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IDIOPATHIC NEPHROTIC SYNDROME (INS) 

Nephrotic syndrome (NS) is a pathological condition characterized by a constellation of clinical signs 

resulting from abnormalities in the glomerular permeability. It is classically characterized by clinical 

features such as: 

●Nephrotic range proteinuria − Urinary protein excretion greater than 50 mg/kg per day 

●Hypoalbuminemia − Serum albumin concentration less than 3 g/dL (30 g/L) 

●Edema 

●Hyperlipidemia. 

Of these features, the first two are used diagnostically while the last two may not be seen in all patients. 

 

Massive proteinuria and hypoalbuminemia, as seen in NS, result from increased permeability of the 

glomerular filtration barrier to proteins. This barrier is composed of the fenestrated capillary endothelium, 

the glomerular basement membrane and the podocytes, epithelial cells of the visceral layer of a renal 

glomerulus having a number of footlike radiating processes (pedicles). In NS, podocytes show morphologic 

changes, including retraction and flattening of pedilcles (Figure 1). 

 

  

 

Figure 1: Schematic view of normal podocyte foot processes (left) and fused podocyte pedicles in nephrotic 

syndrome (right) 
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Classification 

Childhood NS can be classified into 3 groups [1]: 

1. The primary NS: which refers to NS in the absence of an identifiable systemic disease. Within this 

category are patients with Idiopathic Nephrotic Syndrome (INS), who have no glomerular inflammation on 

renal biopsy, and patients with primary glomerulonephritis, who have an urine sediment containing blood 

cells and glomerular inflammation on renal biopsy [2]. 

2. The secondary NS: which refers to NS associated with both inflammatory diseases (e.g.: lupus 

nephritis, acute post-infectious glomerulonephritis, IgA nephropathy) and non-inflammatory diseases (e.g.: 

syphilis, diabetes mellitus, hypertension and cancer). 

3. The congenital and infantile NS: which occurs in children less than one year of age and can be 

either primary or secondary (mostly due to infection). Two-thirds of NS cases that occur during the first 

year of life, and as many as 85 percent of cases that occur during the first three months of life, have a poor 

outcome and a genetic basis that could be explained by mutations in one of the following four genes [3]: 

●NPHS1, which encodes nephrin (a key component of the podocyte slit diaphragm) and is responsible for 

the Finnish-type congenital NS;  

●NPHS2, which encodes podocin (a protein that interacts with nephrin at the slit diaphragm) and is 

responsible for familial focal segmental glomerulosclerosis;  

●WT1, which encodes the transcription tumor suppressor (a protein involved in kidney and gonad 

development) and is responsible for the Denys-Drash syndrome;  

●LAMB2, which encodes laminin beta 2 (a component of the glomerular basement membrane) and is 

responsible for the Pierson syndrome.  

 

Epidemiology 

INS is the most frequent form of NS in children [1, 4, 5] and is characterized by a wide variety of 

glomerular lesions, the most common type being the "minimal change NS" (MCN). MCN occurs in 90% of 

children under the age of six years and in 50% of children above this age, who underwent kidney biopsy. In 

the United States and Europe, the annual incidence of INS is of 2-7 cases per 100000 children per year, with 

a cumulative prevalence of 16 per 100000 pediatric subjects [4, 6]. In New Zealand, the incidence is higher, 

nearly 20 cases per 100000 children under 15 years of age [7]. A higher incidence of INS has been recorded 

also in Asian Indian and Japanese children (6 times the rate observed in European children) [8, 9]. The peak 

of incidence of the disease in children is at 3-4 years of age and, in 1/3 of children affected, there is a 

previous history of atopy (asthma, eczema, rhinitis). An unexplained male preponderance is observed, with 

male to female ratio’s ranging from 1.5 to 3.1. [10]. 
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Clinical picture 

The clinical onset is often preceded by an infection of the upper respiratory tract (~25-30% of cases) 

or by allergic reactions (~30%) [11]; an unusual event that precedes the onset of INS, as a reaction to an 

insect bite, has been reported in some cases [11].  

Edema is present in about 95% of children with INS [12, 13]. Initially edema is intermittent and 

insidious, and its presence is not always appreciated. Edema can progress quickly or slowly, becoming more 

generalized and clear. In children it can typically remain confined in facial and periorbital regions, while in 

severe cases is associated with more or less conspicuous fluid in serous cavities, especially in pleural and 

peritoneal cavity. The pathogenetic mechanism of the edema is due to the massive loss of proteins in the 

urine, with the consequent decrease in oncotic pressure of the blood. 

As regards to proteinuria, especially in children, it occurs for molecules with a molecular weight 

similar to that of albumin, transferrin and other plasma proteins (~70-80 kDa), with exclusion of larger 

molecules such as immunoglobulins. This results in hypoalbuminemia because of the albumin loss. 

Anorexia, irritability, fatigue, abdominal pain and diarrhea are other common symptoms [14].  

In pediatric patients with these symptoms, renal biopsy is not necessary and a reliable diagnosis can 

be assessed based on clinical and laboratory parameters, reserving biopsy to patients who do not respond 

to pharmacological intervention. 

 

Treatment and clinical outcome  

Since the 1950’s, glucocorticoids (GCs) represent the cornerstone of NS treatment, as they are able 

to induce remission of proteinuria in around 90% of patients [15-17]. In conjunction with the antibiotic 

therapy, GCs have caused a remarkable reduction of mortality from 35-50% to less than 3% [15].  

The initial treatment of INS generally consists of high doses oral prednisone. Prednisone is inactive 

and is converted into its active metabolite prednisolone by hepatic enzymes. Systemic bioavailability of 

prednisolone is generally equal when oral administration of prednisone is compared to prednisolone [18]. 

Steroid responsiveness at diagnosis is of major prognostic importance in INS with regard to kidney function, 

which is generally well preserved in steroid sensitive NS (SSNS) [19, 20]. This is in contrast with steroid 

resistant NS (SRNS), occurring in about 10% of children with INS [1, 14] where patients are prone to 

progressive disease and renal failure [14].  

Despite the high initial response rate to GCs (85-90%), relapses occur in 60-90% of the initial responders 

[15, 21]. Relapse frequency is highly variable among patients. Around 30-50% of patients develops frequent 

relapses (generally ≥2 relapses within six months after initial treatment, or ≥4 relapses per year) and half of 

them becomes steroid dependent [15, 21]. Children with INS form a heterogeneous and therapeutically 

challenging group as they suffer from relapses and GC toxicity to a varying degree. Those in need of 

numerous courses of GC therapy are at risk of serious infectious [22], as well as adverse effects on growth 
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and bone mineral density, obesity, hypertension, changes in behavior and cataract. These patients often 

need other immunomodulatory agents (cyclophosphamide, cyclosporine, mycophenolate mofetil, 

levamisol, rituximab) in order to reduce adverse effects of GC therapy. Children with INS who develop GC 

dependence or secondary resistance to therapy are likely to face a protracted disease course [11, 14]. 

To date, there are no worldwide common guidelines on the duration and dose of prednisone treatment for 

childhood INS. Different schedules are used across countries, regions and hospitals. The lack of common 

standardized protocols in Italy has led to the creation of a network of pediatric nephrologist from different 

Italian regions, called  NEFROKID. 
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GLUCOCORTICOIDS 

GCs mediate many essential physiological processes, including stress response, glucose metabolism and 

anti-inflammatory actions [23, 24]. The complex mechanisms of GC action give rise to the heterogeneity in 

GC sensitivity, which is known to exist in the general population [25, 26]. It is well known that patients 

differ in their clinical response to doses of prednisone. Many factors, both intracellular and extracellular, 

can influence the drug pharmacokinetics and pharmacodynamics, affecting treatment response and side-

effects. Though GCs have been first choice treatment for INS for decades, surprisingly little is known about 

how patients will respond to therapy and which is the ideal dose children with INS need.  

 

GC mechanism of action 

GCs are involved in many processes in various tissues and organs [27, 28], ranging from glucose 

homeostasis and modulation of the immune and inflammatory responses to their important role in bone 

metabolism and their effects on mood, behavior and sleeping patterns. Approximately 10-20% of all genes 

are estimated to be positively or negatively regulated by GCs, illustrating the diversity of GC action [29-31]. 

The actions of GCs are mediated by the glucocorticoid receptor (GR), encoded by the NR3C1 gene. The GR 

is one of the members of the nuclear receptor family, is expressed in virtually all cells and is essential for 

life. The NR3C1 gene is located on chromosome 5 and consists of nine exons. As all other nuclear receptors, 

the GR has a N-terminal transactivation domain, a central DNA binding domain (DBD) and a C-terminal 

ligand binding domain. The nine exons comprising the NR3C1 gene are subjected to alternative splicing, 

giving rise to alternative splice variants: the most common GC isoforms (GR-α and GR-β) are derived from 

alternative splicing of exon 9 [32, 33]. GR-α is the biologically active isoform while the GR-β isoform is not 

capable of binding GCs. Nevertheless, GR-β is thought to act as a dominant negative inhibitor of GR-α, 

hereby affecting its transcriptional activity [34-37].  

 

In the cytoplasm, the ligand-free GR exists in a multimeric complex associated with various chaperones and 

co-chaperones, such as Hsp90, FKBP51, FKBP52, p23, Hsp70 and Hop [38], that keep the receptor in the 

correct folding for hormone binding [39] (Figure 2). Upon ligand binding, the GR undergoes conformational 

changes and exposes the DBD, which is otherwise hidden in the ligand-free conformation. Nuclear 

receptors are also provided of nuclear localization signals (NLSs) that interact with transporters located on 

nuclear membranes (the importins), thus mediating their translocation into the nucleus. Among these 

transporters, importin-13 (IPO13) has been functionally characterized as a primary regulator of the 

translocation of the GC-bound GR across the nuclear membrane [40]. 

In the nucleus, the GR-GC complex can mediate gene transcription via several different mechanisms. The 

first mode of transcriptional regulation requires the dimerization of GR-GC and the binding of the dimer on 

specific DNA sequences (the glucocorticoid-responsive elements, GREs). The subsequent recruitment of 
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several co-activators promotes remodeling of the chromatin and stimulates initiation of transcription by 

the RNA-polymerase II complex, thus resulting in a transactivation (transcription at higher rates) of 

downstream genes, mainly anti-inflammatory genes, such as IL-10, IL-6, and IL-4. 

 

 

Figure 2: Schematic view of molecular mechanisms of action of glucocorticoids 

 

Alternatively, GCs can bind to negative GREs in the promoter region of target genes, herewith inhibiting 

gene transcription (transrepression of pro-inflammatory cytokines enconding genes such as IL-1, IL-12 and 

TNF). The GR monomer can also interfere with the transcriptional activity by means of direct protein-

protein interactions with transcription factors [41]. 

 Nongenomic mechanisms have also been described and are responsible for the GC-induced effects 

characterized by rapid onset and short duration [42]. These mechanisms are still not completely clear, but 

they likely involve non classical membrane-bound GR. In addition, at higher concentrations, GCs probably 

induce lipid peroxidation, with consequent alteration of the characteristics of plasma membranes and 

alteration in ion transport [42]. 
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Clinical and biochemical predictors of response 

The inter patients variability to GCs as well as the unpredictability of the clinical course of childhood NS 

called for better understanding of underlying mechanisms with the final aim of improvement of current 

treatment protocols.  

Although many efforts have been made to predict response and relapse patterns in children with INS, it has 

been impossible to provide clinicians with a clear-cut set of risk indicators yet. Studies focusing on the 

prognostic value of genetic and biochemical factors, as well as demographic and clinical features, have 

yielded conflicting results [43-46]. 

The low incidence of NS complicates studying these parameters in a prospective setting; however 

demographic variables have been studied in correlation with clinical response to therapy [43]. 

Male gender has only occasionally been correlated to frequent relapses [43]. Most reports have not found 

a significant effect of gender on clinical course in terms of (frequent) relapses or other morbidity [44-46]. 

Age at onset has been proposed as an indicator of clinical outcome in NS. In adolescents, atypical features 

and steroid resistance are seen more often [47-50], whereas younger age at diagnosis (1-6 years of age) has 

been associated with frequent relapses, steroid dependency and/or a longer duration of disease [16, 43, 

46]. A possible explanation for the higher incidence as well as the increased number of relapses in young 

patients could be a higher frequency of potentially triggering events, such as viral infections [10, 51]. Some 

reports however did not find any effect of age on clinical course [44, 51-53]). 

Low birth weight has been associated with unfavorable clinical outcome. In children with low birth weight, 

steroid dependence and hypertension were observed more often compared to children with normal birth 

weight [54, 55]. A lower nephron number in patients with low birth weight has been suggested as part of 

the underlying mechanism for this relationship, though this requires further clarification. 

A wide variety of genetic and biochemical factors have been put forward as biomarkers for the clinical 

course of INS in children. Several gene mutations have been associated to hereditary forms of disease, in 

particular variations in genes such as NPHS1, NPHS2, PLCE1, WT1, CD2AP and others (for a review see [56], 

encoding for glomerular proteins. Moreover variation in genes coding for proteins involved in the 

mechanism of action of GC (NR3C1, FKBP4/5, IPO13, IL-10), have been also correlated with clinical response 

to steroids (for a review see [57]). However these studies investigated small number of patients, treated 

with different protocols, giving not consistent results and could not provide reliable biomarkers to predict 

clinical outcome of INS patients. 

Plasma levels of cytokines have not been largely investigated in a cohort of pediatric patients at onset of 

INS. Since INS is characterized by proteinuria and this condition is mediated by cytokines [58], cytokine 

plasma levels should be considered as potential biomarkers of INS clinical course. Recently IL-4, IL-13 and 

IL-18 levels have been found to be significantly higher during the active stage of SSNS compared to 

http://en.wikipedia.org/wiki/Proteinuria
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remission and controls while IFN-γ level was found to be significantly lower [59, 60]. These results require 

further clarification comparing steroid sensitive, dependent and resistant patients. 
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AIMS AND OUTLINE OF THE THESIS 

This thesis is focused on pediatric patients affected by INS, and on the possible prediction of 

response to GCs in these patients. Differences in GC sensitivity have been already reported among INS 

patients: a substantial proportion (approximately 10-15%) of them is resistant to GCs at the start of therapy 

whereas almost 50% of patients becomes steroid dependent over the treatment. Exploration of biomarkers 

able to predict GC sensitivity a priori could provide more insight in the treatment of INS and may stimulate 

the development of individualized therapy. 

 

With these premises, the aim of this thesis was to identify cellular and molecular markers 

associated to and/or predictive of outcome in childhood INS. For this purpose, a number of studies have 

been performed, in healthy donors and pediatric patients, as described in the following chapters 

 

Chapter 2 reviews the literature on GC pharmacogenetics in pediatric INS while Chapters 3 to 9 

describe the research project undertaken to study the mechanisms involved in glucocorticoid response. 

Chapter 3 describes the development of a pharmacodynamic in vitro assay, performed on healthy donors 

for predicting GC sensitivity and investigates the association between variation in genes coding for protein 

involved in GC mechanism of action, and the in vitro PBMC responses to GCs. 

Chapter 4 describes the correlation between the PBMC in vitro sensitivity to methyl-prednisolone and the 

clinical response in a cohort of pediatric INS patients.  

Chapters 5 to 8 focus on research of other predictors that may explain the variability in clinical outcome in 

those patients. In particular, Chapter 5 focuses on cytokines, investigating the correlation between patients 

clinical response and the cytokines plasma profiles; Chapter 6 analyses whether polymorphisms of genes 

involved in the GC mechanism of action are related to steroid in vitro sensitivity in a cohort of healthy 

subjects; in Chapter 7 the mRNA expression profile has been investigated as a novel in vitro tool for 

assessing sensitivity to steroid treatment in healthy donors while in Chapter 8 the role of a long noncoding 

RNA GAS5 and of NR3C1 gene expression are investigated in correlation with clinical response of INS 

pediatric patients. 

Finally the results of the different studies will be summarized and discussed in Chapter 9, including 

suggestions for further research. 
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Abstract 

Idiopathic nephrotic syndrome (INS) represents the most common type of primary glomerular 

disease in children: glucocorticoids (GCs) are the first line therapy, even if considerable inter-individual 

differences in their efficacy and side effects have been reported. Immunosuppressive and anti-

inflammatory effects of these drugs are mainly due to the GC-mediated transcription regulation of pro- and 

anti-inflammatory genes. This mechanism of action is the result of a complex multi-step pathway that 

involves the glucocorticoid receptor and several other proteins, encoded by polymorphic genes. Aim of this 

review is to highlight the current knowledge on genetic variants that could affect GC response, particularly 

focusing on children with INS. 
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Introduction 

Idiopathic nephrotic syndrome (INS) is the most frequent primary glomerular disease in the pediatric 

population, and affects 16 - 17 per 100.000 children. The onset of the disease occurs usually between the 

ages of 2 and 8 years, with a peak of incidence between 3 and 5 years [1, 2]. The physiopathologic 

mechanisms of INS have not been completely clarified yet; however, the disease is triggered by an increase 

in glomerular permeability caused by an abnormal immunologic response, that results in an alteration of 

the capillary structure and of the integrity of the glomerular membrane [1].  

Glucocorticoids (GCs) are the mainstay of INS therapy. Response to GCs is highly correlated to 

histological subtypes of the disease, and is poor in genetic forms that occur either as isolated kidney 

disease or as syndromic disorders. Several gene mutations have been associated to these hereditary forms, 

in particular variations in genes encoding for glomerular proteins such as nephrin (NPHS1), podocin 

(NPHS2), phospholipase C epsilon-1 (PLCE1), Wilms Tumor gene (WT1), CD2-associated protein (CD2AP) 

and others (for a review see [3]). 

Also in non-genetic forms of INS, patients’ response to GCs is the best indicator for outcome: indeed, 

those who respond poorly to these drugs and do not achieve remission have an unfavourable prognosis 

and often develop end-stage renal failure [4]. In minimal change nephrotic syndrome, the most common 

histopathological pattern in children, accounting for 70-80% of cases [2], after an initial response to 

prednisone, around 80% children relapse and some become steroid-dependent, while others never 

respond to GC therapy and are therefore steroid resistant (10%). These patients often require intensified 

immunosuppression with cyclophosphamide and/or cyclosporin A [1] [5].  

This variable response to GCs is likely not attributable to the characteristics of the disease, and is 

clinically difficult to predict. Significant advances have been made over the past years in understanding the 

molecular basis of inter-patient variability: recent investigations have led to the hypothesis that genetic 

factors influencing the patient pharmacokinetic or pharmacodynamic profiles may account for 20% to 95% 

of variability in the efficacy and side effects of therapeutic agents [6]. Pharmacogenetics has therefore a 

promising role in personalized medicine, hopefully allowing the identification, a priori, of treatment 

sensitive and resistant patients and ensuring the right drug and right dose for each of them. In the context 

of INS, little is known about the impact of genetic polymorphisms on steroid response. Nonetheless, 

identification of predictive genetic biomarkers would be extremely beneficial, in particular for children with 

a steroid resistant disease, preventing their exposure to ineffective drug courses. 

 

This review describes the mechanisms of GC action and discusses the molecular and genetic basis of 

GC resistance, with particular reference to non-genetic forms. 
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Molecular mechanism of GC action (figure 1) 

GCs are anti-inflammatory and immunosuppressive drugs that exert their molecular action through 

both genomic and non-genomic mechanisms. Depending on whether or not they modulate gene 

transcription, GC induced effects could be delayed in onset but long-lasting or, vice versa, of more rapid 

onset and shorter duration.  

 

 

Figure 1: Molecular mechanisms of action of glucocorticoids. 

 

Genomic mechanisms 

Exogenous and endogenous GCs are lipophilic substances that diffuse across plasma membranes, 

thus interacting with a cytosolic receptor (the glucocorticoid receptor, GR), expressed in virtually all tissues. 

