-
vius) andVulture (e.g. Peccerillo, 2005;DeAstis et al., 2006; Rosenbaum
et al., 2008), is still matter of debate. Some authors have hypothesized
that the Adriatic slab during its progressive rollback has been
fragmented by tears, which caused flow of asthenospheric materials
(e.g., Wortel and Spakman, 2000; Chiarabba et al., 2008; Di Stefano et
al., 2009; Giacomuzzi et al., 2012). Using numerical models, Wortel
and Spakman (2000) demonstrated that when a tear in the slab is gen-
erated, the decreased slab width may cause sudden acceleration of the
retreat and an ultrafast opening of the back-arc regions. Indeed, in the
segment of the plate boundary where a tear initiates, the slab pull is
not transferred to the lithosphere at the surface, but the weight of the
slab is at least partially supported by the still continuous part of the



Fig. 15. Interpreted seismic section CropM30 across the Northern Campania Margin. A= Unit A, B= Unit B, C = Unit C Mz=Mesozoic carbonates, Cz= Cenozoic terrigenous deposits.
The red filled arrows in the map are extension directions. The lower inset displays the stratal terminations of Quaternary units.
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slab. Stress concentration near the tip of the tear causes its lateralmigra-
tion and velocity increase of the slab retreat (Wortel and Spakman,
2000). The development of slab tears is consequential to the formation
of zone of weakness at the trench of the subduction zone, such as arrival
of continental lithosphere after a period of oceanic lithosphere subduc-
tion (Wortel and Spakman, 2000). Heterogeneities inherited from Me-
sozoic tectonics along the passive margins of the Alpine Tethys ocean
(European and African plates) and variations in the thickness and prop-
erties of the Adriatic and Ionian subducting lithosphere may have in-
duced changes in the velocities of the slab retreat along the length of
the subduction system and thus promoted the generation of slab tears
(e.g., Di Stefano et al., 2009). According to other authors (e.g., Lucente
and Speranza, 2001), the detachment process has not been induced by
Fig. 16. Geological section across the Southern Gaeta Bay and Campi Flegrei-Naples Bay basin
Campania Ignimbrite (39 ka), pre-CI = pre-Campania Ignimbrite tuffs, 0.1 = 0.1 Ma, 0.4 = 0.4
tear migration along the strike of the subduction zone, but is due to
the entering of thick continental lithosphere in the trench and thus is
spatially confined to the part of the subduction zone where the thicker
lithosphere is present (i.e. the central-southern Apennines). However,
the hypothesis of simultaneous slab detachment along a part of the
plate boundary seems less likely, since the occurrence in a particular
segment would activate the stress concentration mechanism and thus
the tear migration (Wortel and Spakman, 2000). Furthermore, we
should consider that 3D morphology of the slab beneath central and
southern Apennines, constructed by projecting the positive seismic to-
mography anomalies down to the bottom of the transition zone,
shows the presence of multiple fragmentations at various depths
(Rosenbaum et al., 2008). According to other seismic tomography
s, modified after Torrente and Milia (2013). NYT = Neapolitan Yellow Tuff (15 ka), CI =
Ma.



Fig. 17. Resulting P-wave velocity anomalies in map at depth of 100 km and along 3 vertical cross-sections of the seismic tomography model of Koulakov et al. (2009). Positions of the
cross-sections are shown in the map view. Black open circles in sections represent the distribution of earthquakes from the USGS seismic catalogue (http://earthquake.usgs.gov/
earthquakes/search/) at distances b50 km from the cross-sections.
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models, the Adriatic slab beneath the Neapolitan region is continuous,
dividing the slab tear occurring beneath the Central Apennines from
that present beneath the Southern Apennines (e.g., De Gori et al.,
2001; Chiarabba et al., 2008; Giacomuzzi et al., 2012). The configuration
of the seismic anomalies and the results of anisotropic studies (e.g.,
Civello and Margheriti, 2004) lead some authors to hypothesize a 3D
mantle circulation (toroidal flow) causing asthenospheric flow toward
the wedge around the sinking Ionian slab (e.g., Montuori et al., 2007;
Faccenna et al., 2011). Therefore, the slab configuration in the Central
Mediterranean is likelymuchmore complex than that usually described
in the numerical models.
6.2. Upper plate Quaternary evolution

The deformation phase of the ETM represents the last period of the
Neogene Tyrrhenian Sea opening. Even if previous studies discussed
the tectonic evolution of diverse sectors of the ETM, the tectonic history
of the whole margin is still unclear. In this study, we describe all the
phases of deformation of the ETM and contiguous Apennine belt. Qua-
ternary extensional basins and transform faults developed along the
ETMduring several tectonic stages (each ofwhich has a consistent kine-
matic evolution). The ETM structural pattern includes: poliphased ex-
tension and associated transform fault zones; changes in the direction

http://earthquake.usgs.gov/earthquakes/search/
http://earthquake.usgs.gov/earthquakes/search/
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of extension; formation of thick sedimentary basins and uplift zones
(Fig. 18).

