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ABSTRACT 

Colorectal cancer (CRC) represents one of the leading causes of cancer worldwide, 

with a prevalence of more than a million cases every year. Despite the decreasing 

incidence in the last few years, as a result of the implementation of early diagnosis 

screening programmes, the mortality rate is still about 50%. Consequently, new 

treatments of CRC patients are demanded, especially in advanced stages. Nowadays 

the most common therapeutic options are cytotoxic drugs, such as 5-fluorouracil and 

irinotecan, associated to biologics, such as cetuximab, according to the severity of the 

neoplasia. However, metastatic CRC do not respond very well to the available 

therapies, therefore better therapies should be taken into account.  

In this context, we have conducted an RNAi screening in order to identify new 

oncogenes that could be used as therapeutic target of new drugs. Starting from a list of 

amplified genes retrieved from a publicly available database, provided by The Cancer 

Genome Atlas, we analysed which gene could negatively influence cell viability in 

different CRC cell lines, which would indicate its possible involvement in CRC. After 

a careful evaluation of the silencing specificity, we functionally analysed the 

amplified genes and find that one gene called STARD3, which is frequently co-

amplified with HER2, is of particular interest. Given the phenotype resulting from its 

inhibition, the finding was confirmed by a cell viability time course and further 

supported by cell cycle analysis, which demonstrated an significant increase in subG1 

populations. In order to identity the nature of the processes involved in the cell death 

increment, we analysed different apoptotic markers, which revealed a significant 

increase of apoptosis upon STARD3 knockdown. In addition, we detected reduction 

of migration rate and the reduction of anchorage-independent growth after STARD3 

downregulation as well, which both corroborated with the hypothesis that STARD3 is 

an oncogene in colorectal cancer. Finally, despite the mechanism by which STARD3 

exerts its function is still not clear, we showed that its ablation may result in 

suppression of p53 oncogenic activity, which also reinforce a possible relationship 

between STARD3 and cell cycle regulation. Besides the variability amongst the cell 

lines, which may be imputable to their different genetic background, STARD3 seems 

to possess a different mechanism of action in CRC in comparison to the proposed 

mechanism in breast cancer. Thereby, we can conclude that our approach toward the 

identification of oncogenes has been successful and amongst the amplified genes, 

STARD3 has an oncogenic potential and this is supported by the phenotypes of its 
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silencing. Furthermore, this result shed light on the role of STARD3 in colorectal 

cancer, opening a possibility to use it not only as cancer biomarker, but also as a 

therapeutic target, which would provides a better treatment for colorectal cancer. 
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1 - INTRODUCTION 

 

1.1 Colorectal Cancer 

Colorectal cancer (CRC) is a global burden with an incidence of 1.5 million diagnoses 

every year. It is the fifth most common cancer worldwide, and almost half of the 

patients die from the disease (Ferlay et al., 2015) (Figure 1). 

Tumours of colon and rectum are very variable, and hyperplastic mass that protrude 

from the mucosa are called polyps (Bosman et al., 2010). Even if most of the polyps 

are hyperplastic and have a dimension of <5mm, few of them progress in carcinoma 

(Zlobec et al., 2012). Instead, the precancerous lesion develops from adenoma, which 

arises from glandular epithelium and presents dysplastic morphology and altered 

cellular differentiation (Zlobec et al., 2012). Adenomas are detected from 20 to 40% 

in people of >50 years of age and increase with old age, nevertheless only a small 

amount of adenomas develop in CRC. Surgical resection of the polyps reduces 

significantly the risk (Liljegren et al., 2003). 

Even if early stages of invasive cancer are still curable with surgery and 

chemotherapy, nonetheless if untreated they metastasize to other organs, a stage 

where CRC is usually incurable. Novel therapeutic options have improved the 

survival at the early stages, however later stages are still less responsive to the 

therapies (Markowitz and Bertagnolli, 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Estimated global 
numbers of new cases (thousands) 
with proportions for (a) more 
developed and (b) less developed 
regions, both sexes combined, 
2012. The area of the pie is 
proportional to the number of new 
cases. Adapted from Feraly et al., 
2015 
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In CRC, different and complex factors play a fundamental role in its onset and 

progression. On one hand, the environmental factors have a significant role on CRC. 

Particular dietary regiment and lifestyle, such as a diet rich in unsaturated fats and red 

meat, total energy intake, excessive alcohol consumption, and reduced physical 

activity appear to be important risk factors for the disease (Huxley et al., 2009). 

Conversely, nonsteroidal anti-inflammatory drugs, estrogens, calcium, and perhaps 

some statins protect against CRC (Thun et al., 2012). These and other factors, for 

example gut microbiota and inflammation, have been suggested to be potential 

external risk factors. These could indeed help reduce CRC incidence, but neither 

dietary nor other environmental specific risk factors have been well defined, yet 

(Chan and Giovannucci, 2010).  

On the other hand, the study of the genetics and the molecular basis have identified 

several pivotal genes in CRC oncogenesis, such as p53, APC and KRAS (Rodrigues 

et al., 1990; Fodde et al., 2001; Lievre et al., 2006). Somatic and inherited alterations 

of these genes can be regarded as risk factors, since they increase predisposition to 

CRC and are currently used as biomarkers, for instance, to predict progression or 

resistance to specific therapies (Prenen et al., 2013). The genetic defects have 

different nature, they could be point mutations, chromosome rearrangements, 

deletions or amplifications, and can be divided in two different types of alteration: 

oncogenic activation or tumour suppressor inactivation (Cancer Genome Atlas 

Network, 2012). This plethora of different defects is then shaped by clonal selection, 

which results in different subsets of colorectal cancer with very different and 

distinctive, often overlapping, features (Siravegna et al., 2015; Greaves and Maley, 

2012).  

Finally, another key aspect of CRCs is its familiarity. Eighty-five percent of colorectal 

cancer cases are sporadic without family history or genetic predisposition, whilst in 

approximately 15% of cases a causative inherited genetic event has been identified, 

which highlight the importance of preventive genetic screening (Taylor et al., 2010). 
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1.1.1 Classification 

In the recent years, with advancements in personalised medicine, colorectal cancer 

patient management has associated to traditional classification, based on morphology 

and histopathology, also immunohistochemistry and genetics. 

Colorectal cancer is primarily classified by using TNM staging system, recommended 

by the WHO. It takes into account tumour site and invasiveness, status of lymph 

nodes, and location and number of metastases (Hamilton et al., 2000). Besides TNM 

staging, from histopathological point of view, can be classified in adenocarcinomas, 

neuroendocrine, squamous cell, adenosquamous, spindle cell and undifferentiated 

carcinomas. Among all CRCs, more than 90% are adenocarcinomas originating from 

epithelial cells of the colorectal mucosa, generally with a moderate differentiation. 

(Bosman et al., 2010). The precise classification is a fundamental aspect of clinical 

management of colorectal cancers, since based on it the clinicians decide the more 

suitable therapy (Fleming et al., 2012) 

 

1.1.2 Molecular Classification of Colorectal Cancer 

The CRC multistep transformation from adenoma to carcinoma, as presented in the 

early ’90, is a model of colorectal cancerogenesis in which selective mutations are 

consequentially acquired (PDQ Cancer Genetics Editorial Board, 2002; Fearon and 

Vogelstein, 1990), and this concept is still valid today for most of CRCs. Whereas 

once few mutations were believed to be sufficient to progress to carcinoma, colorectal 

cancer genome screenings have revealed that a wide array of different mutations can 

instead occur to the tumours, but only a small subset (<15) are likely to be indeed 

driver mutations (Wood et al., 2007; Cancer Genome Atlas Network, 2012) (Figure 2) 

One of the main characteristics of all colorectal cancers is the acquisition of a 

certain/specific level of genomic instability at some point during the onset and 

progression of the disease. Notwithstanding, the precise molecular origin, both 

familial and sporadic CRCs share most of the pathological mechanisms.  

The recent advancements in the genomics of CRC discovered previously unknown 

genetic and molecular features, allowing not only a better classification of CRCs but 

also an improved prognosis and treatment. These data suggest that CRCs are not a 

single disease, but a series of different tumours with different and frequently 

overlapping features (Bogaert and Prenen, 2014) . 
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Figure 2 Genes and pathways involved in the multistep carcinogenesis of colorectal cancer. This model 
represents some of the genes involved in the step-wise progression of CRC. The aberrant activity of these genes 
activation of oncogenes, such as MMR, or inactivation of tumour suppressors, such as TP53, lead to the formation 
of a tumour from the normal epithelium, which eventually evolve in metastasis. Oncogenic alterations are depicted 
in green, oncosuppressive in red. Adapted from Markowitz and Bertagnolli, 2009. 

 

1.1.2.1 Molecular subtypes 

CRCs are mainly molecularly classifıed as microsatellite instable (MSI), caused by 

defective function of DNA mismatch repair system (MMR), microsatellite stable 

(MSS), which is mostly associated with chromosomal instability (CIN), and 

hypermethylated, also known as CIMP (CpG island methylation phenotype). MSI 

phenotype is characterised by a clear molecular origin and specifıc clinical-

pathological features. CIN tumours are characterised by chromosomal instability, 

resulting in aneuploidy, with both chromosomal gains and losses, and by a highly 

heterogeneity from clinical-pathological and prognostic traits (Bogaert and Prenen, 

2014). Another layer of complexity of the classification is added by the methylation 

status. The analysis of different methylation marker on CpG islands, identified a 

different phenotype, which is CpG island methylation phenotype (CIMP). This 

phenotype is characterised by the methylation of TSG promoters and, according to the 

specific extension and location of the methylation on the genome, the activity of 

different oncosuppressive pathways could be hampered, which could lead in turn to 

the onset of very diverse tumours from both biological and clinical perspective (Issa, 

2004). 

 

1.1.2.1.1 Chromosomal Instability - CIN 

CIN represents the most frequent and most heterogeneous phenotype detected in CRC, 

accounting for about 85% of the total CRCs (van Geel et al., 2015). Whereas this 

subtype has well defined genetic alterations, it is unclear whether the genomic 
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alterations are the cause of cancer initiation and progression or the result of it; 

moreover, its molecular basis seems to much more complex and heterogeneous than 

MSI (Pino and Chung, 2010).  

The pathogenesis of this type of CRC is described by the model of multisteps 

carcinogenesis. At the beginning of CRC tumourigenesis, aberrant lesion of the 

intestinal crypt is formed, that is generally due to APC inactivation. The progression 

to adenoma and early carcinoma needs instead first KRAS activating mutation, then 

TP53 mutation and chromosome 18q loss of heterozygosity (LOH). Other mutations, 

such as PI3KCA activation, can occur at the later stages in a small subset of CRCs. 

During the progression of tumourigenesis, chromosomal instability increases 

(Takayama et al., 1998).  

Furthermore, CIN cancers are also characterised by other genomic alterations: 

chromosomal imbalances in terms of number and size, frequent LOH, copy number 

amplification and altered chromosomal segregation (Bogaert and Prenen, 2014). 

Genotyping studies have also found that CIN cancers, besides presenting large 

genomic alteration or LOH, are associated with low or no microsatellite instability, 

also referred as microsatellite stable (MSS) (Vilar and Tabernero, 2013).  

The disruption of genomic stability can have different consequences on other 

pathways, such as a defective mitotic spindle assembly, after mutation of BUB1 for 

example, an abnormal telomerase activity, caused by either TERC overexpression or 

telomere shortening, or LOH, regarding mainly APC and TP53 (Pino and Chung, 

2010).  

 

1.1.2.1.2 MicroSatellite Instability – MSI 

Microsatellite instability in colorectal cancer is defined by the dysfunction of MMR 

pathway, which leads to genetic hypermutation. The phenotype is characterized by a 

poorly differentiated histotype, a usually clear molecular origin, enriched with BRAF 

mutations, and a favourable prognosis in early-stage of the disease. Besides being one 

of the main features in hereditary non-polyposis colorectal cancers (HNPCC), which I 

am going to describe later, MSI is detected mainly in sporadic CRC (Merok et al., 

2013; Timmermann et al., 2010).  

Microsatellites are short nucleotide repeat of 1-6 bp, which, in MSI tumours, tend to 

accumulate mutations, insertion and/or deletions because of the improper activity of 

DNA polymerase. MMR defective genes give rise to genetic abnormalities that are 
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hugely amplified, in fact it has been identified a difference of 100-fold in MSI cancers 

compared to non cancerous tissues (Thomas et al., 1996). The first gene to be 

identified to play a role in MSI cancers, in MSH2, a fundamental component of the 

MMR machinery, that is located in the short arm of chromosome 2. Other important 

genes found in MSI CRCs are MLH1, PMS1, PMS2, GTBP and MSH6 (Rustgi, 

2007). Considering the defective MMR pathway, an MSI phenotype accumulates a 

high number of mutations, which, if occur in a TSG, such the case of APC (Giannakis 

et al., 2014), drive rapidly the progression from benign tumour to cancer (Vilar and 

Tabernero, 2013). MSI cancers can be also divided in 2 sub-phenotypes: high 

frequency MSI (MSI-H) and low frequency MSI (MSI-L). 

MSI-H cancers, in which more than 40% microsatellite loci are mutated, represent the 

15% of all MSI cancers and have generally better prognosis and more precise 

alterations, whereas MSI-L, in which the mutation are accumulated in less than 40%, 

are the bulk of MSI cancers, and not only have an unclear association with MMR 

pathway, but also a worse prognosis (Wright et al., 2005; Vilar and Tabernero, 2013).  

However, sporadic MSI phenotype, specifically MSI-H, can also be explained by the 

epigenetic silencing of MMR genes promoters (Shen et al., 2007). The consequences 

of the methylation lead to a MSI phenotype where the microsatellite of genes like 

MLH1 are not truly mutated, but their function is defective as well (Weisenberger et 

al., 2006). 

 

1.1.2.1.3 CpG Island Methylation Pathway – CIMP 

Epigenetic changes on genes, specifically the methylation of their promoters, 

represent a third phenotype identified across CRCs (Fearon, 2011). 

In the normal genome, methylation occurs at the promoter in regions called CpG 

islands. Although during cancerogenesis the total methylation levels decrease, there is 

a local hypermethylation of promoters that, in turn, can lead to a downregulation of 

expression of tumour suppressor genes, such as APC, p16INK4alpha and MSH1 (Ng 

and Yu, 2015; Serra et al., 2014). 

CIMP cancers are often localised in the proximal site of the colon and can be 

identified in 15% of all CRCs. They present a particular adenoma morphology, called 

sessile serrated adenoma (SSA)(Kim et al., 2011). Moreover, CIMP phenotype is 

detected in nearly all CRCs that bear MSH1 aberrant methylation, which constitute a 

major part of sporadic MSI (Shen et al., 2007). CIMP cancers can be further divided 
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in two categories, depending on the level of methylation, that are CIMP high, which 

are mainly related to BRAF activating mutations and MLH1 methylation, and CIMP 

low, related to KRAS mutations instead. As observed, in CIMP cancers KRAS and 

BRAF mutations are mutually exclusive (Corso et al., 2013). CIMP-low-KRAS 

cancers are also usually associated with MGMT and PIK3CA mutations, which 

causes them to acquire a peculiar hybrid phenotype where adenomatous and serrated 

polyps are present (Zlobec et al., 2012). 

In the last few years, also microRNAs (miRNA) have been found to be implicated in 

CRC. miRNA, that are short non-coding RNA, are able to transiently repress gene 

expression, therefore acting as either oncogenes or tumour suppressors. Even though 

their role in cancerogenesis is not completely defined, some miRNAs were found to 

be involved in CRC. For example, miR-143, which binds KRAS, and miR-145, which 

is a negative regulator of WNT pathway, were both downregulated in adenomatous 

polyps at precancerous stages, compared to normal tissue, suggesting that these 

miRNAs may indeed play a role in CRC early development (Luo et al., 2011).  