This receptor is a member of the large nuclear receptor superfamily, which includes receptors for steroid 

hormones and other hydrophobic molecules [7]; all these receptors are highly homologous to each other 

and have a common modular domain organization with a transactivation domain at the N-terminal part 

(NTD), a central zinc finger DNA-binding domain (DBD) and a ligand-specific binding domain (LBD) at the C-

terminus. In the cytoplasm, the ligand-free GR exists in a multimeric complex associated with various 

chaperones and co-chaperones, such as the heat-shock proteins Hsp90, FKBP51, FKBP52, p23, Hsp70 and 
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Hsp70/Hsp90 organizing protein (Hop) [8], that keep the receptor in the correct folding for hormone 

binding [9]. Upon binding, the receptor undergoes conformational changes and exposes the DBD and the 

nuclear localization signals, both hidden in the ligand-free conformation. The nuclear localization signals 

interact with transporters located on nuclear membranes (the importins), thus mediating the GR 

translocation into the nucleus. Once there, the DBD interacts, through its zinc finger motifs, with specific 

DNA sequences located within regulatory regions of GC-responsive genes, the GC-responsive elements 

(GRE), [10] [11]. The GR homodimerizes on GREs and recruits transcriptional co-activators and basal 

transcription machinery to the transcription start site. These co-activators, that include CREB (cAMP 

response element-binding) binding protein (CBP), steroid receptor co-activator-1 (SRC-1), GR-interacting 

protein (GRP-1) and the transcription factors p300 and switching/sucrose non fermenting (SWI/SNF), 

induce histone acetylation and thus the transactivation of GC-responsive genes (mediated by positive 

GREs). Through the induction of anti-inflammatory genes, such as interleukin (IL)10, annexin 1 and the 

inhibitor of nuclear factor (I-κB), transactivation is responsible for some of the GCs anti-inflammatory 

effects [12, 13]; however, transactivation enhances mainly the expression of genes involved in metabolic 

processes [14, 15], and is therefore responsible for the majority of side effects related to GC administration 

[16, 17]. In contrast, negative GREs [18] mediate downregulation of transcription of responsive genes and 

transrepression is responsible for the majority of the beneficial anti-inflammatory effects of GCs [16, 19-

21]. Furthermore, GRE-independent mechanisms of transrepression also exist: the GR physically interacts 

and inhibits AP-1 [22] and nuclear factor (NF)-κB [23], two important transcription factors involved in the 

pro-inflammatory mechanism. 

 

Non genomic mechanisms 

Non genomic mechanisms have been also described and are responsible for the effects induced by 

GCs characterized by rapid onset and short duration. The mechanisms are still not completely clear, but 

likely involve non-classical membrane-bound GC receptors. In addition, at higher concentrations, GCs 

probably induce lipid peroxidation, with consequent alteration of the characteristics of plasma membranes 

and alteration in ion transport [24]. 

 

Molecular mechanism of GC resistance 

The precise molecular mechanism conferring dependence or resistance to GCs in INS and in other 

diseases is still unclear; likely, the mechanism is not unique and probably occurs after impairments at 

different levels such as: 1) the GR receptor heterocomplex and proteins involved in nuclear translocation; 

2) the pro- and anti-inflammatory mediators in the downstream signalling pathway of the GC-GR complex; 

3) the P-glycoprotein (P-gp), an efflux transporter of GCs, and the drug-metabolizing enzyme CYP3A5. 
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1. The GR heterocomplex and proteins involved in nuclear translocation  

The GR 

The NR3C1 gene, encoding for the human GR, is located on chromosome 5q31.3 and includes nine 

exons [25]. Several polymorphic sites have been described in this gene and have been supposed to affect, 

at least partially, the inter-patient variability in GCs response because they might alter the formation and 

the dynamic of the GC–GR complex and hence the downstream gene expression regulation [26]. However, 

only few variants have been associated with differences in metabolic parameters, body composition and 

altered endogenous cortisol levels and are functionally relevant [26-37]. Single nucleotide polymorphisms 

(SNPs) such as TthIIII (rs10052957), ER22/23EK (rs6189/rs6190) and GR-9  (rs6198), have been related to a 

reduced sensitivity to endogenous and exogenous GCs, while other NR3C1 SNPs such as N363S (rs6195) 

and BclI (rs41423247) have been related to an increased sensitivity [26, 37]. TthIIII is a C>T change in the 

NR3C1 promoter region, located 3807 bp upstream of the GR start site [9]; the ER22/23EK polymorphisms 

involve two nucleotides changes (GAGAGG to GAAAAG) in codon 22 and 23 of NR3C1 exon 2, which change 

the amino acid sequence of the NTD domain from glutamic acid-arginine (E-R) to glutamic acid-lysine (E-K) 

[38]; the GR-9  polymorphism is located in the 3’-untranslated region of exon 9 , where an ATTTA 

sequence is changed into GTTTA [39]. The N363S polymorphism consists of an AAT>AGT nucleotide change 

at position 1220 in exon 2, resulting in an asparagine to serine change in codon 363 [40], the BclI 

polymorphism was initially described as a polymorphic restriction site inside intron 2, and the nucleotide 

alteration was subsequently identified as a C>G substitution, 646 nucleotides downstream from exon 2 

[41]. 

So far, only few studies have evaluated the role of the NR3C1 polymorphisms on the response to 

exogenous GCs in patients affected by INS. The distribution of BclI and of two other SNPs, rs33389 and 

rs33388, (respectively a C>T and A>T substitution, 76889 and 80093 nucleotides downstream from exon 2) 

also located in intron B of the GR receptor gene, as well as the three-marker haplotype, has been studied in 

136 healthy children and 118 INS pediatric patients who initially responded to oral GC therapy. The GTA 

haplotype was associated with a higher steroid sensitivity, determined by time to proteinuria resolution, 

and was more prevalent in early (response ≤ 7 days) than late (response > 7 days) prednisone responders 

(27.7 vs 14.5%, hap-score = -2.22, p = 0.05) [42]. The BclI polymorphism has been also analysed by Cho and 

co-workers [43] in 190 Korean children with INS and 100 controls, but no correlation with the development 

of INS, onset age, initial steroid responsiveness, renal pathologic findings and the progression of renal 

disease was found. The authors have also examined two other SNPs, namely ER22/23EK and N363S, but no 

variant allele was found in any of the patients or control subjects. Recently, Teeninga et al. [44] have 

evaluated GR-9β, TthIIII and BclI polymorphisms in a well-defined cohort of 113 children with INS, showing 

that carriers of GR-9β+TthIIII mutated haplotype had a significantly higher incidence of steroid dependence 

compared with non-carriers (52% vs 25%, OR = 3.04 95% CI 1.37–6.74, log rank test p = 0.003).  
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Several GR protein isoforms are generated through an alternative splicing: the most abundant and 

functionally active isoform is GRα, whereas GRβ is the inactive protein, unable to bind the ligand that exerts 

a dominant negative effect on GRα. The GR-9β polymorphism has been associated with increased 

expression of the mature GR-β protein and implicated in steroid resistance in several diseases [45-49]. In 

patients with INS, an increased expression of GRβ has been demonstrated in peripheral blood mononuclear 

cells (PBMCs) of steroid resistant patients [50], while the expression of the functional isoform GRα was 

correlated with a positive steroid response (steroid responders vs partial- and non-responders p < 0.01) 

[51].  

In 2006, Ye et al. [52] sequenced candidate exons of NR3C1 gene and examined all the genetic 

variations in 138 Chinese children with sporadic steroid resistant and sensitive INS, founding no significant 

association between the SNPs analysed in the study and steroid response; however the analysis excluded 

the above mentioned polymorphisms that are located in NR3C1 introns and regulatory regions.  

 

 

The GR heterocomplex 

Beside the proper functioning of the receptor itself, also the activity of all other components in the 

GR heterocomplex is essential for an adequate response to GCs. Altered levels of heterocomplex proteins, 

such as Hsp90, Hsp70, FKBP51, FKBP52, p23 and Hop, may contribute to altered GC cellular sensitivity [53] 

[54]. In INS, Ouyang et al. [55] have shown that the expression level of Hsp90 mRNA was significantly higher 

in adult patients than in healthy controls (1.09 ± 0.17 vs 0.98 ± 0.14, p < 0.05), and both the expression and 

nuclear distribution of Hsp90 were increased in PBMCs obtained from GC-resistant patients in comparison 

to GC-sensitive ones (1.28 ± 0.25 vs 1.13 ± 0.21; p < 0.05). The same authors have subsequently explored 

the interaction between Hsp90 and the GR in the nucleus as well as the DNA binding activity of the GR, 

showing that the nuclear enrichment rather than total cellular expression of Hsp90 might contribute to GC 

resistance and that the DNA binding activity of the GR was significantly (p < 0.05) decreased in GC resistant 

patients, hindering transactivation [56].  

Clinical studies on the association between variants in genes coding for GR heterocomplex proteins 

and the GC response have been already carried out in several GC-treated diseases. In inflammatory bowel 

disease Maltese et al. [57] analyzed the role of FKBP5 genetic variants (rs3800373, rs1360780 and 

rs4713916) and evidenced that the variant rs4713916 polymorphism was significantly associated with 

resistance to GC treatment in Crohn’s disease (responders = 17% vs resistants = 35%; p = 0.0043). 

Moreover, in a cohort of asthmatic patients, Hawkins et al. [58] analyzed the role of FKBP5 genetic variants 

in response to GCs, however the studied polymorphisms (rs3800373, rs9394309, rs938525, rs9470080, 

rs9368878 and rs3798346) were not correlated with response to these drugs. In the same study, genetic 

variations in the STIP1 gene (rs4980524, rs6591838, rs2236647, rs2236648), which codes for Hop, have 



 
23 

been investigated and shown to have a role in identifying asthmatic subjects who were more responsive to 

GC therapy. An association with improved lung function, evaluated as baseline FEV1 (rs4980524, p = 0.009; 

rs6591838, p = 0.0045; rs2236647, p = 0.002; and rs2236648; p = 0.013) was found [58]. To date, no data 

on these polymorphisms and therapeutic outcome in INS are available. Pharmacogenetic studies are 

therefore required in order to understand the importance of these genetic variants in identifying resistant 

patients in this condition. 

 

 

Table 1: Summary of studies reporting genetic analysis of NR3C1 in INS patients 

 

Nuclear transport factors 

Upon binding with the receptor, the GR-GC nuclear translocation is essential to exert the GC 

pharmacological function, and this step is mediated by several nuclear receptors known as importins. [59] 

[60]. Importin 13 (IPO13) has been functionally characterized as a primary regulator of GC-bound GR across 

the nuclear membrane [10]. Altered levels of this protein might affect the therapeutic responsiveness to 

GCs and it has been demonstrated that IPO13 silencing prevents GC transport across the cytoplasmic-

nuclear membrane in airway epithelium and abrogates GC-induced anti-inflammatory responses [61]. SNPs 

in the IPO13 family have been associated with neonatal respiratory outcomes after maternal antenatal 

corticosteroid treatment (SNP impact on fetal bronchopulmonary dysplasia: rs4448553; OR 0.01; 95% CI 

0.00-0.92, p = 0.04; SNP impact on surfactant maternal therapy: rs2428953 OR, 13.8; 95% CI 1.80-105.5, p= 

0.01 and rs2486014 OR 35.5; 95% CI 1.71-736.6, p = 0.02) [62]. Polymorphisms of IPO13 (rs6671164, 

rs4448553, rs1990150, rs2240447, rs2486014, rs2301993, rs2301992, rs1636879, rs7412307 and 

rs2428953) have been investigated in children with mild to moderate asthma in relation with clinical 

response to GCs evidencing that IPO13 variants could increase the nuclear bioavailability of endogenous 

GCs (subjects harboring minor alleles demonstrate an average 1.51–2.17 fold increase in mean PC20 at 8-
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months post-randomization that persisted over four years of observation: p = 0.01–0.005) [63]. To date, no 

study on IPO13 genetic variants are available in INS patients, therefore investigation in this population is 

required. 

 

2. The pro- and anti-inflammatory mediators in the downstream signaling pathway of the GC–GR 

complex 

INS was proposed as a T cell dysfunction disorder [64], although mechanisms by which T cells affect 

the course of the disease are still unclear. Cytokines are released from activated T cells and play a crucial 

role in the pathogenesis of INS [65] [66]; imbalances in T cells phenotypes, response and cytokines have 

been found between steroid sensitive and resistant INS patients [67] as well as between those who relapse 

and those in remission [68] [64].  

Endogenous GCs are involved in the balance of pro- and anti-inflammatory mediators: a complex 

circular interplay between GCs and cytokines takes place, with GCs downregulating pro-inflammatory 

cytokines and cytokines limiting GC action [69] [70-72].  

Basal cytokine expression levels are fine-tuned by genetic profile. Polymorphisms in the cytokine 

genes involved in the pathogenesis of INS (among which IL1, IL12, tumor necrosis factor (TNFA), 

macrophage migration inhibitory factor (MIF), IL4, IL6 and IL10) and in glucocorticoid-induced transcript 1 

gene (GLCCI1) might in part be responsible of inter-individual variations in therapy.  

 

 

Pro-inflammatory mediators 

IL-1: IL-1 family is a group of 11 cytokines among which IL-1α and IL-1β are the most studied. In 

glomeruli affected by several forms of INS, podocytes are capable of producing IL-1α/β [73]; however, the 

role of IL-1 in the immunopathogenesis of INS is still controversial. Saxena et al. found that, in supernatants 

of phytohaemagglutinin activated lymphocyte cultures obtained from patients with minimal change 

nephrotic syndrome, IL-1 levels were increased when compared to controls [74], while other studies did 

not confirm such finding. Chen and co-workers showed an overexpression of IL-1 at the protein and mRNA 

level in glomerular mesangial cells of patients affected by IgM mesangial nephropathy but not in those with 

minimal change nephrotic syndrome [75], and Suranyi et al. could not find differences between INS 

patients and controls in IL-1β levels measured in plasma, urine and culture supernatant of mitogen-

stimulated PBMCs [76]. 

Several polymorphisms in IL1 genes have been described [77] and associated with altered levels of 

the cytokine level [78]: T-31C (rs1143627) SNP results in the loss of the first T in TATA box and has been 

observed to cause a paradoxical increase in IL-1β in the presence of steroids in PBMCs under acute 
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inflammation [79]. The C-511T SNP (rs16944) has been correlated to loss of the binding site for the 

transcription factor AP-2. Carriers of the haplotype composed of IL-1β -31C allele and -511T allele have 

showed a 2-3 fold increase in LPS-induced IL-1β secretion measured by an ex-vivo blood stimulation assay, 

the association was observed in two independent population (p = 0.0084 and p = 0.0017) [80, 81]; these 

SNPs might therefore be of relevance in the modulation of GC response. So far, no data are available for 

INS and studies that investigate this association should be carried out. 

 

IL-12: IL-12 has also been implicated in the pathogenesis of INS; this cytokine is produced by antigen 

presenting cells and regulates the growth and development of natural killer (NK) and T cells; in addition, it 

is the major inducer of interferon (IFN)-  [82].  

IL-12 serum levels have been investigated in different cohorts of patients: Lin and Chien [83] studied 

20 INS patients and found a significant increase of the cytokine in relapsed patients as compared to 

patients in remission and to normal controls. The amount of IL-12 was also increased during the active 

phase of the disease as compared to the remission and was reported to upregulate the production of 

vascular permeability factor, a clinical index of INS [84, 85]. On the contrary, Stefanovic et al. did not find 

difference in terms of IL-12 production between concanavalin A-stimulated PBMCs of 20 children with 

steroid sensitive INS and 17 healthy control subjects [86].  

Genetic variations in IL12 gene have been investigated: a complex bi-allelic polymorphism in the 

promoter region of the gene, coding for the p40 subunit (IL12B) has been described (IL-12Bpro, CTCTAA/GC 

polymorphisms; rs17860508). IL-12Bpro allele 1 has been related to a reduced IL-12 secretion in dendritic 

cells [8, 87]. Surprisingly, this allele had a high frequency in 45 steroid dependent INS children (46.7%) 

compared to 34 non dependent (17.6 %; p = 0.016) [8].  

 

TNF: TNF is a potent pro-inflammatory protein released by monocytes upon stimulation, being 

almost undetectable in resting conditions [88]. The TNFA gene is located on chromosome 6p21.3, in the 

class III region of the major histocompatibility complex within the human leukocyte antigen [89, 90], which 

contains many genes involved in inflammatory and immune responses [91]. An increase in TNFA gene 

expression, higher serum TNF levels and TNF production by monocytes has been demonstrated in INS 

patients with active disease, in comparison with patients in remission and controls [92]. TNF was the only 

cytokine found to be increased in plasma and urine in INS patients affected by segmental 

glomerulosclerosis and membranous nephropathy, but not in those with minimal change nephropathy [76]. 

Among TNFA polymorphisms, the G-308A (rs1800629) is one of the best documented [93]. This SNP 

lies in a binding site for the transcription factor AP-1 and the A allele has been shown to have higher 

transcriptional activity than the G allele, increasing TNF production in vitro [94]. Conflicting results have 

been reported for this polymorphism in patients with INS. A study by Kim and colleagues, on 152 patients 
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with childhood INS and 292 healthy adult controls, investigated the association between cytokine 

polymorphisms, among which TNFA G-308A, and disease susceptibility, and did not find significant 

differences in allele frequencies between the two populations [95]. This study is in contrast with other 

results that found a significant association, both at genotypic and allelic level, with susceptibility and with 

steroid resistance. Indeed, on comparing 115 GC sensitive and 35 GC resistant patients, the AA genotype 

was suggested as a causative factor of non responsiveness to steroid therapy among INS children 

(responsive vs non-responsive patients: at genotypic level OR = 14.71, 95% CI = 1.59-136.46, p = 0.0121; 

and at allelic level OR = 2.251, 95% CI = 1.09-4.66, p = 0.0433) [96, 97].  

 

MIF: MIF is also a pro-inflammatory cytokine with a pathogenic role in kidney diseases [98]. MIF is 

produced by several cell types, particularly T cells but also monocytes, macrophages, glomerular epithelial 

cells, tubular epithelial cells and vascular endothelial cells. Due to its regulatory properties on innate and 

adaptive immune responses, MIF is considered a critical mediator in various immune and inflammatory 

diseases [99-102]: its expression has been found to be increased in all forms of glomerulonephritis although 

not in minimal change nephrotic syndrome [98]. 

MIF has the ability to override the inhibitory effects of GCs on the immune system: when present at 

low levels, GCs up-regulate MIF, while at higher GC concentrations, a counter-regulatory mechanism is 

observed and GCs down-regulate this cytokine expression [103, 104]. The MIF gene is located on 

chromosome 22q11, and recently a G-173C (rs755622) polymorphism, that involves a G to C substitution at 

base pair 173 of the 50-flanking region, was found to be strongly associated with higher MIF expression in 

vitro [101]. Berdeli et al. [105] and Vivarelli et al. [106] have investigated this polymorphism in Turkish and 

Italian children with INS (214 and 257 respectively) and found that the frequency of the C allele was higher 

in patients than in controls (19 vs 8%, OR=2.5, 95 CI% 1.4–4.2, p = 0.0007 [105] and 32 vs 22% OR=1.67, 

95% CI 1.16–2.41; p = 0.006 [106]); in addition, the polymorphism was significantly more frequent in steroid 

resistant patients than in sensitive ones (33 vs 12% OR=3.6, 95 CI% 2.2–6.0, p < 0.0001 [105] and 44 vs 23% 

OR 2.61, 95% CI 1.52–4.47; p = 0.0005 [106]). Interestingly Choi et al. [107], investigating the same SNP in 

170 Korean children with INS could not find any association between the G-173C polymorphism and clinical 

parameters, renal histological findings and steroid responsiveness.  

Moreover, in a recent study, Swierczewska et al. [108] investigated the role of seven other 

polymorphic variants of the MIF gene: two polymorphisms, rs2070767 (C>T) and rs2000466 (T>G), were 

found to have a significantly different distribution between 30 resistant and 41 sensitive INS patients 

(rs2070767, CT vs CC, OR=3.00, 95 CI% 1.043-8.627, p=0.047; rs2000466, TG+GG vs TT, OR=0.321, 95 CI% 

0.119-0.869, p=0.028); however, when linkage disequilibrium analysis was performed, the significance was 

lost.  
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Finally, a recent meta-analysis of Tong and colleagues [109], considering all the articles cited before, 

confirmed that MIF G-173C polymorphism may increase the risk of renal disease and may be associated 

with GCs resistance in INS, especially in children. The pooled results, considering eight case–control studies 

and 2755 participants, indicated a significant association between MIF −173G/C polymorphism and renal 

disease risk (CC+CG vs GG, OR = 1.77, P < 0.01; C vs G, OR = 3.94, P < 0.01). 

