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Chapter 1

Introduction

We motivate the construction of spontaneous collapse models. We first look at the measure-
ment problem in orthodox quantum mechanics (Sec. 1.1); we then briefly discuss the main
ideas of spontaneous collapse models (Sec. 1.2). For a more complete discussion see [1, 2, 3]
and references therein. We conclude by summarizing the structure of the thesis (Sec. 1.3).

1.1 The measurement problem

A physical theory consists of a mathematical formalism and of an interpretation. The math-
ematical formalism is a set of abstract objects with precise rules on how to manipulate them,
while the interpretation connects the abstract mathematical objects with the physical world.
Specifically, in quantum mechanics we have the Hilbert space formalism given by the wave
function, the observables as self-adjoint operators and by the Schrödinger equation. On
the other hand, there is a multitude of different interpretations of quantum mechanics: we
will now first discuss the orthodox interpretation, where the state vector is complete and
exhaustive description of an individual system [4].

Let us first discuss the problem of macroscopic linear superpositions. For the moment we
postpone the discussion on what is macroscopic and what is microscopic: we loosely define as
a macroscopic distance the minimal resolution of the human eye and objects as macroscopic,
if they are visible by the naked eye. We consider a macroscopic system S described by states
in the Hilbert space H. In particular, we consider two states |ψ1⟩,|ψ2⟩, corresponding to two
different macroscopic configurations, i.e. the supports of |ψ1⟩,|ψ2⟩ in the configuration space
are disjoint and the distance between them is macroscopic: the distance between the two
positions of the center of mass in the two states, e.g. the book at the left edge of the table
and at the right edge of the table, respectively. We now consider the following state:

|ψ⟩ = 1√
2
(|ψ1⟩+ |ψ2⟩) , (1.1)

which is a possible state according to the theory. We are confronted with a paradoxical
situation: how can the book exist at two different positions on the table? Because of the
linearity of the theory (quantum superposition principle), even if the whole universe is care-
fully included in the above argument, the conclusion of macroscopic linear superpositions is
unavoidable: this is known as the problem of macro-objectification [5].

An attempt to bypass the problem of macro-objectification has been made within the
orthodox interpretation: it has been suggested that microscopic and macroscopic objects are

1



CHAPTER 1. INTRODUCTION 2

governed by intrinsically different laws, namely quantum mechanics and classical mechanics,
respectively. In particular, a microscopic system, when left undisturbed by macroscopic
objects, evolves according to the usual Schrödinger equation:

iℏ
d

dt
|ψt⟩ = Ĥ|ψt⟩, (1.2)

where Ĥ is the usual Hamiltonian operator. On the other hand, when a microscopic object
S, completely described by |ψ⟩, interacts with a macroscopic object M (the measuring ap-
paratus), one postulates a completely different evolution, namely the wave-function collapse
postulate. To formulate it, we associate to M a hermitian operator Â with eigenvalues de-
noted by a. In addition, we associate to both S and M a random variable A with probability
density function given by

p(A = a) = |⟨a|ψ⟩|2. (1.3)

We prescribe that, when the microscopic system S interacts with the macroscopic system M ,
the state changes instantaneously, and in a random way, to an eigenstate of Â:

|ψ⟩ → |a⟩, (1.4)

where a is chosen randomly by the random variable A according to the Burn rule in Eq.
(1.3). This resolution to the macro-objectification problem thus assumes two very different
evolutions for the state vector: a continuous and deterministic Schrödinger equation (1.2)
and the discontinuous and random wave-function collapse axiom in Eq. (1.4). However, we
are now forced to confront the question: what is the distinction between microscopic and
macroscopic? Since there does not seem to be an unambiguous answer, we are left with the
ambiguity in the use of the prescriptions given by Eqs. (1.2) or (1.4), i.e. when it is not
clear whether M is microscopic or macroscopic, it is not clear whether to use Eq. (1.2) or
Eq. (1.4) for the evolution of the wave function of the microscopic system S. This is known
as the measurement problem.

The measurement problem, although bypassing the macro-objectification problem, leads
to either an arbitrary or ambiguous distinction between microscopic and macroscopic sys-
tems. In fact, one can argue in a simple way, although not by any means conclusively, that
such a distinction is doomed to be flawed [3]: a macroscopic object is composed by micro-
scopic objects, e.g. a book is composed by atoms, and thus there should not be an intrinsic
distinction between microscopic and macroscopic objects. On the other hand, the effective
dynamics for the composite (macroscopic) object can be quantitatively very different from
the dynamics of its constituents. We now explore this possibility.

Consider a composite macroscopic object: we want to describe the dynamics of the com-
posite object using the degrees of freedom of its constituents, e.g. we want to describe the
dynamics of a book in terms of individual atoms. In particular, we ask the following ques-
tion: can we construct a dynamics such that the behavior for constituent microscopic objects
resembles quantum mechanics, while the center of mass position of the macroscopic objects
evolves approximately classically? We introduce the solution based on this idea, namely
spontaneous collapse models, in the following section. Specifically, the Schrödinger dynam-
ics is modified by additional terms: on one hand, for microscopic objects, these terms are
tiny, while on the other hand, for macroscopic objects, these terms combine, and effectively
classicalize the dynamics for the center of mass position of the macroscopic object.



CHAPTER 1. INTRODUCTION 3

1.2 Spontaneous collapse models

The literature on collapse model is vast: see [6, 7] and references therein. In this section we
discuss heuristically some of the common features of collapse models. In particular, we show
how collapse models solve the measurement problem.