 

Thence, considering the three major CRC phenotypes, the non-entirely mutual 

exclusivity caused by CRC heterogeneity and the different overlap of the 

aforementioned phenotypes, according to (Fleming et al., 2012) which took into 

account also pathological and clinical classification, CRCs can be classified as in 

Figure 3: 
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1.1.2.1.4 Consensus on Colorectal Cancer subtype classification 

Thanks to the genomics revolution, cancer sequencing project have started to shed 

more light on the biological complexity of CRC. Analysing chromosomal and gene 

alterations, gene expression and pathway activation of different cohorts of CRCs, 

several research groups proposed their own profiling of CRCs ; Marisa et al., 2013; 

Roepman et al., 2014; De Sousa E Melo et al., 2013; Sadanandam et al., 2013; 

Schlicker et al., 2012). Whereas the thorough examination of various classification 

proposal could not address all the discrepancies amongst the tumoural subtypes, lately 

Guinney and colleagues suggested an integration and improvement of the previous 

subtyping projects, in particular an integration of data processing and of algorithms 

used to analyse CRCs features, proposing another, more comprehensive CRC 

classification. The newly redacted classification has been divided in 4 consensus 

molecular subtypes (CMSs) (Figure 4):  

CMSs not only could specifically classify 87% of the analysed samples (4,151), but as 

well identified more precisely the role and the clinical impact of the molecular 

pathways involved in CRC. Even though this study could not link a specific set of 

Figure 3 Molecular classification of colorectal cancer. Colorectal cancer could be primarily divided in inherited 
and in sporadic. Each branch is then further divided in tumours with microsatellite instability (MSI-H) and with 
chromosomal instability (MSS or CIN). According to the particular combination of genetic alterations three major 
subtypes could arise: CIN, MSI and CIMP. Specifically, an hereditary CRC with CIN subtype lead to familial 
adenomatous polyposis (FAP), whilst MSI-H subtypes usually lead to hereditary non-polyposis colorectal cancer 
syndrome (HNPCC). The genes mainly involved in each one of the subtypes are within the light blue circles. 
Adapted from Fleming et al., 2012. 
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mutations to a unique CMS, thus not allowing a clinical stratification for CRC, it 

identified that CMS1 cancers had worse survival after relapse and CMS4 with 

tumours had increased risk of metastasis and worse overall survival, therefore it could 

represent a starting point for the translation of integrative analyses into clinical 

practice, improving both stratification and subtype-based targeted interventions, in 

similar fashion to what has been done in breast cancer (Sotiriou and Pusztai, 2009). 

 

 

 

 

 

 

 

 

 
Figure 4 Identification of the consensus subtypes of colorectal cancer and application of classification 
framework in non-consensus samples. (a) Network of CRC subtypes across six classification systems: each node 
corresponds to a single subtype (colored according to group) and edge width corresponds to the Jaccard similarity 
coefficient. The four primary clusters, identified from the Markov cluster algorithm, are highlighted and 
correspond to the four CMS groups. (b) Per sample distribution of each of the six CRC subtyping systems (A–F), 
grouped by the four consensus subtyping clusters, and the unlabeled non-consensus set of samples. Colours within 
each row represent a different subtype. The n values shown in b correspond to the number of subtypes in the 
original independent classification published by each group. (c) Final distribution of the CMS1–4 groups (solid 
colours), ‘mixed’ samples (gradient colours) and indeterminate samples (gray colour) resulting from the 
classification framework. Adapted from Guiney et al., 2015. 

 

1.1.3 Hereditary Colorectal Cancer 

As said, CRC occurrence could be inherited or sporadic. Although a roughly 20% of 

CRCs have a hereditably component, the study of familial cancer syndrome improved 

the understanding of the molecular basis and the mechanisms that contribute to CRC 

development (Taylor et al., 2010). 

The main familial colorectal cancer syndromes are hereditary nonpolyposis colorectal 

cancer (HNPCC) syndromes and familial adenomatous polyposis (FAP).  

 

1.1.3.1 Familial adenomatous polyposis - FAP 

Familial adenomatous polyposis is an autosomal dominant syndrome that represents 

the 0.5% of all CRCs. The disorder presents a high number of adenomas (>105) at the 

age of 35, but only few of them progress to cancer, with the occurrence of nearly 
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100%. The only preventive option is surgical removal of the adenomas (Galiatsatos 

and Foulkes, 2006). Even though in 25% of FAP cases de-novo mutations occur, that 

is counterintuitive for this type of disorder, the gene mostly identified as mutated in 

FAP is APC (Adenomatous Polyposis Coli), a known tumour suppressor gene. APC 

is affected by different disruptive events, 95% of which are frameshift mutations that 

result in a truncated protein. Most of the times truncated APC behaves as a dominant 

negative, resulting in a haploinsufficiency (Venesio et al., 2003), but depending on the 

site of truncation the number of polyps can differ. 

 

1.1.3.2 Hereditary non-polyposis colorectal cancer syndrome - HNPCC 

Hereditary non-polyposis colorectal cancer syndrome is the first colorectal cancer 

syndrome historically described and represents the 2-5% of all CRCs (Barrow et al., 

2008). It is an autosomal dominant disease, localised mainly in proximal colon, and 

presents an increased lymphocyte invasion, mucinous differentiation and low 

occurrence of polyposis (Bosman et al., 2010). Similarly to other CRCs, HNPCC 

shows genomic instability, specifically microsatellite instability. In fact, more than 

90% of HNPCCs present MSI (Timmermann et al., 2010), and most of these cancers 

have inherited a mutated allele of the gene encoding MSH2. The inherited mutation 

predispose to early onset of CRCs, since “another hit” in MSH2 generally, but not 

exclusively, occur in MSI cancer phenotypes (Nagasaka et al., 2010). Nevertheless, 

just 40% of HNPCCs present a clear mutational profile, which in turn lead to a higher 

risk of CRC compared to unclear profiles.  

 

1.1.4 Key genes and pathways in CRC 

As stated above, several pathways play a role in CRC development, simultaneously, 

most of the times. Although new molecular and sequence-based investigations have 

elucidated the critical role of different genes and pathways in the various CRC 

subtypes, there are long known pivotal gene alterations, such as APC and KRAS, 

which not only have elucidated fundamental aspects of the diseases, but also 

improved the clinical management of cancer patients.  

 

1.1.4.1 APC – Wnt/ß-catenin pathway  

As mentioned earlier, APC mutations are found in 70-80% of all CRCs, both familial 

and sporadic. APC inactivation, often biallelic, represents one of the early steps of 
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colorectal carcinogenesis and it is probably an event that limits the amount of 

transformation in small adenomas (Wood et al., 2007; Cancer Genome Atlas Network, 

2012).  

APC is a 300KDa protein which regulates multiple cellular functions, such as cell 

adhesion, chromosomal segregation and apoptosis in normal intestinal crypts (Aoki 

and Taketo, 2007). There are 4 major sites of mutation on APC gene, localised mainly 

between codon 1309 and 1450, which result in protein truncation, therefore 

inactivation. Moreover, given the size, the protein contains different motifs, thus 

acting as hub protein, of which other proteins can interact, such as AXIN2 and 

GSK3ß. But amongst the binding partners, ß-catenin constitutes the most known and 

important of them, and its interaction with APC represent a fundamental node of Wnt 

classic pathway. In physiological conditions, when Wnt signalling is not active, APC 

induces a phosphorylation of ß-catenin, which leads to its ubiquitination and 

consequent degradation. Conversely, once Wnt signalling is activated, Wnt interaction 

with its coreceptors, Frizzled and LRP5/6, blocks the activity of APC, thereby 

allowing ß-catenin to translocate into the nucleus and to act as a transcription factor,  

 

inducing the expression of genes like MYC and cyclin D1 (Tetsu and McCormick, 

1999; Zhang et al., 2012; White et al., 2012). The consequences of transcriptional 

Figure 5 The canonical Wnt signalling pathway. (a) In the absence of a signal, APC promote ubiquitination of 
β-catenin, which is then degradated by the proteasome. In the nucleus, and transducin-like enhancer (TLE) repress 
the transcription mediated by T cell factor (TCF). (b) The binding of a Wnt ligand to its Frizzled receptor and 
lipoprotein receptor-related proteins (LRPs) induces a change in conformation that results in the disruption of the 
destruction complex. β-catenin can then accumulate and associate with the TCF, hence promoting transcriptional 
activation of genes, including MYC and axin 2. Axin 2 feeds back to inhibit the pathway by promoting the 
assembly of more destruction complexes (McNeill and Woodgett, 2010). 
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activity of ß-catenin are different, for instance, it could influence self renewal and 

regulate migration of intestinal crypt cells and activating stemness transcriptional 

programme (Armaghany et al., 2012)(Figure 5). 

Since its role of WNT pathway effector, ß-catenin has been found to be mutated,  

although in a small subset of tumours. This somatic mutation does not allow its 

phosphorylation, which leads, in turn, to its constitutive transcriptional activity 

(Segditsas and Tomlinson, 2006). The fundamental role of WNT signalling in CRCs 

is finally proved by the notion that this pathway, and its components, were identified 

altered someway in more than 90% of the tumours (Cancer Genome Atlas Network, 

2012) 

 

1.1.4.2 TP53 

Another important regulator of CRC development is p53. This gene represents one of 

principal tumour suppressor genes and is implicated in nearly all types of cancers. P53 

is a transcription factor that is involved in several processes concerning the 

physiological proliferation of cells, such as the control of checkpoints G1/S and G2/M 

(Levine and Oren, 2009) (Figure 6). LOH is commonly linked to TSG inactivation 

process and loss of 17p chromosome is found in 70% of CRCs. Since p53 is localised 

in chromosome 17p, this genetic loss is thought to target it specifically (Fearon, 2011). 

LOH of p53 is often associated, but not exclusively, with somatic mutations of p53, 

which are mainly missense. The alteration of p53 is a fundamental step in the classic 

model on colorectal cancer development (Fearon and Vogelstein, 1990), and whereas 

it is mainly associated to a CIN phenotype, p53 can also be found mutated in MSI 

tumours (Bogaert and Prenen, 2014). Early adenomas usually have a normal status of 

p53, whereas in carcinoma at least p53 mutations can be identified. This suggest that 

p53 could play decisive role in adenoma transformation, especially in the later steps 

of the carcinogenesis (Baker et al., 1990). Mutations, along with LOH of p53, result 

in deregulation of genomic integrity, cell cycle, angiogenesis and apoptosis, which 

lead to aberrant growth and invasiveness. This is mainly due to p53 loss of function as 

transcription factor, that in turn reduce the levels of p21, BAX and BUBR1, and 

AMPK (Ogino et al., 2009; Baba et al., 2010; Sturm et al., 1999). Nonetheless, 

mutations could induce also a gain of function of p53. In particular, mutant p53 can 

act promoting chronic inflammation through NFκB signalling, which can cooperate to 
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CRC development (Cooks et al., 2013). Mutations of p53 are mainly detected in 

tumours located in the distal regions of the intestine (Russo et al., 2005). These 

aberrations are linked to a poorer survival rate, but, even though it is not clear yet 

whether mutations could improve drug sensitivity or not, p53 mutations have been 

shown to improve the clinical outcome of cetuximab-treated metastatic CRC 

(Naccarati et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.4.3 MMR pathway  

DNA can be subjected to spontaneous and environmental mutations. Another source 

of errors is the DNA replication itself, despite being a highly precise process. Due to 

the potential dangerous consequences, during evolution cells have developed a system 

that repairs these errors: mismatch repair pathway. MMR pathway is mainly 

composed by MSH1, MLH1, MSH2, MSH6 and PMS2. The protein complexes 

formed by the combination of the various pathway components, such as hMutL, a 

dimer made of MLH1 and PMS2, by recognition, excision and restoration the original 

sequence, resolve the genetic mutations (Hewish et al., 2010)(Figure 7). 

Figure 6 The p53 pathway. The schematic representation of p53 activity show it at the centre of a 
complex web of biological interactions that relays stress signals into cell cycle arrest or apoptosis. 
Upstream signalling to p53, such as Ataxia Telangectasia Mutated (ATM), increases its level and 
activates its function as a transcription factor in response to a wide variety of stresses, whereas 
downstream components execute the appropriate cellular response, such as p21. The principal regulator 
of p53 levels is MDM2. In non-stressed conditions it targets p53 for degradation by the proteasome. In 
stressed conditions MDM2 action is inhibited by its phosphorylation. Due to its importance the 
identification of a functional p53 signalling is particularly relevant from a therapeutic perspective 
(Brown et al., 2009).  
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Disruption of MMR is the main feature of the HNPCC tumours, and, one of the 

principal aspects of sporadic MSI CRCs, although representing only the 15-20% of all 

CRCs (Geiersbach and Samowitz, 2011). As mentioned above, almost all MSI 

cancers are caused by inefficacy of MMR activity. Whereas deficient MMR results in 

a hypermutator phenotype regardless of CRC oncogenesis, its components could be 

subjected to different mutations or epigenetic silencing accordingly to the different 

CRC subtypes. In fact, methylation of MLH1 promoter and MSH3 mutations are 

commonly found in sporadic MSI/CIMP subtypes, conversely in HNPCC, MLH1 is 

mutated along with MSH2 (Vilar and Tabernero, 2013). The effect of MMR pathway 

alterations, thus MSI CRCs, are not very clear in terms of both prognostic values and 

response to therapy. MSI indeed displays a lower rate of recurrences in CRC early 

stages, but the poor prognosis in later stages is controversial, since it is still debated 

whether the associated BRAF mutations could instead be accounted for the worse 

Figure 7 Schematic representation of 
mismatches and the MMR pathway. The 
MMR system recognizes (a) a base–base 
mismatch or (b) an insertion–deletion loop. 
(c) MutS homologs bind to the affected site 
of DNA, which triggers ATP-dependent 
conformational changes and the binding of 
MutL homologs. These in turn recruit other 
proteins, including proliferating-cell-
nuclear-antigen (PCNA) and exonucleases 
with the subsequent excision of the 
damaged strand. The interactions of the 
bound proteins trigger DNA looping, which 
brings the two sites together. The resultant 
gap in the strand is then filled by DNA 
polymerases and the break is removed by 
DNA ligase. Adapted from Hewish et al., 
2010 

 



  Introduction 

 
17 

outcome (Vilar and Tabernero, 2013). Moreover, defective MMR cancers have shown 

an unclear and unpredictable response to DNA damaging agents, the elective therapy 

for CRCs, such as 5-fluorouracil. Despite the lack of consensus, for example, National 

Comprehensive Cancer Network recommends not to use 5-fluorouracil in MSI/MSI-H 

tumours, since several observations have shown no benefit from this treatment 

(Hewish et al., 2010 ; Cancer, 2016). 

 

1.1.4.4 Epidermal Growth Factor Receptor - EGFR pathway 

Epidermal Growth Factor Receptor is a transmembrane receptor with tyrosin-kinase 

activity and member of a superfamily of the receptor tyrosine-kinase (RTK). EGFR is 

the first component of its pathway, which play a fundamental role in cellular/tissutal 

homeostasis and, when altered, in the biology of different kinds of cancers, among 

which there is also CRC (Akbani et al., 2014) . 

The importance of this pathway is highlighted not only by the identification of 

numerous alterations of its components, such as RAS, PI3K and BRAF, but also by 

the efficacy of the anti-EGFR therapies, in particular with cetuximab and 

panitumumab (Finnberg et al., 2015) (Figure 8).  

 

1.1.4.4.1 RAS  

RAS, a small family of Rho-GTPase, are pro-oncogenes and act as a molecular 

switches in cells. They are activated mainly by the members of the EGFR family, 

transducing the signals of cell survival to the nucleus through different pathways, 

such as MAPK pathway. The 3 members of the family, KRAS, NRAS and HRAS, are 

found to be frequently mutated in CRC. In particular, KRAS is mutated in nearly 40% 

of CRCs, with the majority of these mutations affecting codon 12, while those at 

codon 13 and 61 are more rare and less oncogenic. The effect of the mutations turn 

KRAS into a defective switch, which permanently activates EGFR pathway (Tan and 

Du, 2012) Even though present in a substantial part of CRCs, KRAS is not needed for 

cancer onset, but rather for the subsequent development. Actually, KRAS mutations 

are often localised in flat colonic epithelial lesions and in hyperplastic polyps as well. 