 

Anti-inflammatory mediators 

IL-4: IL-4 is a potent anti-inflammatory [110] and a key cytokine involved in the development of 

allergic diseases, being required, together with other cytokines, for the class switching of B cells to 

immunoglobulin E (IgE) production [111]. INS is frequently associated with allergic symptoms and elevated 

serum IgE levels [112]. Increased serum IL-4 levels have been observed in patients with INS [113] and in 

particular in steroid sensitive patients in active stage compared with those in remission (p=0.033) and with 

healthy controls, (p=0.011) [68]; similar results were obtained by Prizna et al. in INS patients with active 

stage in comparison with patients in remission on steroids (p < 0.0001), in remission off steroids (p < 

0.0001) and controls (p < 0.0001) [114]. 

Genetic variants in IL4 may be associated with predisposition to INS, and to the clinical course of the 

disease [115-117]. A C>T exchange at position 590 upstream from the open reading frame of the IL4 gene 

(rs2243250) has been shown to be associated with elevated levels of IgE [118]. Tripathi et al. [97] 

demonstrated that this polymorphism influences the prognosis of the disease: indeed, the TT genotype was 

more frequent in 35 children with steroid resistant INS as compared to 115 steroid sensitive (OR = 7.29, 

95% CI = 1.26-41.69, p = 0.0386). This observation was subsequently confirmed by Jafar et al. in a cohort of 

150 INS children (OR = 6.46, 95 CI% 1.11–37.66, p = 0.020) [96]. 

IL-4 signaling is mediated by the interaction of the cytokine with its receptor, mainly expressed in 

hematopoietic cells. The distribution of the IL-4 receptor  chain genetic polymorphism Ile50Val 

(rs1805010) was studied in 85 Japanese INS patients grouped according to the number of relapses: the 

mutated genotype was significantly less frequent in patients who experienced four or more relapses (3.3%) 

compared to those who experienced three or less recurrences (29.8%, p = 0.007) [119]. However, these 

data were not confirmed by Tenbrock et al. [120] who could not find an association between patient 

genotypes and INS clinical courses (measured as frequent relapses (29 children) and steroid dependence 

(35) or resistance (11)). 

 

IL-6: IL-6, a multifunctional cytokine that plays a central role in host defenses [121], and has both 

pro- and anti-inflammatory effects. In INS, plasma levels of this cytokine were associated to disease 

susceptibility, being increased in patients compared to controls [122], and to treatment responsiveness, 

being enhanced in steroid resistant patients compared to steroid sensitive and controls (p < 0.05) [123]. 
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The IL-6 gene, located on chromosome 7p21-24, presents different polymorphisms. Among these, 

the common G>C SNP at position -174 in the promoter region, influences the transcriptional regulation and 

the cytokine plasma levels in different renal diseases [124, 125]. Tripathi et al. [97] found that the GG 

genotype was more frequent in 35 INS steroid resistant children (11.4%), as compared with 115 steroid 

sensitive patients (0.9%; OR = 14.71, 95% CI = 1.59-136.46, p = 0.0121). These results have been confirmed 

by Jafar et al. [96] (OR = 31.40, 95% CI = 3.62–272.3, p < 0.001) suggesting that this polymorphism could be 

a causative factor for non-responsiveness toward steroid therapy among INS children. 

 

IL-10: IL-10, known as human cytokine synthesis inhibitory factor, is produced primarily by 

monocytes and to a lesser extent by lymphocytes. IL-10 has pleiotropic effects in immunoregulation and 

inflammation [126] [127]; it inhibits the production of inflammatory mediators, and can be considered as a 

natural immunosuppressant of TNF [128].  

GCs upregulate the expression of IL-10 [69], that in turn acts synergistically with GCs, as 

demonstrated in whole-blood cell cultures where the presence of IL-10 improved the ability of 

dexamethasone to reduce IL-6 secretion. In addition, the cytokine increased the concentration of 

dexamethasone-binding sites in these cells, with no effect on the binding affinity [126].  

IL-10 expression was significantly reduced in T regulatory cells from adult INS patients (10.3 ± 3.4 

pg/ml) compared to healthy donors (19.3 ± 5.9 pg/ml; p < 0.01) [129]; similar results were obtain by Araya 

and colleagues; p<0.0191) [130], while no significant difference was found between IL-10 serum levels of 

INS pediatric patients in nephrotic phase (heavy proteinuria) and in remission [111]. 

The human IL10 gene is located on chromosome 1q31–q32. Previous studies have demonstrated that 

an A>G polymorphism at nucleotide position –1082 in the promoter region (rs1800896) influences the IL-10 

transcriptional levels. The mutated genotype has been associated with significantly higher cytokine plasma 

levels in acute lymphoblastic leukemia patients [131], as well as with a positive prednisone response in 

childhood acute lymphoblastic leukemia [33, 131] and in patients with rheumatoid arthritis [132]. 

To authors’ knowledge, association of IL10 polymorphisms and the response to steroid therapy in INS 

has never been investigated; in a pharmacogenetic study on rs1800896, the GA/GG genotypes have been 

associated, in 191 patients, with the progression of the disease in both IgA nephropathy and focal 

segmental glomerulosclerosis (the GA/AA genotypes was over-represented in fast progressors: OR = 1.25, 

95% CI 1.07–1.47, p = 0.012) [133]. 

 

GLCCI1: GLCCI1 was initially identified as a transcript rapidly up-regulated in response to GC 

treatment in cells derived from a thymoma [134]. In the kidney, it is expressed specifically in mesangial cells 

and podocytes and knockdown of the transcript impairs the glomerular filtration barrier in developing 

zebrafish [135]. Recently in a genome-wide association study, which examined the response to inhaled GCs 
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in 1041 asthmatic patients, two SNPs (rs37972 and rs37973) in complete linkage disequilibrium in the 

promoter region of GLCCI1 have been associated with a poorer response to steroid treatment (OR = 1.52, 

95% CI = 1.13 - 2.03) [136].  

Cheong and colleagues [137] genotyped 211 pediatric patients with INS and 102 controls for the 

rs37972 and rs37973, and did not found any statistically significant associations between the SNPs analyzed 

and either the development of INS, or initial response to steroid therapy.  

 

 
Table 2: Summary of studies reporting genetic analysis of pro- and anti-inflammatory mediators in the 

downstream signaling pathway of the GC-GR complex in INS patients.
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3. P-glycoprotein (P-gp) and drug metabolizing enzyme CYP3A5 

P-glycoprotein 

P-gp is a 170-kDa ATP dependent membrane transporter, an efflux pump responsible for resistance 

to a number of structurally and functionally unrelated drugs, including natural and synthetic GCs [138], that 

are actively exported from cells against the concentration gradient [139]. Several studies have been 

conducted to evaluate the association of P-gp expression with the responsiveness to GCs in many diseases 

among which INS: Wasilewska et al. [140] found that P-gp expression in CD3 positive lymphocytes was 

significantly higher in patients with INS than in controls (p = 0.0004). A significant difference was also 

observed between controls (1.24 ± 0.58) and both steroid dependent (7.00 ± 3.09, p = 0.0001), and the 

frequent relapsing group (5.56 ± 4.07, p = 0.0002); while the difference with the non frequent relapsing 

group was smaller (p < 0.05). Moreover a significant difference was observed between non frequent 

relapsing (3.02 ± 3.46) and both steroid dependent (p < 0.001) and frequent relapsing group (p < 0.001) 

[141]. P-gp mRNA expression levels in PBMCs were found to be variable in patients with INS prior to 

remission, but decreased after complete remission (p < 0.003) [142]. In another study by Stachowski et al. 

[143], mRNA expression in peripheral lymphocytes of patients with steroid, cyclophosphamide or 

cyclosporine resistant INS was higher than in lymphocytes from patients who were sensitive to these drugs 

(p < 0.001). Moreover, in a recent work, Prasad et al. [68] found that steroid therapy in INS decreased P-gp 

expression in peripheral blood lymphocytes (absolute P-gp expression at baseline 66.59 ± 21.13 vs 

remission 35.84 ± 22.26, p < 0.05) . 

P-gp is encoded by the ATP-Binding Cassette, sub-family B (ABCB1; multi drug resistant protein 1 

MDR1) gene, located on human chromosome 7q21.12 [144], and several studies have demonstrated that 

genetic polymorphisms in this gene lead to functional alterations and are associated with altered drug 

disposition [145, 146]. A synonymous SNP in exon 26 (C3435T, rs1045642) was the first variation to be 

associated with altered protein expression [145]. SNPs at exons 12 (C1236T, rs1128503), 21 (G2677T/A, 

rs2032582) and 1b (T-129C, rs3213619) may also be associated with altered transport function or 

expression [147].  

In 108 pediatric INS patients, Wasiliewska et al. [148] have studied the association between C1236T, 

G2677T/A and C3435T polymorphisms and the clinical course and treatment response. All individual 

polymorphisms were strongly associated with time to response to initial prednisone therapy (OR = 6.79, 

95% CI: 1.96-23.54, p < 0.001 for 1236 T/T, OR = 13.7, 95% CI: 2.78–67, p < 0.001 for 2677 T/T and OR = 

9.92, 95% CI: 3.01–32.71, p < 0.001 for 3435 T/T), and the frequencies of the mutated allele were higher in 

late responders (53%, 52%, 66% for the C1236T, G2677T/A and C3435T polymorphisms respectively) than 

in early responders (24%, 19%, 32%). The TTT haplotype was also significantly associated with late steroid 

response compared to early response (49% vs. 19%, p = 0.0003). 
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More recently, Choi et al. [107] have investigated the same polymorphisms (C1236T, G2677T/A and 

C3435T) in 170 Korean children with INS, finding that the frequencies of the TGC haplotype was 

significantly lower in the initial steroid responders (115 children) than in non-responders (35) (15.8 vs 

29.0%; OR 0.46, 95% CI 0.27–0.78, p = 0.004). Jafar at al. [149], in 216 patients with INS and 216 controls, 

found that the homozygous mutations of G2677T/A SNP was associated with steroid resistance (18% 

steroid resistant vs 6% steroid responsive OR = 3.39, 95% CI 1.29–8.93, p = 0.011) and that the combination 

of mutated genotype of SNP G2677T/A and C3435T synergistically increased the risk of developing steroid 

resistance in patients with INS (5% in steroid resistant patients, 2% in steroid responsive and 1% in controls, 

p = 0.038).  

Chiou et al. [150] also investigated in 74 children with INS the same polymorphisms. They could find 

only a significant association of C1236T polymorphism with steroid resistance: the frequency of the T allele 

was significantly higher in steroid resistant patients than in sensitive ones (81 vs. 62%; OR = 2.65, 95 % CI 

1.01-6.94; p = 0.042). 

In a recent study Youssef et al. [151] evidenced that the mutated and heterozygous G2677T/A 

variants were significantly more frequent in 46 non-responders INS patients (28%) than in 92 responders 

(20%; OR = 2.9, 95% CI 0.95–9.21, p = 0.016). Finally Cizmarikova et al. [152] also found in 46 INS patients a 

significantly increased chance of therapeutic response in children carrying the 3435CT genotype (OR = 5.13, 

95% CI 1.18-22.25, p = 0.022). 

As shown in Table 1, P-gp has been largely studied in INS patients, and the results seem to be the 

most coherent among the polymorphisms studied in this disease. 
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Table 3: Summary of studies reporting genetic analysis on the role of P-gp in INS patients 

 

 

CYP3A5 

The human cytochrome P450 (CYP) family comprises a number of CYP isoforms that have important 

functions in the reductive and oxidative metabolism of many endogenous and exogenous compounds, 

among which steroids. CYP3A5*3 is an A to G transition (A6986G) within intron 3 of CYP3A5 gene that 

creates an alternative splice site in the pre-mRNA, producing an aberrant mRNA with a premature stop 

codon. CYP3A5*3 homozygotes (GG genotype) lack CYP3A5 expression, while individuals with at least one 

CYP3A5*1 wild-type allele (AA and AG genotypes) express the protein [153]. In a recent study of Chiou and 

colleagues, authors investigated polymorphic expression of CYP3A5 in 74 children with INS: the frequency 

of the G allele (A6986G SNP) was relatively higher in steroid resistant subjects than in steroid sensitive ones 

showing a trend of association, that however did not reach statistical significance (OR 2.63, 95 % CI 0.94–

7.37; p=0.059) [150] . 
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Genetic polymorphisms of CYP3A5 and ABCB1 could have a role on the pharmacokinetics of 

prednisolone; in particular, intestinal CYP3A5 and P-glycoprotein are important in the absorption, systemic 

drug distribution and cellular accumulation of glucocorticoids. However, a study of Miura et al. [154] found 

only a small effect of CYP3A5 and ABCB1 genetic polymorphism on prednisolone pharmacokinetics. 

Intracellular accumulation of GCs within lymphocytes, influenced by the expression of P-gp on these cells, is 

probably more important and could influence steroid response in INS.  

 

 

 

CONCLUSION  

GCs are used in the treatment of active INS to induce remission of proteinuria, but inter-individual 

differences in their efficacy and side effects have been reported. A main goal for clinicians is therefore to 

improve the efficacy and safety of these agents and, when possible, to reduce steroid exposure. This is 

particularly important in patients that do not respond and will suffer considerable steroid side effects 

without any clinical gain, or in patients that will be dependent to steroid treatment and will not be able to 

withdraw the drug, in whom switching to other therapy as soon as possible could be very important. 

Molecular mechanisms involved in variability in GC response are still not completely known, but advance in 

pharmacogenomics could contribute to the optimization and personalization of therapy.  

This review is about the current literature on the molecular mechanisms of GC anti-inflammatory 

action and the role of genetic polymorphisms in variable GC response in patients with INS. Results of 

reported papers are not conclusive and often in contradiction, and at present none of the potential 

pharmacogenetic markers is strong enough to be used in clinical practice.  

 

 

 

FUTURE PERSPECTIVES 

In the future, beside candidate gene approach it would be necessary to perform sequencing of all the 

genes involved in the GC mechanism of action, to obtain new comprehensive information. Recently, 

genetics have focused the attention on copy number variation (CNV) and DNA methylation analyses. CNVs 

are genomic alterations that result in the cell having an abnormal number of copies of one or more sections 

of the DNA. Some CNVs have already been associated with susceptibility to diseases or response to drug 

therapy but, until now, no data are available for GCs in relation to clinical response. In addition, DNA 

methylation of gene promoters has been associated with transcriptional inactivation: changes in DNA 

methylation can lead to differences in gene expression levels and thereby influence drug response. All 
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these approaches need to be performed in larger and well-characterized patient cohorts, uniformly treated 

and systematically evaluated, and subsequently validated in other independent cohorts. 

In conclusion, these new strategies for the identification of pharmacogenetic determinants 

associated with GC response in paediatric INS patients, and the consequent personalization of therapy 

based on this information, will result in higher quality and less toxic treatment of children, avoiding 

inadequate regimens or time wasting and reducing overall health costs.  
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Abstract 

AIM 

To evaluate the association between the in vitro sensitivity of peripheral blood mononuclear cells (PBMCs) 

to methylprednisolone (MP) and the presence of genetic polymorphisms involved in glucocorticoid (GC) 

response. 

 

METHODS 

In vitro MP inhibition of the proliferation of lymphocytes stimulated with concanavalin A was determined. 

Non linear regression of dose–response data was performed computing the MP concentration required to 

reduce proliferation to 50% (IC50). The maximum inhibition achievable at the highest MP concentration 

(Imax) was also calculated. Moreover, the Taqman technique was used to analyze the BclI polymorphism in 

the NR3C1 gene and the Leu155His polymorphism in the NALP1 gene. 

 

RESULTS 

A significant association between the BclI mutated genotype and an increased in vitro sensitivity to GCs was 

observed. 

 

CONCLUSIONS 

The a priori evaluation of the BclI polymorphism, associated with a lymphocyte proliferation assay, could 

represent a useful diagnostic tool for the optimization of steroid treatment.  
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Introduction 

Glucocorticoids (GCs) are a well-accepted therapy for inflammatory and autoimmune diseases in transplant 

patients and in the treatment of leukaemia and lymphomas [1]. However, despite their large clinical impact 

and justified use, the benefits of these agents are often narrowed by a great inter-individual variability that 

might potentially lead to treatment failure or drug induced toxicity. 

 

Polymorphisms in genes involved in the molecular effects of these hormones could be important in the 

observed differences in efficacy. In recent studies conducted in our laboratory [2, 3], among various 

polymorphisms considered, the BclI polymorphism in the GC receptor gene (NR3C1), and the Leu155His 

polymorphism in the NALP1 gene (NLRP1: NACHT, LRR and PYD domain-containing protein 1), were 

associated with GC response. The BclI polymorphism consists in a C > G substitution 646 nucleotides 

downstream from exon 2, and the mutated allele has been associated with hypersensitivity to GCs [4, 5], 

and with a better response to these hormones in paediatric patients with inflammatory bowel disease (IBD) 

[2, 3]. NALP1 belongs to a group of cytoplasmic pattern recognition receptors that stimulate innate 

immunity and promote the maturation of cytokines [6]. Jin et al. [7] have recently shown that variants in 

the NALP1 gene, in particular Leu155His, confer susceptibility to autoimmune and auto-inflammatory 

diseases, probably related to an altered cytokine activation. Moreover, paediatric patients with IBD, 

carriers of the NALP1 homozygous variant, exhibit a higher probability of non response to GC therapy [2]. 

 

In vitro tests based on the proliferation of mononuclear cells exposed to GCs have been correlated with 

clinical response in different diseases such as rheumatoid arthritis [8], systemic lupus erythematosus [9], 

bronchial asthma [10], renal transplant rejection [11] and ulcerative colitis [12]. These findings, however, 

have not always been reproduced and a bioassay that could be used to predict GC responsiveness in clinical 

practice is still lacking. To evaluate individual response to GCs, a pharmacodynamic approach using 

patients' peripheral blood mononuclear cells (PBMC), together with a pharmacogenetic approach with the 

evaluation of polymorphisms involved in the GC response, could be an efficient strategy. The final goal of 

our study was therefore to set up a simple and reproducible assay to evaluate in vitro methylprednisolone 

(MP) individual sensitivity and to correlate this with the presence of the BclI and Leu155His polymorphisms. 
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Methods 

Subjects 

An in vitro proliferation assay with MP and genetic analyses were performed on PBMCs obtained from 42 

blood donors. 

Samples were obtained between September 2010 and March 2011 from the Transfusion Center, Azienda 

Ospedaliera Universitaria, Trieste. Blood was obtained by venipuncture between 08.00 a.m. and 10.00 a.m. 

to minimize any variability due to circadian rhythms, and immediately processed. Written informed consent 

was obtained from each subject and the local ethics commission gave permission for this study. A total of 9 

ml of buffy coats was used for the isolation of PBMCs. 

Drug/molecular target nomenclature conforms to the Guide to Receptors and Channels [13]. 

 

In vitro proliferation assay 

The effect of MP on proliferation of PBMCs was determined by labelling metabolically active cells with 

[methyl-3H] thymidine (Perkin Elmer, Milan, Italy). PBMCs were collected by density gradient centrifugation 

on Ficoll Paque™ Plus (Healthcare, Milan, Italy), resuspended in complete RPMI-1640 medium containing 

concanavalin-A (5 µg ml−1) and seeded into a 96 well round bottom plate (2 × 105 cells/well) in the 

presence of MP (range from 54 µm to 0.05 nm). After 50 h of incubation, cells were pulsed with [methyl-

3H] thymidine (2.5 µCi ml−1 well−1) and the incubation was continued for an additional 22 h. The 

radioactivity of the samples was determined by a liquid scintillation analyzer (Wallac 1450 Microbeta liquid 

scintillation counter, Perkin Elmer, Milan, Italy). Raw counts per minute (counts min−1) data were 

converted and normalized to percent of maximal survival for each experimental condition (counts min−1 

MP/counts min−1 control × 100). Non linear regression of dose–response data was performed using 

GraphPad Prism version 4.00 for computing IC50, the MP concentration required to reduce proliferation to 

50%. Imax was also calculated and defined as the maximum inhibition achievable at the highest 

concentration of MP (54 µm). 