The central idea of collapse models is a modification of the dynamics: the Schöodinger
equation is modified by stochastic and nonlinear terms. In particular, the dynamics is de-
termined by the pair (|ψt⟩, ht), where ht is a noise (field), while the system is completely
determined by |ψt⟩. Loosely speaking, the measurement problem is solved by combing the
Schrödinger evolution with the wave function collapse postulate given by Eqs. (1.2), (1.4),
respectively, in a single dynamical law.

For concreteness, let us introduce the collapse mechanism with reference to the first
collapse model introduced in the literature, namely the Ghirardi-Rimini-Weber (GRW) model
[8]: the other collapse models share the same basic features. The GRW model is parametrized
by two parameters: a collapse rate λ and a characteristic localization length rC . The values
suggested by GRW are: λ = 10−16s−1 and rC = 10−7m for a reference object of mass 1amu.
ht is in this case a Poisson stochastic process with mean λ that generates events of wave
function collapse at random times: when a collapse event is triggered, the wave function gets
multiplied (and thus localized) by a Gaussian with mean z and standard deviation rC , where
z is chosen randomly with probability density function

||L̂(z)|ψt⟩||2, (1.5)

and

L̂(z) = (πrC)
−3/4exp(−(x̂− z)2/2r2C) (1.6)

is called the localization operator (x̂ is the position operator). Let us consider a composite
object, completely described by |ψt⟩, of mass m ≈ Nm0, where N denotes the number of
nucleons. It can be shown, that the effective dynamics for the center of mass wave function
|ψCM

t ⟩ scales with the number of particles N , i.e. the effective collapse rate is given by
Γ = (m/m0)λ. We have the following picture

(|ψt⟩, ht) −→ (|ψCM
t ⟩, hCM

t ), (1.7)

where hCM
t is a Poisson stochastic process with mean Γ. In this way we re-obtain the quantum

mechanical predictions for microscopic objects, while, on the other hand, for larger objects
the dynamics gradually becomes classical (within experimental errors). This scaling of the
dynamical law for the center of mass, known as the amplification mechanism, gives the correct
classical limit and solves the macro-objectification problem.

Collapse models are usually seen as phenomenological, emerging from an underlying the-
ory: it has been suggested that the noise effectively describes fast degrees of freedom of an
underlying theory, as in Trace dynamics [9], or that it originates from a fundamental instabil-
ity of the system [10]. So far, the only derivation of the collapse dynamics has been given in
the framework of Bohmian mechanics [11]. In Bohmian mechanics, an N particle system is
completely determined by the pair (|ψt⟩, (X1, .., XN )), where X1, .., XN denote the positions
of the particles, and the wave function |ψt⟩ guides the evolution of the positions X1, .., XN .
Let us define the center of mass position as:
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XCM =

∑N
i=1miXi∑N
i=1mi

, (1.8)

where mi denotes the mass of particle i. It has been argued that the trajectory of particle i
becomes classical as the center of mass conditional wave function |ψCM

t ⟩, a well defined object
in Bohmian mechanics, becomes well-localized by the interaction with the environment. It
has been shown, loosely speaking after the integration of the environment degrees of freedom,
that |ψCM

t ⟩ has a GRW dynamics. We have the following picture:

(|ϕt⟩, (X1, .., XN , Y1, ..., YM )),−→ (|ψCM
t ⟩, XCM , hCM

t ), (1.9)

where |ϕt⟩ is the state vector associated to the total N +M particle system (system and
environment).

To summarize, two are the main features of the collapse dynamics: stochasticity and non-
linearity. It is straightforward to argue why stochasticity is necessary: we want to re-obtain
the quantum mechanical predictions in accordance with the Born rule given in Eq. (1.3). On
the other hand, as we will see, non-linearity is necessary to obtain well-localized states in the
classical limit. In addition, non-linearity implies stochasticity for the state vector evolution
if we request the condition of non-superluminal signaling [12]. However, there still remains a
large freedom in the construction of collapse models: this has led to a multitude of different
collapse models and model dependent experimental tests. This thesis will address this issues.

1.3 Thesis structure

In this thesis, based on the discussion in Sec. 1.2, we have asked the following two natural
questions:

1. Can we single out a particular collapse model using theoretical arguments?

2. Is there a model independent experimental test?

We give answers to these questions in Part I (Chapters 2 and 3) and Part II (Chapters 4 and
5) of this thesis, respectively. We summarize below each chapter of the thesis (the references
correspond to papers in preparation).

I 2: Gaussian collapse models [13]. We discuss the general structure of Gaussian spon-
taneous collapse models. We constrain the dynamics based on a set of minimal requests:
(i) probabilistic interpretation, (ii) collapse of state vector, (iii) covariance under space-
time transformations and (iv) stationary initial conditions. We classify the most well-
known collapse models in the literature.

I 3: CD map and cdCSL model [14]. We obtain the most general modification of the
von-Neumann map, namely the CD map, by imposing the following constraints: (i)
probabilistic interpretation, (iii) translational and rotational covariance, (iv) station-
ary initial conditions and (v) asymptotic Gibbs state. By imposing two additional
constraints: (ii) collapse of the state vector and (vi) noise field over physical space,
we construct a colored and dissipative generalization of the continuous spontaneous
localization (CSL) model, namely the cdCSL model.
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II 4 Theoretical interference patterns [15, 16]. We present a simple derivation of the
interference pattern in matter-wave interferometry as predicted by a class of master
equations, by using the density matrix formalism. We apply the obtained formulae
to the CD map. In addition, we apply the obtained formulae to the most relevant
collapse models. We discuss the separability of the collapse models dynamics along the
3 spatial directions, the validity of the paraxial approximation and the amplification
mechanism. We obtain analytical expressions both in the far field and near field limits.
These results agree with those already derived with the Wigner function formalism.