Even more, the mutations are correlated to the size of the adenoma, since mutations 

are found in ~10% of smaller adenomas, whereas in 50% of larger adenomas. The 

relevance of KRAS in CRC is further supported by the connection with WNT 
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pathway, by which MAPK signalling can be activated, and p53 pathway (Armaghany 

et al., 2012) 

..  

KRAS mutations represent also an important biomarker for anti-EGFR therapy 

response. Owing to KRAS position in the EGFR signalling pathway, its mutations 

prevent any therapeutic effect of cetuximab, a monoclonal antibody against EGFR. 

Even so, KRAS wt protein does not mean a clinical response in 100% of CRCs, 

suggesting that KRAS or other components of the pathway may be involved in the 

resistance to anti-EGFR therapies (Misale et al., 2015). 

 

 

Figure 8 Overview of Tyrosine-Kinase Receptor pathways. The transmembrane receptors, such as EGFR, is 
usually activated by autophosphorylation upon interaction with its ligand (EGF, VEGF etc).  The activated 
recteptor transduces the external stimuli through a signalling cascade to the nucleus via different downstream 
effectors. Two of the most studied transductors are RAS and PI3K, since their overactivation is frequently 
identified in many types of cancer, such as CRC. Once the signal reaches the nucleus, genes involved in survival, 
proliferation and invasion are consequently transcribed. Adapted from Siena et al., 2009 and Walther et al., 2009. 
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1.1.4.4.2 BRAF 

Another important component of EGFR pathway is BRAF, a small kinase similar to 

Ras proteins. BRAF is activated by KRAS and, in turn, activate MEK1 and 2, the 

main downstream effectors of MAPK pathway. The main mutation affecting BRAF is 

the V600E substitution and it can be found in approximately 10% of all CRC. BRAF 

mutation is commonly detected in CIMP-MSI-H sporadic cancers that originate from 

serrated lesions of the epithelium, and it is very rarely co-mutated with KRAS, in an 

almost total mutual exclusive fashion. Since BRAF role in EGFR signalling pathway, 

its mutation could lead to resistance of anti-EGFR drugs, probably shunting the 

signalling to another oncogenic pathway (such as Wnt), therefore reducing the 

therapeutic option and predisposing to a worse prognosis (Corso et al., 2013; Vaughn 

et al., 2011). 

 

1.1.4.4.3 PI3K/AKT/PTEN 

EGFR activation can be transduced by different routes, amongst which PI3K/AKT 

pathway can be found. The importance of this pathway is testified by alterations of its 

components found in nearly 50% of all CRCs (Cancer Genome Atlas Network, 2012). 

Phosphoinositide 3-kinases (PI3Ks) are a class of protein complexes involved into the 

signal transduction of RTK pathway. Upon activation of RTK or RAS, class I PI3Ks 

can phosphorylate PIP2 to PIP3 and the resulting higher levels of PIP3 lead to the 

activation of downstream effectors, such as AKT and MAPKs, which eventually 

promote protein and DNA synthesis and cell growth, proliferation and survival 

(Danielsen et al., 2015). 

Several studies have pointed out that different cancers bear mutations in class I PI3Ks, 

of which the most common are those affecting the p110α catalytic subunit, encoded 

by PIK3CA gene, or other regulatory subunits (Danielsen et al., 2015). These 

mutations result in a constitutive activation of the kinase activity and are present in 

15-35% of non-hypermutator and hypermutator CRCs respectively (Cancer Genome 

Atlas Network, 2012). Whereas PI3K works downstream to KRAS, it is not 

infrequent found them co-mutated, probably because KRAS is a mild activator of 

PI3K/AKT pathway. Overall, the alterations of PI3K/AKT pathway are found in 

nearly 50% of all CRCs, in both hypermutator and non hypermutator phenotypes. 

PI3K activity is physiologically negatively regulated by PTEN (Phosphatase and 
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tensin homologue), a well-known tumours suppressor gene. Its mutation or LOH are 

found in CRC, with a particular enrichment in MSI-H phenotypes (20%), suggesting a 

particular relationship of PI3K/AKT pathway with this phenotype. Despite the 

importance of this pathway, its impact on prognosis is still uncertain, given the 

frequent co-presence of BRAF and KRAS mutations (Danielsen et al., 2015). AKT, 

another component of this pathway, is affected by mutations in 1% of the CRCs. Its 

alteration lead to protein overexpression and constitutive activation, which may 

promote cancer invasiveness and metastasis, with the cooperation of PTEN 

inactivation (Suman et al., 2014). 

 

1.1.5 Therapy 

In the past few decades, accordingly to the International Agency for Research on 

Cancer, the incidence of CRC world-wide has not increased and concurrently the 

mortality decreased. This improvement is due to new and better therapeutic regiments, 

preventive screening and general awareness about the risk factors, which were able to 

reduce the death of the this disease (especially the early stages)(Howlander et al., 

2014). Nevertheless, CRC diagnosed at later stages and metastatic tumours have still 

therapeutic options with limited efficacy and a poorer prognosis, compared to early 

diagnosed cancers, then representing one of the main caveats to be overcome in the 

future (Howlander et al., 2014).  

 

1.1.5.1 Current therapeutic management of colorectal cancer 

Regardless of the stage, the main therapy for colorectal cancer is surgery. Generally 

speaking, CRC at early stages and with low risk (i.e. no genetic predisposition to 

CRC) benefit more from local resection and sometimes there is no need to proceed 

with other therapies, especially the MSI-H subset (Ribic et al., 2003; André et al., 

2009). Lately, diverse evidences showed that chemotherapy administered after the 

surgical resection, also called adjuvant therapy, significantly improved the survival of 

the patients with the disease at medium or late stages. In particular, fluorouracil-based 

therapies (5-fluorouracil/leucovorin or capecitabine) have shown survival benefits to 

medium stage CRCs with moderate risk, and even more to later stages of the disease 

when associated to oxaliplatin (André et al., 2009; Haller et al., 2011). Colorectal 

cancers display metastases in about 50% of the cases, most of which localise to the 

liver. Liver metastases are often unresectable, therefore deadly, however up to 30% of 
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the patients present a resectable liver tumour, whose removal could improve 

significantly the short- and long-term survival (Van Cutsem et al., 2006; Muratore et 

al., 2007; Taylor et al., 2012). In several clinical trials, pre-operative chemotherapy, 

also called neoadjuvant therapy, has been reported to downstage cancer, allowing its 

surgical resection. In fact, a study from Pozzo et al. reported that a combination of 5-

fluorouracil/leucovorin and irinotecan allowed about 30% of the patients to have a 

resectable tumour, which increased the survival of 19 months. Moreover, the 

association of classic cytotoxic drug to biological agents, such as cetuximab, provided 

evidences of increased resectability, whereas little improvement of survival was 

observed, taking into account also the hepatotoxicity of the therapeutic regiment 

(Petrelli et al., 2012). Nevertheless, therapy for metastatic colorectal cancer (mCRC) 

encompasses combination of fluoropyrimidines, irinotecan, oxaliplatin and 

bevacizumab, an anti-VEGF monoclonal antibody, cetuximab or panitumumab, anti-

EGFR monoclonal antibodies, sometime associated with regorafenib or aflibercept 

(VEGFR inhibitors). The therapeutic regiment is chosen according to the 

characteristic of the disease, such as MSI-H subtype and prior therapies (Cancer, 

2016). Association of target therapeutics to 5-fluorouracil/leucovorin and irinotecan 

have indeed displayed clear benefits in patients with unresectable mCRC compared to 

5-fluorouracil/leucovorin monotherapy, improving their overall survival (Hurwitz et 

al., 2004; Van Cutsem et al., 2009; Van Cutsem et al., 2007). Promising results have 

been reported by new chemotherapeutic regiments and novel targeting molecules, 

mostly in the past few years, but 5-year survival of patients with advanced or 

metastatic disease, that account for 19% of all CRC at the time of diagnosis, is only 

the 11% (Siegel et al., 2012; Howlander et al., 2014)(Figure 9). At these stages, 

patients cannot be cured and can be treated only to prolong survival. Novel and 

innovative target therapy could improve the outcome of CRC, especially in later 

stages, similarly to the impact that targeting agents has had on breast cancer (Swain et 

al., 2015). In truth, current available therapies have already shown clear efficacy, even 

if limited, although new therapeutic advancement should be carried out, rationalising 

the application of these treatments, and, furthermore, understanding how to target the 

specific molecular defects onto which CRC cells rely, with innovative drugs and 

delivery systems (Finnberg et al., 2015; Posocco et al., 2015). 
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1.1.5.2 Targeting oncogenic signalling pathways 

Altered oncogenic pathways drive cancer development and metastatic processes, 

hence they are being exploited in anticancer therapy by using molecules able to block 

their signalling. For this purpose, in the previous decades, several targeted drugs, have 

been developed allowing the inhibition of specific pathways. The blockade of their 

signalling can not only have an anticancer effect per se, but also be implemented 

synergistically with other drugs whose efficacy would be hampered by the activation 

of pathways involved in drug resistence, when administered alone. 

 

1.1.5.2.1 EGFR 

EGFR is a transmembrane tyrosine kinase receptor (RTK), whose activation, by auto-

phosphorylation, is triggered mainly by EGF, and in turn can activate both RAS and 

PI3K downstream pathways (Merla and Goel, 2012). This receptor is overexpressed 

in 65-70% of all CRCs and its status is associated with tumour’s advanced stages, 

although only a subpopulation of patient benefit from the blockade of the receptor, 

manifesting how the expression cannot be used as a therapeutic response prediction 

biomarker to anti-EGFR drugs (Yarom and Jonker, 2011). CRCs with wild-type 

EGFR pathway’s components benefit the most from anti-EGFR therapeutics, in fact 

any mutation affecting the signalling decreases the efficacy of its inhibition (Sood et 

al., 2012), 

Currently, EGFR signalling can be blocked by preventing its activation from external 

stimuli or by inhibiting its kinase activity. Cetuximab, a IgG1 recombinant chimeric 

monoclonal antibody, and panitumumab, a IgG2 recombinant human monoclonal 

antibody, are the two FDA-approved antagonist antibodies targeting EGFR used in 

Figure 9 New proposed approach to therapeutic management of metastatic colorectal cancer. Proposal for a 
new algorithm for CRC treatment selection based on new clinical and molecular data according to Schmoll and 
Stein 
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the CRC clinical practice (Cancer, 2016). They act by binding the extracellular part of 

the receptor, inducing its internalisation and degradation, thus inhibiting its activation 

and downstream signalling. Both cetuximab and panitumumab demonstrated a 

significant but limited effect survival of metastatic CRC. In fact on one hand, 

cetuximab association with irinotecan and fluoropyrimidine shown a significant 

increase in mCRC survival (Van Cutsem et al., 2009), but on the other hand, the 

association with oxaliplatin have not replicated the same effect, despite a slight 

increase of survival (Bokemeyer et al., 2009). Similarly, panitumumab displayed 

efficacy only in association with irinotecan and 5-fluorouracil (Peeters et al., 2014). 

The benefit of these therapeutic regiments was nullified when administered to patients 

with KRAS mutations, with sometime a detrimental effect on survival (Bokemeyer et 

al., 2009; Cutsem et al., 2010). Along with KRAS mutation assessment, also NRAS, 

BRAF and PI3K mutations should be evaluated. Since their role in the EFGR pathway, 

these components could all participate to cetuximab or panitumumab resistance 

(Misale et al., 2015). Bertotti et al. reported that in a preclinical settings, the efficacy 

of anti-EGFR therapies could be improved with a better stratification of patients, 

based on the expression of other upstream regulator of EGFR pathway, such as HER2. 

They demonstrate that the association of pertuzumab, an anti-HER2 monoclonal 

antibody used in breast cancer treatment, and lapatinib, an EGFR/HER2 inhibitor, can 

not only overcome resistance, but also decrease tumour growth in xenograft models of 

mice with cetuximab-resistant CRCs. This suggests that a better stratification and the 

implementation of gene expression analysis in CRC clinical management could be 

beneficial for patient survival. 

Novel antibodies and EGFR kinase inhibitors have been proposed and are a promising 

class of drugs in CRC therapy. Despite none has been yet approved, several clinical 

trials suggested that their application in therapy could provide clinical benefit to 

patients. GA201, a humanised monoclonal antibody against EGFR, have 

demonstrated to trigger an antibody-dependent cellular toxicity (ADCC) in several 

cancers, including mCRC, representing an improvement of cetuximab activity 

(Oppenheim et al., 2014). Also necitumumab, another anti-EGFR antibody, 

demonstrated encouraging results in clinical trials with patients with advanced 

colorectal cancer when associated to chemotherapy (Elez et al., 2016). Lastly, afatinib 

is a selective inhibitor of EGFR and HER2 kinase activity, which has already 

displayed promising results in breast and pancreatic cancer patients. Despite its 
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promising activity in association with conventional chemotherapy, phase II clinical 

trial shows a limited clinical efficacy when administered in combination to BIBF, an 

angio-kinase inhibitor (Bouche et al., 2011). A clinical trial using an association of 

cetuximab and afatinib is still ongoing (UNICANCER, 2013) 

 

1.1.5.2.2 RAS/RAF/MEK 

RAS proteins are the main downstream transducers of EGFR pathway signalling. 

They belong to a family of GTPases, critical in CRC development. Mutations 

affecting normal RAS activity occur in 40% of CRCs, which cause its constitutive 

activation. Mutations predict lack of responsiveness to EGFR signalling (Armaghany 

et al., 2012). RAS proteins are required to be bound to the plasma-membrane by a 

lipidic anchor in order to become active GTPases. This post-translational modification 

is carried out by farnesyl transferase (FTase) and geranylgeranyl-transferase 

(GGTase) in tandem. Attempts to block RAS activity by inhibiting the activity of 

these two enzymes have been successfully accomplished, but with very limited 

therapeutic effects on CRC (Shimoyama, 2011; Armaghany et al., 2012). Since the 

precursor of FTase and GGTase substrate are produced by HMG-CoA reductase, 

statins have been considered as possible options as RAS inhibitors. Preclinical data 

indicate that statins can indeed block cell proliferation and induce cell death, and 

synergise with 5-FU activity (Lochhead and Chan, 2013). 

As mentioned above, RAF proteins are the effectors downstream to RAS in the RTK 

pathways. RAF mutations, 10% of which are V600E, have been reported to be poor 

prognostic markers of response to cetuximab and irinotecan combination (Bokemeyer 

et al., 2012). Considering that RAF mutations are usually mutually exclusive with 

KRAS mutations, RAF could be a suitable target for pharmacological inhibition. 

Clinical trials performed on metastatic melanoma demonstrated encouraging results, 

but response was hampered by acquired resistance to the inhibition, which reactivated 

MAPK activity, for example by novel mutation of MEK or NRAS (Flaherty et al., 

2012). Combination of MEK and BRAF inhibitors has indeed displayed promising 

results in metastatic melanoma clinical trials. Moreover, targeting of EGFR and 

BRAF simultaneously have identified sustained suppression of MAPK pathway and 

enhanced anti-cancer effect in xenograft models of mutant BRAF CRCs (Corcoran et 

al., 2012). 
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Finally, given the difficulty to inhibit RAS or RAF signalling, MEK inhibitors have 

been taken into consideration. MEKs are serine/threonine kinase activated by a 

different set of external stimuli, relayed by RAS and RAF. Their action is to control 

the phosphorylation of several transcription factors, which are involved in cell 

proliferation, for instance. As a consequence, an aberrant MEK activity leads to 

cancer progression and drug resistance, although in CRC they are not frequently 

affected my mutations, probably because of aberrant upstream signalling (Luca et al., 

2012). MEK inhibitors have been developed, but some of them failed to demonstrate 

a significant clinical activity (Rinehart et al., 2004), however selumetinib 

administration had the same effect of capecitabine toward the maintenance of 

progression free survival (Bennouna et al., 2011). As mentioned above, association of 

MEK inhibitors and BRAF inhibitors may improve patient survival as suggested by 

the results of their application in BRAF-mutated metastatic melanoma (Flaherty et al., 

2012).  