The calculated coefficient of variation was 15% and the limit of determination of this assay was calculated 

at 1 nCi ml−1 of [methyl-3H] thymidine. 

 

Genetic analysis 

Total genomic DNA was isolated from peripheral blood using a commercial kit (Gene Elute Blood Genomic 

DNA kit, Sigma Aldrich, Milan, Italy) and genetic polymorphisms were determined using TaqMan® 

genotyping technologies (Applied Biosystems, Bedford, UK) on an ABI7900 HT sequence detection system 

device. 
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Statistical analysis 

Any possible association between MP IC50 and Imax and the studied polymorphisms was investigated by the 

non-parametric Mann-Whitney and Kruskal-Wallis tests. On the basis of previous results [2, 3], BclI 

homozygous carriers were compared with a group of both heterozygous and wild type carriers. However a 

dose allele effect was also studied and results are presented in Figure S1. 

Statistical analysis was performed using the software R. 

 

 

Results and discussion 

The in vitro lymphocyte sensitivity to MP was evaluated in 42 healthy blood donors (mean age 41.8, range 

18–60 years; 16.7% female and 83.3% male) and a wide interindividual variation in IC50 and Imax was evident 

(IC50 median value 1.43 × 10−7m, range 7.43 × 10−10m–2.94 × 10−4m; Imax median value 91.5%, range 

50.0–98.0%) and comparable with that reported in the literature [14, 15]. Preliminary work conducted in 

our laboratory revealed that, within a given individual, relatively little variation, both in IC50 and Imax, was 

observed. MP was employed in this in vitro study as it is one of the steroids of choice in chronic diseases. 

 

Among the possible causes of a variable response to GCs, genetic polymorphisms can be important. Two 

variants in genes coding for proteins involved in the pharmacodynamics of these agents, the BclI 

polymorphism in the NR3C1 gene, and a polymorphism in the NALP1 gene, have been shown to be 

particularly relevant in previous studies from our laboratory [2, 3]. Therefore, the presence of these 

polymorphisms was evaluated in this study. The genotype distribution was in Hardy-Weinberg equilibrium 

(BclI P = 0.64, Leu155His P = 0.71) and is presented in Table 1. 

 

 

Table 1: Frequencies of genotype polymorphisms involved in GC action and Hardy-Weinberg (HW) equilibrium 

 

An increased GC in vitro sensitivity was observed in lymphocytes with the mutated BclI genotype. Indeed 

this genotype was associated with a lower MP IC50 (median 2.39 × 10−9M, range 7.43 × 10−10M–1.46 × 

10−7M) compared with non mutated carriers (wild-type and heterozygous; median 2.76 × 10−7M, range 2.03 

× 10−9M–2.94 × 10−4M, P = 0.0058 Mann-Whitney test; Figure 1 and Figure S1). Selected inhibition curves 

are presented in Figure S2. The mutated BclI genotype was also associated with significantly higher Imax 

values than non mutated (mutated: median 95%, range 95–98%; wild-type and heterozygous: median 90%, 
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range 50–98%, P = 0.0078 Mann Whitney test; Figure 1 and Figure S1), revealing the presence of a 

subgroup of unresponsive cells in non mutated patients. The present data confirm that the BclI 

polymorphism in the NR3C1 gene, already associated with a better GC response in pediatric patients with 

IBD [2, 3], is an important marker of increased sensitivity to GCs. 

 

 

Figure 1: A) IC50 of non mutated genotype (wild type: WT and heterozygous: HET) compared with mutated genotype for BclI 
genotype in the NR3C1 gene (P = 0.0058) and for Leu155His in the NALP1 gene (P = 0.5544, Mann-Whitney test). Close circles 

indicate males and open circles indicate females. B) Imax of non mutated genotype (wild type: WT and heterozygous: HET) compared 
with mutated genotype for BclI genotype in the NR3C1 gene (P = 0.0078) and for Leu155His in the NALP1 gene (P = 0.56, Mann-

Whitney test). Close circles indicate males and open circles indicate females 

 

No association was observed in our study between the Leu155His polymorphism in the NALP1 gene with 

MP IC50 and Imax (IC50 mutated: median 3.78 × 10−7M, range 7.60 × 10−10M–2.93 × 10−4M; wild-type and 

heterozygous: median 1.25 × 10−7M, range 7.43 × 10−10M–2.94 × 10−5M, P = 0.5544; Imax mutated: median 

89.5%, range 50–98%; wild-type and heterozygous: median 92.5%, range 50–98%, P = 0.56 Mann Whitney 

test; Figure 1 and Figure S1). We can hypothesize that, due to the role of NALP1 in the activation of 

cytokines, genetic polymorphisms of this gene become relevant only in inflammatory conditions such as 

IBD. Our study was, on the contrary, performed on lymphocytes obtained from healthy subjects, and this 

could explain this somewhat unexpected result. 

 

Literature data [12, 14] indicate that measurement of in vitro PBMC steroid sensitivity is a predictor of 

response to treatment in inflammatory chronic diseases. Our results, on lymphocytes obtained from 

healthy donors, suggest that the evaluation of the BclI polymorphism, associated with a lymphocyte 

proliferation assay could represent a small step in the identification of subjects with a reduced probability 
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of response to GCs. The in vitro prediction of GC response before the start of treatment would have 

important clinical implications, allowing to adjust therapy a priori, avoiding the use of these agents in 

patients who would probably not respond and reducing dosages in those who are hypersensitive, and 

hence at risk of toxicity. A limitation of this study is that only 42 healthy subjects were enrolled, a low 

number for an association study with polymorphisms. Therefore further studies are needed to confirm 

these results in a larger number of subjects and also in patients affected by chronic diseases. 
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Supplementary material 

Figure S1 
 

 
A) IC50 of wild type (WT) genotype comparedwith heterozygous (HET) and mutated genotype for BclI genotype in the NR3C1 gene 

(P = 0.018) and forLeu155His in the NALP1 gene (P = 0.75, Kruskal-Wallistest). B) Imax of wild type (WT) genotype compared 
withheterozygous (HET) and mutated genotype for BclI genotype inthe NR3C1 gene (P = 0.02) and for Leu155His in theNALP1 gene 

(P = 0.77, Kruskal-Wallis test) 
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Figure S2 
 

 
Selected inhibition curves in a steroid sensitive (BclImutated) (top) and a steroid resistant patient (BclI wildtype) (bottom). Points 

represent the mean values of triplicate dataand vertical bars represent standard errors 
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Abstract 

The aim of this study was to evaluate the in vitro steroid sensitivity as predictor of clinical response to 

glucocorticoids in childhood idiopathic nephrotic syndrome (INS). Seventy-four patients (median age 4.33, 

IQR 2.82-7.23; 63.5% male) were enrolled in a prospective multicenter study: in vitro steroid inhibition of 

patients’ peripheral blood mononuclear cell proliferation was evaluated by [methyl-3H] thymidine 

incorporation assay at disease onset (T0) and after 4 weeks (T4) of treatment. Steroid dependence was 

associated with increased in vitro sensitivity at T4 assessed both as maximum inhibition at the highest drug 

concentration (Imax; OR=1.13, 95%CI=1.02-1.31; p-value=0.017) and drug concentration inducing 50% of 

inhibition (IC50; OR=0.48, 95%CI=0.24–0.85; p-value=0.0094). Imax < 92% at T4 was a good predictor for 

optimal clinical response. These results suggest that this test may be useful for predicting the response to 

glucocorticoid therapy in pediatric INS. 
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Introduction 

Idiopathic nephrotic syndrome (INS) is a rare childhood kidney disease (2-7 cases per year per 100.000 age 

related population) (1-3). Steroids represent the best first-line therapeutic option, inducing remission in 

90% of patients (steroid sensitive – SS) (1, 4, 5). Within those patients, after an initial response to 

prednisone, almost 40-50% show frequent relapses or become steroid dependent (FR-SD), while the rest of 

the patients will never relapse or will show infrequent relapses (NR-IR), presenting an optimal response to 

steroid treatment. Moreover 10% of patients will never respond and are therefore steroid resistant (SR). 

Steroid responsiveness is of major prognostic importance: patients with steroid dependence and resistance 

are at risk of more aggressive treatment and disease related complications (6, 7). Many efforts have been 

made to predict steroid response in children with INS, however, to date, no definite prognostic factor has 

been defined (1, 8-12). 

Peripheral blood mononuclear cells (PBMCs), in particular T lymphocytes, are involved in the 

immunosuppressive effects of steroids and their in vitro sensitivity may reflect that of other tissues. 

Steroid-mediated inhibition of mitogen-stimulated PBMCs has been associated with clinical response in 

different diseases such as rheumatoid arthritis (13), systemic lupus erythematosus (14), bronchial asthma 

(15), renal transplant rejection (16) and ulcerative colitis (17). For this reason, a pharmacodynamic 

approach using patients' PBMCs was set up, with the aim of investigating whether steroid sensitivity in vitro 

was associated with clinical response to steroid therapy in a well characterized cohort of pediatric patients 

with INS at onset. 

 

Results 

Patients 

Between August 2011 and February 2014, 184 children were recruited by the pediatric departments 

participating in the trial. One hundred fourteen patients were excluded from the study for different 

reasons: non-adherence to the therapeutic protocol, the parents did not give written informed consent, 

onset of the disease occurred at weekends or holidays when it was not possible to send blood samples to 

the collecting center in Trieste, insufficient number of PBMCs obtained and cells not viable at arrival. 

Therefore, 74 patients (median age 4.33, IQR 2.82-7.23; 63.5% male) were enrolled in the 

pharmacodynamic study; blood was available for 68 patients at T0 (11 steroid resistant (SR), 26 frequent 

relapse-steroid dependent (FR-SD) and 31 no relapse-infrequent relapse (NR-IR)) and for 54 at T4 (9 SR, 18 

FR-SD and 27 NR-IR); for 48 patients (8 SR, 18 FR-SD and 22 NR-IR) the in vitro test was conducted at both 

time points (for definition of clinical classification see Table 1).  
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REMISSION Urine protein <4 mg/m2/h or nil/trace for 3 consecutive early morning specimens. 

TIME TO REMISSION Time elapsed from treatment initiation and the first day of remission. 

RELAPSES Urine protein >40 mg/m2/h or 3+ or 4+ for 3 consecutive early morning specimens, having previously been in remission. 

FREQUENT RELAPSES Two or more relapses within 6 months of initial response or four or more relapses in any 12 month period. 

STEROID DEPENDENCE Two consecutive relapses during corticosteroid therapy or within 14 days of its discontinuation. 

STEROID RESISTANCE Absence of remission despite therapy with daily prednisolone at a dose of 60 mg/m2/day per day for 4/6 weeks.  

Table 1: Definition of clinical response used in the text. 

 

In vitro sensitivity and clinical response to steroids 

The in vitro lymphocyte sensitivity to methyl-prednisolone was evaluated and a wide interindividual 

variation in IC50 and Imax was evident at both T0 (IC50 median value 18.3 nM, IQR 4.5-79.7 nM; Imax median 

value 95.5%, IQR 87.0-98.2%) and T4 (IC50 median value 12.4 nM, IQR 1.4-205.2 nM; Imax median value 95%, 

IQR 88.5-98.7%). 

No correlation was found between IC50 or Imax values and time to remission or gender. On the contrary, a 

significant correlation was evident between in vitro sensitivity to steroids and age at onset, with older 

patients showing higher in vitro resistance at T0 for methyl-prednisolone Imax (p-value Spearman = 0.043, r 

= -0.25; Figure 1); univariate logistic regression analysis, considering SS patients in comparison with SR 

subjects, showed that older patients at T0 were more resistant to steroid treatment (OR = 0.81, 95% CI = 

0.67 - 0.98; p-value = 0.028; Figure 2). 

 
Figure 1. Scatter plot displaying drug sensitivity (Imax) at Time 0 (T0) and age at the onset of the disease. In vitro response and age at 
the onset of disease are plotted in Log10 scale. The correlation between continuous variables was assessed using Spearman tests. A 

significant correlation was found for Imax (p-value Spearman = 0.043, r = -0.25) data obtained at T0. 
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Figure 2: Box plot comparing age at disease onset and clinical response. Age at onset of disease is plotted in Log10 scale. Statistical 
significance was assessed by carrying out logistic regression analysis. A significant association was found (p-value = 0.028). 

 

 

In vitro sensitivity, at T0 and T4, and clinical response to steroids  

Univariate multinomial logistic regression showed a significant association between clinical and in vitro 

response at T4 comparing all groups (p-value Imax = 0.031; IC50 = 0.015; Figure 3). 

 

Figure 3: Box plot comparing in vitro and clinical response at T4 between the three groups of patients. In vitro response is plotted in 
Log10 scale. The bold horizontal line represents the distribution mean. Statistical significance was assessed by carrying out logistic 

regression analysis. A significant association was found for log-transformed Imax (p-value = 0.031) and for log-transformed IC50 
values (p-value = 0.015) 

 

The most significant result was found at T4 comparing FR-SD patients vs NR-IR: FR-SD showed higher log-

transformed Imax values (OR = 1.13, 95% CI = 1.02 - 1.31; p-value = 0.017; Figure 4). A similar pattern was 

evident for in vitro sensitivity represented as log-transformed IC50 (OR = 0.48, 95% CI = 0.24 – 0.85; p-value 

= 0.0094; Figure 4). ROC curves were constructed to assign optimal cut-off values for in vitro parameters 
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significantly associated with clinical response. Only for Imax at T4 a unique optimal cut-off of 92.0% could be 

defined. Area under the ROC curves was 65.4% (Supplementary Figure). The test had a high sensitivity of 

88.9% and a relatively low specificity of 44%. Logistic regression confirmed a higher proportion of FR-SD 

patients among those who reached the optimal cut-off point for Imax (OR = 6.4, 95% CI = 1.44 – 45.7; p-value 

< 0.013) in comparison with those who did not. 

 

 

Figure 4: Box plot comparing in vitro and clinical response at T4 between the NR-IR group and the SD-FR group of patients. In vitro 
response is plotted in Log10 scale. The bold horizontal line represents the distribution mean. Statistical significance was assessed by 

carrying out logistic regression analysis.  A significant association was found for log-transformed Imax values comparing SD-FR 
patients and NR-IR patients (p-value = 0.017) and for log-transformed IC50 values (p-value = 0.0094) 

 

Moreover, at T0, a trend was observed considering resistant patients and all the other subjects (SS: NR-IR 

and FR-SD): lower log-transformed Imax values at T0 were significantly associated with clinical steroid 

resistance (OR = 1.07, 95% CI = 1.00 - 1.15; p-value logistic regression = 0.046; Figure 5). 
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Figure 5: Box plot comparing in vitro and clinical response between steroid sensitive (SS) versus steroid resistant (SR) patients. In 
vitro response is plotted in Log10 scale. The bold horizontal line represents the distribution median. Statistical significance was 

assessed by carrying out logistic regression analysis. A correlation was found for log-transformed Imax values comparing SR vs SS (p-
value = 0.046). 

 

 

Discussion 

This study was designed to investigate the possible association between in vitro response to 

methyl-prednisolone in PBMCs of pediatric patients with INS and their clinical response to steroids. The 

study was conducted prospectively, in a well characterized cohort of Italian pediatric patients treated with 

a shared therapeutic protocol, allowing for the evaluation of a large group of subjects, despite the relative 

rarity of the disease. 

While INS is a rare disease, it is the most common primary glomerular disease affecting children. 

Steroids remain the mainstay in the management of INS, with about 80-90% of subjects achieving 

remission, however, variable degrees of steroid responsiveness and different patterns of disease relapse 

have been observed (19). Response to steroid treatment is an important indicator of outcome. It is well 

known that patients with steroid resistant disease represent a difficult therapeutic challenge for clinicians; 

however, to date, approximately 40-50% of SS patients relapse when therapy is discontinued, resulting in a 

steroid dependent course of the disease; these patients are at high risk of severe treatment related 

complications (6, 7) and there is still no means to predict this drug dependence. Many efforts have been 

made to evaluate steroid response in INS children, but providing a clear-cut set of risk indicators has proved 

to be impossible and studies focusing on the prognostic value of demographic and clinical features have 

yielded conflicting results. Among the prognostic indicators of clinical outcome, age at onset of the disease 

has been proposed; steroid resistance is seen more often in adolescents (20-23), whereas young age at 

diagnosis (1-6 years of age) has been associated with better steroid response (8, 9). In line with these 

studies, similar results were obtained in our cohort of patients. We did not find any association between 
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gender or clinical course of the disease, in terms of risk of relapses or steroid dependence, as reported by 

others (9, 24). 

Immune mechanisms, rather than primary structural defects of the filtration barrier, play a 

prominent role in INS; mononuclear cells, in particular T lymphocytes, are involved in the 

immunosuppressive effects of steroids and several studies have demonstrated alterations in T lymphocytes 

in steroid resistant INS (25, 26). The density and binding affinity of steroids in mononuclear cells have been 

evaluated in various studies. A significant inverse correlation between the percentage of T lymphocytes 

expressing steroid receptors and the time interval from the start of steroid therapy to complete remission 

was demonstrated in 60 children with INS (27). Similar results were recently obtained by Zahran et al. (28) 

who found that the expression of steroid receptors in T lymphocytes was significantly higher in early steroid 

responders than in late responders. A decreased expression of steroid receptors in lymphocytes and 

monocytes of peripheral blood, obtained before therapy initiation and evaluated by flow cytometry was 

also observed in 51 children with steroid resistant disease (29). To our knowledge, no data on the 

expression of steroid receptors in steroid dependent patients with INS have been published. 

Literature data (17, 30) show that in vitro PBMC sensitivity to dexamethasone could be considered 

a predictor of response to treatment in various diseases such as rheumatoid arthritis (13), systemic lupus 

erythematosus (14), bronchial asthma (15), renal transplant rejection (16), inflammatory bowel disease (17) 

and depression (31). Carlotti et al. also used this assay in INS patients, however, due to the small number of 

patients enrolled, no definitive data were obtained (32). 

In this study, methyl-prednisolone was used instead of dexamethasone because prednisone, a prednisolone 

prodrug, is currently used in INS. Previous studies conducted in our laboratory have shown that the 

lymphocyte suppression test can be safely performed with methyl-prednisolone and that this agent gives 

more consistent results than prednisolone (18); moreover literature data showed that this test had a low 

inter- and intra-assay variation (30) allowing us to consider this assay useful for the study and prospectively 

for routine application in the clinical setting. In the context of a standardized study protocol, all patients 

were evaluated at diagnosis, before starting treatment and after 4 weeks of prednisone therapy. A 

considerable interindividual variability for in vitro steroid sensitivity was evident in our population; this is 

not surprising, given that it has already been reported in various diseases and in normal subjects (33). 

We demonstrate an increased in vitro response to steroid treatment in FR-SD patients after 4 

weeks of therapy, both in terms of Imax and IC50. At T4 SR patients were not further considered in our 

analysis since those patients with lack of therapy response will switch to other drug therapy. For Imax a 

unique cut-off value of 92% was identified in this population; the high sensitivity of the test (88.9%) 

indicates that there is a very low incidence of false negatives and almost all the FR-SD patients (16/18) 
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could be identified. Unfortunately, specificity was 44%, therefore a high proportion of not FR-SD patients 

would be included (12/27). Almost all patients (15/17) with an Imax lower than 92% are NR-IR; moreover 

16/28 of patients with an Imax higher than 92% are FR-SD: in those patients a longer steroid withdrawal 

could be hypothesized in order to reduce the number of relapses. This would however results in a longer 

therapy also in a percentage of NR-IR patients. The increased in vitro response at T4 observed in SD-FR 

patients was quite unexpected; a correlation between relapses and hypothalamic–pituitary–adrenal (HPA) 

axis suppression has been already demonstrated (34, 35). Relapses in INS are often triggered by infection 

(36). Viral infections induce the release of cytokines, in particular interleukin (IL)2, 4 and 13 (37), that are in 

part responsible for proteinuria. In patients who are extremely sensitive to these agents, and hence have 

an increased HPA suppression, the reduced endogenous steroid production when steroid therapy is 

discontinued could not be enough to reduce cytokine release; this would result in INS relapse and steroid 

dependency.  