During the Lower Pleistocene (2.0–1.0 Ma) extensional tectonics af-
fected the entire ETM and the western flank of the Apennines, creating
several basins (Fig. 18a): NW-SE trending normal fault formed in the
NCM (e.g. Northern Gaeta Bay and Campania Plain basins), SCM (Saler-
no Bay, Cilento and Sele Plain basins), in Campania, and Basilicata (e.g.
Diano and Auletta basins; Brancaccio et al., 1991; Barchi et al., 2007).
NE-trending and E-W trending normal faults developed, in the Marsili
and Paola basins, respectively. These three contemporaneous extension
directions (NE–SW in the Campania margin, NW–SE in Marsili basin
and N–S in CM) follow the double-saloon-door model by Martin
(2006), characterized by a couple of oppositely propagating rifts and a
coeval orthogonal third rift: the Campania margin andMarsili basin ap-
proximately match with the two arc-parallel rifts and the Paola basin
with the rift orthogonal to the subduction zone. During this stage
rapid counterclockwise rotations affected the hangingwall of the active
thrust sheets along the outer front of the Apennines (Mattei et al.,
2004).

In the late Lower Pleistocene (1.0–0.7 Ma; Fig. 18b) there was a
change in the structural pattern: extensional faults continued their ac-
tivity in the Campania Margin, Marsili basin, and western flank of the
Apennines, while en échelon folds, linked to a NW-SE left-lateral trans-
fer zone, formed in the CM. The activity of this transfer zone could be re-
lated to a higher speed of theMarsili basin opening, compared to that of
the ETM.

In the EarlyMiddle Pleistocene (0.7–0.4-Ma) an abrupt change of di-
rection of extension (from NE-SW to NW-SE) in the ETM occurred
(Fig. 18c). This change can be linked to the change of direction of the
tectonic transport (from NE to SE) of the southern Apennines thrust
belt (Patacca et al., 1990). The extensional basins related to this stage
correspond to underfilled half grabens of the Campania margin (e.g.
Campania Plain and Campi Flegrei-Naples Bay basins; Salerno Valley
and Salerno-Cilento basins). During that time, NW-SE left lateral strike
slip faults in the Apennines (Catalano et al., 2004; Schiattarella et al.,
2005) and NW-SE transfer zones in the ETMwere active. These transfer
zoneswere affected by uplifts and inversion structures.We assume that
the region of NW-SE strike-slip faulting of the upper plate has external
boundaries corresponding to a couple of lithospheric tears: Vulture vol-
cano fault and Sirene Seamount fault. Notably, at 0.7 Ma started the
Quaternary uplift of Calabria (Westaway, 1993).

In the Late Middle Pleistocene to Present (post 0.4 Ma) extensional
basins (Southern Gaeta Bay, Campana Plain-Campi Flegrei and Sapri ba-
sins) and transfer zone formed (Fig. 18d). Intense volcanism and east-
wards migration of the extension was recorded in the NCM. NNE-
trending normal faults developed in the ETM and Apennines (Vulture
volcano, Schiattarella et al., 2005) and this extensional pattern is coher-
ent with the migration of the Calabrian accretionary prism toward the
E-SE. During this tectonic stage, a NW-SE transfer zone, featuring
restraining and releasing bends, formed from the SCM to the CM at
the southwest border of the ETM.
6.3. Kinematic link between upper and lower plates

Seismic tomography studies of Central Mediterranean revealed the
existence of a gap in the structure of the subducted slab. According to
Lucente et al. (2006) slabwindows opened north (southern Apennines)
and south (Sicily Channel) of the Ionian slab. Govers andWortel (2005)
instead reported two STEP faults at the northern and southern bound-
aries of the Ionian slab. The occurrence of a scissor-type detachment
Fig. 18. Kinematics of the Tyrrhenian backarc basin during Quaternary, modified after
Milia et al. (2013) and Milia and Torrente (2015a, 2015b), including extension direction,
volcanism, marine depocenters and uplift zones. Only the faults associated with each
tectonic episode are shown.



Fig. 19. Left and central panel: Upper plate and slab features developed during the evolution of the STEP fault, modified afterMilia and Torrente (2015a, 2015b). Right panel: Simplified 2D
cross sections illustrating our interpretation of the evolution of the Adria slab.
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(STEP) in the northern boundary of the Ionian slab is documented by an
approximately 250 km-long gap of the slab spanning from the Southern
Apennines (Campania region) to the central part of Calabrian arc,where
the slab is continuous.