II 5 Matter-wave experiments [15, 16]. We compare the theoretical predictions with
the experimental data taken from the two most relevant matter-wave experiments:
the 2012 far-field experiment and the 2013 Kapitza Dirac Talbot Lau (KDTL) near-
field experiment of Arndt’s group. We show the region of the parameter space for the
CD map, which is excluded by these experiments. In addition, we obtain bounds on
the free parameters for the most relevant collapse models. We argue that matter-wave
experiments provide model insensitive bounds, valid for a wide family of dissipative
and non-Markovian generalizations.

In the appendices we discuss the covariance of dynamical maps: we generalize Holevo struc-
tures to non-Markovian maps (Appendix A) and we discuss Poincaré covariance (Appendices
B, C and D). We summarize below each appendix of the thesis (the references correspond to
papers in preparation).

A: Covariance of Gaussian maps [17]. We discuss the covariance of general non-Markovian
Gaussian maps under Galilean transformations. In particular, we characterize trans-
lational and Galilei boost covariant maps. We show that in the Markovian limit we
reobtain the characterization due to Holevo.

B: Foldy framework [14]. We introduce the canonical Poincaré covariant quantum me-
chanics. We briefly discuss the relation with the Foldy - Wouthuysen transformation
and with standard non-relativistic Galilei covariant quantum mechanics.

C: Classicalization maps and Relativity [18]. We argue the impossibility of translation
and Lorentz covariant classicalization maps, when particle/antiparticle interaction are
suppressed. We briefly discuss the implications for relativistic open quantum systems,
for non-unitary modifications of quantum mechanics and for measures of macroscopicity.

D: rCD and rcdCSL [14]. We discuss relativistic generalizations of the CD map and of
the cdCSL model, namely the rCD map and rcdCSL model, respectively. We obtain
explicit expressions for the 1/c2 relativistic corrections.
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Chapter 2

General structure

2.1 Introduction

Collapse models are largely viewed to be phenomenological models with the origin of the
noise still an open question. In particular, in the past decades several collapse models have
been proposed, and the term ”the zoo of collapse models” has been coined [7]. However, all
collapse models have been constructed from a similar mathematical structure: a noise field
coupled non-linearly to the wave function. These models all satisfy four basic requests: (i)
probabilistic interpretation (trace always equal to one), (ii) the state vector evolves towards
an eigenstate of the collapse operator, (iii) translational covariance and (iv) stationary initial
conditions of the noise field. The main differences between them can be categorized in terms
of the additional request imposed on top of the basic requests (i)-(iv). We will discuss in
detail the requests (i)-(iv) and the classification of collapse models. In particular, spontaneous
collapse models can be classified in four subgroups based on the (non) Markovian and (non)
dissipative character of the evolution. Non-Markovian collapse models have been investigated
in [19, 20]: we will re-derive them in a new way and extend the results to complex noise
fields and non-hermitian operators. In addition, we will show the connection between (non)
dissipation effects, complex noise fields and covariance under Galilean boosts.

In Sec. 2.2 we introduce the general Gaussian modification of the Schrödinger dynamics
and the usual collapse models notation. In particular, we obtain the most general Gaussian
continuous spontaneous collapse model. In Sec. 2.3 we impose constraint on the dynamics.
In Sec. 2.4 we classify the most well-known collapse models. In Sec. 2.5 we discuss some
open questions.

2.2 Gaussian stochastic processes

In this section we discuss the most general completely positive map derived from a diffusion
process on Hilbert space.

2.2.1 Stochastic differential equation

We consider the probability space (Ω, σ,Q). A generic Gaussian diffusion process for the
wave function in Hilbert space H =L2(R3) is described by the following stochastic differential

7
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equation:

iℏ∂t|ψt⟩ = (Ĥ + Ât)|ψt⟩ (2.1)

where Ĥ is a self-adjoint operator describing the standard quantum mechanical evolution and
Ât is a Gaussian operator valued Q-stochastic process defined by its means and correlation
functions:

EQ[Ât], EQ[Â
†
t ] EQ[ÂtÂs], EQ[Â

†
tÂs]. (2.2)

For later convenience we introduce the centered operator valued stochastic process:

Âc
t = Ât − EQ[Ât]. (2.3)

We thus rewrite Eq.(2.1) as:

iℏ∂t|ψt⟩ = (Ĥ + Âc
t + Ôt)|ψt⟩, (2.4)

where

Ôt = EQ[Ât]. (2.5)

In order to show how collapse models can be derived from the above equations, it is
convenient to rewrite the Gaussian operator valued stochastic process exploiting Weyl de-
composition [21], i.e.

Ât =

ˆ
dα

ˆ
dβgt(α, β)e

i
ℏ (αx̂+βp̂), (2.6)

where gt(α, β) is a complex Gaussian stochastic field, determined by mean and correlations:

EQ[gt(α, β)], EQ[g
∗
t (α, β)]

EQ[gt(α1, β1)gs(α2, β2)], EQ[g
∗
t (α1, β1)gs(α2, β2)]. (2.7)

This complex stochastic field can be rewritten, without loss of generality, as the product:

gt(α, β) = h̃t(α, β)K(α, β), (2.8)

where h̃t(α, β) is a complex stochastic field and K(α, β) is a complex valued field. Denoting
the inverse Fourier transform of the stochastic field as

h̃t(α, β) =

ˆ
dx

ˆ
dp ht(x, p)e

−i(αx+βp), (2.9)

one can eventually rewrite the generic stochastic process Ât as

Ât =

ˆ
dx

ˆ
dp ht(x, p)B̂(x, p), (2.10)

where

B̂(x, p) =

ˆ
dαdβK(α, β)ei(α(x̂−x)+β(p̂−p)). (2.11)



CHAPTER 2. GENERAL STRUCTURE 9

In particular, the relations in Eqs. (2.6)-(2.11) apply also for stochastic processes with zero
mean.