A correlation between Imax and the risk of steroid dependence or frequent relapses was not found 

at T0, but the data we collected underline an increase in in vitro sensitivity in SD-FR patients after four 

weeks of treatment, which was not present in the other groups. The molecular mechanisms responsible for 

this effect are not clear and further studies are needed.  

A further outcome of this study was the lower in vitro sensitivity of SR patients, evaluated as Imax at disease 

onset: this information needs to be confirmed in a larger group of patients as it could be useful for the early 

identification of patients who will not respond to steroids, thus avoiding the initiation of ineffective 

treatment, as previously demonstrated in other diseases (13-17). However, due to the small number of SR 

patients, a significant cut off value for the in vitro sensitivity test was not found.  

 

In conclusion the results of this study suggest that the in vitro steroid susceptibility test could be used, after 

four weeks of treatment, to clinically identify patients at increased risk of steroid dependence. These 

children could therefore benefit from slower steroid tapering or treatment with other immunosuppressive 

drugs. In addition, if confirmed in a larger group of patients, this test could be useful for identifying those 

patients who are already resistant at diagnosis, and could thus be considered for alternative treatments, 

avoiding steroid administration and the relative side effects. Results of this in vitro test could be obtained 

within 72 hours and would facilitate rapid decisions regarding alternative treatment regimes. 
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Methods 

The pharmacodynamics of steroids was studied in a cohort of patients with INS at onset, recruited for a 

prospective multicenter Italian trial on the treatment of INS (ClinicalTrials.gov Id.: NCT01386957). In brief, 

children with a first episode of INS, presenting at 49 Pediatric and Pediatric Nephrology Units in 10 Italian 

regions, were treated with prednisone at a dose of 60 mg/m2/day for either 4 or 6 weeks, depending on 

whether time to remission was < or ≥ 10 days. Steroids were then tapered over a 16 weeks period. Total 

prednisone dosage was 2828 mg/m2 in subjects achieving remission within ten days, 3668 mg/m2 in the 

others. Patients were classified into 2 groups: steroid resistant (SR) and steroid sensitive (SS). SS subjects 

were further stratified into frequent relapse-steroid dependent subjects (FR-SD) and no relapse-infrequent 

relapse subjects (NR-IR), as defined in Table 1. 

All the recruited children were admitted to hospital. The parents of all the participating children gave 

written informed consent before the study began. Ethics committee approval was obtained from all the 

participating centers. 

Peripheral blood, anticoagulated with EDTA (8 ml), was collected before starting therapy (T0) and after 4 

weeks of prednisone treatment (T4). Blood samples were sent at temperature of 4°C to the collecting 

center at the University of Trieste and processed within 24 hours from collection.  

 

In vitro proliferation assay 

The effect of methyl-prednisolone on the proliferation of PBMCs was determined by labeling metabolically 

active cells with [methyl-3H] thymidine (PerkinElmer, Milan, Italy) as previously reported (18). PBMCs were 

collected by density gradient centrifugation on Ficoll PaqueTM Plus (Healthcare, Milan, Italy), resuspended 

in complete RPMI-1640 medium containing Concanavalin-A (5 μg/ml) and seeded into 96 well round 

bottom plates (2×105 cells/well) in the presence of methyl-prednisolone (range from 0.05 nM to 54 μM). 

After 50 hours of incubation, cells were pulsed with [methyl-3H] thymidine (final concentration of 2.5 

μCi/ml) and incubation was continued for an additional 22 hours. The radioactivity of the samples was 

determined by a Liquid Scintillation Analyzer (Wallac 1450 Microbeta liquid scintillation counter, 

PerkinElmer, Milan, Italy). Raw count per minute (cpm) data were converted and normalized to percent of 

maximal survival for each experimental condition (cpm methyl-prednisolone/cpm control *100). Non linear 

regression of dose–response data was performed using Graph-Pad Prism version 4.00 for computing IC50, 

the methyl-prednisolone concentration required to reduce proliferation to 50%. Imax was also calculated 

and defined as the maximum inhibition achievable at the highest concentration of methyl-prednisolone (54 

µM). 
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Imax and IC50 data at T0 and T4 were compared between subjects with different clinical responses to 

treatment (SR vs SS subjects) or with a different clinical outcome of the disease (NR, IR, FR and SD subjects). 

Moreover, gender, age at disease onset and time to remission were evaluated and compared with the 

pharmacodynamic data. 

 

Statistical analysis 

For continuous variables, normality of distribution was assessed by means of visual examination of the data 

plot and a Shapiro test. Logarithmic transformation was applied to normalize distribution and/or reduce 

variance. The correlation between continuous variables was assessed using the appropriate parametric 

(Pearson) and non parametric (Spearman) tests. Any possible association between methyl-prednisolone 

IC50, Imax and clinical variables (response, time to remission, age at the onset of disease and sex) was 

investigated using univariate logistic regression models. Receiver operating characteristic (ROC) curves 

were constructed for the significant in vitro tests to determine the optimal cut-off value for discriminating 

between patients’ clinical response to steroid treatment. Sensitivity, specificity, and the positive and 

negative predictive values (PPV, NPV, respectively) of the cut-off point were analyzed. Logistic regression, 

considering the proportion of patients achieving the predicted clinical response, comparing patients who 

reached the optimal cut-off point and those who did not, was used to confirm the significance of the cut-off 

values. Statistical analyses were performed using the software R. 

P values lower than 0.05 were considered statistically significant. Odds Ratio (OR) and 95% confidence 

interval (95% CI) were calculated for all the analyses. 

 

Study highlights  

What is the current knowledge on the topic?  
Children with INS are treated with steroids: some patients are initially steroid resistant and other became 

steroid dependent despite initial complete remission. To date, the mechanisms of steroid resistance and/or 

dependence are scarcely understood and there is no means to predict the response in advance. 

What question did this study address?  
In the present study, we investigated the in vitro steroid sensitivity in patients with INS, in order to 

elucidate whether this test could predict the efficacy of the treatments. 

What this study adds to our knowledge?  
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The in vitro steroid susceptibility test at T4 shows a direct correlation between steroid dependence and in 

vitro response, while, at T0, an inverse correlation between steroid resistance and in vitro methyl-

prednisolone response is evident. 

How this might change clinical pharmacology and therapeutics? 
Knowing in advance the response to steroid treatment is a field of particular interest, especially in young 

children to reduce ineffective treatments and side effects. This test could be useful to predict steroid 

response in pediatric patients with INS undergoing this treatment. 
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Abstract 

Background and objectives: Childhood idiopathic nephrotic syndrome (INS) is probably the result of a 

primary immune disturbance. Steroid therapy is given to most children who present with INS: however 

considerable inter-individual differences in their efficacy and side effects have been reported. To date, the 

mechanisms of steroid resistance and/or dependence are scarcely understood and there is presently no 

means to predict the response in advance. Recently, it has been proposed that alterations in the cytokine 

profile of INS patients might contribute to proteinuria and glomerular damage. However, measurements of 

level of cytokines in INS patients have given conflicting results.  

Design, setting, participants, and measurements: The cytokine plasma levels have been measured in plasma 

of INS children at diagnosis and after a 4-week treatment to investigate the possible correlation between 

cytokine pattern and clinical response to GCs. Twenty-one patients have been enrolled on the basis of their 

clinical response: 7 no relapse-infrequent relapse (NR-IR), 7 frequent relapse-steroid dependent (FR-SD) 

and 7 steroid resistant (SR).  

Results: Our results show that, within the 48 cytokines analyzed, macrophage migration inhibitory factor 

(MIF) is the best predictor of steroid response before treatment in children with INS. Indeed patients non-

responsive to GCs showed significantly higher MIF plasma levels compared with steroid sensitive ones 

(p=0.022) and MIF>473 pg/ml was a good predictor for SR patients. On the contrary, patients FR-SD showed 

lower MIF plasma levels compared to all the other patients (p=0.01) and MIF<351 pg/ml was a good 

predictor of steroid dependence. 

Conclusion: Our data indicate that MIF plasma levels are able to predict steroid response and the clinical 

course of pediatric patients with INS.  
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INTRODUCTION 

Idiopathic nephrotic syndrome (INS) is the most common primary glomerular disease affecting 16-

17 per 100.000 children between the ages of 2 and 8 years, with a peak of incidence between 3 and 5 

years. INS is characterized by an increase in permeability of the capillary walls of the glomerulus leading to 

proteinuria. Various studies have shown that proteinuria, which is the hallmark of this condition, is 

mediated by cytokines [1]. Relapses are often triggered by viral infections, which possibly result in the 

release of cytokines, causing immunoregulatory imbalances.  

Glucocorticoids (GCs) are commonly used in inflammatory and autoimmune disorders, and 

represent the best first-line therapeutic option in INS inducing remission in 85-90% of patients. However, 

despite initial complete remission, almost 50% of the patients show recurrence of the proteinuria and are 

classified as frequent relapses and steroid dependent patients (FR-SD). Those patients, after a long steroid 

therapy, with the possibility of severe adverse effects, need to switch to other immunomodulating drugs. 

Moreover, 10-15% of patients are initially steroid resistant (SR) and do not respond to treatment [2-4]. 

Steroid responsiveness is of major prognostic importance: the mechanisms involved in GC dependence and 

resistance are scarcely understood and patients that do not respond to therapy are at risk of more 

aggressive treatment and disease related complications. Measurements of levels of cytokines, and of the 

soluble markers of immune activation that are products of cytokine activities, have been used as diagnostic 

and prognostic indicators in many diseases; however, in INS patients, there is presently no means to predict 

steroid response in advance [5, 6]. 

Changes in various plasma cytokine profiles prior to and after steroid treatment in INS patients 

have not been extensively examined. In the present study, we have investigated the plasma cytokines 

levels in patients with INS, who were treated with steroids, in order to elucidate whether there is any 

specific cytokine that could serve as biomarker that could predict the efficacy of the treatment. 

http://en.wikipedia.org/wiki/Glomerulus
http://en.wikipedia.org/wiki/Proteinuria
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MATERIALS AND METHODS 

Study design and population 

Between August 2011 and February 2014, 184 children were recruited in the prospective 

multicenter Italian trial on the treatment of INS (ClinicalTrials.gov Id.: NCT01386957). The parents of all the 

participating children gave written informed consent before the study began. Ethics committee approval 

was obtained from all the participating centers.  

Briefly, patients were treated with prednisone at a dose of 60 mg/m2 /day for either 4 or 6 weeks, 

depending on whether time to remission was < or ≥ 10 days. Steroids were then tapered over a 16 weeks 

period. Total prednisone dosage was 2828 mg/m2 in subjects achieving remission within 10 days, 3668 

mg/m2 in the others. Patients were classified into 2 groups: steroid resistant (SR) and steroid sensitive (SS). 

SS subjects were further stratified into frequent relapse-steroid dependent subjects (FR-SD) and no relapse-

infrequent relapse subjects (NR-IR), as defined in Table I. 

 

Table I: Definition of clinical response used in the text. 

Plasma was collected at the onset of the disease (t0) and after 4 weeks of treatment (t4) for 48 

children (median age 4.33 years, interquartile range: 2.82-7.23 years; 63.5% male; 8 SR, 18 FR-SD and 22 

NR-IR). 

The first 7 consecutive patients for each group were characterized for the plasma cytokine levels; 

the sub-groups were representative of the entire group. Demographical characteristic of patients are 

reported in Table II. 

 

Samples and cytokine measurements 

The plasma cytokines levels were studied in a sub-cohort of 21 patients with INS. Peripheral blood, 

anticoagulated with EDTA, was collected before starting therapy (t0) and after 4 weeks of prednisone 

treatment (t4). Blood samples were sent to the Department of Life Sciences at the University of Trieste and 

plasma aliquots for cytokine measurement were stored at -80˚C until the assay. Each sample (20 μl) was 

studied by magnetic bead suspension array using the Bio-Plex Pro Human Cytokine 21- and 27-plex panels 

(Bio-Rad Laboratories, Hercules, CA, USA) according to the manufacturer’s instructions. The 21-plex panel 
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measures interleukin 1α (IL-1α), IL-2 receptor α (IL-2Rα), IL-3, IL-12p40, IL-16, IL-18, cutaneous T-cell 

attracting chemokine (CTACK), growth-regulated oncogene α (GRO-α), hepatocyte growth factor (HGF), 

interferon α2 (IFN-α2), leukemia inhibitory factor (LIF), monocyte chemotactic protein 3 (MCP-3), 

macrophage colony-stimulating factor (M-CSF), macrophage migration inhibitory factor (MIF), monokine 

induced by IFN-γ (MIG), stem cell factor (SCF), stem cell growth factor β (SCGF- β), stromal cell–derived 

factor 1α (SDF-1α), tumor necrosis factor β (TNF-β) and TNF-related apoptosis inducing ligand (TRAIL). The 

27-plex measures IL-1β, IL-1 receptor antagonist (IL-1Ra), IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, 

IL-13, IL-15, IL-17, basic fibroblast growth factor (FGF-basic), eotaxin, granulocyte colony-stimulating factor 

(G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), IFN-γ, IFN-γ-induced protein 10 (IP-

10), monocyte chemotactic protein 1 (MCP-1), macrophage inflammatory protein 1α (MIP-1α), MIP-1β, 

platelet-derived growth factor BB (PDGF-BB), regulated on activation normal T cell expressed and secreted 

(RANTES), TNF-α and vascular endothelial growth factor (VEGF). The samples were analyzed using the Bio-

Plex 200 System, and the results were calculated using Bio-Plex Manager 6.0 software (Bio-Rad 

Laboratories). No measurable values for MCP-3, IL-15, IL-12p40 and MCP-1 were obtained, therefore those 

cytokines were excluded from data analyses.  

Statistical analysis 

For statistical purposes, out-of-range cytokine levels were assigned an arbitrary value 

corresponding to half of the minimum (or double of the maximum) detectable concentration. This was 

necessary to account for the low cytokine concentrations in samples. 

For continuous variables, normality of distribution was assessed by means of visual examination of 

the data plot and a Shapiro test. Data not normally distributed were log transformed. Any possible 

association between cytokine levels and clinical response was investigated using univariate logistic 

regression models. Receiver operating characteristic (ROC) curves were constructed for the significant 

cytokine levels to determine the optimal cut-off value for discriminating between patients’ clinical response 

to steroid treatment. Sensitivity, specificity, and the positive and negative predictive values (PPV, NPV, 

respectively) of the cut-off values were analyzed. Logistic regression, considering the proportion of patients 

achieving the predicted clinical response, comparing patients who reached the optimal cut-off point and 

those who did not, was used to confirm the significance of the cut-off values. Finally, to understand 

whether cytokine levels patterns reflect clinical response, we used heat maps to group patients based on 

the levels of the 48 cytokines. Statistical analyses were performed using the software R. 

P values lower than 0.05 were considered statistically significant. Odds Ratio (OR) and 95% 

confidence interval (95% CI) were calculated for all the analyses. 
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Results  

Patients 

The studied population consists of 21 patients diagnosed with INS. Demographical characteristics of 

the 21 patients analyzed are reported in table II.  

Characteristic SR (n = 7) 
SS (n =14) 

SD-FR (n = 7) NR-IR (n = 7) 

Male, n (%) 5 (71%) 6 (86%) 4 (57%) 

Mean age (range) 8.3 (2-14) 3.8 (3-7) 4.4 (2-11) 
Table II: Demographical characteristic of the 21 patients. 

 

Comparison of baseline plasma cytokine concentrations between the three groups of patients 

Using the Bioplex assay, we assessed the concentration of 48 soluble plasma mediators at baseline 

and during treatment. Baseline was defined as the plasma sample collected before initiation of steroid 

treatment (t0). Comparison of baseline plasma concentration among SR, FR-SD and NR-IR patients was 

performed for each cytokine. Multinomial logistic regression analysis showed a significant difference only 

for 4 cytokines: IL-18, MIF, SCGF-b, G-CSF (figure 1). However when considering these cytokines in a 

multivariate analysis, none of them remained significant, likely because of the small number of patients 

considered in each group.  

 

 Figure 1: Box plots of cytokine concentration across the three groups of patients: SR, FR-SD and NR-IR 

 

Comparison of baseline plasma cytokine concentrations between resistant and sensitive patients 

Given the clinical interest in recognizing SR patients at diagnosis before starting treatment, any 

possible correlation between cytokine levels and the clinical response in the SS and SR groups of patients 

was analyzed. When analyzing the profile of each cytokine separately, univariate logistic regression models 

showed significantly elevated concentration of MIF (p=0.022) and SCGF.b (p=0.034) in SR patients 
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compared to SS (Figure 2). However when multivariate analysis was applied, only MIF was able to 

distinguish the two groups (p=0.022).  

 

Figure 2: Box plots of cytokine concentration across the two groups of patients: SR and SS 

To define if cytokine profiles were distinct between SR and SS patients, we performed heat maps 

and hierarchical clustering analyses. Figure 3 shows that all the SR patients (7/7) are grouped together, 

sharing a specific cytokine expression pattern (Fisher test, p = 0.011).  

1
2

1
3 9

1
1

2
1

1
5

1
4

1
0 8 2

2
0 6 7

1
7 3 5

1
9 1 4

1
8

1
6

GM.CSF
Eotaxin
PDGF.bb
MIP.1b
IL.12.p70.
VEGF
IL.13
IL.2
IL.5
G.CSF
MIP.1a
FGF.basic
IL.17
IL.6
IL.8
IL.10
IL.7
IL.9
IL.4
IL.1b
IFN.g
TNF.a
IL.1ra
TRAIL
SCGF.b
RANTES
SCF
IL.16
IP.10
MIG
CTACK
IL.18
HGF
LIF
SDF.1a
GROa
IL.2Ra
M.CSF
IFN.a2
MIF

 

Figure 3: Heat map and cluster analysis of cytokine levels in SR (red) and SS (green) patients 
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Comparison of baseline plasma cytokine concentrations between frequent relapse-steroid dependent and all 

other patients 

Treatment of FR-SD patients represents a major challenge for clinicians; for this reason we analyzed 

the differences in cytokine levels between FR-SD and all other patients (SR+NR-IR). Comparison of baseline 

plasma concentrations for the 5 significantly associated cytokines is shown in Figure 4. Significantly lower 

concentration of IL-18 (p=0.0003), MIF (p=0.010), and SCGF (p=0.030) and significantly higher concentration 

of IL-17 (p=0.031) and G-CSF (p=0.019) were observed in FR-SD patients as compared to all other patients. 

However when multivariate analysis was applied, only MIF and IL-18 were able to significantly distinguish 

the two groups (p=0.010 and p=0.00082, respectively).  

Hierarchical clustering was performed to define cytokine profiles between FR-SD and all other 

patients. Figure 5 shows that 86% (6/7) of FR-SD patients are grouped together, indicating that the majority 

of these patients shared a specific cytokine pattern at baseline. The significant difference was confirmed by 

Fisher’s exact test (p = 0.0015). 

 

Figure 4: Box plots of cytokine concentration in FR-SD and all other patients (NR-IR+SR) 
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Figure 5: Heat map and cluster analysis of cytokine level in FR-SD (orange) and all other patients (NR-IR+SR, green) 

 

 

Comparison of baseline plasma cytokine concentrations between no relapse-infrequent relapse and all other 

patients 

In order to evaluate if NR-IR patients could be identified at the onset of the disease, we 

investigated the possible correlation between clinical response and plasma cytokine levels in NR-IR and all 

other patients. Univariate logistic regression models show a significant difference only for one cytokine: 

CTACK (p-value = 0.041; Figure 6).  

Using hierarchical clustering, we found that NR-IR patients did not have a specific cytokine profile 

(data not shown). 

 

Figure 5: Box plot of CTACK concentration in NR-IR group and all other patients (FR-SD+SR) 
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Baseline plasma cytokine concentrations: MIF 

Overall, these results show that patients with different clinical response have a distinct baseline 

(pretreatment) cytokine expression pattern; however, only MIF was able to discriminate NR-IR, FR-SD and 

SR patients in multivariate analysis (Figure 1b). ROC curves were constructed to assign optimal cut-off 

values for MIF level significantly associated with clinical response. For SR patients a unique cut-off of 473 

pg/ml could be defined. Area under the ROC curves (AUC) was 76.0% (Figure 7a). The test had high 

sensitivity (71.4%) and specificity (81.7%). Logistic regression confirmed a higher proportion of SR patients 

among those who reached the optimal cut-off point (p-value = 0.024) in comparison with those who did 

not. Moreover for FR-SD patients a cut-off of 351pg/ml was found (AUC=83.2%, sensitivity=85.7%, 

specificity=83.2%; Figure 7b). Logistic regression confirmed higher proportion of FR-SD patients among 

those who did not reach the cut-off point (p-value = 0.011) in comparison with those who reach it. 