 

1.1.5.2.3 PI3K/AKT 

PI3K is ones of the downstream effectors of the EGFR pathway, as aforementioned. 

Fifteen percent of all CRC present a mutations that affects the behaviour of PI3K, 

which usually result in its overactivation, therefore rendering its signalling 

independent from upstream stimuli (i.e. cetuximab-resistant)(Jonker et al., 2007). The 

application of PI3K inhibitors in CRC should synergise with EGFR blockade, thus 

hampering tumour growth and improving patient clinical benefits. Several inhibitors 

are available, but none of them has been approved. Pan-PI3K inhibitors, which block 

both wt and mutated form of the protein, have exhibited induction of apoptosis in 

colon cancer cell line models, with a preferential activity towards mutated cells. 

Notwithstanding the limitation of PI3K inhibition in presence of AKT mutations, 

many PI3K inhibitors are subjected to clinical trial, such as PKI-587 (Tabernero et al., 

2015). Since 10% of PI3K mutated CRCs present also RAS/RAF mutations, the dual 

inhibition could have the potentiality of blocking the transduction of external signals 

and prevent circumvention of one or the other transduction pathway. Data from a 

phase I study suggests that it may be a viable option, given the positive response of 

the combined administration of PI3K/AKT and RAS/RAF/MEK pathway inhibitors 

compared to monotherapy (Shimizu et al., 2012).  
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1.1.5.2.4 VEGF and VEGFR 

Aberrant angiogenetic signalling is one of the hallmarks of cancer (Hanahan and 

Weinberg, 2011) This process is regulated by several extracellular growth factors, 

amongst which there is Vascular and Endothelial Grow Factor (VEGF). VEGF exerts 

a pro-angiogenetic function upon binding to VEGF receptor family, which belong to 

the tyrosine kinase receptors family. The interaction induces its activation, which in 

turn induces endothelial proliferation and blood vessels to grow, via PI3K and RAS 

signalling. Clinical studies have suggested a role for angiogenic pathways in the 

growth and lethal potential of colorectal cancer. Current therapeutic options are the 

inhibition of the pathway signalling by administration of monoclonal antibodies 

against VEGF, decoy receptors or inhibitors of kinase activity of VEGFR (Troiani et 

al., 2012). Bevacizumab is a recombinant humanised monoclonal antibody against 

VEGF, approved from FDA for CRC therapy. These targeted agents have shown to 

confer clinical benefit of mCRC patients when associated to 5-fluorouracil and 

leucovorin (5-FU/LV), in short-term survival. In addition, association of oxaliplatin 

and irinotecan to 5-FU/LV and bevacizumab improved the outcome, increasing both 

short- and long-term survival rate (Loupakis et al., 2014). Regorafenib is a novel oral 

multikinase inhibitor that blocks the activity of several protein kinases, including 

kinases involved in the regulation of tumour angiogenesis such as VEGFR, and the 

tumour microenvironment. In pre-clinical studies, regorafenib has shown antitumour 

activity, including in colorectal cancer models (Wilhelm et al., 2011) . Understanding 

the clear mechanism by which patients respond positively to VEGF inhibition remains 

a challenge. 

 

1.1.5.2.5 Reactivation of TSG 

Inactivation of tumour suppressor genes is one of the main features displayed by 

cancer cells (Hanahan and Weinberg, 2011). Despite the potential impact of restoring 

the TSGs capability on anti-neoplastic therapy, TSG reactivation has been reported to 

be very difficult to achieve. Among the several proposed drugs, p53 “reactivators” 

have been reported to be successful, but in a limited number of studies. Preclinical 

studies has observed that PRIMA1, a p53 re-activator, and its analogues could reduce 

cancer growth and improve the efficacy of standard chemotherapy in preclinical 

models (Roh et al., 2011; Li et al., 2015).  
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Although direct TSG reactivation was not very successful, anti-cancer therapy may 

take advantage of TSG inactivation. Since MMR pathway is frequently inactivated in 

CRCs (10%), synthetic lethality approaches have been pursued. MSI-H CRCs have no 

benefit from 5FU/LV chemotherapy, probably because 5-FU metabolites are excised 

more efficiently than in MSS cells (Zhang et al., 2011). The association of irinotecan, 

which is able to induce double strand breaks, to 5-FU/LV has conversely shown an 

improvement of the survival of some late-stage CRC patient, compared to 5-FU/LV 

alone (Bertagnolli et al., 2009). In this context, preclinical data suggested that PARP 

inhibitors could potentiate the activity of chemotherapy. The inhibition of PARP, an 

enzyme family which repair single strand breaks (Murai et al., 2012), associated to 

irinotecan have demonstrated a synergistic effect on in vitro and in vivo models 

(Donawho et al., 2007; Davidson et al., 2013). 

Current CRC therapeutic management has demonstrated to clearly ameliorate the 

patient’s outcome, in term of both progression-free survival and overall survival 

(Haller et al., 2011). Moreover, the association of targeted therapy to conventional 

chemotherapy have also exhibited its efficacy, but with milder results than expected 

(Dutta and Maity, 2007). Despite the extensive knowledge about colorectal cancer 

biology, so far it is not clear how to efficiently target the specific defects of tumoural 

cells. Anti-EGFR therapies are an example: although overexpressed, the blockade of 

EGFR activity has small, but substantial effect on cancer growth, hence survival 

(Jonker et al., 2007). Given the importance of the pathway in CRC, since the multiple 

mutations identified in its various components, a multi-inhibition approach may be a 

way to improve targeted therapy efficacy, as seen in preclinical studies (Bertotti et al., 

2011). The approach could be guided by genomic datasets and genomic makeup of 

the patients. Furthermore, genomic datasets can not only improve our understanding 

of the processes of cancer cells, but also provide new therapeutic targets, on which 

new drugs could be design. 

 

 

1.2 RNAi screening 

Specific gene silencing through RNA interference (RNAi) has allowed genome-wide 

functional screenings both in cells and in organisms. The information derived from 

the screening led to the identification of new cellular pathways and potential drug 

targets (Perwitasari et al., 2013). 
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RNAi is a physiological pathway that acts reducing, but not eliminating, mRNA target 

expression by double strand RNA (dsRNA), which is delivered into the cells, in a 

sequence-specific manner (Fire et al., 1998). The discovery and the application of this 

technology have led to impressive new research in several fields. In fact, RNAi has 

been harnessed as a molecular tool for precise downregulation of mRNA levels, 

which have fundamentally contributed to large-scale studies of functional genomics in 

a wide variety of cells and organisms, including mammalian cells, fruit fly and mouse 

(Martin and Caplen, 2007; Armknecht et al., 2005).  

 

1.2.1 Applications 

Coupling RNAi technologies with genomic sequence databases, genome-scale 

libraries of RNAi reagents have been created by which high-throughput screenings 

(HTS) have been carried out multiple type of cells (Echeverri and Perrimon, 2006). 

This powerful tool has allowed systematic functional analyses in several cells or 

model organisms, which, because of their technical limitations, were previously 

carried out only in few sets of genetically modifiable biological systems. Amongst the 

wide range of application, RNAi has been proven particularly useful in performing 

genome-scale cell-based RNAi screening in mammalian cells (Gondi and Rao, 2009). 

Actually, several biomedical discoveries have been made possible by the use of RNAi, 

including the identification of novel oncogenes and potential targets on which design 

new therapeutics (Kim and Hahn, 2007; Wolters and MacKeigan, 2008). 

 

1.2.2 Methodology 

The outcome of the application of RNAi could be compared to a loss-of-function 

genetic screening. Indeed, RNAi, by knocking down a gene, can analyse the 

importance of the given gene on a specific function. If the function was affected by 

the absence of the gene, directly or indirectly, a phenotype may arise, that could be 

detected by a conventional test for the specific function (Root et al., 2006). Since its 

unique mechanism of action, the implementation of this tool has improved the 

analysis of both small-scale studies and HTSs. For instance, HTSs made possible the 

simultaneous analysis of a wide set of gene functions, in a way that it is possible to 

identify various members of functional pathways or involve new genes in a known 

function or process (Lord et al., 2009). These types of RNAi screenings are usually 

subdivided in two formats: the pool format, where the silencing occurs in the cells 
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randomly, and the arrayed format, where instead each gene is targeted by the 

silencing molecule in a multi-well plate. On one hand, in the pool screen the library of 

RNAi reagents, usually against the whole genome, is introduced randomly, in such a 

way that statistically only one gene is targeted in one cell. The readout of these 

screens is based on the selection of a phenotype displayed by the cells, for instance 

the survival or the expression of a particular protein, or by the comparison. 

Consequently, the identification of the genes responsible for the phenotype, also 

called deconvolution, could be carried out in different ways, such as next generation 

sequencing (Luo et al., 2009). Due to the complexity of the application of this format, 

Figure 10 Formats for high-throughput mammalian RNAi screens: some examples. (A) Well-based RNA 
interference (RNAi) screening. (Aa) Libraries of gene-targeting reagents (bacterial glycerol stocks siRNAs are 
kept in multi-well plates. (Ab) The libraries of gene-targeting reagents are converted into transfection-quality 
DNA (plasmid-based shRNAs) or siRNAs. A strategy that is commonly used is to pool multiple siRNAs that 
target the same gene and array these gene-specific pools into multi-well plates. (Ac) Transfection-quality DNA 
from viral plasmid-based libraries can be used to make viruses in multi-well-plate format that, in turn, can be used 
for infection-based screening. Viruses (Ad) or nucleic acids (Ae) are then re-arrayed into 384-well plates for high-
throughput screening. (Af) Transduction, transfection or reverse transfection of the appropriate gene-targeting 
reagents into target cells results in gene-specific knockdown. (Ag) Phenotypic plate-based assays can be 
performed, and wells where the target cells show a dramatic response to the perturbation can be identified simply 
by their plate position (see red cells). (B) Various mammalian RNAi approaches, which are compatible with cell 
microarrays. (Ba) Libraries can be of several formats including siRNAs, plasmid-based shRNAs, enzymatically 
derived siRNAs (esiRNAs) or virus-based shRNAs. (Bb) Library constituents can be printed onto glass 
microscope slides at high densities. (Bc) RNAi microarrays can be stored for long periods of time or cells can be 
cultured on top of these arrays and then processed in an image-based assay. (Bd) The cells on top of ‘spots’ that 
represent specific gene knockdowns are examined automatically by analysis software (Moffat and Sabadini, 2006).  
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in particular the deconvolution process, the whole-genome library was divided in 

smaller pools. On the other hand, in arrayed formats the number of genes to analyse is 

more adaptable, ranging from few hundreds to the entire genome. The RNAi reagents 

are delivered each one in one well of the multiwell plate, which facilitates both the 

manipulation and the readouts. The detection of the phenotype is usually done by 

assessing cell viability, the response to a drug or the localisation of a protein, by 

luminescence or fluorescence readouts (Echeverri and Perrimon, 2006; Conrad and 

Gerlich, 2010). In addition, the advantage of arrayed formats is the ability to assay 

multiple phenotypes in each gene or well during a single screen, in order to improve 

the specificity of the system (Figure 10). 

 

1.2.3 The role of bioinformatics 

Disregarding the type, the meaningful information retrieved from these screenings 

could be integrated with bioinformatic approaches. Bioinformatics analyses carried 

out on the entire genome can identify a subset of candidate genes, which can be 

subsequently tested with the experimental setup of RNAi reagents. As such, a subset 

of genes sharing a biochemical function (i.e. kinase) have been analysed, showing that 

the activity of JNK, a transcription factor, could be regulated by different, previously 

unrelated, kinases (Bakal et al., 2008). Bioinfomatics can be also used indirectly, 

retrieving the information about a specific subset of genes from the data available 

from literature. These literature-based analyses are then followed by the screen of the 

retrieved gene subset. An example of this is the identification new regulation 

mechanisms of haematopoietic stem cell activity. RNAi screening evaluated a small 

subset of genes involved in stem cell homeostasis, identifying Msi2, a RNA binding 

protein, as positive regulator of stem cell self-renewal, speculating on its implication 

in leukaemic cells (Hope et al., 2010). Hence, the further integration of RNAi 

screenings with bioinformatic platforms and data derived from protein-protein 

interaction or gene expression studies can shed more light on the complexity of gene 

networks (Mohr and Perrimon, 2012).  

 

1.2.4 Specificity 

Given the high throughput of the RNAi screenings, an important issue that has not 

been fully addressed yet is the false discovery (FD). During the initial years of RNAi 

screens, several inconsistencies amongst primary screenings have been detected, 
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which were mainly attributed to false positive “hits”. The cause of these false 

discoveries was the off-target effect (OTE) (Birmingham et al., 2006). The 

improvement of the technologies and the understanding of the mechanism of OTE, 

such as implementation of gene annotation, improved reagent design coupled with 

statistical analysis, have demonstrated to effectively minimise FD (Birmingham et al., 

2009). Although it is not clear if OTE can be ruled out, there are different methods to 

limit FD. Perform the screening using a different readout, which reduces the intrinsic 

error of a specific assay, such as proceeding with fluorescence-based assay when 

previously a luminescence-base was used, as well as choose the right cut-off 

according to the purpose of the screening, and, lastly, using a multiple RNAi reagents 

or cell lines are different ways proven useful to minimise the OTE (Mohr and 

Perrimon, 2012). 

 

1.2.5 Discoveries 

The efficacy of systematic interrogation of gene function that RNAi application has 

provided is presented by a plethora of studies and it led to a wider comprehension of 

the function of genes, and their role, in pathways and networks of different cells and 

organisms (Bakal et al., 2008; Luo et al., 2009; Toyoshima et al., 2012; Rudalska et 

al., 2014). RNAi screens have played a significant role in elucidating cancer biology 

and the mechanisms of anticancer drug resistance. The study of Luo et al. (Luo et al., 

2009) demonstrated the sensibility of colorectal cancer cells to alteration of mitosis 

comparing KRAS wt and mutated cells, in particular the susceptibility of KRAS 

mutated cell to proteasomal degradation of Polo-like kinase 1 (PLK1). This synthetic 

lethal approach could lead to the application of PLK1 inhibitors in CRCs with 

mutated KRAS. A similar recent approach pointed out instead, how 

pharmacologically circumvent the oncogenetic activity of MYC. By the screening of 

thousand of targetable genes, the group identified hundreds genes required for MYC-

driven oncogenesis, such as casein kinase 1 epsilon. This particular kinase was then 

inhibited by a small molecule, which resulted in reduced cell viability of both MYC-

overexpressing cell models and in vivo models, providing another possible tool to 

anticancer therapy. Finally, a new research has identified, by a pooled RNAi screen, 

that among the gene amplified in hepatocellular carcinoma (HCC) one, Mapk14, was 

associated to poor cancer survival and resistance to sorafenib treatment. In this 

experimental setup, inhibition of Mapk14 sensitised both in vitro and in vivo models 
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to the action of sorafenib by blocking gene’s downstream signalling. This discovery 

not only provided a new therapeutic target but also a new approach to therapy of 

drug-resistant HCC (Rudalska et al., 2014). Hitherto, literature presented the power of 

RNAi to elucidate various aspects of biology of the cells and how this tool could be 

useful to understand cancer biology and identify new therapies.  

  

 

1.3 Steroidogenic Acute Regulatory Protein–Related Lipid Transfer D3 - 

STARD3 

STARD3 is a cholesterol-binding protein belonging to the START (steroidogenic 

acute regulatory protein–related lipid transfer) protein family and it is involved in the 

shuttling of cholesterol across the different membranes of the cellular compartments. 