The definition in Eq. (2.10) thus splits in a general way the operator valued stochastic
process Ât in the operator field B̂(x, p) and a complex valued Q-stochastic process field
ht(x, p) determined by

EQ[ht(x, p)], EQ[h
∗
t (x, p)] EQ[ht(x1, p1)hs(x2, p2)], EQ[h

∗
t (x1, p1)hs(x2, p2)]. (2.12)

We can thus rewrite Eq. (2.1) as

iℏ∂t|ψt⟩ =
(
Ĥ +

ˆ
dxdp ht(x, p)B̂(x, p)

)
|ψt⟩. (2.13)

Introducing now the centered Gaussian stochastic field

hct(x, p) = ht(x, p)− EQ[ht(x, p)] (2.14)

we rewrite Eq. (2.13) as

iℏ∂t|ψt⟩ =
(
Ĥ + Ôt +

ˆ
dxdp hct(x, p)B̂(x, p)

)
|ψt⟩. (2.15)

This equation can be understood as the dynamics of a quantum state interacting with a
classical noise field ĥt on phase-space (x,p), through the coupling operator field B̂(x, p).

We also introduce, for later convenience, the zero mean noise field

gct (α, β) = gt(α, β)− EQ[gt(α, β)] (2.16)

where gt is introduced in Eq. (2.6).

2.3 Constraints

2.3.1 Probabilistic Interpretation

The diffusion process described by Eq. (2.1) is completely general and, except for the Gaus-
sianity of the stochastic field, no constraint has been imposed. The first important request
that Eq. (2.1) should satisfy is that

Tr[ρt] = 1 (2.17)

To check whether this condition is verified it is convenient to work in the interaction picture.
In particular, from Eq. (2.1) we obtain:

iℏ∂t|ψI
t ⟩ = ÂI

t |ψI
t ⟩ (2.18)

with

ÂI
t = e

i
ℏ ĤtÂe−

i
ℏ Ĥt. (2.19)
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However, for ease of presentation, we omit the index I in the following calculation performed
in the interaction picture. The solution of Eq. (2.18), with initial condition |ψ0⟩, can be
formally written in the form

|ψt⟩ = T (e−
i
ℏ
´
Âτdτ )|ψ0⟩. (2.20)

Exploiting this equation, under the assumption that the initial state |ψ0⟩ is noise independent,
the statistical operator describing the system at time t, i.e.

ρt = EQ[|ψt⟩⟨ψt|] (2.21)

is described by:

ρt = Mt
0[ρ0], (2.22)

where the averaged dynamical map Mt
0, that connects the statistical operator at time 0 with

the statistical operator at time t, is defined as:

Mt
0[ · ] = EQ

[
T (e−

i
ℏ
´
Âτdτ ) · T (e

i
ℏ
´
Â†

τdτ )
]
. (2.23)

It is convenient to introduce the left right formalism, denoting by subscript L(R) the operator
acting on ρ̂ from left (right) e.g. ÂLB̂Rρ = ÂρB̂ [22, 23, 24]. With this notation ρt can be
rewritten as:

Mt = EQ

[
T (e−

i
ℏ
´ t
0 dτ(ÂL,τ−Â†

R,τ ))
]
, (2.24)

where T acts separately on left and right operators. We rewrite the above Eq. (2.24) with
the centered stochastic process Âc defined in Eq. (2.3). Exploiting the Gaussianity of the
stochastic operator and the Isserlis theorem [25], we rewrite Eq. (2.24) as:

Mt
0 = T exp

(
− i

ℏ

ˆ t

0
dτ(ÔL,τ − ÔR,τ )

− 1

2ℏ2

ˆ t

0
dτ

ˆ t

0
dsEQ[T (Âc

τ,L − Âc†
τ,R)(Â

c
s,L − Âc†

s,R)]

)
. (2.25)

We time order the exponent using the Heavyside theta function and, after some algebra, we
obtain:

Mt
0 = T exp

[
− i

ℏ

ˆ t

0
dτ(ÔL,τ − Ô†

R,τ )

− 1

ℏ2

ˆ t

0
dτ

ˆ t

0
ds(EQ[Â

c
τ,LÂ

c
s,L]θτs − EQ[Â

c
s,LÂ

c†
τ,R] + EQ[Â

c†
s,RÂ

c†
τ,R]θsτ )

]
.

(2.26)

We now exploit the cyclicity of the trace in Eq. (2.26) and transform right operators to left
ones. At the end we obtain the following expression with only (the usual) left operators

Tr[ρt] = Tr[T exp

[
− i

ℏ

ˆ t

0
dτ(Ôτ − Ô†

τ )

− 1

ℏ2

ˆ t

0
dτ

ˆ t

0
ds(EQ[Â

c
τ Â

c
s]θτs − EQ[Â

c†
τ Â

c
s] + EQ[Â

c†
τ Â

c†
s ]θs,τ )

]
ρ0].