A STEP fault has the potential to modify the surface topography on a
kilometer scale, forming large sedimentary basins. Therefore,
combining the space-time evolution of sedimentary basins of the ETM
and the slab geometries, imaged from seismic tomography, we can un-
derstand the correlation between lower and upper plate deformation
occurring in correspondence of the slab edge. To investigate the correla-
tion between the evolution of sedimentary basins (timing and direction
of extension) and occurrence of slab edge break-off and STEP
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propagation, we integrate multiple features of the hinge zone deforma-
tion of the upper plate (such us stratigraphic signature of tectonics, fault
pattern, chronology of basin evolution), as well as the interpretations of
seismic tomography data. We found a direct correspondence between
lower plate rupture propagation and upper plate deformation, suggest-
ing a genetic link between upper and lower plates.

We propose a possible geodynamic scenario characterized by a slab
detachment linked to a STEP propagation (Figs. 18, 19).

a) During the Lower Pleistocene (2.0–1.0 Ma) the upper plate exten-
sion is directed perpendicular to the Apenninic trench (E-NE-direct-
ed) contemporaneously, in the southern part, the extension is
directed perpendicular to the Ionian trench (SE-directed). The diver-
gence in the direction of extension between these two regions im-
plies the opening of an external basin between them (Paola Basin).
The difference in the trench orientation can be due to the different
velocity in the rollback of the continental and oceanic slab sectors.

b) Through the late Lower Pleistocene (1.0–0.7 Ma) the reduction in
the extension value along the Campania Margin and the increase
in the extension value of the Marsili basin, induce the formation of
a transfer fault zone in the Calabria Margin. These features can be
interpreted as the response in the upper plate of the STEP fault nu-
cleation and rollback of the southern slab.

c) The Early Middle Pleistocene phase (0.7–0.4 Ma) was a period of
plates re-organization that recorded: (i) abrupt change in the exten-
sion direction (fromNE to SE), associated to the formation of rapidly
evolving half graben localized in theNorthern CampaniaMargin; (ii)
end of the NE-directed thrust propagation in the Apennines and
rapid uplift of Calabria. We should note that the deformation zone
is localized in the ETM and bounded by two transfer zones toward
the bathyal basins of the backarc and the external zone of the Apen-
nines. The narrowbelt of deformation is localized in correspondence
of the northern boundary of the Ionian slab and can be interpreted as
the response of the STEP fault propagation. The toroidal flow devel-
opment around the northern edge of the Ionian and African slab
(e.g., Montuori et al., 2007; Faccenna et al., 2011) would explain
the upwelling of asthenospheric material beneath Calabria, and its
rapid uplift (Gvirtzman and Nur, 1999).

d) The Late Middle Pleistocene-Present (post-0.4 Ma) period records a
minor reorientation (E-SE) of the direction of extension in the ETM
and the development of a restraining bend in the SCM. The NCM
was characterized by large-volume volcanic eruptions and an in-
crease of subsidence and extension associated to high crustal thin-
ning (10 km at Campi Flegrei). This deformation stage indicates
the enlargement of the gap effect of the continuum propagation of
the STEP fault.
7. Conclusions

Based on seismic tomography studies, a general consensus exists on
the gaps in the Adriatic slab, which induced the upwelling of hot as-
thenospheric material and generation of magmaswith transitional geo-
chemical signatures, between arc type and OIB type, of the Quaternary
Campania Province (Campi Flegrei, Vesuvius) and Vulture volcanic
complex (e.g. Peccerillo, 2005; De Astis et al., 2006; Rosenbaum et al.,
2008). Several models of slab break-off have been proposed, which
can be ascribed to two main categories, slab window and slab tear or
STEP fault (e.g. Govers andWortel, 2005; Rosenbaumet al., 2008). How-
ever, despite all the previous reconstructions of the complex geometry
and boundaries of the Adriatic slab, age andmode of formation and evo-
lution of the slab break-off remain unclear, without the interpretation of
the kinematics of the upper plate. Indeed, the tectonic history of the
deep and rapidly subsiding basins formed along the ETM allows to un-
derstand the mode of the interplay between lower and upper plate.
In this study, we combined the analysis of deep and shallowprocess-
es, mainly focusing on the relationship between the evolution of the
lower plate (subduction slab) and upper plate (backarc sedimentary ba-
sins) and the resulting geodynamic implications. Our kinematic analysis
reveals a WNW-trending deformation belt bounded by transfer faults,
corresponding to the ETM, characterized by backarc opening with NE-
directed extension in the Lower Pleistocene (2–0–0.7 Ma) followed by
SE-directed extension in the Middle Pleistocene (post-0.7 Ma). This
abrupt change of ~90° in the extension direction of the ETMduringQua-
ternary is inconsistent with the features predicted by the current
models of backarc opening. Therefore, we hypothesized the existence
of a STEP fault currently bounding the northern margin of the Ionian
plate. This STEP nucleated about 1 Ma ago along the ETM, forming a
gap in the Adriatic slab, which propagated for about 250 km southward
reaching the central part of the Calabrian arc,where the slab is presently
continuous. Notably, the deformation belt is bounded by lithospheric
faults, which has favored recent volcanic activities, controlling magma
rise from deep reservoirs to surface.
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