Whereas its precise mechanism of action is still elusive, STARD3 has been 

recognised to play a role in endosomal dynamics and in the last years several studies 

have shown also its involvement in cancer, specifically HER2-overexpressing breast 

cancer, as an oncogenic partner of HER2-driven carcinogenesis. 

 

1.3.1 START Superfamily 

Lipids consist in a wide a diverse array of molecules and their activity is crucial in 

maintaining different aspects of cellular homeostasis, such as membrane integrity, 

energy balance and signal transduction (Santos and Schulze, 2012). As a result of 

their physico-chemical features, transportation of lipids in aqueous environment is 

needed for their action and it is achieved by both vesicular and non-vesicular 

mechanisms. Vesicular transportation takes place by formation, shipping and fusion 

of vesicles between cellular organelles and plasma membrane, whilst non-vesicular 

transport consist of simple transfer of lipid molecules from a membrane to another, 

through the cytoplasm (Lev, 2010). The second process is carried out by a series of 

amphipathic proteins of which the START domain proteins represents a one of the 

major families (D’Angelo et al., 2008).  

The START domain protein family (STARD) is composed by 15 different members, 

each one sharing one START domain. This domain, which is constituted of about 210 

aminoacids, contains the lipid-binding capability, due its hydrophobicity and the 

special arrangement of ß-sheets and α-helixes. The resulting pocket binds to the lipid, 
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which varies accordingly to the specific arrangement of the STARD protein (Clark, 

2012). These proteins can be classified in six subgroups according to their sequence 

homology: organelle-bound cholesterol carriers, START-only cholesterol carriers, 

phospholipid/ceramide carriers, RhoGAP-START group, thioesterase group and 

STARD9 (Figure 11) Organelle-bound cholesterol subgroup is composed by 

STARD1 and STARD3, the first STARD proteins to be identified. These proteins 

present a similar biochemical functions, such as binding to cholesterol, but differ in 

the structure, subcellular localisation and tissue expression. STARD1 is basically the 

C-term START domain with a N-term mitochondrial localisation signal (Tsujishita 

and Hurley, 2000) and it is mainly found expresses in gonads and adrenal cortex. Its 

expression is regulated by a cAMP-dependent mechanism in response to trophic 

hormones, which underline the importance played in cellular steroidogenic regulatory 

pathways (Lin et al., 1995). Indeed, the activity of STARD1 is pivotal in transporting 

cholesterol to mitochondria, where it is metabolised to the hormone precursor 

pregnenolone (Clark, 2012). This has been further demonstrated by the STARD1 

knock-out mice. The animals died few days after birth because of the absence of 

hormonal production, showing an accumulation of cytoplasmic lipid deposit in 

adrenal and gonad steroidogenic cells (Caron et al., 1997). Moreover, despite its 

internalisation in the mitochondria is not necessary for its activity, the absence of 

targeting signal showed an slightly aberrant STARD1 function, resulting in modest 

lipid accumulation in both adrenal and gonads, which is probably due to the 

regulatory property of mitochondrial localisation motif (Arakane et al., 1998; Bose et 

al., 2002). STARD3 will be discussed in detail later in the paragraph. 

Another group of sterol-binding STARD proteins are START-only sterol subgroup, 

which in composed by STARD4, D5 and D6. The peculiarity of these proteins is that 

their structure is made of only a START domain, which has a similar specificity of 

STARD1 and D3. STARD4 is the main component of the subfamily and seems to 

play a role in delivering sterols to endoplasmic reticulum (ER) (Alpy and Tomasetto, 

2005; Rodriguez-Agudo et al., 2011), a central event in cellular cholesterol-sensing. 

In fact, the cellular cholesterol levels are strictly linked to ER cholesterol and an 

increase induces esterification of cholesterol, whereas a decrease lead to the activation 

of sterol regulatory element-binding protein-2 (SREBP2) (Goldstein et al., 2006; 

Chang et al., 2009). In high-cholesterol conditions, SREBP2, a transcription factor 

precursor, is inactive and sequestered in ER, but when sterol levels are too low it 



  Introduction 

 
34 

induces the transcription of genes involved in cholesterol uptake, synthesis, and, by a 

mechanism of negative feedback, STARD4 itself. This is further demonstrated by 

STARD4 overexpression, which results in SREBP2 retention in ER (Goldstein et al., 

2006; Rodriguez-Agudo et al., 2011). Moreover, STARD4 can also transport other 

sterol derivatives to the ER, since its function can be substituted by methyl-ß-

Figure 111 START protein family structure. The START protein family is divided into sub-families based on 
sequence homology within the START domain. Mt: mitochondria targeting signal; MENTAL: MLN64 N-terminal 
domain; PH: pleckstrin homology; FFAT: two phenylalanines in an acidic tract; THIO: hotdog-fold acyl-CoA 
thioesterase domain; SAM, sterile alpha motif; RHOGAP: GTPase activating protein; KMD: kinesin motor 
domain, FHD: FHA phosphoprotein binding domain (Alpy and Tomasetto, 2014). 
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cyclodextrin injection when STARD4 is silenced, demonstrating its non-selective 

transporter activity in equilibrating cholesterol levels between the membranes 

(Mesmin et al., 2011). Lastly, STARD4-deficient mice have shown limited alteration 

of lipid metabolism, suggesting probable redundancies in STARD4 action (Mesmin et 

al., 2013). Conversely, STARD5 binds with greater affinity to cholic and 

chenodeoxycholic acid, components of bile acids, than cholesterol and 

hydroxycholesterol (Létourneau et al., 2012; Mesmin et al., 2013). Nevertheless, 

evidences suggest that its role may be transporting cholesterol to mitochondria and 

ER, increasing free cholesterol levels and inducing the transcription of SREBP2 

(Borthwick et al., 2010; Rodriguez-Agudo et al., 2008). Despite a still controversial 

role, STARD5 may transport cholesterol to the ER, increasing its stress, or act as a 

cholesterol buffer to reduce free-cholesterol induced lipotoxicity (Clark, 2012). The 

last component is STARD6. Little is know about this transporter, which it is 

expressed almost exclusively in male gonads and can transport cholesterol to the 

mitochondria more efficiently than STARD1 (Bose et al., 2008) 

The phospholipid/ceramide subgroup is characterized by a higher level of 

heterogeneity than the other. This is due to the structural and ligand-affinity 

differences of the components. Whereas STARD2/PCTP, STARD7 and STARD10, 

STARD-only proteins, bind to phosphatidylcholine (PC), STARD11/CERT, which 

present two membrane-interacting domains, binds to ceramides. All these proteins are 

expressed ubiquitously (Hanada et al., 2003; Horibata and Sugimoto, 2010; Kanno et 

al., 2007; Olayioye et al., 2005). STARD2, or PC-TP, is a protein that binds and 

rapidly transport PC to the plasma membrane and the mitochondria (Kang et al., 

2010). It is usually localised in cytoplasm, but it can be also detected in mitochondria. 

In this regard, observations showed that its localisation can be regulated by the 

phosphorylation of serine 110 (de Brouwer et al., 2002). Even though its affinity for 

PC, STARD2 interacts also with fatty acids, such as palmitoyl acid. Given its broad 

specificity, the protein can have a differential preference of interaction with a 

different membranes (Kang et al., 2010). The second component of the subgroup is 

STARD7. This protein is present in two isoforms, a longer one which is usually 

localise to mitochondria and shorter one, derivative from the previous, which instead 

is cytoplasmic (Horibata and Sugimoto, 2010). Due to its structure, it is involved in 

PC shuttling to the mitochondria (Flores-Martin et al., 2013). STARD10 has affinity 

not only for PC but also for phosphatidylethanolamine (PE). Its function as lipid 
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transporter is regulated by the phosphorylation, by casein kinase II, of the serine 284. 

In particular, phosphorylation of S284 or/and removal of few aminoacids at the C-

term prevents both the interaction with the membrane, therefore the delivery of the 

lipids (Olayioye et al., 2007). The last component of the group is STARD11, also 

known as CERT. Current data propose that this protein acts as a ceramide carrier from 

ER to Golgi, where in turn ceramide is converted into sphingomyelin or ceramide 

derivatives (Hanada et al., 2003). The peculiarity of STARD11 compared to the other 

member of the subgroup is the multi-domain structure. Actually, it is composed by a 

plecktrin homology domain (PH), a middle region of two phenylalanines in an acidic 

tract (FFAT), and a C-term where START domain is found (Holthuis and Menon, 

2014). This particular arrangement of domains has been demonstrated, in vivo, to be 

fundamental for its localisation, between ER and Golgi, and function, that is to 

transport ceramide from ER, where ceramide is synthesised, to Golgi, where it is 

converted in sphingomyelin, despite in vitro START domain alone was sufficient to 

carry out its activity (Hanada et al., 2003; Hanada et al., 2009). Thereby, STARD11 is 

bound to Golgi through PH domain, specifically to the phosphatidylinositol 4-

phosphate (PI4P) in the Golgi membrane, and to ER through FFAT, leaving START 

domain free to swap lipids from one membrane to the other. The activity of 

STARD11 is regulated by phosphorylation of serine-repeat motif: the 

hyperphosphorylation induces a globular folding, resulting in an inactive form of 

STARD11, whilst the hypo-phosphorylation leads to the active open conformation 

(Hanada et al., 2009). Finally, the importance of STARD11 on ceramide 

transportation is also supported by the phenotype of knock-out animals. The lack of 

STARD11 suppresses the delivery of ceramide in Golgi, thus decreasing the amount 

of sphingomyelin and induces mitochondrial alteration, which lead to the death of the 

animals during embryogenesis (Wang et al., 2009). 

The subfamily of RhoGAP-START, referred also as deleted in liver cancer (DLC), is 

composed by STARD12/DLC-1, STAD13/DLC-2, and STARD8/DLC-3. These 

proteins act as tumour suppressors in different types of cancer and share a unique 

multidomain structure, which consists of an N-terminal sterile alpha motif (SAM), a 

RhoGAP domain and a C- terminal START domain (Lukasik et al., 2011). SAM 

domain activity is not entirely clear, having been only reported to play a role within 

STARD12 in regulation of cytoskeletal network and migration (Zhong et al., 2009). 

Conversely, RhoGAP domain activity has been well studied. Since its GAP function, 
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this domain plays an important role in the regulation of the RhoGTPases, inducing a 

change in the state of activation. In particular, STARD12 regulates Rho A, and C, 

whilst STARD8 and 13 only Rho A and Cdc42 (Ching et al., 2003; Healy et al., 2008; 

Kawai et al., 2007). Given the Rho proteins action in cytoskeletal actin, this subfamily 

is likely to play a role in the rearrangement of the cytoskeleton and a modification of 

the cellular structure, a feature further supported by the disruption of actin stress 

fibers after the overexpression of both STARD8, STARD12, and STARD13 (El-Sitt 

and El-Sibai, 2013). However, different observations have shown that also an 

unstructured region between START and RhoGAP influences the cellular 

morphology. This region promotes the interaction of STARD8/D12/13 with focal 

adhesion, specifically with resident protein CTEN, tensin 1 and 2, all actively 

involved in the regulation of cytoskeletal structure (Kawai et al., 2007, 2009; Liao et 

al., 2007). Taken together, all these observations show the high level of similarity of 

these 3 proteins, suggesting a redundant function, especially because mice KO for 

STARD13 have a normal development (Yau et al., 2009). However, diverse reports 

have pointed out the non complete overlap of function of these proteins, for example 

STARD12 silencing induces an early stop in embryonic development in mouse 

(Durkin et al., 2005). Lastly, considering the activity toward RhoGTPases, which 

regulate actions such as adhesion, polarity, and cell division, and given their 

localisation near focal adhesions, it has been speculated that STARD8, 12 and 13 

could play a role in regulating these processes in a lipid-dependant fashion. This 

seems to be supported by the fact that STARD13 mediates ceramide signalling, 

probably inducing PGP synthase in mitochondria, a role previously considered of Rho 

A (Hatch et al., 2008). The exact role of START domain in these proteins is still 

unknown.  

The last group is represented by thioesterase subfamily, which is composed by two 

proteins: STARD14 and 15. They belong to the acyl-CoA thioesterase (ACOT) from 

which they differ only for the presence of the START domain, and possess two 

hotdog-fold/thioesterase domains (THIO)(Kirkby et al., 2010). STARD14 acts as a 

dimer, favouring the binding to long-chain fatty acyl-CoAs. The enzymatic activity is 

carried out by the THIO domains, but the START domain promote the hydrolisation. 

Although the presence of a mitochondrial targeting signal, its localisation has been 

identified mainly in cytosol and microsomes (Han and Cohen, 2012). On the other 
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hand, STARD15, despite the similarities with STARD14, is specific toward acetyl-

CoA, probably shuttling it to other ACOT proteins (Suematsu and Isohashi, 2006). 

Finally, the last member of the START-domain containing protein is STARD9, the 

most diverse of the STARDs. Strikingly, it outweighs all the other proteins, weighting 

500 kDa, and presents a N-terminal kinesine domain along with an FHA 

phosphoprotein binding domain, and a C-terminal START domain. Its role is not fully 

understood, but it localises to the centrosomes and seems to be important for mitosis, 

since STARD9 knock-down induces aberrant mitosis and, in turn, apoptosis. 

Moreover, its silencing promoted apoptosis after taxol treatment, therefore suggesting 

a possible target of therapeutic intervention (Torres et al., 2011). 

 

Despite some of the START proteins are not well examined, several proofs of their 

function in cancer have been found. As such, STARD1 was referred as gene possibly 

involved in HCC. In particular, elevated mitochondrial cholesterol levels have been 

linked to decreased intrinsic apoptosis activation (Henry-Mowatt et al., 2004). Since 

in HCC cells STARD1 has been shown to be highly expressed and correlates with 

cholesterols levels, it could play a role in the oncogenesis of liver cancer (Montero et 

al., 2008). Moreover, STARD10 has been detected as overexpressed in breast cancer 

and more frequently, but not exclusively, associated to EGFR and HER2 

overexpression, by whom it can promote malignant transformation (Olayioye et al., 

2004). Interestingly, STARD10 may possess also some oncosuppressor property, 

since not only its lost correlated with a poorer breast cancer prognosis, but also it is 

downregulated during epithelial-to-mesenchymal transition (Murphy et al., 2010; 

Vetter et al., 2010). In line with this, the RhoGAP-START proteins have been shown 

to be selectively deleted in liver cancer, hence their name (DLC). Specifically, 

STARD12 is down regulated in several cancer cell lines besides breast and liver 

cancer (Plaumann et al., 2003; Yuan et al., 2003), whereas its overexpression slow 

cellular growth (Goodison et al., 2005). Along with STARD12/DLC1, STARD8 and 

13 have potential oncosuppressor effects. These proteins are frequently lost in HCC as 

well. However, since their function as regulator of RhoGTPases, the tumour 

suppressor activity may occur by RhoGAP domain. At the end, also STARD11/CERT 

has been demonstrated to be involved in cancer, precisely in the resistance to taxol 

agents. This activity seems to be caused by the alteration of ceramide levels of the 

membranes, which could prevent chemotherapy-induced apoptosis (Lee et al., 2012). 
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As such, STARD11 could represent a novel biomarker for drug resistance in cancer 

and a therapeutic target as well (Hullin-Matsuda et al., 2012). 

 

1.3.2 STARD3 

STARD3 has been discovered during a screening of lymph nodes derived from 

metastatic breast cancer, hence the name MLN64. In these samples, the protein was 

identified to be overexpressed as the result of the amplification of the region q11-q21 

of chromosome 17, specifically co-overexpressed with HER2 (Tomasetto et al., 1995). 

The sequencing of the gene revealed that MLN64 had a high homology with 

STARD1, which suggested a possible involvement in cholesterol transportation as 

well as STARD1. Despite its similarity with STARD1 and its cholesterol-binding 

property, STARD3 role as cholesterol carrier is not yet fully understood. 