(2.27)
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The request of unitary trace leads to the following equality

Ôτ = Ĉτ +
i

ℏ

ˆ t

0
ds
(
EQ[Â

c
τ Â

c
s]− EQ[Â

c†
τ Â

c
s]
)
θτs (2.28)

under the time ordered exponential, where Ĉτ is an arbitrary hermitian operator. However,
we can set Ĉτ = 0, as we will discuss below, without loss of generality. We now insert Eq.
(2.28) back into Eq. (2.26), and obtain

Mt
0 = T [e

− 1
ℏ2
´ t
0 ds

´ t
0 dτ

(
EQ[Âc†

τ,LÂ
c
s,L]θτs−EQ[Âc†

τ,RÂc
s,L]+EQ[Âc

s,RÂc†
τ,R]θsτ

)
. (2.29)

We now compare Ôτ from Eq. (2.28) with the definition in (2.5). To this end we have to
derive the stochastic differential equation for the state vector, that generates the dynamics
in Eq. (2.20). Loosely speaking, we have to take Ôτ out of the time order operator. Taking
the time derivative of Eq. (2.20), where Ôt and Âc have been replaced by Eqs. (2.28), (2.10),
respectively, we obtain:

iℏ∂t|ψt⟩ =
ˆ
dxdp hct(x, p)B̂t(x, p)|ψt⟩+ Ĉt|ψt⟩

+
i

ℏ

ˆ t

0
ds

ˆ
dx1

ˆ
dp1

ˆ
dx2

ˆ
dp2

(
EQ[h

c
t(x1, p1)h

c
s(x2, p2)]B̂t(x1, p1)

− EQ[h
c∗
t (x1, p1)h

c
s(x2, p2)]B̂

†
t (x1, p1)

)
·T
{
B̂s(x2, p2) exp

(
− i

ℏ

ˆ t

0
dτ

ˆ
dx

ˆ
dp hcτ (x, p)B̂τ (x, p) + Ôτ

)}
|ψ0⟩, (2.30)

We now formally replace the operator B̂s(x2, p2) with the functional derivative over the noise
field iℏδ/δhcs(x2, p2) to take it outside the time order operator. Thus, by comparing Eq. (2.30)
and Eq. (2.15), we obtain the relation:

Ôt = Ĉt −
ˆ t

0
ds

ˆ
dx1

ˆ
dp1

ˆ
dx2

ˆ
dp2

(
EQ[h

c
t(x1, p1)h

c
s(x2, p2)]B̂t(x1, p1)

− EQ[h
c∗
t (x, p)hcs(x, p)]B̂

†
t (x1, p1)

)
δ

δhcs(x2, p2)
(2.31)

This equation combined with the definition of Ôt given in Eq. (2.5), shows that that the
requirement of trace preservation, necessary for a probabilistic interpretation of the average
dynamics Mt, restricts the class of possible stochastic fields: the average value is determined
by the covariance of the process. Because of the noise functional derivative in the above
equation, the average value of the noise is in general not only determined by the noise
fluctuations, but also by the dynamics of the quantum mechanical state, as if a back reaction
mechanism induced by the dynamics is present in the noise field.

The freedom of the hermitian operator Ĉt is not surprising: hermitian operators do not
change the norm of the state vector and thus do not alter the condition of trace preservation.
From another perspective, Ĉt can be viewed as the hermitian part of

´
dxdpEQ[ht(x, p)]B̂t(x, p)

that can be absorbed in the usual Hamiltonian operator.
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2.3.2 Collapse of the state vector

The evolution of the Q-state vector |ψt⟩ given by Eq. (2.15) in general does not preserve the
norm. However, we can introduce the normalized Q-state vector:

|ϕt⟩ = |ψt⟩/⟨ψt|ψt⟩1/2, (2.32)

which has a stochastic and non-linear evolution.
Using the fact that EQ[⟨ψt|ψt⟩] = 1 we define a second probability measure P, through

the Radon-Nikodym derivative [26]:

dP
dQ

= ⟨ψt|ψt⟩. (2.33)

Rewriting then Eq. (2.21) in terms of the normalized state vector |ϕt⟩ and the probability
measure P, we immediately obtain the following relation:

ρ̂(t) = EP[|ϕt⟩⟨ϕt|]. (2.34)

We now require that the dynamics of the normalized state vector |ϕt⟩, evolves |ϕt⟩ to an
eigenstate of a specific operator when Ĥ = 0 (collapse of the wave-function). Indeed, a good
collapse model should evolve a macroscopic object towards a well-localized state on a time
scale, where the free dynamics can be safely neglected, as otherwise quantum effects could
modify the classical motion of the macroscopic object (in the sense that the macro-object
is not always localized in space anymore). Setting Ĥ = 0, the state |ϕt⟩ should evolve to
a position eigenstate and the collapse should be compatible with the usual Born rule. The
case when B̂ are a set of commuting hermitian operators and hct is a imaginary-valued Q-
stochastic field has been investigated in [19, 20]. In particular, it has been shown that the
P-state ϕt collapses according to the Born rule when we set Ĥ = 0: we now analyze the case
of generic B̂ and hct fields referring to this special case.

In order to investigate the collapse mechanism we decompose the stochastic process field
in the real and imaginary part:

hct = h
c (Re)
t + ih

c (Im)
t . (2.35)

We also decompose the operator in its hermitian and anti-hermitian part:

B̂ = B̂(+) + iB̂(−), (2.36)

where

B̂(+) =
1

2
(B̂ + B̂†), (2.37)

iB̂(−) =
1

2
(B̂ − B̂†). (2.38)

In this way we obtain:

Ât = L̂t + iĴt (2.39)

where
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L̂t(x, p) = h
c (Re)
t (x, p)B̂(+)(x, p)− h

c (Im)
t (x, p)B̂(−)(x, p), (2.40)

Ĵt(x, p) = h
c (Im)
t (x, p)B̂(+) + h

c (Re)
t (x, p)B̂(−). (2.41)