 

 

Figure 7: ROC curves for MIF in SR vs all other patients (left panel) and SD-FR and all other patients (right panel) 
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T4 analysis: No relapse-infrequent relapse and frequent relapse-steroid dependent patients 

To define the impact of steroid therapy on cytokine expression profiles, we analyzed the plasma 

concentrations of cytokines after a 4-week treatment course (t4). Since at t4 SR patients have been already 

identified in clinics, we compared only NR-IR and FR-SD patients. When analyzing the profile of each 

cytokine separately, we identified 4 cytokines significantly different between the two groups of patients: 

IL18, MIG, SCF and IP10 (Figure 8); while, when performing a multivariate analysis none of the four 

remained significant. 

 

Figure 8: Box plots of cytokine concentration in NR-IR group versus FR-SD patients considering T4 analysis 

 

Log Ratio T0/T4 

To evaluate the change in cytokine levels after 4 weeks of treatment, we considered the log ratio 

between T0 and T4. Only two cytokines showed differences between NR-IR and FR-SD patients when 

analyzed with univariate logistic regression models: IL-12p70 and G-CSF (Figure 9). However when 

multivariate analysis was applied, none of the two cytokines was able to distinguish the two groups. 
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Figure 9: Box plots of cytokine concentration in NR-IR group versus FR-SD patients considering the Log ratio T0/T4 

 

Discussion 

In this study we evaluated the plasma level of 48 cytokines in INS patients responsive and non-

responsive to GC treatment with the final aim of finding a biomarker useful to predict response. The study 

was conducted on 21 patients with the first episode of INS. Patients were selected from a well-

characterized cohort of Italian pediatric patients treated with a shared therapeutic protocol. 

INS is the most frequent primary glomerular disease in the pediatric population [3, 7]. The 

physiopathologic mechanisms of INS have not been completely clarified yet; however, the disease is 

triggered by an increase in glomerular permeability caused by an abnormal immunologic response, that 

results in an alteration of the capillary structure and of the integrity of the glomerular membrane [3]. 

Since the 1950s steroid treatment is the most frequently used therapy of INS [8]. However, not all 

patients show positive response to this therapy. GCs are potent inhibitors of cytokines and prostaglandin 

production in immune and non-immune cells and are able to induce remission in about 85-90% of subjects, 

however, variable degrees of steroid responsiveness and different patterns of disease relapse have been 

observed [9]. Response to steroid treatment is an important indicator of outcome. It is well known that 

patients with steroid resistant disease represent a difficult therapeutic challenge for clinicians; moreover, 

to date, approximately 40-50% of SS patients relapse when therapy is discontinued, resulting in a steroid 

dependent course of the disease; these patients are at high risk of severe treatment related complications 

[3, 10] and there is still no means to predict this drug dependence. 

Macrophage migration inhibitory factor (MIF) is a pleiotropic lymphocyte and macrophage 

cytokine; its inflammatory activities appear to be due to its effects on macrophages and T cells.  

Although GCs inhibit the production of inflammatory molecules, they induce the secretion of MIF from 

macrophages [11] and T cells [12]. In turn, MIF counter-regulates the activity of GCs by suppressing the 
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inhibition of other pro-inflammatory cytokines  [11, 13]. The mechanism by which MIF overrides this effect 

has not been fully clarified. One mechanism may be the interference with the effects of GCs on the 

transcription of cytokines, mediated by nuclear factor κB (NFκB), under inflammatory conditions [14]. NFκB 

is normally retained in the cytosol as a complex with IκBα (inhibitor of NFκB). Inflammatory stimuli activate 

IκBα kinase (IκK), resulting in phosphorylation and degradation of IκBα. Under these conditions, NFκB is 

free to enter the nucleus and function as a transcription factor. GCs interfere with this process by, in part, 

inducing the synthesis of IκBα, thereby maintaining a sufficient quantity of IκBα in the cytosol to keep NFκB 

from localizing into the nucleus. MIF, however, counter-regulates GC activities by decreasing IκBα levels in 

the cytosol and, consequently, increasing NFκB transcriptional activity in the nucleus [14]. Moreover, MIF 

stimulates the extracellular-signal-regulated kinase (ERK)-1 and ERK-2 pathway in a sustained fashion, 

leading to activation of the cytoplasmic isoform of phospholipase A2 (PLA2) and production of arachidonic 

acid [15]. GCs are normally potent inhibitors of PLA2 activation, but MIF counter-regulates this effect. In 

addition to repressing transcriptional activity of immune genes, GCs have been shown to down-regulate 

inflammatory responses by increasing the degradation of mRNAs of pro-inflammatory genes [16, 17]. 

Blocking this cytokine mRNA degradation was shown to be another mechanism by which MIF 

counterbalances the inhibitory effects of GCs  [18] (Figure 10). 

 

Figure 10: Pro-inflammatory mechanism of action of MIF  
 

These mechanisms are probably insufficient to explain all the pro-inflammatory activities of MIF, 

but they do point to its specific antagonism on GC-mediated immunosuppression and also demonstrate 

how MIF promotes the expression of pro-inflammatory cytokines and prostaglandins. 

MIF has been already investigated and proved to be implicated in a number of diseases including systemic 

lupus erythematous [19], rheumatoid arthritis [20] and chronic kidney disease [21].  
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Our results show that, within the 48 cytokines analyzed, MIF is the best predictor of steroid 

response before treatment in children with INS. Indeed patients non-responsive to GCs show significantly 

higher MIF plasma levels compared with steroid sensitive ones. These results are supported also by Wang 

et al. in patients with systemic lupus erythematosus [22]; these authors demonstrated that MIF serum 

expression was correlated whit steroid resistance. A clear cut-off value for serum MIF level could be 

identified at 473 pg/ml to distinguish SR and SS patients, with a high sensitivity of 71.4% and a high 

specificity of 81.7%. Considering patients achieving this cut-off, almost all the SR patients could be 

identified (6/7), however also a small proportion (4/14) of SS patients were included. This finding, if 

confirmed in a larger group of patients, could be useful for the early identification of patients who will not 

respond to steroids avoiding an ineffective treatment. 

Moreover in this study we focus our attention also on FR-SD patients who show very low plasma 

MIF expression as compared with all other patients. This is the first study, to our knowledge, which 

investigate cytokine plasma levels in patients who show frequent relapses. Steroid dependent patients 

represent almost 40-50% of INS patients and are at risk of more aggressive treatment and disease related 

complications, representing a challenge for clinicians. Plasma MIF level in these patients was shown to be 

lower than in all other patients: a cut-off value of 351 pg/ml identified 6/7 FR-SD patients  and only 2/14 of 

all other patients (test sensitivity 85.7%,specificity 83.2%). 

 

In conclusion the results of this study suggest that, within the 48 cytokine considered, plasma MIF 

levels could be used to clinically identify patients at increased risk of steroid resistance at diagnosis that 

could thus be considered for alternative treatments, avoiding steroid administration and the relative side 

effects. Moreover, plasma MIF levels were able to identify patients with steroid dependence; these 

children could benefit of treatment with slower steroid tapering or of other immunosuppressive drugs. 
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In vitro response to methyl-prednisolone in pediatric patients with 
idiopathic nephrotic syndrome: role of genetic polymorphisms 
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Abstract 

Idiopathic nephrotic syndrome (INS) is the most common primary glomerular disease in children and is 

characterized by massive proteinuria and hypoalbuminemia associated with dyslipidemia and generalized 

edema.  

The response to glucocorticoid (GC) treatment is an important indicator for INS outcome indeed, most 

patients respond to GC therapy, while 10-20% of children fail to respond. Clinical experience has 

demonstrated that patients with poor response to steroids have unfavorable prognosis and often develop 

end stage renal failure. To date, no satisfactory explanation has been provided as to why some INS patients 

respond to GCs and others do not. GCs exert their biological effects through binding to the GC receptor 

(GR), which regulates either positively or negatively the expression of target genes. The GR is not self-

standing in the cell and the receptor-mediated function are the result of a complex interplay of GR and 

many other cellular partners; the latter comprise several chaperonins of the large cooperative hetero-

oligomeric complex that binds the hormone-free GR in the cytosol. Polymorphisms in the GR gene (NR3C1), 

such as BclI, have been described within the normal population and associated with GC response and 

toxicity; other polymorphisms in genes of proteins involved in molecular mechanisms of these hormones 

have also been suggested to play a role in the observed inter-individual differences in efficacy and toxicity. 

Moreover the inhibition of proliferation of peripheral blood mononuclear cells (PBMCs) by GCs has been 

correlated with clinical response in various diseases such as rheumatoid arthritis, systemic lupus 

erythematosus, bronchial asthma, renal transplant rejection and ulcerative colitis. 

The aim of this study was to evaluate the relationship between individual variations in the anti-proliferative 

activity of methyl-prednisolone (MP), and several polymorphisms in genes of proteins involved in GC 

mechanisms of action. 

Patients with INS were enrolled by an Italian pediatric nephrology network as part of a prospective study. 

Samples were collected before starting therapy and after 4 weeks, and processed within 24 hours. The 

effect of MP on the proliferation of PBMCs was determined by [methyl-h3]-thymidine incorporation. The 

drug concentration that would give 50% of lymphocyte inhibition (IC50) and the maximum inhibition 

achievable at the highest MP concentration (Imax) were determined from the sigmoidal dose response 

curve. All subjects were genotyped for the selected polymorphism using TaqMan® genotyping 

technologies: BclI of NR3C1 gene, Leu155His of NALP1 gene, C3435T of MDR1 gene, rs1360780, rs2845597 

and rs4713916 of FKBP5 gene, rs2282490 of STIP1 gene and rs2240447, rs2486014, rs4448553, rs199150, 

rs2301993 and rs1636879 of IPO13 gene. MP IC50 and Imax were determined for each subject from the dose 

response curves (IC50 median 5.43x10-9 M; mean 2.02x10-8 M; range 8.64x10-11 M - 2.40x10-7 M and Imax 

median 98; mean 95; range 74-99). A reduced MP in vitro response was observed in patients with the 

mutated BclI genotype (median IC50 4.5 X10-8 M, range 1.0x10-8 M – 2.4x10-7 M) compared to non-mutated 

carriers (median IC50 4.6x10-9 M, range 8.6x10-11 M – 7.6x10-8 M; Wilcoxon test p-value=0.012) and a trend 
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was evident comparing the Imax of BclI mutated (median 86, range 80-99) and non-mutated (median 98, 

range 74-99) carriers (Wilcoxon test p-value=0.066). All other polymorphisms analyzed in this work were 

not significantly correlated with in vitro PBMC response. 

Large scale clinical studies, together with the analyses of other polymorphisms of interest are necessary to 

confirm the role of in vitro proliferation test and genetic variability in GC response in children with INS.  

Acknowledgment: this study was founded by “Associazione Sogno di Stefano” 



 
83 

Introduction 

Idiopathic nephrotic syndrome (INS) is the most common primary glomerular disease in children 

and is characterized by massive proteinuria and hypoalbuminemia associated with dyslipidemia and 

generalized edema.  

Glucocorticoids (GCs) remain the mainstay of childhood INS treatment, and response to initial oral 

prednisone determines disease prognosis. To date, no satisfactory explanation has been provided as to why 

some INS patients respond to GCs and other do not. Despite their broad therapeutic activity and 

effectiveness in remission induction, early markers that would allow optimization of the GC dose and of the 

duration of therapy could improve the management of nephrotic patients and reduce treatment failure or 

drug induced toxicity. 

GCs interact with their cytoplasmic receptor, and are able to repress inflammatory gene expression 

through several distinct mechanisms. The GC receptor (GR) is therefore crucial for the effects of these 

agents and several polymorphisms of this gene (NR3C1) have been described and associated with GC 

response and toxicity. The GR is not self-standing in the cell and the receptor-mediated function are the 

result of a complex interplay of GR and many other cellular partners; the latter comprise several 

chaperonins of the large cooperative hetero-oligomeric complex that binds the hormone-free GR in the 

cytosol. Other polymorphisms in genes of proteins involved in the molecular mechanisms of these 

hormones have also been suggested to play a role in the observed inter-individual differences in efficacy 

and toxicity. 

In vitro tests based on the proliferation of mononuclear cells exposed to GCs have been correlated with 

clinical response in different diseases such as rheumatoid arthritis, systemic lupus erythematosus, bronchial 

asthma, renal transplant rejection and ulcerative colitis (Hearing SD et al, 1999; Hirano T et al, 2002).  

More recently we have associated the in vitro response to GCs with polymorphisms of genesinvolved in GC 

mechanisms of action in healthy donors (Cuzzoni E et al, 2011). 

To evaluate a priori the individual response to GCs, a pharmacodynamic approach using patients’s 

peripheral blood mononuclear cells (PBMC), together with a pharmacogenetic approach with the 

evaluation of polymorphisms involved in GC response, could be an efficient strategy. 

 

Aim of the study 

The aim of this study was, therefore, to evaluate the relationship between individual variations in 

the anti-proliferative activity of methyl-prednisolone (MP), and several polymorphisms in genes of proteins 

involved in GC mechanisms of action. 
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Figure 1: Mechanism of glucocorticoid resistance in inflammatory diseases 

 

 

Methods 

Subjects 

PBMCs were obtained from 35 pediatric patients with INS (mean age 5.7; range 1-13; 42.9% 

females and 57.1% males). Patients were enrolled, between August 2011 and July 2012, by an Italian 

paediatric nephrology network as part of a prospective study. Samples were collected before starting 

therapy and after 4 weeks of prednisolone treatment, and processed within 24 hours. A total of 9 ml of 

blood anticoagulated with EDTA was used for the isolation of PBMCs. 

 

In vitro proliferation assay 

The effect of MP on the proliferation of PBMCs was determined by labelling metabolically active 

cells with [methyl-3H] thymidine (Perkin Elmer, Milan, Italy). PBMCs were collected by density gradient 

centrifugation on Ficoll PaqueTM Plus (Healthcare, Milan, Italy), resuspended in complete RPMI-1640 

medium containing Concanavalin-A (5 μg/ml) and seeded into a 96 well round bottom plate (2×105 

cells/well) in the presence of MP (range from 54 μM to 0.05 nM). After 50 hours of incubation, cells were 

pulsed with [methyl-3H] thymidine (2.5 μCi/ml/well), and the incubation was continued for additional 22 

hours. The radioactivity of the samples was determined by a Liquid Scintillation Analyzer (Wallac 1450 

Microbeta liquid scintillation counter, Perkin Elmer, Milan, Italy). Raw count per minute (cpm) data were 

converted and normalized to percent of maximal survival for each experimental condition (cpm MP/cpm 

control *100). Non linear regression of dose-response data was performed using GraphPad Prism version 

4.00 for computing IC50, the MP concentration required to reduce proliferation to 50%. Imax was also 

calculated and defined as the maximum inhibition achievable at the highest concentration of MP (54 μM).  
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The in vitro proliferation assay was applied also on PBMCs of 50 healthy control subjects. 

 

Genetic analysis 

Total genomic DNA was isolated from peripheral blood using a commercial kit (Gene Elute Blood 

Genomic DNA kit, Sigma Aldrich, Milan, Italy) and genotyped for the selected polymorphisms using 

TaqMan® genotyping technologies (Applied Biosystems, Bedford, UK) on an ABI7900 HT sequence 

detection system device. 

 

Statistical analysis 

Any possible association between GC sensitivity and the polymorphisms in each gene was 

investigated by the non-parametric Mann-Whitney and Kruskall-Wallis tests. Statistical analysis was 

performed using the software R. 

 

Table I: distribution of genotype of the studied polymorphisms 
 

 

Results 

The IC50 median values of MP in INS patients and healthy controls are represented in Figure 2. The 

IC50 median value of INS patients was significantly lower than the IC50 median value of controls (Mann-

Withney test CTRL-IC50 median 1.43x10-7; INS-IC50 median 5.43x10-9; P-value<0.0001). Similar results were 

obtained with the Imax values (Mann-Withney test CTRL-IC50 median 85; INS-IC50 median 98; P-

value<0.0001). Furthermore, when median IC50 and Imax value of INS patients were analyzed before starting 

therapy and after 4 weeks of prednisolone treatment, no difference was evident (Mann-Withney test 

median INS-IC50-t0 5.43x10-9; median INS-IC50-t4 1.97x10-9 P-value=0.1402; Fig.3; median INS-Imaxt0 98; INS-

Imaxt4 99; p-value=0.3942).  
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Figure 2 (left panel): Mann-Whitney test INS-IC50 and CTRL-IC50  median and Figure 3 (right panel): Mann-Whitney test INS-

IC50  and CTRL-IC50  median 

All patients were genotyped for polymorphisms involved in GC action (Table I). Any possible 

association between the studied polymorphisms with an increased or decreased GC sensitivity was 

investigated (Table II). 

 

Table 2: IC50 median values in relation with genotype 

 

Only an association between the BclI polymorphism in the NR3C1 gene with an increased GC 

resistance was observed. The mutated BclI genotype was associated with an higher IC50 compared to non-

mutated carriers or wild type and heterozygoes subjects (Wilcoxon test: median 4.47x10-8 versus 4.57x10-9 

respectively, p-value=0.012;Fig 4; Mann-Whitney test: median 4.18x10-9 versus 4.74x10-9 versus 4.47x10-8 

respectively, p-value=0.045; Fig 5). 

All other studied polymorphisms were not associated with in vitro response. 

 

 

Figure 4 (left panel): BclI mutated genotype associated with an higher MP-IC50  and Figure 5 (right panel): BclI mutated 

genotype associated with an higher MP-IC50 
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Conclusion 

The in vitro prediction of GC response before the start of treatment would have important clinical 

implications, allowing to adjust therapy a priori, avoiding the use of these agents in patients who would 

probably not respond and reducing dosages in those who are hypersensitive, and hence at risk of toxicity.  

In this study we have shown that patients with INS have an higher sensitivity to MP in comparison 

with healthy controls, and in vitro response is not modified by a four weeks treatment with these 

hormones. In addition, among the studied polymorphisms, only the BclI SNP of the NR3C1 gene was 

associated with a reduced response to GCs. 

Further studies are needed to confirm these preliminary results in a larger number of patients: 

clinical data of these patients will be correlated with the in vitro results to confirm these data. 

 

 

REFERENCES CHAPTER 6 

Cuzzoni E, De Iudicibus S, Bartoli F, Ventura A, Decorti G. Association between BclI polymorphism in 
the NR3C1 gene and in vitro individual variations in lymphocyte responses to methylprednisolone. Br J Clin 
Pharmacol 2012;73:651-5 

Hearing SD, Norman M, Probert CS, Haslam N, Dayan CM. Predicting therapeutic outcome in severe 
ulcerative colitis by measuring in vitro steroid sensitivity of proliferating peripheral blood lymphocytes. Gut 
1999; 45: 382–8. 

Hirano T, Akashi T, Kido T, Oka K, Shiratori T,Miyaoka M. Immunosuppressant pharmacodynamics 
on peripheral-blood mononuclear cells from patients with ulcerative colitis. Int Immunopharmacol 2002; 2: 
1055–63. 

 

 



 
88 

 

 

 

 

 

CHAPTER 7 

  

 

 

 

Evaluation of the mRNA expression response as a novel in vitro tool for 
assessing sensitivity to steroid treatment  
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ABSTRACT 

Glucocorticoids (GC) are the most widely used anti-inflammatory and immunomodulatory drugs. 

Despite their large clinical impact and justified use, the benefits of these agents are often narrowed by a 

great inter-individual variability that might potentially lead to treatment failure or drug induced toxicity. A 

reliable way of predicting response to GC therapy by the patient would therefore be useful in clinical 

management.  