 

1.3.2.1 Structure and molecular biology 

STARD3 is formed by two major domains, MENTAL, which has a FFAT motif, and 

START (Figure 122).  

On the C-terminal side, it is localised the START domain, highly similar to STARD1, 

by which it exerts steroidogenic activity, as aforementioned. For this activity, START 

domain has been proven fundamental, since its removal blocked steroidogenic activity, 

diversely MENTAL removal has not resulted in the same block, showing instead an 

increase of steroidogenesis (Watari et al., 1997). This steroidogenetic event seems 

effectively to take place in the mitochondria. It has been reported that mitochondrial 

proteases could process STARD3 producing a 28 KDa fragment corresponding to the 

START domain, which stimulates the synthesis of steroids, such as progesterone 

(Esparza-Perusquía et al., 2015). The precise conformation of the aminoacids in this 

domain creates hydrophobic lipid-binding pocket, by which STARD3 binds 

cholesterol in an equimolar ratio (1:1) and carry out its activity as specific cholesterol 

transporter (Reitz et al., 2008; Tsujishita and Hurley, 2000). Several roles of START 

have already been discussed extensively in the previous section.  

MENTAL domain is located at the N-terminal of the protein and it is present also 

only in STARD3 N-teminal like (STRAD3NL), with whom it shares more than 80% 

of homology. The MENTAL domain is highly conserved in all the animal kingdom 

and present four transmembrane helices linked by three inverted loops, which are 

arranged in a unique fashion (Alpy et al., 2003, 2005). It prompts the localisation of 
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STARD3, by the interaction with 14-3-3, in late endosome (LE), with a particular 

accumulation in the limiting membrane (Liapis et al., 2012). Whereas no proper 

signal for this localisation has been identified, a mutated version of MENTAL showed 

the inability of STARD3 to bind to the LE. Moreover, by fluorescence microscopy, 

the MENTAL conformation was shown to be fundamental for the orientation toward 

the cytoplasmic side of LE membrane (Alpy et al., 2001, 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The particular disposition of the transmembrane helices confers to MENTAL domain 

dimerisation properties, that could be either homo- or etero-dimerisation between 

STARD3 and STARD3NL on LE membrane, in a similar way of tetraspandin 

oligomerisation (Alpy et al., 2005). In addition, MENTAL seems to bear cholesterol-

binding activity as well as START domain, promoting the formation of cholesterol 

microdomain between the helices (Alpy et al., 2005). The consequences of this 

particular characteristic are still not clear. Finally, MENTAL domain has been also 

Figure 122 STARD3 contain two domains and shares some sequence homology. A schematic representation 
of STARD1, STARD3 and STARD3NL shows the high grade of homology between these proteins. Adapted 
from Alpy and Tomasetto 2014.  
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demonstrated to be involved in the association between LE and ER. Precisely, by 

fluorescence and electron microscopy, it has been identified that the interaction is 

elicited by the FFAT motif that, acting as a molecular tether, binds to VAP1, a protein 

found in ER membrane, bringing about the LE and ER (Figure 133). The interaction 

between FFAT and VAP1 leads to the formation of special site of connection, also 

called membrane contact sites (MCS), resulting in the surrounding of endosome by 

ER. A prolonged interaction of STARD3 and VAP1, thus LE and ER, leads to the 

alteration of endosomal compartment dynamics (Alpy et al., 2013). In these settings, 

STARD3 is believed to transferring cholesterol from LE to ER across the MCS, as a 

consequence of swinging of cholesterol from a membrane to the other, similarly to 

STARD11. Given the huge similarity, the process can be carried out by STARD3NL, 

suggesting a possible role executed in tandem. Although the role in different 

processes, STARD3-deficient mouse did not displayed any serious phenotype, but a 

slight sterol metabolic alteration (Kishida et al., 2004). 

As previously encountered, START proteins can have some redundant function.  of 

the many examples is STARD3. Since STARD1 is not ubiquitously expressed as 

STARD3, the last has been suggested to compensate for STARD1 absence in 

steroidogenic organs, such as placenta and brain (King et al., 2006; Moog-Lutz et al., 

1997; Watari et al., 1997). Whereas the role in placenta has been referenced byseveral 

studies (Esparza-Perusquía et al., 2015; Olvera-Sanchez et al., 2011), STARD3 role 

may be compensated by alternative steroidogenic pathways in KO mouse models 

(Kishida et al., 2004; Miller, 2013). Conversely, in brain STARD3 is unlikely to be 

involved in synthesis of neurosteroids (King et al., 2006). Low density lipoproteins 

(LDLs) possess high concentration of cholesterol and are internalised in the cell by a 

clathrin-mediated endocytic mechanism, which directs the lipid component first to the 

LEs and/or Lysosomes (LE/Ly), then to other regions (Goldstein and Brown, 2009; 

Midzak and Papadopoulos, 2014). In cholesterol redistribution are involved two 

proteins, Neimann-Pick C1 and C2 (NPC1, NPC2), whose deficiency causes a 

neurodegenerative disorder (Neimann-Pick type C disease) characterised by lipid 

storage disruption. The two proteins act together in promoting the efflux of 

cholesterol from LE/Ly: NPC2, localised in the LE, binds and transfers luminal 

cholesterol to NPC1, which carries it out of the endosome (Midzak and Papadopoulos, 

2014). To test whether there are connection between STRAD3, NPCs and cholesterol, 

STARD3 was overexpressed. Its overexpression showed that STARD3 may promote 
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transportation of cholesterol from LE to plasma membrane along with ABCA3, 

alternatively to mitochondria when coupled with NPC2 (Charman et al., 2010; van der 

Kant et al., 2013). However, no alteration was reported in NPC-deficient cells (Alpy 

et al., 2001; Hölttä-Vuori et al., 2005), whereas lipid accumulation, apoptosis and 

liver damage have been reported in in vivo models (Tichauer et al., 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although the role of STARD3 in cholesterol transfer seems to be paradoxical, its role 

in LE-ER transportation appears to be clearer and consistent (Alpy et al., 2013). The 

redundancies resulting from the similarities between START domain proteins coupled 

with different expression levels in different cell types might account for the difficulty 

in elucidating the role of STARD3. Whereas lacking a proper signal of LE 

localisation, it interacts with endosome-lysosomes, its activity slow the maturation of 

LE down into lysosome.  

 

 

 

Figure 133 STARD3 mechanism of action. Accordingly to Alpy and Tomasetto 2014, STARD3 could act 
tethering ER to LE via the interaction of VAP1, a LE-resident protein, with the FFAT motif presents in STARD3. 
This closure between the two compartments could allow an exchange of cholesterol between the membrane 
mediated by STARD3.  
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1.3.2.2 STARD3 implication in cancer 

STARD3 was first identified in the minimal HER2 amplification region in samples of 

breast cancer (Tomasetto et al., 1995). Whereas many other genes were co-amplified, 

only few were also co-overexpressed with HER2, such as growth-factor-bound-7 

(GRB7) and STARD3 itself (Staaf et al., 2010; Vincent-Salomon et al., 2008). 

STARD3 lies about 30Kb far from Erbb2 gene, centromerically, and its co-

overexpression with HER2 could be the consequence of Sp1 transcription factor, 

whose binding sites were found in both their promoters (Alpy et al., 2003). Although 

the co-overexpression was observed more frequently in breast cancer, new evidences 

suggested a possible HER2-STARD3 overexpression also in colorectal and gastric 

cancers (Cancer Genome Atlas Network, 2012; Qiu et al., 2014).  

The HER2-positive breast cancer are about the 20% of all breast cancers and the 

application of targeted therapy with trastuzumab have demonstrated to improve 

clinical outcome (Higgins and Baselga, 2011). However, 50% of the cases do not 

respond or develop resistance to the treatment (Sahlberg et al., 2013), and STARD3, 

due to the relationship with HER2, has been proposed as a possible cause of these 

responses (Dave et al., 2011). Thus far is not clear how STARD3 and HER2 are 

connected, nevertheless the association between these genes is strong, even 

considering the reduced survival resulting from their overexpression (Cai et al., 2010; 

Lamy et al., 2011; Vassilev et al., 2015). This has been supported by the effect of 

STARD3 on cancer cell models. In fact, silencing of STARD3 in HER2-positive 

breast cancer cell lines resulted in reduced cell proliferation and increased cell death, 

conversely no effect was detected in cell who did not overexpress HER2 (Kao and 

Pollack, 2006). Strikingly, overexpression of STARD3 in cell with normal HER2 

levels produced an similar effect, inducing cell death and toxicity (Tichauer et al., 

2007). In addition, Sahlberg et al., through a loss-of-function study in HER2-positive 

breast cancer cell line, identified several genes in amplicon of HER2, which reduced 

cell viability, amongst which were found STARD3 and GRB7. Moreover, it was 

observed a synergic effect of silencing of HER2 and STARD3 on cell viability, which 

induced apoptosis, suggesting that the HER2-positive tumours may depend on genes 

present in HER2 amplicon.  

How STARD3 relates to HER2 is still controversial, nonetheless different studies 

addressed its mechanism of action. Cai et al. showed, by RNAi approach, that in 

breast cancer cell lines, STARD3 promoted proliferation and adhesion, proposing 
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STARD3 a regulator of focal adhesion kinase (FAK), main regulator of adhesion 

processes. Interestingly, this evidence has been further supported by a recent study in 

breast cancer cell lines (Vassilev et al., 2015) where STARD3 have been shown to 

regulate Scr and FAK phosphorylation in response to serum and insulin levels, that in 

turn led to higher adherence and plasma membrane cholesterol. Although these 

models used breast cancer cell lines in which HER2 is not overexpressed, therefore 

the relationship between HER2 and STARD3 is yet to be explained. Considering the 

multistage nature of cancer development and the heterogeneity of cancer cells, the 

unclear, sometime paradoxical, activity of STARD3 should not surprise. Further 

investigations should be carried out to elucidate the mechanism by which it exerts its 

functions 
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2 - RESULTS AND DISCUSSION 

 

2.1 Rationale 

Colorectal cancer is one of the leading causes of cancer-related mortality world wide 

and, although the current treatments have been able to reduce mortality, we still need 

better therapies to improve patient survival, especially of patients with metastatic 

tumours (Ferlay et al., 2015; Gallagher and Kemeny, 2010) 

Keeping in mind the power of RNAi screening to interrogate the function of a large 

gene sets (Luo et al., 2009) and to find new pharmacological targets (Cole et al., 

2011; Rudalska et al., 2014), we thought to identify new important regulators of CRC 

development by the aid of screening with therapeutic potential. To increase the speed 

and the efficiency of this process, we selected a subset of genes found to be amplified 

in colorectal cancer in a study carried out by The Cancer Genome Atlas (TCGA, 

2012). In this study, TCGA analysed 257 cancer genomes, of which 97 were analysed 

in further detail for somatic copy number variation (SCNV). Amongst the significant 

SCNV identified, we have selected those with amplified genes, which more probably 

contain genes with oncogenic features (Pierotti et al., 2003). The total amount of 

amplified gene retrieved was 212. 

 

2.2 Screen of specificity and activity of shRNA library. 

To interrogate the gene set, in order to identify potential oncogenes, we have chosen 

to proceed by carrying out a RNAi screening in an arrayed format, since it has already 

been proven a useful tool to identify genes involved in oncogenesis. The RNAi 

reagents chosen were short hairpin RNA (shRNA), by which a more stable and 

reproducible gene silencing could be obtained (Mohr and Perrimon, 2012). RNAi has 

an intrinsic issue with specificity, also known as off-target effect (OTE), which can be 

successfully reduced when RNAi is integrated with gene expression data (Booker et 

al., 2011). Based on this, we analysed the expression of the gene set by qPCR in 

parallel with specificity of the silencing. By the evaluation of mRNA levels (Figure 

14), we identified that in HCT116 cell line about 70% of the genes were indeed 

expressed and specifically silenced by the action on shRNA compared to the control 

(cell transduced with pLKO empty vector), considering an arbitrary cut-off of 50% 
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silencing. The remaining about 30% was either not amplified or not enough silenced. 

As a consequence, other shRNAs and primers have been ordered.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taking into account that the major part of the genes was expressed in our cell line 

model, we proceeded to test the phenotypical effects of the shRNA library, in 

particular the effect on cell viability, one of most conspicuous characteristic of cancer 

cells (Hanahan and Weinberg, 2011). To minimise the influences derived from a 

specific cell line, we used 4 different colorectal cancer cell lines, HCT116, HT29, 

DLD1 and CACO2, each one corresponding to a different molecular subtype 

(Guinney et al., 2015). These cell lines were seeded and after 96 hours, cell viability 

was assessed by luminescence assay. The results (Figure 15) displayed great variation 

of cell viability amongst and within the cell lines, resulting from shRNA activity. In 

particular, whereas in DLD1 and CACO2 the shRNA library slightly affected cell 

viability, in HCT116 and HT29, the genes whose silencing reduces cell viability of an 

arbitrary cut-off of 50% compared to the control, were 53 and 14 respectively. 

Considering the levels of reduction of cell viability, the druggability of the genes (i.e. 

the presence of enzymatic active sites) and the relative involvement in cancer (i.e. 

number of publications retrieved from pubmed.org at the query: “gene’s identifier” 

AND cancer), we identified a set of 12 genes, which, after further validation (data not 

Figure 14. Validation of gene list specific silencing. Relative expression of amplified genes in HCT116. RNA 
was analysed by qPCR. The orange line corrensponds to the arbitrary cut-off of 50% of silecing. Genes whose 
expression was less than 50% of control (1.0, pLKO) were considered silenced, otherwise not silenced. A subset 
of genes was not expressed (left side of the chart). 
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shown) were downsized to 1, given its strong and more reproducible phenotype: 

STARD3.  

Our approach showed that coupling shRNA specificity validation and loss-of-function 

assays could be effectively used to investigate the function of subsets of cancer-

related genes derived from literature, in line with previous findings, substantiating the 

feasibility of these type of small/medium-scale RNAi screening. Despite not yet 

complete, thus far the screen has allowed us to identify a candidate oncogene. In fact, 

STARD3 has been shown to be involved in HER2-positive breast cancer as a gene 

that synergycally support HER2 activity (Sahlberg et al., 2013). Moreover, given its 

cholesterol-binding pocket on the START domain, STARD3 represents an ideal 

protein on which an inhibitor could be design to block its action.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 STARD3 affects cell viability of CRC cell lines. 

To evaluate the extent of the effect of STARD3 silencing and to rule out possible cell-

dependent effect, we tested the effect of STARD3 knockdown evaluating the variation 

in terms of cell viability not only in HCT116 and HT29, but also in COLO201 and 

COLO205, two cell lines that correspond to different molecular subtypes. In these 

experimental settings, to reduce the probability of OTE we used a second shRNA 

(shSTARD3_2) in addition to the previous, which paired to a different sequence on 

STARD3 messenger RNA. The effect of knockdown on the viability was monitored 

Figure 15. Functional screening of candidated genes following RNAi. Relative viability of HCT116, HT29, 
Caco2 and DLD1. The cells were seeded at 500 cell/well (HCT116) and 1000 cells/well (HT29, Caco2, DLD1) 
and the vitality was measured after 96-hours. The realtive cell viability was normalised on the values of cells 
transduced with empty vector (pLKO).  
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every 24 hours, for 96 hours and from the analysis we observed a substantial and 

robust reduction of vitality in all the cells knockdown for STARD3, (Figure 16 a, b, 

cd). Moreover, to confirm that STARD3 was effectively and specifically reduced, we 

analysed its protein levels by western blot, detecting a considerable decrease of the 

protein, indicating the strength and the specificity of shRNA activity (Figure 16 e). By 

the analysis, it was evident that STARD3 downregulation had a fundamental effect on 

cell proliferation. In fact, its ablation caused a decrease of >50% of vitality in all the 

different cell lines, although the variation of growth rate and timing amongst them, 

which could have been imputable to the diverse genetic and mutational background of 

the cell lines (i.e. HCT116 shows a microsatellite instability and HT29 chromosomal 

instability instead) and experimental variability 

The activity and the specificity of STARD3 silencing was effectively validated and 

the results showed a remarkable effect on cell viability, even if the differences 

between the cell lines are considered. Although previously observed in breast cancer, 

we identified the effect of STARD3 on viability of colorectal cancer cells, and given 

its profound consequences when silenced, we speculated on its possible involvement 

in carcinogenesis as an oncogene 
 

2.4 STARD3 silencing alters cell cycle distribution and induces an increase of 

sub-G1 population. 