The L̂t term, which generates a unitary evolution, can be absorbed in the Hamiltonain
operator Ĥ. On the other hand, the Ĵt term generates a non-unitary evolution and, as we
will show, can lead to the collapse of the normalized P-state |ϕt⟩. In particular, we have two
stochastic noise fields hc (Im)

t , hc (Re)
t that compete in the localization in eigenstates of the

operator fields B̂(+), B̂(−), respectively.
Let us consider first the case hc(Re)

t = 0 and B̂(−) = 0. We obtain

Ĵt = h
c (Im)
t (x, p)B̂(+)(x, p) (2.42)

and L̂t = 0. In addition, we assume that the operator field B̂(+) has a common set of
eigenstates. In this way we obtain the collapse model considered in [19, 20]. We now sketch,
following [19, 20], the calculation that leads to the collapse of the state vector according to
the usual Born rule when we set Ĥ = 0. From Eq. (2.32) and Eq. (2.30), where we set
Ĉ = 0 without loss of generality as discussed above, after some algebra, we obtain the closed
equation for the P-state:

iℏ∂t|ϕt⟩ =
ˆ
dxdp hct(x, p)

(
B̂(x, p)− ⟨B̂(x, p)⟩t

)
|ϕt⟩

+
2i

ℏ

ˆ
dx1

ˆ
dp1

ˆ
dx2

ˆ
dp2

ˆ t

0
dsEQ[h

c
t(x1, p1)h

c
s(x2, p2)]

·
(
B̂(x1, p1)B̂(x2, p2)− ⟨B̂(x1, p1)B̂(x2, p2)⟩t

)
|ϕt⟩ (2.43)

where ⟨·⟩t denotes ⟨ϕt| · |ϕt⟩.
It is straightforward to obtain the master equation using Eq. (2.34):

∂tρ̂t = − 2

ℏ2

ˆ
dx1

ˆ
dp1

ˆ
dx2

ˆ
dp2

ˆ t

0
dsEQ[h

c
t(x1, p1)h

c
s(x2, p2)]

·
(
B̂(x1, p1)ρ̂tB̂(x2, p2) + B̂(x2, p2)ρ̂tB̂(x1, p1)

− B̂(x1, p1)B̂(x2, p2)ρ̂t − ρ̂tB̂(x2, p2)B̂(x1, p1)

)
, (2.44)

One can then easily show that

∂tEP[⟨B̂2(x, p)⟩t] = 0. (2.45)

On the other hand, using the Furutsu-Novikov formula

EQ[F [h
c]hct(x, p)] =

ˆ t

0
ds

ˆ
dx1

ˆ
dp1EQ[h

c
t(x, p)h

c
s(x1, p1)]EQ[

δF [hc]

δhcs(x1, p1)
] (2.46)
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where F is a generic functional of the centered Gaussian noise field hc, we obtain

∂tEP[⟨B̂(x, p)⟩2t ] =8

ˆ
dx1

ˆ
dp1

ˆ
dx2

ˆ
dp2

[ˆ t

0
dsEQ[h

c
t(x1, p1)h

c
s(x2, p2)]

]
· EP

[
⟨
(
B̂(x1, p1)− ⟨B̂(x1, p1)⟩t

)
B̂(x, p)⟩t

⟨
(
B̂(x2, p2)− ⟨B̂(x2, p2)⟩t

)
B̂(x, p)⟩t

]
(2.47)

Because
[´ t

0 dsEQ[h
c
t(x1, p1)h

c
s(x2, p2)]

]
is a positive semi-definite kernel, it is now straight-

forward to show

lim
t→∞

EP[Var[B̂(x, p)]t] = 0, (2.48)

where

Var[B̂(x, p)]t = ⟨B̂2(x, p)⟩t − ⟨B̂(x, p)⟩2t (2.49)

is the usual variance. Thus one can conclude

lim
t→∞

Var[B̂(x, p)]t = 0 P− a.s. . (2.50)

The case hc(Im)
t = 0 and B̂(+) = 0 is completely analogous. Let us discuss also the other

possibilities when h
c(Re)
t ̸= 0 or hc(Im)

t ̸= 0. In case B̂(+) ̸= 0, B̂(−) ̸= 0 but [B̂(+), B̂(−)] =
0 the collapse mechanism is unaltered: the noise field(s) force the collapse to a common
eigenstate. Only the case B̂(+) ̸= 0, B̂(−) ̸= 0 and [B̂(+), B̂(−)] ̸= 0 might be problematic for
the collapse mechanism and one has to check explicitly the collapse mechanism for specific
choices of the operators (for example the collapse might be only partial).

2.3.3 Covariance

In this section we discuss covariance of spontaneous collapse models under the action of
the Galilei group symmetries: translations, rotations and boosts. In particular, we require
covariance1 of the dynamical map Mt, given by Eq. (2.29), for the statistical operator ρt:

Mt = G−1 ◦Mt ◦ G (2.51)

where the Galilei group is rappresented as:

G[·] = Û † · Û (2.52)
1On the other hand we could also discuss the covariance of the dynamical map for the P-state ϕt, but

this is at the present moment to restrictive: for microscopic objects we only have access to ρt, while on the
other hand, for macroscopic objects, the collapse mechanism keeps the objects localized without affecting
their overall motion in physical space, to within experimental errors, which is governed only by the usual
Hamiltonian Ĥ [27, 28]. In addition, requiring the covariance of the dynamical map for the P-state ϕt leads
to only trivial dynamical maps.
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and Û denotes a unitary transformation generated by the operators given in Eqs. (A.6),
(A.7) and (A.8). The general structure of Gaussian dynamics, covariant under translations,
rotations and boosts, has been discussed in Appendix A: we use these results to characterize
the Gaussian noise field h(x, p) and the complex function K(α, β) (see Sec. (2.2.1)). Specifi-
cally, comparing Eqs. (A.3) and (2.29), where we use the expression in Eq. (2.10) for Âc, we
obtain the following correspondence:

D(α1, β1, α2, β2, τ, s) ↔ EQ[g
c∗
τ (α1, β1)g

c
s(α2, β2)]. (2.53)

2.3.3.1 Translations

From Eq. (A.18), using the correspondence in Eq. (2.53), we obtain:

EQ[g
c∗
τ (α1, β1)g

c
s(α2, β2)] = δ(α1 − α2)EQ[g

c∗
τ (α1, β1)g

c
s(α2, β2)] (2.54)

Recalling Eq. (2.6) and Eq. (2.8) we immediately find the following condition for the Fourier
transform of the noise covariance:

EQ[h̃
∗
τ (α1, β1)h̃s(α2, β2)] = δ(α1 − α2)D̃T (α1, β1, α2, β2, τ, s), (2.55)

where D̃T is a complex valued function. Performing now the inverse Fourier transform we
immediately obtain:

EQ[h
c∗
τ (x1, p1)h

c
s(x2, p2)] = DT (x1 − x2, p1, p2, τ, s), (2.56)

where DT is a complex valued function.

2.3.3.2 Boosts

From Eq. (A.24), using the correspondence in Eq. (2.53), recalling Eq. (2.6) and Eq. (2.8),
performing the inverse Fourier transform we immediately obtain (analogous calculation as in
Sec. 2.3.3.1):

EQ[h
c∗
τ (x1, p1)h

c
s(x2, p2)] = DB(x1, x2, p1 − p2, τ, s), (2.57)

where DB is a complex valued function.

2.3.3.3 Rotations

From Eq. (A.32), using the correspondence in Eq. (2.53), we obtain:

EQ[g
c∗
τ (Rα1, Rβ1)g

c
s(Rα2, Rβ2)] = EQ[g

c∗
τ (α1, β1)g

c
s(α2, β2)], (2.58)

where R is a generic rotation matrix. From this condition, once Eqs. (2.8) and (2.9) are used
to rewrite gt(α, β), we obtain the following two requirements:

EQ[h
c∗
τ (Rx1, Rp1)h

c
s(Rx2, Rp2)] = EQ[h

c∗
τ (x1, p1)h

c
s(x2, p2)], (2.59)

K∗(Rα1, Rβ1)K(Rα2, Rβ2) = K∗(α1, β1)K(α2, β2). (2.60)

.
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2.3.4 Stationary process

We have constructed the map Mt
0 in Eq. (2.29). We now want construct the map Mu+t

u [.]
from u to u+ t and impose that it is independent from the initial time u. In particular, we
request

Mu+t
u [.] = Mt

0[.], (2.61)

We repeat the calculation of Sec. 2.3.1 for the initial and final times u,u+ t, respectively.
In particular, Eq. (2.19) changes to:

ÂI
t−u = e

i
ℏ Ĥ(t−u)Âe−

i
ℏ Ĥ(t−u). (2.62)

We immediately see from Eq. (2.29), that the request (2.61) gives the following constraint:

EQ[Â
c†
t Â

c
s] = EQ[Â

c†
t+uÂ

c
s+u] (2.63)

and exploiting Eq. (2.6) we obtain

EQ[g
c∗
t+u(α1, β1)g

c
s+u(α2, β2)] = EQ[g

c∗
t (α1, β1)g

c
s(α2, β2)]. (2.64)

From this condition, once Eqs. (2.8) and (2.9) are used to rewrite gt(α, β), we obtain:

EQ[h
c∗
t+u(x1, p1)h

c
s+u(x2, p2)] = EQ[h

c∗
t (x1, p1)h

c
s(x2, p2)]. (2.65)

We will refer to collapse models that satisfy this property as stationary.

2.4 Classification of collapse models

In this section we classify the most well known collapse models. A spontaneous collapse
model is completely determined by the complex noise field ht(x, p) means and correlation
functions and by the complex functionsK(α, β), introduced in Eqs. (2.12), (2.8), respectively.
Instead of specifying K(α, β) we can also specify the operator B̂ as clear by construction (see
Eq.(2.11)). In addition, all known collapse models consider a real-valued noise field ht(x, p).
In case the noise does not depend on p, i.e.

ht(x, p) = ht(x),

this leads, as we will see, to non-dissipative models. On the other hand, if one fixes the value
of p = p̄, i.e.

ht(x, p) → δ(p− p̄)ht(x, p), (2.66)

one obtains, as we will see, the dissipative models in the literature2. In either case, we can
thus integrate over p in Eq. (2.15) and obtain a simplified noise term:

ˆ
dx ht(x)B̂(x), (2.67)

where, in the dissipative case, ht(x), B̂(x) denote ht(x, p̄),B̂(x, p̄), respectively, while in the
non-dissipative case, B̂(x) denotes

´
dpB̂(x, p).

2From Eq. (2.11) we see that we can set p̄ = 0 without loss of generality.
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Markovian Non-Markovian
Non-dissipative CSL, QMUPL, DP cCSL, cQMUPL

Dissipative dCSL, dQMUPL cdQMUPL

Table 2.1: Classification of collapse models.

All collapse models satisfy conditions (i)-(iv) discussed in Sec. (2.3): probabilistic inter-
pretation, collapse of the state vector, translational covariance and stationary process. On top
of these basic properties we can impose two different general properties: (non) Markovianity
and (non) dissipation (see Table 2.1).