Our aim was to establish an in vitro tool for evaluation of the intrinsic sensitivity to GC. For this, we 

have set up dose-response [3H]-thymidine incorporation assays of methylprednisolone (MP) treatment on 

inhibition of proliferation of stimulated peripheral blood mononuclear cells (PBMC). In addition, we have 

developed a means of measuring the action of MP based on its effect on the kinetics of mRNA transcription 

by the cells. We designed quantitative real-time PCR assays for a panel of mRNA transcripts, the levels of 

which may be affected downstream of GC treatment. This panel consists of pro-inflammatory mediators 

(IFNγ, TNF-α, IL- 2, IL-6, IL-8, CCL-2, CCL-3, CCL-5, CCL-13, CXCL-9, CXCL-10, CXCL-11), anti-inflammatory 

mediators (IL-10, FKBP5, DUSP1, SAP-30, TLR-7) and intracellular signalling molecules (NF-κB, STAT-3, STAT-

6, MAPK). Expression levels are standardized to those of reference genes β-actine and GADPH. We have 

investigated PBMC from healthy donors at the Sanquin Blood bank in Leiden, the Netherlands.  

Until now, we have analyzed MP effects on proliferation of phytohaemagglutinin (PHA)-stimulated 

PBMC in 17 different donors. Non-linear regression of dose–response curves was applied to compute the 

MP concentration required to reduce proliferation by 50% (IC50). The data showed an high inter-individual 

variability in MP-IC50, ranging between 1.5x10-9 and 1.1x10-5 M. To investigate the mRNA response, we first 

investigated which cell types in total PBMC fractions are stimulated by either PHA, concanavalin A, 

CD3/CD28 beads or lipopolysaccharide (LPS). The PBMC were labelled by carboxyfluorescein succinimidyl 

ester and stimulated for 72h. This was followed by flow cytometric staining for T cells (CD3+CD4+ and 

CD3+CD8+), B cells (CD19+), monocytes (CD14+), and NK cells (CD3-CD16+CD56+). Results were evaluated 

as proliferation index number (the sum of the cells in all generations divided by the calculated number of 

original parent cells). Stimulation with PHA resulted into the highest T cell proliferation index number (1.64) 

both of T helper cells (CD4+, 1.84) and cytotoxic T cells (CD8+, 1.44), while other cell types did not 

proliferate. LPS was the only stimulus that induced monocyte proliferation (1.24). Next, we studied in three 

donors the kinetics of mRNA expression of the different markers at different time periods of stimulation 

(6h, 12h, 24h, 48h, 72h), using both PHA and LPS. In general, the peak in expression levels was observed at 

6 and 12 hours after stimulation. Further experiments will be performed for these two time points, and in 

combination with different concentrations of MP (10-4M and 10-7M).  

In conclusion, we are establishing a novel in vitro tool, based on the mRNA response of different 

hematopoietic cell types, for quick evaluation of the intrinsic sensitivity to GC treatment. Data from this 
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test will be compared to the outcome of dose-response proliferation assays, and will eventually be placed 

in the context of clinical outcome in vivo. 
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Introduction 

Glucocorticoids (GCs) are a well-accepted therapy for inflammatory and autoimmune diseases, in 

transplant patients and in the treatment of leukemia and lymphomas. However, despite their large clinical 

impact and justified use, the benefits of these agents are often narrowed by a great inter-individual 

variability that might potentially lead to treatment failure or drug induced toxicity. A reliable tool for 

predicting patient in vivo response would therefore be useful for clinical management of the disease. 

 

Fig. 1: Glucocorticoids mechanism of action 

In vitro tests based on the proliferation of GC-exposed mononuclear cells have been correlated with 

clinical response in different diseases such as rheumatoid arthritis, systemic lupus erythematosus, bronchial 

asthma, renal transplant rejection and ulcerative colitis (Hearing SD, 1999). However these findings have 

not been always reproducible, and a bioassay that could be useful to predict GC responsiveness in clinical 

practice is still lacking. To evaluate individual response to GCs, a pharmacodynamic approach using patients 

peripheral blood mononuclear cells (PBMC), in combination with a pharmacogenetic approach that 

evaluates the mRNA expression of cytokines involved in glucocorticoid mechanism of action, could be an 

efficient strategy. 

Several studies have demonstrated differences in the co-chaperonine gene expression profiles in 

steroid resistant in comparison with responder patients (Raddatz D, 2004; Charmandari E, 2010; Matysiak 

M, 2008). But no big study has been already performed on the changes in the gene expression occurring 

downstream of GC treatment to elucidate the mechanism of GC resistance 

 

Aim of the study 

The final goal of our study is to establish a simple and reproducible in vitro tool for evaluating the 

intrinsic sensitivity of PBMC to GC.  

 

Methods and results 

Subjects 

The in vitro proliferation assay with methyl-prednisone (MP) and genetic analyses was performed 

on PBMC isolated from 17 blood donors at the Sanquin Blood bank in Leiden, the Netherlands.  
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In vitro proliferation assay 

The effect of MP on PBMC proliferation was determined by labelling metabolically active cells with 

[methyl-3H] thymidine. PBMCs were collected by density gradient centrifugation on Ficoll PaqueTM Plus, 

resuspended in complete RPMI-1640 medium containing PHA (1 μg/ml) and seeded into a 96 well round 

bottom plate (2×105 cells/well) in the presence of MP (range from 1x10-3 M to 1x10-15 M). After 50 hours of 

incubation, cells were pulsed with [methyl-3H] thymidine (2.5 μCi/ml/well), and the incubation was 

continued for additional 22 hours. The radioactivity of the samples was determined by a Liquid Scintillation 

Analyzer. Raw count per minute (cpm) data were normalized to control and expressed as percent of 

maximal survival for each experimental condition (cpmMP/cpmcontrol *100). Non linear regression of 

dose-response data was performed using GraphPad Prism for computing IC50, the MP concentration 

required to reduce proliferation to 50%.  

Data from proliferation assay showed an high inter-individual variability in MP-IC50, ranging 

between 1.5x10-9 and 1.1x10-5 M. (Fig.2) 

 

Fig. 2: Rapresentative inhibition curve of MP-treated PBMC 

 

Cell proliferation  

To investigate which cell types of the isolated PBMC were stimulated by PHA, concanavalin A, 

CD3/CD28 beads or lipopolysaccharide (LPS), the PBMC were labelled by carboxyfluorescein diacetate 

succinimidyl ester (CFSE), exposed to the 4 different stimuli and incubated at 37°C and 5% CO2 . Flow 

cytometric staining for T cells (CD3+CD4+ and CD3+CD8+), B cells (CD19+), monocytes (CD14+), and NK cells 

(CD3-CD16+CD56+) was performed after 72h incubation .The flowcytometry data analysis was performed 

using FlowJo software. Data with 10,000 acquired events of CD3+CD4+ or CD3+CD8+ were analyzed 

Results were evaluated using ModFit software calculating the proliferation index number (the sum 

of the cells in all generations divided by the calculated number of original parent cells).  

Cytometric analysis show that stimulation with PHA resulted into the highest T cell proliferation index 

number (1.64) both of T helper cells (CD4+, 1.84) and cytotoxic T cells (CD8+, 1.44), while other cell types 

did not proliferate (Fig.3a). LPS was the only stimulus that induced monocyte proliferation (1.24) (Fig.3b). 
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Fig. 3: Histograms show peaks of parental undivided PBMC and daughter cells for the 4 different stimuli (PHA,ConA, CD3/CD28 and 

LPS) and the proliferation index (P.I.). Cytometric analysis of a) T-cells and b) CD14
+
 cells 

 

mRNA expression 

For mRNA detection, PBMC were cultured  at 1x105 cells per well for different incubation time in 

96-well plates in the presence of PHA or LPS. Cells were harvested and preserved in RNAlater solution. RNA 

was extracted using the NucleoSpin® kit (Qiagen) following the manufacturer’s instructions. RNA quantity 

was assessed with a spectrophotometer (Nanodrop Technologies). All samples showed A260/A280 ratios 

between 1.9 and 2.1.  

cDNA synthesis from total RNA (100 ng) was carried out following the manufacturers’ manual of 

SuperScript III RT (Invitrogen). 

Quantitative real-time PCR assays was performed using SYBR Green supermix (Bio-Rad) for a panel 

of mRNA transcripts, known to be regulated by GC treatment. This panel consists of pro-inflammatory 

mediators (IFNγ, TNF-α, IL- 2, IL-6, IL-8, CCL-2, CCL-3, CCL-5, CCL-13, CXCL-9, CXCL-10, CXCL-11), anti-

inflammatory mediators (IL-10, FKBP5, DUSP1, SAP-30, TLR-7) and intracellular signalling molecules (NF-κB, 

STAT-3, STAT-6, MAPK). The PCR was performed using an iCycler MyiQ (Bio-Rad). Expression levels were 

standardized to those of reference genes β-actin and GADPH. 

Results from kinetics experiments at 6h, 12h, 24h, 48h and 72h are show in figure 4. 

Time points of 6h and 12h showed the highest mRNA expression and were chosen for the further 

experiments. 
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Fig. 4: mRNA expression of TNFα and IFNγ after stimulation of PBMC with PHA and LPS for 6h, 12h, 24h 48h and 72h 

 

CD3+ and CD14+ cells of total isolated PBMC were separated by performing a magnetic sorting with 

the MIDIMACS Technique (Miltenyi Biotec) according to the manufacturer's instructions.  

As shown in figure 5, LPS stimulation of total PBMC resulted in high TNFα mRNA expression. 

Comparison with separated CD3+ and CD14+ cells revealed that the expression was only due to the 

monocytes (Fig.5a). On the contrary, PHA stimulation of total PBMC resulted in high IFNγ mRNA expression 

due only to T-cells population (Fig. 5b) 

These results confirmed that total isolated PBMC could be used without any further subdivision. 

 

Fig. 5: Comparison of TNFα and IFNγ mRNA expression in total PBMC, CD3
+ 

  and CD14
+
 isolated subpopulation stimulated with PHA 

and LPS for 6h 

 

mRNA expression in response to MP-treatment 

Three different healthy subject were chosen on the basis of their different in vitro sensibility to MP 

(resistant, intermediate and sensitive). 

Experiments were performed under optimized condition (6h and 12h, PHA and LPS stimolation on 

total isolated PBMC), in presence of two different concentration of MP (10-4M and 10-7M) to analyze their 

cytokine expression profile after steroid treatment. 

Dose dependent variation were observed for all the cytokine of the panel, as representatively 

showed in figure 7 for TNFα and IFNγ.  
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Fig. 7: mRNA expression of TNFα and IFNγ after stimulation of PBMC with PHA and LPS, and treatment with MP for 6h and 12h 

 

Figure 8 clearly shows a different pattern of cytokines mRNA expression after MP treatment among 

the three subjects. 

 

Fig. 8: Difference, in 3 different subject, in the mRNA expression after stimulation of PBMC with PHA and LPS for 12h 

 

Conclusion 

In conclusion, we are establishing a novel in vitro tool on MP-treated PBMC, integrating the results 

of dose-response proliferation assays with the cytokines mRNA level. These data are preliminary and need 

larger study population to draw any firm conclusion for translating this approach in patients. 
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Abstract 

Children diagnosed with idiopathic nephrotic syndrome (INS) are commonly treated with 

glucocorticoids (GC). These children show variation in their clinical response to standardized doses of 

systemic GCs, and 10-20% of patients fail to respond. Given the high incidence of suboptimal response, 

associated with a significant number of side effects, that are particularly severe in paediatric patients, the 

identification of subjects that are most likely to respond poorly to GCs is extremely important. A positive 

correlation between steroid resistance and reduction of glucocorticoid receptor (GR) in cells has been 

suggested (1).  

Growth arrest-specific 5 (GAS5) is a long (~650 bases in humans) noncoding RNA (ncRNA), originally 

isolated during a screening for potential tumor suppressor genes, that is expressed at high levels in growth 

arrested cells (2) even though its functions are not yet well known. Recently, it was found that GAS5 

interacts with the DNA binding domain of the ligand-activated GR and suppresses GR-induced 

transcriptional activity of glucocorticoid-responsive genes by inhibiting binding of GRs to target genes GREs 

(3).  

The aim of this study was to evaluate the correlation between individual variability in GAS5 and GC 

receptor gene (NR3C1) expression in lymphocytes and clinical response in INS patients.  

Between August 2011 and February 2014, 95 patients (median age 4.25 years, range 1-17) with INS were 

enrolled by an Italian pediatric nephrology network as part of a prospective study. Samples were collected 

before starting therapy and processed within 24 hours. All patients were treated with the same protocol 

and divided, on the bases of their clinical response, in three groups: corticosteroid sensitive (CS), 

dependent (CD) and resistant (CR). 

A preliminary study was conducted on 9 patients (3 CS, 3 CD, 3 CR); peripheral blood mononuclear 

cells (PBMCs) were obtained and GAS5 and NR3C1 gene expression was evaluated using TaqMan® 

technology. 

CR patients presented higher levels of GAS5 (QRmean 0,0072 ± 0.0009) in comparison with 

responder (QRmean 0,0017 ± 0.016) and dependent patients (QRmean 0,0015 ± 0.0010; Anova One Way 

(Kruskal Wallis test) p-value=0.06). In addition, the expression of NR3C1 gene in CR patients was 

undetectable in comparison with CS (QRmean 4,088E-05 ± 3,368E-05) and CD (QRmean 1,676E-05 ± 

2,460E-05) confirming data reported in literature (1). 

We hypothesize that, in CR patients, abnormally high levels of GAS5 expression, through the 

interaction with the DNA binding domain of the activated GR, results in the suppression of GC 

transcriptional activity, reducing their effectiveness. 

If these results are confirmed in a larger number of subjects, GAS5 and NR3C1 should be considered as 

candidate markers of GC resistance.   
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Introduction 

Children diagnosed with idiopathic nephrotic syndrome (INS) are commonly treated with 

glucocorticoids (GC). These children show variation in their clinical response to standardized doses of 

systemic GCs, and 10-20% of patients fail to respond. Patients with two recurrences during the decalage of 

GC or within 2 weeks from suspension were defined as GC dependent subjects. Given the high incidence of 

suboptimal response, associated with a significant number of side effects, that are particularly severe in 

paediatric patients, the identification of subjects that are most likely to respond poorly to GCs is extremely 

important. GCs exert their biological effects through binding to the GC receptor (GR), which translocates 

from the cytoplasm into the nucleus and binds, through its DNA-binding domain (DBD), to glucocorticoid 

response elements (GREs), the regulatory regions of GC responsive genes. Growth arrest-specific 5 (GAS5) 

is a long (~650 bases in humans) noncoding RNA (lncRNA) that was originally isolated during a screening for 

potential tumor suppressor genes expressed at high levels in growth arrest [1] even though its functions are 

not yet well known. It was found that GAS5 interacts with the DBD of the ligand-activated GR and 

suppresses GR-induced transcriptional activity of GC-responsive genes by inhibiting binding of GRs to target 

genes GREs [2]. Data recently obtained in our laboratory [3] showed that GAS5 may alter GC effectiveness 

probably interfering with the mechanism of GR autoregulation (Fig. 1). Our observations strongly suggest 

that GAS5 could have an important role in the regulation of the response to GCs. 

 

Fig. 1 Potential mechanism of resistance through the involvement of GAS5 in the process of autoregulation of GR. 
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Aim of the study 

The aim of this preliminary study was to evaluate the correlation between individual variability in 

GAS5 and GC receptor gene (NR3C1) expression in lymphocytes and clinical response in INS patients, 

identifying potential markers involved in GC response. 

 

Results 

Between August 2011 and February 2014, 95 patients (median age 4.25 years, range 1-17) with INS 

were enrolled by an Italian paediatric nephrology network as part of a prospective study. Samples were 

collected before starting therapy and processed within 24 hours. All patients were treated with the same 

protocol and divided, on the basis of their clinical response, in three groups: corticosteroid sensitive (CS), 

dependent (CD) and resistant (CR). This preliminary study was conducted on 13 patients (6 CS, 3 CD, 4 CR); 

peripheral blood mononuclear cells (PBMCs) were obtained and GAS5 and NR3C1 gene expression was 

evaluated using TaqMan® technology. CR patients presented significantly higher levels of GAS5 in 

comparison with CS group (REmean 4.93 ± 0.99; One-way ANOVA test p value < 0.05, Fig. 2); conversely, CD 

patients showed the same relative GAS5 expression respect to CS patients (REmean 1.24 ± 0.49) (Fig. 2). In 

addition, the expression of NR3C1 gene in CR (REmean 0.66 ± 0,54) was lower, but non significantly, in 

comparison with CS, confirming data reported in literature [4]. Relative NR3C1 expression in CD patients 

resulted slightly higher compared to CS group (REmean 1.46 ± 1.20). We hypothesize that, in resistant 

PBMCs, as a consequence of GAS5 interaction, a reduced availability of the activated GR for binding to GREs 

target genes suppresses GC transcriptional activity. The low levels of relative NR3C1 expression observed in 

CR patients, suggest that abnormal levels of GR transcript may alter GC effectiveness too. GAS5 and NR3C1 

gene may offer a diagnostic tool for early identification of nephrotic children who are unlikely to respond to 

conventional glucocorticoid therapy. 

 
Fig. 2 The relative expression of GAS5 and NR3C1 in CR and CD patients vs CS patients was calculated and normalized 

using the 2−∆∆ Ct method relative to 18S. One-way ANOVA and post Dunn’s test * p value=0.05 
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Conclusion 

In summary, the results presented here indicate that, in CR patients, abnormally high levels of GAS5 

expression, through the interaction with the DNA binding domain of the activated GR, could results in the 

suppression of GC transcriptional activity, reducing their effectiveness. Moreover we confirmed that low 

expression of glucocorticoid receptor in INS patients, could represent a poor prognostic sign in childhood 

nephrotic syndrome. If these results will be confirmed in a larger number of subjects, GAS5 and NR3C1 

should be considered as candidate markers of GC resistance in paediatric INS patients translating this to 

optimize the therapy and in particular to avoid an ineffective and potentially toxic treatment. 
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RATIONALE OF THE THESIS 

Since their discovery in the late forties of the 20th century, and the recognition of their favorable 

effects on inflammation, GCs soon found their way into daily clinical practice. Nowadays, GCs are 

indispensable for the treatment of numerous disorders, ranging from inflammatory disease and classic 

autoimmune diseases, such as INS, inflammatory bowel diseases, rheumatoid arthritis and systemic lupus 

erythematosus to asthma and hematological malignancies. However, during more than 60 years use of 

these agents, no or little progress has been made in the development of tools to:  

1) identify patients who will or will not benefit from GCs treatment, or to  

2) adjust GCs dose according to an individual’s GC sensitivity.  

Indeed, a substantial proportion of patients experiences a lack of, or suboptimal, effect of GCs 

therapy, interfering with a favorable disease outcome. Determination of GC sensitivity prior to the 

beginning of therapy, allowing individual-dosed treatment schedules, could further optimize GC therapy in 

these patients. Alternatively, patients with proven GC resistance may be treated with alternative (more 

aggressive) immunomodulatory agents, which also increase the likelihood of successful initial treatment. 

Studies evaluating GC sensitivity in the very early phase of INS could contribute to solve this intriguing 

question in this population of patients. 

 

The studies described in this thesis aim to increase our understanding of the clinical variability 

observed in childhood INS and to offer new insights for improving current therapy. Here, the results will be 

discussed and reviewed in light of the current literature. In addition, directions for future research will be 

given. 

 

 

 

CHILDHOOD IDIOPHATIC NEPHROTIC SYNDROME 

Children with INS are at high risk of relapsing disease [1]. Though steroid sensitive childhood INS is 

generally considered relatively benign in terms of renal function, the high burden and morbidity 

accompanying recurrent relapses should not be underestimated. Moreover in steroid resistant INS the 

prognosis is less favorable, and patients should be treated with alternative immunomodulatory agents. 

 

For more than twenty years, many studies have investigated the right dose and duration of initial 

GC treatment in this syndrome and it has been suggested that prolonging initial GC treatment reduces the 

risk of relapses [2, 3]. The sometimes detrimental adverse effects occurring during these intensive regimes 

[4, 5], lead the International Study of Kidney Diseases in Children (ISKDC) to decide on a standard two-
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month regime in 1966 [6]. Afterwards, no real consensus existed, since this regime was adopted but also 

adapted by many pediatric nephrologists. 