 Cell proliferation is highly dependent on cell cycle activity, and is tightly regulated in 

normal cells, whereas in many cancers it is frequently deregulated resulting in 

uncontrolled cell division, which sustains cancer progression. For these reasons, cell 

proliferation is considered an hallmark of cancer (Hanahan and Weinberg, 2011). 

Given the intimate connection between cell growth and cell cycle and the drastic 

effect of STARD3 silencing on cell viability, in order to look deeper into the 

mechanisms on which STARD3 may impinge, we analysed the distribution of cell 

cycle phases. Implementing the previously used experimental settings, STARD3-

knockdown cells and the relative control cells were harvested along with the culture 

medium, and stained with propidium iodide, to evaluate DNA content by flow 

cytometry. In all the cellular models (Figure ), we saw that STARD3 ablation caused 

a significantly different distribution of cell cycle phases. In particular, after STARD3 
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silencing, cell populations in G1 and S phases have a mild often discordant variation 

amongst the cell lines, however that was not the case of the population in  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G2/M phase. In fact, the phase saw a significative increment, though variable, of more 

than 50% compared to the control levels. Interestingly, despite not ubiquitously, the 

number of cells with a DNA content below 1n, hence in subG1 “phase”, was greatly 

affected by the silencing of STARD3 as well, which increased the amount up to 24 

folds.  

Figure 16 STARD3 silencing hampers cell viability. Relative viability of HCT116 (a), COLO201 (b), 
COLO205 (c) and HT29 (d) transduced with two different shRNAs compared to the control. The cells were 
seeded at 500 cells/well (HCT116) and 1000 cells/well (COLO201, COLO205, HT29) and the vitality was 
measured by luminescence over a 96-hours period, every 24 hours (except HCT116 at 72 hours), using a 
microplate reader. The realtive cell viability was normalised on the values of cells transduced with empty vector 
(pLKO). (e) Western blot to evaluate STARD3 expression in HCT116, COLO201, COLO205 and HT29 after 
transduction with two different shRNA and the relative control 

COLO201 HCT116 

COLO205 HT29 

HCT116 COLO201 COLO205 HT29 
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These observations of STARD3 effect on cell cycle phases, suggest that it may not 

influence the cells in phase G1 and S, but instead play a role in the activation in G2/M 

checkpoint, since the increases amount of cell detected in phase G2/M. This 

thoroughly tuned checkpoint prevents cells with DNA aberrations to be enter mitosis, 

whilst its deregulation, usually detected in different types of cancers, allow the cells to 

maintain the mutations which render the cells genomicallyunstable (Talos and Moll, 

2010). As a consequence of prolonged activation, thus a non-resolution of the DNA 

damage, the checkpoint leads to permanent cell cycle arrest and in turn cell death 

(Löbrich and Jeggo, 2007). We speculated that these could have been the conditions, 

as we have seen a significant increase amongst the cell lines of subG1 population, a 

marker of cell death, as well (Löbrich and Jeggo, 2007; Lukas et al., 2004). With 

these results. we showed that STARD3 may generally act by promoting a favourable 

resolution of the G2/M checkpoint, allowing the cells to progress toward mitosis, 

regardless of the G1 and S phases, which substantiate its oncogenic behaviour in 

colorectal cancer.  

 

2.5 STARD3 silencing induces apoptosis. 

G2/M checkpoint is a crucial step in cell cycle and its activation trigger the cell cycle 

arrest and cell death. Since the effect of STARD3 silencing led to a substantial 

increase of the subG1 population of cells, we investigated whether this process could 

result in apoptotic activation. Using HCT116, COLO201, COLO205 and HT29 

transduced with shRNA against STARD3, and the relative control (empty vector), we 

harvested the cells, including the culture medium, and evaluate the expression of the 

apoptotic marker Annexin V, by flow cytometry. Interestingly, the analysis revealed 

that after STARD3 knockdown, the cells started to express more apoptotic markers 

compared to the control cells and, despite differences among the cell lines, both single 

positive (Annexin V alone) and double positive (Annexin V and 7AAD) populations 

were from at least twice more concentrated upon STARD3 silencing than the control 

(Figure 188). The increase in the apoptotic population was detected in all the cell lines 

analysed, however only in HCT116, COLO 201 and COLO205 the difference 

between the silenced and control cells was significant. In HT29, a trend toward an 

apoptotic increase was seen, despite the wide variation of the standard deviation.  
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Figure 17 STARD3 effect on cell cycle prevents cell death. (a) Upper panel – Example of PI-positive COLO201 
control and silenced cells plotted on an area vs. height chart, to distinguish single cell from aggregates. Lower panel 
– Example of PI-positive cells plotted on an area vs. events chart, to identify cells in G1 phase (at about 200 
realtive intensity units (RIU) on the FL2-A axis), G2/M phase (at about 400 RIU on the FL2-A axis ), S phase 
(between G1 and G2/M phases) and subG1 “phase” (labeled as “Apoptosis” in light blue). Fold variation of cell 
cycle phases of HCT116 (b), COLO201 (c), COLO205 (d), HT29 (e) control and silenced cells. HCT116 and 
COLO201, COLO205 and HT29 were collected 3 days and 5 days after transduction, respectively, stained with PI, 
then analysed by flow cytometery. The fold variation was normalised on the values of the contols. p values were 
calculated with two tailed t-test, *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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The pro-apoptotic phenotype resulting from the ablation of STARD3 was further 

supported by the detection of the activation of caspase-3 and -7, the main and final 

effectors of apoptotic pathway (Elmore, 2007). Using a luminescence assay that 

detected caspase activity, apoptosis levels were analysed in HCT116 (Figure 19a), 

COLO201 (Figure 19b) and COLO205 (Figure 19c) upon STARD3 silencing, 

showing a significant increase of caspase activity compared to the control cells and, in 

line with these observations, a narrow variation after its overexpression. Doxorubicin 

was used as positive control (Figure 19a). A slight perturbation of caspase activity 

was detected in HT29 though, which indicated however a trend toward an increased 

caspase activity, suggesting that STARD3 absence could be compensated by other 

proteins regarding apoptosis inhibition, and this could be dependent on the particular 

gene expression levels and genetic background (Figure 19d).  

Despite the variability amongst different cell lines, we showed a clear involvement of 

STARD3 in the apoptotic process, which suggest that STARD3 may play a role as 

anti-apoptotic protein, another hallmark of cancer, thus supporting the oncogenic 

potential of this gene. The phenotype resulting from the inhibition of its activity could 

HCT116 
COLO201 

COLO205 HT29 

HCT116 

HCT116 

HCT116 

Figure 18 STARD3 prevents cell death inhibiting apoptosis. Relative amount of Annexin-V positive HCT116 
(a), COLO201 (b), COLO205 (c), HT29 (d) silenced and control cells. HCT116 and COLO201, COLO205 and 
HT29 were collected 3 days and 5 days after transduction, respectively, stained with 7AAD and Annexin-V, then 
analysed by flow cytometery. (e) Left panel - Example of HCT116 plotted on an intensity vs. complexity chart. 
Right panel – Example of HCT116 plotted on a 7AAD vs. Annexin-V chart. The amount of Annexin-V positive 
cells was normalised on the values of the contols. p values were calculated with two tailed t-test, *, p < 0.05; **, p 
< 0.01; ***, p < 0.001 
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be the consequence of the circumvention of G2/M checkpoint activation, therefore 

allowing the cells to proliferate without control. Whereas from this process, cancer 

cells could acquire new oncogenic features, possibly evolving in more aggressive 

cells, thus more aggressive tumour (Greaves and Maley, 2012), we may also argue, 

considering the results of STARD3 overexpression, that the accumulation of a DNA 

aberration derived from a improper resolution of G2/M checkpoint may lead to 

unsustainable genomic instability, which led to cell death, especially if we also 

consider a non-perfectly responsive G1/S checkpoint (Yasutis and Kozminski, 2013) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6 STARD3 induces anchorage-independent growth 

A hallmark of oncogenic behaviour is the ability of sustaining cell growth 

independently from external mechanical stimuli, such as interaction with a solid 

substrate, which otherwise would induce cell death, also called anoikis. In particular, 

anchorage-independent growth is a key feature of oncogenic transformation, and can 

be measured by soft agar assay (Guadamillas et al., 2011). For this purpose, 

shSTARD3-transduced HCT116 cell line, and relative control, were seeded into a soft 

Figure 19. STARD3 prevents apoptosis by inhibiting Caspase-3 and -7 activity. Relative caspase activity of 
HCT116 (a), COLO201 (b), COLO205 (c), HT29 (d), silenced and control cells, analysed by luminescence 
assay. HCT116 and COLO201, COLO205 and HT29 were collected 3 days and 5 days after transduction, 
respectively. The proteic lysates were incubated with Caspase-Glo 3/7® kit reagents and luminescence measured 
by microplate reader. HCT116 were treated with doxorubicin for 5 hours. p values were calculated with two 
tailed t-test, *, p < 0.05; **, p < 0.01; ***, p < 0.001 
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agar matrix and cultured for 20 days. Pictures were taken during the culture and 

afterwards cells were stained with crystal violet and counted in term of size of the cell 

clusters (Figure 20a). The analyses shown that STARD3 played a pivotal role in cell 

cluster growth when not anchored to a firm substrate, since where it is silenced, 

colonies were more rare. Furthermore, the assay was carried out on NIH3T3 cell line, 

immortalised but not transformed murine fibroblasts. Using the same experimental 

setup, we overexpressed STARD3 in the cells, using cells transduced with an empty 

vector as reference. We observed that the overexpression led to the formation of 

colonies (Figure 20b), conversely none were identified in control cells, that is in line 

with literature (Guadamillas et al., 2011). 

The experiments demonstrated that STARD3 played a fundamental role in supporting 

cancer progression and in the acquisition of oncogenic features of non-cancer cells, 

hence we may infer that STARD3 has a more general effect toward carcinogenesis, 

promoting not only the deregulation of G2/M checkpoint, but also sustaining 

anchorage-independent growth of cells of the normal colonic mucosa. 
 

 

 

 

 

Figure 20. STARD3 expression prevents anoikis. (a) Upper Panel - Relative growth of HCT116 silenced and 
control cells. Lower panel – Colonies of HCT116 silenced and control cell on soft agar matrix stained with crystal 
violet (b) Upper Panel - Relative growth of NIH3T3 silenced and control cells. Lower panel – Colonies of 
NIH3T3 overexpressed and control cell on soft agar matrix stained with crystal violet. The cells were embedded in 
soft-agar matrix, seeded in a multiwell plate, and cultured adding the proper medium to prevent the soft agar to 
dry. After 20 days cells were washed, fixed with PFA, and stained. After destaining, the images were acquired and 
analysed with ImageJ. The number of colonies was normalised on the values of the controls. p values were 
calculated with two tailed t-test, *, p < 0.05. 
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2.7 STARD3 is involved in cell migration. 

As previously stated, overcoming anoikis is an hallmark of cancer and this ability 

could lead to cell migration and invasion, that is in turn associated with metastasis 

formation (Guadamillas et al., 2011). Following the anchorage-independent assay, we 

investigated whether STARD3 could be involved in these cellular processes. To test 

that, STARD3 was knockdown in HCT116, COLO201 and DLD1 cell line and their 

migration potential was assessed by evaluating the cell capability to migrate through 

the pores of a semi-permeable membrane, a widely used migration assay. Consistently 

with the earlier results, the cells knockdown for STARD3 showed significantly less 

migration capability compared with the control cells (Figure 21a, b, c), although with 

noticeable variability amongst the cell line migration kinetic. Subsequently, we also 

tested STARD3 effect on cell invasion, by analysing the capability of the cells to 

migrate across the semi permeable membrane and a layer of Matrigel®, which 

mimics extracellular matrix. Despite preliminary results, cells with impaired STARD3 

showed a trend toward fewer invasions although not significant (Figure 21d, e, f).  

The data showed that STARD3 is involved in the regulation of cell migration, since 

the effect of the silencing on the migratory capability. The ability to promote 

migration, coupled with the results of anchorage-independent assays, reinforce the 

idea of STARD3 behaves as an oncogene, therefore suggesting its possible 

involvement in the regulation of the metastasis process. However, the mild effect on 

invasiveness detected upon STARD3 knockdown may mean that STARD3 requires 

additional supporting partners to pass through the extracellular matrix 
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2.8 STARD3 influences p53 expression 

Thus far, although the mechanism by which STARD3 exerts its function has been 

partially elucidated (Alpy et al., 2013; van der Kant et al., 2013), it is not fully 

understood. Considering the involvement of the tumour suppressor gene TP53 in 

many types of cancer, especially in colorectal, and the particular connection with cell 

cycle and cell death, we decided to analyse its expression. By western blot, we were 

able to identify an upregulation of p53 in STARD3-silenced HCT116 when compared 

with control cells (Figure 22a, b, left panels). This indicated that p53 may be involved 

in the promotion of G2/M checkpoint-derived apoptosis. Curiously, in COLO201 and 

COLO205 p53 was conversely downregulated following STARD3 silencing (Figure 

22a, b, central and right panels). Although the apparently contradicting observations, 

the results may be explained by p53 status in these cells. In fact, in both COLO201 

and COLO205 p53 is homozygously mutated in the DNA-binding domain (DBD), 

which usually results in the production of an oncogenic version of p53, whereas in 

HCT116 p53 gene is wild type (Mouradov et al., 2014). The mutations affecting the 

DLD1 

DLD1 COLO201 

COLO201 HCT116 

HCT116 

Figure 21. STARD3 promote migration, but not invasion. Relative migration of HCT116 (a), COLO201 (b), 
DLD1 (c) silenced and control cell lines, analysed by fluorescence assay. Relative migration of HCT116 (d), 
COLO201 (e), DLD1 (f) silenced and control cell lines, analysed by fluorescence assay. Cells stained with DiI 
were seeded in the transwell basket and placed in contact with complete medium in a multiwell plate. After 24, 48 
and 96 hours, for HCT116 and COLO201, after 24 and 72 hours, for DLD1, the fluorescence was measured by 
microplate reader. The fluorescence intensity was normalised on the values of control cells. p values were 
calculated with two tailed t-test, *, p < 0.05; **, p < 0.01; ***, p < 0.001 
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DBD of p53 are usually pro-oncogenic (Brosh and Rotter, 2009), therefore from this 

perspective, the downregulation of p53 in COLO201 and COLO205 could be in line 

with HCT116 upregulation toward an antitumoural phenotype triggered upon 

STARD3 silencing.  