Around twenty years later, prolonging initial treatment gained new interest when it was 

demonstrated that shortening initial treatment from two to one month increased the risk of relapses [2]. At 

the same time, results from a small Japanese study suggested that prolonged tapering of prednisolone 

following the ISKDC schedule successfully reduced the incidence of relapses [7]. Several other studies 

investigating the effect of prolonged, tapered treatment followed in the 1990s [8-11]. In 2000, the first 

meta-analysis summarizing the results of previous studies was published by Hodson and colleagues [3, 12], 

and several sequels appeared in the Cochrane Database of Systematic Reviews [3]. From the work by 

Hodson et al., it became clear that many of the existing studies showed methodological weaknesses, 

particularly those comparing three month treatment to longer treatment regimens [3]. In addition, no 

sufficient evidence ascribing the beneficial effect to either prolonged treatment duration or a higher 

cumulative dose of GCs existed. Considering the quality level of current evidence, it is hardly surprising that 

no worldwide consensus exists on the duration and dose of prednisolone treatment for childhood INS. 

Many different schedules are used across countries and even within countries. 

 

For this reason in more than ten different Italian regions the NEFROKID group of pediatric 

nephrologists, has conducted a prospective multicenter Italian trial on the treatment of the first episode of 

INS (ClinicalTrials.gov Id.: NCT01386957), with the final goal to find a regimen that allows maximum savings 

of GCs limiting the frequency of relapses. This is particularly difficult in the beginning of the disease due to 

the lack of indicators that allow clinicians to distinguish patients who will respond to therapy from patients 

who will not or will be destined to relapse frequently. 

Therefore, the cohort of patients explored in this thesis has been recruited from a clinical trial on 

children with a first episode of INS, presenting at Pediatric Units and Pediatric Nephrology Units in different 

Italian regions, that were all treated with the same protocol: prednisone at a dose of 60 mg/m2/day for 

either 4 or 6 weeks, depending on whether time to remission was < or ≥ 10 days. Steroids were then 

tapered over a 16 weeks period as reported in the table I. 

prednisone  40 mg/m2 every 48 hours 4 weeks 

        30 mg/m2 every 48 hours 2 weeks 

       22.5 mg/m2 every 48 hours 2 weeks 

        15 mg/m2 every 48 hours 2 weeks 

        7.5 mg/m2 every 48 hours 2 weeks 

        4.5 mg/m2 every 48 hours 4 weeks 

Table I: Scheme of steroids tapering after the first episode of INS 
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Each time a relapse occurs, induction therapy (60 mg/m2 prednisone) is restarted until remission is 

achieved, then followed by the decalage reported in table I or in table II, depending on whether relapse has 

occurred after 3 months from suspension or during decalage/within 3 months from suspension.  

prednisone  40 mg/m2 every 48 hours 4 weeks 

        30 mg/m2 every 48 hours 2 weeks 

       22.5 mg/m2 every 48 hours 2 weeks 

        15 mg/m2 every 48 hours 12 months 

Table II: Scheme of steroids tapering after a relapse during decalage/within 3 months from suspension occurs 

 

A large cumulative amount of prednisone is therefore administered to patients with frequent 

relapses. Other immunosuppressive agents are considered when frequent relapses with or without steroid 

dependence occur, to limit the use of prednisone. Those immunosuppressive agents have limited efficacy 

and additional side effects [13]. 

 

The prospective multicenter Italian cohort enrolled 183 pediatric patients, ranging from 0 to 18 

years, with the first episode of INS. The median age of all patients was 4.0 years, with around 66% of male 

patients and 34% of female. Patients showed a clinical spectrum ranging from no relapses at all to frequent 

relapses with steroid dependence. Only 21% of children remained free of relapses following treatment for 

the first episode. Forty-five percent of sensitive patients experience frequent relapses, over half of these 

being steroid dependent (Figure 1a and 2a). 

To our laboratory of pharmacogenomics of the University of Trieste around 100 patients have been 

enrolled, from the larger cohort of NEFROKID, to investigate the possibility of predicting GCs response in 

advance. The subpopulation of patients was representative of the prospective cohort: patients ranged from 

1 to 17 years with a median of 4,3. Around 61% were male and 39% female. Response to GCs was not 

achieved by 15% of patients (Figure 1b), from all sensitive patients only 26% never experienced relapses 

after the first episode; while 50% presented frequent relapses and half of them became dependent to 

steroid treatment (Figure 2b). 

Therefore, improvement of current treatment strategies based on reliable, good quality trials are 

necessary. 
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Figure 1: Therapeutic outcome in INS children from a) the prospective multicenter Italian cohort, and b) the cohort of 
patients enrolled for this thesis. SR steroid resistant; SS steroid sensitive. 

 

 

Figure 2: Therapeutic outcome in INS steroid sensitive children from a) the prospective multicenter Italian cohort, and 
b) the cohort of patients enrolled for this thesis. 

 

 

 

GC SENSITIVITY: PREDICTION OF GC THERAPY EFFICACY 

Genetic markers  

Since patients’ response to GCs is the best indicator for INS outcome, many studies have been 

made over the past years in order to understand the molecular basis of inter-patient variability. Recent 

investigations have led to the hypothesis that genetic factors influencing the patient pharmacokinetic or 

pharmacodynamic profiles may account for 20-95% of variability in the efficacy of therapeutic agents [14]. 

Pharmacogenetics has therefore been considered to be promising in personalized medicine and many 

studies have investigated the possible role of this field of research. In Chapter 2 we review the current 

knowledge about mechanisms of GC resistance in childhood INS and the role of pharmacogenetics. To 

induce apoptosis, GCs have to bind to the intracellular GC receptor (GR). One of the possible mechanisms 

for GC resistance is the presence of genetic mutations or polymorphisms in the GR gene. In the cytoplasm, 

the ligand-free GR exist in a multimeric complex associated with various chaperones and co-chaperons: 

variations on genes coding for those proteins could also lead to reduced response to drugs. Moreover 
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proteins involved in nuclear translocation, pro- and anti-inflammatory mediators in the downstream 

signaling pathway of GC-GR complex, the P-gp efflux transporter of GCs and the drug metabolizing enzyme 

CYP3A5 have been investigated to highlight their involvement in drug response.  

However, despite the large amount of papers found in literature on the molecular mechanisms of 

GC anti-inflammatory action and the role of genetic polymorphisms in variable GC response in patients with 

INS, at present none of the potential pharmacogenetics markers can be considered strong enough to be 

used in clinical practice.  

 

 

A pharmacodynamic assay to predict GC response: healthy subjects 

In vitro tests based on the proliferation of mononuclear cells exposed to GCs have been correlated 

with clinical response in different diseases such as rheumatoid arthritis [15], systemic lupus 

erythematousus [16], bronchial asthma [17], ulcerative colitis [18, 19] and renal transplant rejection [20]. In 

Chapter 3 a pharmacodynamic approach using healthy subjects’ peripheral blood mononuclear cells, 

together with a pharmacogenetic approach with the evaluation of polymorphisms involved in GC response 

have been developed to evaluate individual response to GCs. We have shown that an increased GC in vitro 

sensitivity is evident in lymphocytes with the mutated BclI genotype. Our data confirm the present 

literature on the role of BclI polymorphism in the NR3C1 gene. BclI has already been associated with a 

better GCs response in pediatric patients with INS, when considered in haplotype with other two 

polymorphisms [21], and also in other disease such as IBD [22, 23]. 

The results presented in Chapter 3, on lymphocytes obtained from healthy donors, have some 

limitation: the main one is the limited number of healthy subjects enrolled, low for an association study 

with polymorphisms. Moreover, due to the high inter-individual variability of GC treatment and the high 

impact of inflammation on peripheral blood mononuclear cells of patients, further studies are needed to 

confirm these results also in patients affected by disease such as INS. 

 

 

Genetic markers and pharmacodynamic assay in INS patients  

In Chapter 6 we addressed this issue in peripheral mononuclear cells of patients at diagnosis of INS. 

In vitro PBMC steroid sensitivity test developed in chapter 3, has been investigated in a small number of 

patients in relationship with different polymorphism found to be involved in GC mechanisms of action and 

also reported in Chapter 2. In those preliminary results an association between the BclI polymorphism in 

the NR3C1 gene with an increased GC resistance was observed in vitro; while none of the other 

polymorphisms investigated were linked to a favorable or unfavorable in vitro response to steroid. So far, 

only few studies have evaluated the role of BclI polymorphism on the response to GCs in patients affected 
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by INS and, as we reported in Chapter 2, outcome are not conclusive and often in contradiction. BclI 

studied in haplotype with other two polymorphisms [21] has been associated with a higher steroid 

sensitivity, determined by time to proteinuria resolution. However Cho HY et al. [24] as well as Teeninga N 

et al. [25] could not find an involvement of this polymorphism in GC response. 

Our results are also not conclusive and still to be confirmed in a larger cohort. This will be discussed 

in the future perspective part of this chapter. 

 

 

A pharmacodynamic assay to predict GC response: INS patients 

The validated assay described in Chapter 3 enabled us to study the possible association between 

the in vitro response to methyl-prednisolone in PBMC’s of pediatric patients with INS and their clinical 

response to steroid in Chapter 4.  

To date different studies have been performed to assess in vitro steroid sensitivity in INS children 

investigating dexamethasone-mediated inhibition of concanavalin-A-stimulated peripheral blood 

mononuclear cell proliferation [26], or determining the steroid effect by means of the antibody-dependent 

cellular cytotoxicity method [27]. However all these studies included very few patients, and to our 

knowledge, none of these assays yielded reliable information on the effectiveness of prednisolone 

treatment. Researchers still need to find an assay that will be reproducible and effective in the prediction of 

sensitivity to steroid treatment in INS patients. In our work, performing the in vitro sensitivity test of PBMCs 

to methylprednisolone developed in Chapter 3, we have demonstrated an increased in vitro response to 

steroid treatment in dependent patients after four weeks of therapy and found a cut-off value that could 

be used to clinically identify patients at increased risk of steroid dependence: these children could 

therefore benefit from slower steroid tapering or treatment with other immunosuppressive drugs. A 

correlation between relapses and the suppression of hypothalamic–pituitary–adrenal (HPA) axis has 

already been demonstrated [28, 29]. Moreover it is well known that relapses in INS are often triggered by 

infection [30], that induces the release of cytokines, in particular interleukin (IL)2, 4 and 13 [31], that are in 

part responsible for proteinuria. A possible explanation for the increased in vitro response to steroid 

treatment in dependent patients could be that in patients who are extremely sensitive to these agents, and 

hence have an increased HPA suppression, the reduced endogenous steroid production, when steroid 

therapy is discontinued, could not be enough to reduce cytokine release; this would result in INS relapse 

and steroid dependency. 

In addition this test could be useful for identifying those patients who are already resistant at 

diagnosis, and could thus be considered for alternative treatments, avoiding steroid administration and the 

relative side effects as previously demonstrated in other diseases [15-17, 19, 20], however these results still 

need to be confirmed in a larger group of resistant patients.  
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The results of this in vitro test could be obtained within 72 hours, this very short time would 

facilitate rapid decisions regarding alternative treatment regimens and may lead to safer and more 

effective treatment for children who will not respond or will be dependent to steroid treatment.  

Cytokine levels to predict GC response in INS patients 

There is strong evidence that proteinuria, which is the hallmark of INS condition, is mediated by 

cytokines [32]. Relapses are often triggered by viral infections, which possibly result in the release of 

cytokines, causing immunoregulatory imbalances. Evidence for a possible cytokine-mediated role in the 

pathogenesis of the INS includes clinical response of the nephrotic state to immunomodulating drugs which 

affect cytokine production, such as steroids. Several studies have demonstrated increased in vitro mitogen-

stimulated production of cytokine [33, 34]. In Chapter 5 we investigated whether cytokine plasma levels 

would be a good indicator of GC response: measurements of cytokine levels and of the soluble markers of 

immune activation that are products of cytokine activities has been used as diagnostic and prognostic 

indicator in many diseases [35, 36], however changes in various plasma cytokine profiles prior to and after 

steroid treatment in INS patients have not been examined. The results in Chapter 5 indicate that, within the 

48 cytokines analyzed, MIF was the best predictor of steroid response before treatment in childhood INS: 

patients non-responsive to GCs had higher MIF plasma levels compared with steroid sensitive ones. Our 

results are in accordance with results by Wang et al. in patients with systemic lupus erythematosus [37] 

who showed that MIF serum expression was correlated with steroid resistance.  

This new finding could be of particular relevance to children receiving steroids, as it encourages 

new studies aimed at drug prediction with non-invasive methods. Though confirmation of our results in a 

larger cohort is needed, these promising results justify further investigation on the use of cytokine 

measurement for prediction of GC response. 

 

 

Cytokine mRNA expression to predict GC response  

 Cytokine mRNA expression was also considered. Therefore, in Chapter 7 we have used the 

validated pharmacodynamic assay described in Chapter 3 to study the in vitro response to methyl-

prednisolone in PBMC’s of healthy subjects, and we have developed a means of measuring the action of 

methyl-prednisolone based on its effect on the kinetics of mRNA transcription by the cells. We performed 

quantitative real-time PCR assays for a panel of mRNA transcripts, the levels of which are known to be 

affected downstream by GC treatment. This panel consists of pro-inflammatory mediators, anti-

inflammatory mediators and intracellular signaling molecules.  

 To date, many studies have investigated the role of mRNA expression of different protein in 

relation to steroid responsiveness in INS patients [38-41], but research aimed at uncovering predictors of 

clinical outcome are still not conclusive. In the preliminary study described in Chapter 7, we showed a 
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different pattern of mRNA expression in healthy subject with different in vitro sensitivity. The confirmation 

of our results is needed in higher number of subjects, and need to be translated to a cohort of patients to 

be correlated also to clinical response.  

 

 

Role of noncoding RNA GAS5 and NR3C1 gene in GC resistance in childhood INS  

As already mentioned, GCs exert their effects on target cells primarily through the regulation of 

gene expression after activation in the cytoplasm of the glucocorticoid receptor (GR), which acts as a 

transcription factor [42, 43]. The biological and molecular mechanisms involved in GR activity have been 

studied in details, but to date GR expression pattern does not represent a reliable predictive tool to explain 

the complex mechanism of GC resistance observed in clinical practice. The GR is encoded by NR3C1 gene 

and it has been shown that its expression is regulated by the receptor itself after prolonged GC treatment: 

Okret et al. observed a negative feedback mechanism enabling cells to attenuate the continuous signal 

evoked by chronic exposure to the ligand, resulting in GR downregulation, through the binding of the 

activated receptor to intragenic sequences called GRE-like elements, contained in the GR gene [44-46]. 

These observations have been subsequently confirmed by other authors [45, 46]. Recently, it has been 

demonstrated that growth arrest–specific transcript 5 (GAS5), a long noncoding RNA (lncRNA), interacts 

with the activated GR, preventing its association with GREs, and consequently suppressing its 

transcriptional activity [47]. This interaction is physiologically relevant as it occurs at concentrations of the 

GR ligand dexamethasone at 10−10 M, lower than that of physiological endogenous glucocorticoid [47]. 

The aim of the investigation described in Chapter 8, was to evaluate the possible role of GAS5 and 

NR3C1 gene expression as potential markers to predict clinical outcome in INS patients. The preliminary 

study indicate that, in steroid resistant patients, abnormal levels of GAS5 may alter GC effectiveness 

probably interfering with the mechanism of GR autoregulation: high levels of GAS5 expression, through the 

interaction with the DNA binding domain of the activated GR, could results in the suppression of GC 

transcriptional activity, reducing their effectiveness. Moreover we have shown that low expression of the 

GC receptor in INS patients could represent a poor prognostic sign in childhood INS. These preliminary 

results are supported by those described by Lucafò et al. [48] who recently investigated GAS5 and NR3C1 

levels in healthy subjects correlating results with in vitro steroid sensitivity. 

The altered expression of endogenous GAS5 is a GC-mediated event, leading to a different 

regulation of the NR3C1 gene. Our findings provide the basis for further studies, identifying a lncRNA as a 

potential marker involved in GC pathway and thus providing a new view upon its implication in the 

phenomenon of drug resistance: if these results will be confirmed in a larger cohort of patients with INS, 

GAS5 could be considered as a candidate marker of GC resistance to optimize the therapy and in particular 

to avoid an ineffective and potentially toxic treatment. 
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FUTURE PERSPECTIVES 

In the last decades several methods to measure GC sensitivity have been developed [18, 49-56]. 

Nevertheless, most assays are labor-intensive and are so far used in the experimental setting only. Another 

major drawback of these assays is the relative poor correlation with clinical outcome parameters, which 

hamper their introduction in clinical practice. Thus, clinical applicability of an assay guiding individual GC 

treatment requires  

1) accurate prediction of an individual’s GC sensitivity,  

2) a low degree of labor-intensity and  

3) cost-effectiveness. 

To date, a number of demographic and/or clinical markers have been examined in correlation with 

GC response also in INS, but results have not been consistently replicated. Genetic and epigenetic markers 

are likely to complement clinical and demographic predictors: phenotypes resulting from genetic changes, 

such as single nucleotide polymorphisms, and epigenetic modifications, such as DNA methylation, can 

markedly influence drug mechanism of action and alter efficacy profiles. 

 

Exome sequencing analyses is a cost-effective approach and an innovative technique. To date, only 

few works have performed exome sequencing in small cohort of INS patients with non-conclusive results; 

moreover most studies have investigated the role of genetic variance in the development of the disease or 

have studied only disease-causing genes in the subpopulation of steroid resistant patients [57-59]. 

Therefore, sequencing of candidate genes known to be involved in GC mechanism of action such as the GC 

receptor (NR3C1), proteins of the heterocomplex (e.g. FKPB5, FKBP4, HSP90AA1, HSPA4, ST13), proteins 

involved in nuclear translocation (e.g. IPO13) and efflux transporters of GCs (e.g. ABCB1), in a large cohort 

of pediatric patients with INS, could provide important information useful to clinicians.  

 

The understanding of the complex gene regulation mediated by GCs may shed light on the causes 

of the variable responses to these hormones. There is a lot of interest in identifying the role of miRNA in 

the modulation of drug response, but studies about this topic are still very limited, and the possible 

correlation between miRNAs expression and variability on GC response in INS patients have been examined 

only in small Asian cohort [60, 61]. Studies about miRNAs and pharmacogenomics may therefore represent 

a new and promising investigation topic that could increase the understanding of the pharmacology of 

steroids in pediatric INS. 

 

Epigenomics is a rapidly growing field, and to date is known that changes in the DNA methylation 

profiles could lead to differences in gene expression patterns and thereby influence GC response in INS. 

Until now, only one work from Kobayashi et al. [62], have investigated the role of DNA methylation changes 
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between relapse and remission of minimal change nephrotic syndrome in a very small cohort of monocytes 

and T helper cells isolated from Japanese patients. However no data are available on the role of DNA 

methylation changes between steroid resistant, steroid dependent and steroid sensitive INS patients: 

studies in this field could provide new biomarker to predict clinical response in advance. 
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CONCLUDING REMARKS 

The short-term advantages of prednisolone for childhood NS are obvious: remission is seen within 

days or weeks in most cases and, in two out of ten patients, no further treatment is needed after the first 

prednisolone course. Understandably, its position as first line treatment has been sturdy and virtually 

unquestioned until now. 

Though the benefits of prednisolone with regard to morbidity and mortality in childhood INS were 

clearly recognized shortly after the discovery of this drug, idle progress has been made since. Though new 

agents have been introduced for the treatment of frequent relapses and steroid dependence in the last 

decades, it is highly unsatisfactory that so many patients develop frequent relapses. Much work needs to 

be done before current GC therapy can be actually replaced by better treatment strategies.  

The studies in this thesis have described and set up several methods to predict GC response in 

children with INS. We believe those results, being based on strong methodology, could really cause a 

turnaround in current thinking about the treatment explaining clinical variability in childhood INS: the 

promise of non-invasive methods to predict GC response, could be highly relevant also to other pediatric 

populations. Altogether, this thesis has brought new information to the field of GC treatment in pediatric 

nephrology. 
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