Overall, the results suggested that STARD3 influence oncogenic p53 activity, 

whatever its mutational status, which might not only support its oncogenic feature, but 

also might explain the G2/M checkpoint arrest and consequent induction of apoptosis 

after STARD3 silencing, given the involvement of p53 in the regulation of this 

checkpoint (Stark and Taylor, 2006). In order to confirm the influence of STARD3 on 

p53 activity, the results should be further supported by the evidence of activation of 

p53 downstream effectors, such as p21, the decreasing levels and activity of cyclin B 

and cdc2, two proteins that control and promote G2/M transitions, and the status of 

other regulators of G2/M checkpoint, such as Chk1 and 2, to have a more 

comprehensive picture of the effect of STARD3 on this biological network. 
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Figure 22. p53 oncogenic activity follows STARD3 expression. (a) Expression of p53 and STARD3 in 
HCT116, COLO201 and COLO206. Cells were transduced with STARD3 shRNAs or pLKO and the expression 
was detected by Western blot (b) Relative expression and quantification of p53 and STARD3 normalised over 
vinculin expression. The expression values of the cells were normalised on the control cells. 
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3 - CONCLUSIONS AND FUTURE PERSPECTIVES 

 

The current therapeutic options regarding the treatment of colorectal cancer have 

demonstrated a certain grade of efficacy, however the benefit in terms of survival are 

still limited (Cancer, 2016). The necessity of better therapeutics has been addressed 

by multiple studies but remains one of the major challenges to deal with for the 

improvement of CRC therapy (Finnberg et al., 2015). On these bases, we wanted to 

investigate whether new therapeutic targets could be retrieved by carrying out a 

systematic RNAi screening. Starting from a set of amplified genes in CRC derived 

from literature, by loss-of-function assay we successfully identified a new potential 

oncogene: STARD3. This gene encodes a cholesterol binding protein, which thought 

to regulate cholesterol shuttling between various subcellular compartments. STARD3 

has been frequently detected co-amplified with HER2 in HER2-positive breast cancer 

(Sahlberg et al., 2013; Tomasetto et al., 1995; Vassilev et al., 2015) thus its 

involvement in cancer is not new, however, to the best of our knowledge, we are the 

first to report its oncogenic potential in colorectal cancer. Indeed, in in vitro models, 

STARD3 was shown to possess the typical features of an oncogene (Hanahan and 

Weinberg, 2011), such as ability to migrate, to promote proliferation, to suppress pro-

apoptotic signals and to evade cell cycle arrest. Interestingly, these cancer-promoting 

capabilities were detected in almost all the models used, even if some has been 

derived from CIN/MSS (HT29) and some from MSI (HCT116, COLO201, COLO205, 

DLD1 and Caco2) colorectal cancers. Since in MSI cancers both deletions and 

amplifications are extremely rare (Mouradov et al., 2014) , we can speculate that 

STARD3 may act regardless from its amplification and from the amplification of 

HER2 amplification as well, therefore having an effect much wider that previously 

thought. Perhaps, upstream factors could differently upregulate its expression or its 

activity, which could also explain the difference of the results between the cell lines 

and the apparent discrepancies between our data and literature. Nevertheless, both the 

relationship with HER2 and the putative alternative mechanism by which STARD3 

exerts its function are yet to be found, and their fundamental analysis would be a 

major issue to be addressed in the future. 

Whereas so far the mechanism of STARD3 is still elusive, our data suggest that it 

might promote the “loosening” of G2/M checkpoint. A defective checkpoint results in 

the progression of the cell into mitosis phase disregarding the resolution of any DNA 
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damages, which is generally associated to the promotion of the accumulation of 

random mutations, that eventually lead cancer cells to acquire a more aggressive 

phenotypes (Löbrich and Jeggo, 2007). The evidence that in our experimental setup 

the silencing of STARD3 led to an increase of cells arrested in phase G2/M represents 

an opportunity to exploit this apparent advantage of cancer cells in which STARD3 is 

overactive. In fact, on one hand we showed that the inhibition of STARD3 led to a 

persistence of G2/M arrest, thus increased rate of apoptotic cell death. On the other 

hand, we could infer that this could synergise with the administration of DNA 

damaging agents toward cell death. Several evidences have shown in fact that a 

massive accumulation of DNA damages could lead to a permanent arrest of the cell 

cycle by the activation of G2/M checkpoint or activation of mitotic catastrophe, 

therefore promoting cell death (Surova and Zhivotovsky, 2013). On these bases, the 

inhibition of STARD3 could represent another interesting aspect to be further 

elucidated, since it not only could increase cell death by itself, but also synergise with 

currently implemented CRC therapies. Moreover, the presence of a cholesterol-

binding pocket, considering also the availability of the crystallographic structure 

(Tsujishita and Hurley, 2000), makes STARD3 an ideal targetable candidate for 

pharmacological inhibition on which design a drug, whereas the silencing mediated 

by antisense oligonucleotides could be an intriguing option to be explored as well.  

This type of approach to identify previously unknown gene participating in 

carcinogenesis has been proven successfully useful, since the identification of 

STARD3. This gene is an example of a new promising oncogenic target whose 

inhibition may provide benefits to colorectal cancer patients. Despite promising, its 

role is far to be well understood, therefore further investigations need to be carried out 

to better comprehend how and where to apply these body of knowledge in colorectal 

cancer therapy. 
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4 - MATERIALS AND METHODS 

 

4.1 Genes and shRNAs selection 

Genes were selected amongst the significant (p<0.05) focal amplification identified 

by (Cancer Genome Atlas Network, 2012), in supplementary table 4. The miRNAs 

were excluded from the selection. 

We interrogated the Mission® library of shRNA provided by Sigma-Aldrich, which 

use the lentiviral-based vector pLKO.1-puro. For each gene, up to 12 shRNA variants 

were available, but just 1 was selected at the beginning. The selection procedure 

preferentially included the shRNA with the following characteristics: 

• sequence complementarity to all splice variants of a mRNA 

• validated shRNA 

• sequence complementarity at the 3’ UTR region.  

Consequently to the validation processes, we selected another shRNA against 

STARD3 with a different target sequence.  

 

4.2 shRNA plasmid production 

The shRNA clones were purchased in bacterial glycerol stock format. Each bacterial 

clone, correspondent to one shRNA, was streaked on LB agar plate, additioned with 

ampicillin (100 µg/ml, Sigma), and left to grow overnight at 37° C. The resulting 

colonies were picked, inoculated in LB medium (ThermoScientific), and cultured 

overnight at 37° C in an orbital incubator. The bacterial culture was centrifuged, in 

order to recover the pellet, at 4500 rpm for 10 min, then the supernatant was discarded.  

The plasmid DNA was purified from the bacterial pellet by Plasmid Midi Kit 

(Qiagen) following manufacturer’s recommendation, and the quantity was assessed by 

nanodrop (Thermo Fisher Scientific) and quality with both nanodrop and on 1% 

agarose gel. The plasmids were stored at -20°. 

 

4.3 Cell culture 

HCT116, HT29, Colo201 and Colo205 cell lines were purchased from the European 

Collection of Authenticated Cell Cultures (ECACC), DLD1, Lovo, Caco2, SW48, 

HEK293T from American Type Culture Collection (ATCC) and NIH3T3 were kindly 

donated by Gustavo Baldassarre. Unless otherwise stated, cells were maintained in  
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their appropriate growth medium and plastic support at 37°C and 5% CO2. NIH3T3 

colon cancer cells were grown in Dulbecco’s modified Eagle’s medium (DMEM, 

Euroclone) supplemented with 10% foetal bovine serum (FBS, Euroclone), Non 

Essential AminoAcids (Lonza) and antibiotics (penicillin and streptomycin, Lonza). 

HCT116 colon cancer cells were grown in McCoy’s 5A medium supplemented with 

10% FBS and antibiotics. HT29 colon cancer cells was grown in MEM medium 

supplemented with 10% FBS, Non Essential AminoAcids and antibiotics. Colo201 

and Colo205 colon cancer cells were grown in RPMI medium supplemented with 

10% FBS and antibiotics. Lovo colon cancer cells were grown in RPMI medium 

supplemented with 10% FBS and antibiotics. Upon reached the confluence of 85-90%, 

the cells were detached by trypsin (Lonza). After trypsin inactivation, cells were 

resuspended in the appropriate medium and centrifuged 5 minutes at 1000 rpm. The 

resulting cellular pellet was resuspended using fresh medium and the cells counted by 

Bürker haemocytometer.  The cells were seeded accordingly. 

 

4.4 Virus production, transduction and stable cell line production 

To produce lentivirus, 7 × 105 HEK293T packaging cells per pool were seeded in 2 

wells of 6 multiwell plate 1 day before transfection. For each well, we diluted 2 µg of 

Sigma-Aldrich custom library plasmid (i.e. shSTARD3), 0.5 µg of pMD2G, 1 µg of 

psPAX2 in 100 µl of plain DMEM incubated 20 min at RT, plus 16 µl of transfection 

agent (FuGENE® HD, Promega). The cells were incubated for 24 h at 37 °C, after 

which the medium was refreshed. Lentivirus-containing supernatants were collected 

at 48 and 72 hours post-transfection with 20% of FBS. The two collections of 

lentiviral particles were pooled, filtered through a 0.45 µm membrane (Sartorius 

Stedim/PVDF) and stored at −80 °C. Cell lines were transduced with lentivirus 

supernatants supplemented with 8 µg/ml hexabromide (Sigma). At 24 h post-infection, 

medium was replaced and cells were selected with 2 µg/ml of puromycin or 5 ug/ml 

blasticidin (Gibco). Antibiotic selection was stopped as soon as no surviving cells 

remained in the no-transduction control plate. 

 

4.5 Primer Selection 

Primers were selected using IDT technologies “Designer Tool” software. The selected 

primers were designed to anneal in exons separated by an intron. Primers were 

resuspended at 100µM in TE buffer 1X (10 mM Tris-HCl pH8 and 1mM EDTA in 
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ddH2O), diluted at the working concentration of 10µM, and used at the final 

concentration of 0.5µM.  

 

4.6 RNA isolation and real-time PCR (qPCR) 

Cells were collected, washed with PBS and stored at -80°. Then, cellular pellet was 

thaw and total RNA was extracted using Quick-RNA miniprep (Zymo Research) and 

following the manufacturer’s protocol. RNA quantity was assessed by nanodrop 

(Thermo Fisher Scientific) and quality with both nanodrop and on 2% agarose gel. 

cDNA was produced with GoScriptTM Reverse Transcription (Promega) using 400ng 

of total RNA per reaction. qPCR reaction was performed with GoTaq® qPCR Mater 

Mix (Promega) in 7500 Real-Time PCR system (Applied Biosystem). Data analysis 

was performed by comparative ΔΔCt methodology, using ß-actin as normaliser. Each 

gene was analysed in duplicate as well as the normaliser, along with one negative 

control. The amplification products were subsequently analysed by agarose gel 

electrophoresis.  

 

4.7 Western blot 

At the right confluence, the cells were collected and washed in PBS, to remove the 

left traces of medium. Cells were then lysed in RIPA lysis buffer (50 mM Tris-HCl 

pH 8.0, 150 mM NaCl, 1% IGEPAL, 0.5% sodium deoxycholate and 0.1% SDS) 

supplemented with protease and phosphatase inhibitor cocktails (Sigma-Aldrich). 

Protein concentrations were measured using the Bio-Rad Protein Assay (Bio-Rad 

Laboratories), diluted 1:5 in H2O, on which 2 µl of sample was diluted and placed in a 

plastic cuvette. The protein concentration was assessed by plotting the result of 

absorbance of the solution, read at 595 nm, on a titration curve made using BSA. 

Equal amounts of protein (20-30µg) were separated by 8, 10 or 12% SDS–

polyacrylamide gel electrophoresis (SDS-PAGE, Euroclone) and transferred to 

nitrocellulose membrane (GE Healthcare) by miniprotean (Bio-Rad Laboratories) and 

detected with either LiteABlot ECL (Euroclone) or Amersham ECL by Chemidoc 

(Bio-Rad Laboratories), then the results analysed by ImageLab (Bio-Rad 

Laboratories) and ImageJ (v2.0.0, NIH). 

The primary antibodies used were: STARD3 (1:500, SantaCruz), vinculin (1:1000, 

Sigma), Vinculin (1:1000, Santa Cruz), p53 (1:500, Santa Cruz). The secondary 
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antibodies used were: anti-mouse (1:5000, Thermo Fisher Scientific), anti-rabbit 

(1:5000, Thermo Fisher Scientific) and anti-goat (1:5000, Thermo Fisher Scientific). 

 

4.8 Cell viability 

Cells were seeded in 96 multiwell transparent microplate (Falcon) and, after 

experimental timing, cell viability was measured using the CellTiter-Glo® assay 

system (Promega) according to the manufacturer’s instructions. Luminescence was 

assessed with microplate reader (Infinite F200 Pro, Tecan). The resulting values were 

normalised on the control, that is cells transduced with pLKO empty vector, in the 

experiments at 96h end point, whilst in time course experiments, each cell line was 

normalised on its T0. 

 

4.9 Cell cycle analysis and propidium iodide 

Adherent cells were detached by trypsin and collected along with floating cells and 

debries at the proper timing. 106 cells were counted, and fixed in ice-cold 70% ethanol 

for 2 hours at 4° degrees, followed by 1 hour of Rnase A (Roche) treatment and PI 

staining (BD). Cells were acquired by flow cytometer FACScan (BD). The recorded 

events were 20000 per sample, gated using Forward Scatter Channel (FSC) and Side 

Scatter Channel (SSC) to select cells with the most homogeneous features, and were 

analysed only the PI-positive single cells identified by plotting the events on a 

Area/Height chart (FL2-A/FL2-H) chart. These events were subsequentially plotted 

on a chart with FL2-A/events on which cell cycle and cell death were analysed by 

ModFit (Verity Software House).  

 

4.10 Cell death analysis and Annexin V 

Adherent cells were detached by trypsin and collected along with floating cells and 

derbies at the proper timing. 106 cells were counted, then incubated with 5µl of 

Annexin V-PE and 10µl of 7AAD reagents for 30 minutes at RT (PE Annexin V 

Apoptosis Detection Kit I - BD). Cells were acquired by flow cytometer FACS Canto 

(BD). The recorded events were 10000 per sample, gated using Forward Scatter 

Channel (FSC) and Side Scatter Channel (SSC) to select cells with the most 

homogeneous features, and were analysed in term of Annexin-V and 7AAD 

fluorescence intensity detected by flow cytometer using FACS Diva software (BD). 
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4.11 Caspase-3, -7 activity assay 

Cells were collected, lysed in NP-40 buffer (Igepal 0.5%, Hepes pH7 50 mM, NaCl 

250 mM, EDTA 5 mM) then the protein content was quantified by Bradford assay 

(reported above). Equal amount of protein (20µg) were added to a 96 multiwell 

transparent microplate. Each sample was incubated with 20 µl of Caspase-Glo 3/7® 

kit reagents (Promega) and after 30 minutes the luminescence was monitored by 

microplate reader. A higher level of luminescence was indicative of higher caspase 

activity. 

 

4.12 Soft Agar 

Cells were plated in 6 multiwell plate, in duplicate, at the concentration of 20000 and 

50000 per well, in 1.5 ml of Soft Agar matrix, composed by DMEM 2X (Millipore), 

TBP buffer (Sigma), Noble Agar (BD) and FBS (Euroclone), 0.35% final, over a 

bottom layer of Soft Agar matrix, 0.75% final. Cells were kept in culture and medium 

was added weekly. Picture of the cells were taken weekly. After the proper time, cells 

were fixed with 4% PFA (Sigma) and stained with Crystal Violet 0.05% (Sigma). The 

images were acquired after extensive destaining with ddH2O and analysed by ImageJ, 

using the “Analyse particle” tool. 

 

4.13 Migration and invasion assay 

For migration assay, 106 cells were collected and resuspended in 100 µl of PBS. The 

cells were incubated with 1 µl of Fast DiI oil (ThermoFisher) for 1 hour at 37° C, 

washed with PBS and resuspended in (150µl) DMEM without phenol red and FBS 

(Sigma) moved in a Fluoro Block transwell basket (Falcon). The basket was 

consequently inserted in a well of a 24 multiwell plate in which 700 µl of complete 

DMEM without phenol red were added. Invasion assay was carried out with the same 

setup, with the only addition of 50 µl of Matrigel® Growth Factor reduced (BD) 

coating of transwell basket. The flourescence of the cells was measured from the top 

and the bottom of the plate after cell seeding, by microplate reader, using an 

excitation wavelength of 535 nm and an emission wavelength of 590 nm.  

4.14 Statistical Analysis 



  Materials And Methods 

 
65 

All the results were the average of at least 3 experiments. The p-value was calculated 

using two-tailed Student’s T-test. The software adopted for the statistical analysis was 

Microsoft Excel. 
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