Markovian models are defined such that

EQ[h
c∗
τ (x1, p1)h

c
s(x2, p2)] = δ(τ − s)EQ[h

c∗
τ (x1, p1)h

c
s(x2, p2)], (2.68)

otherwise we call the models non-Markovian.
The definition of dissipative collapse models is more subtle. The first continuous sponta-

neous collapse models investigated, e.g. CSL, implies a steady increase of temperature:

d

dt
tr
[
p̂2

2m
ρ̂t

]
= const > 0 (2.69)

With dissipative models one usually refers to collapse models that lead to a finite asymptotic
energy3. To have a dissipative model we need a map with a unitary contribution that has a
p̂ dependence. Loosely speaking, we are generalizing the evolution iℏ d

dt ρ̂ = [Ĥ + U(p̂), ρ̂] to
more general maps, where U(p̂) is a potential that is taking away energy from the system.
This has an interesting implication. In particular, we have seen that maps with a non-trivial
p̂ dependence break Galilean boost covariance. Thus we have the situation:

dissipative model =⇒ Galilean boost non-covariant model (2.70)

In Table 2.2 we have classified the most well-known Gaussian spontaneous collapse models.
Specifically, we have classified the following Markovian and non-dissipative models: the Diòsi-
Penrose (DP) model [30], the continuous spontaneous localization (CSL) model [31, 32] and
the quantum mechanics with universal position localization (QMUPL) model [33, 30]. We
also classify the dissipative extensions, namely the dissipative CSL (dCSL) [34] and the
dissipative QMUPL (dQMUPL) [35], the non-Markovian extensions, namely the colored CSL
(cCSL)[19, 20] and the colored QMUPL (cQMUPL) [36]. At present only one non-Markovian
and dissipative model exists in the literature, namely the colored and dissipative QMUPL
(cdQMUPL) [37].

3This definition is conceptually different from the definition used in open quantum systems [29], where a
non-dissipative map is defined as a purely non-unitary modification of the von-Neumann dynamical map.
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Model c d EQ[h
c∗
t (x1, p1)h

c
s(x2, p2)] −iB̂(x)

DP / / δ(t− s)δ(x1 − x2)
´
dQexp[− i

ℏQ(x̂− x)]exp[−r2CQ2/(2ℏ2)]
CSL / / δ(t− s)δ(x1 − x2)

´
dQexp[− i

ℏQ(x̂− x)]/
√
|Q|

QMUPL / / δ(t− s)δ(x1 − x2) x̂δ(x)

dCSL / y δ(t− s)δ(x1 − x2)
δ(p1 − p̄)δ(p2 − p̄)

´
dQexp[− i

ℏQ(x̂− x)]

exp[−r2C ((1 + k)Q+ 2kp̂))2 /(2ℏ2)]
dQMUPL / y δ(t− s)δ(x1 − x2)

δ(p1 − p̄)δ(p2 − p̄)
(x̂+ iµp̂/ℏ) δ(x)

cCSL y / D(t− s)δ(x1 − x2)
´
dQexp[− i

ℏQ(x̂− x)]exp[−r2CQ2/(2ℏ2)]
cQMUPL y / D(t− s)δ(x1 − x2) x̂δ(x)

cdQMUPL y y D(t− s)δ(x1 − x2)
δ(p1 − p̄)δ(p2 − p̄)

(x̂+ iµp̂/ℏ) δ(x)

Table 2.2: Summary of Gaussian collapse models. We omit the normalization factors for the
operators B̂. The QMUPL, dQMUPL an cdQMUPL have also a nonzero value of Ĉ that can
be absorbed in the usual Hamiltonian operator Ĥ (see Eq. (2.28)). c and d denote color and
dissipation, respectively.

2.5 Conclusion and discussion

We have constructed a general collapse model from a set of minimal requirements. We have
shown how this general model can be used to classify all known collapse models. However,
there are still several important unanswered questions. In particular: is the constant energy
increase in non-dissipative models a feature or an issue? Why is this intrinsically linked with
Galilean boost covariance? The change of measure, from the non-physical measure Q to the
physical measure P, is a prescription adopted to obtain the Born rule. What is the origin of
this prescription?



Chapter 3

CD map and cdCSL model

3.1 Introduction

Several different collapse models have been proposed in the literature [6, 7]: from considera-
tions based on general relativity, namely the Diòsi-Penrose (DP) model [30], to purely phe-
nomenological models, such as the continuous spontaneous localization (CSL) model [31, 32].
In addition, there does not seem to be any guiding principle, within non-relativistic physics,
to single out a specific collapse model: general arguments based on symmetries can be made,
but the freedom in the construction of collapse models is still large, as the previous chapter
shows. Thus a strong argument to single out a specific model, or at least significantly restrict
the class of possible collapse models, is highly desirable.

It has been speculated that the origin of the noise in collapse models is related to a
background cosmological relic field [34]. Such a relic field may, like for example in the
case of the cosmic microwave background (CMB), select a preferred reference frame. In
addition, it has also been suggested by Trace dynamics [9], an underlying theory to Quantum
mechanics, that Lorentz covariance may only be an approximate symmetry. However, a
preferred reference frame has important consequences in the non-relativistic limit: a Lorentz
boost non-covariant relativistic model reduces to a Galilei boost non-covariant collapse model
(for further discussions see Appendices B, C). This, rather than being a problem, can be
a feature, as Galilei boost non-covariant models can be dissipative, as shown in Sec. 2: in
particular, dissipation can lead a system to the asymptotic Gibbs state, avoiding the constant
gain of energy of Galilei boost covariant (non-dissipative) models [34].

Based on these considerations, we will ask the following question: what is the most general
Gaussian map that satisfies (i) probabilistic interpretation, (iii) translational and rotational
covariance, (iv) stationary initial conditions and (v) has an asymptotic Gibbs state? (Sec.
3.2). We will refer to the map with these properties as the CD map. We emphasize that
this map will not be derived within the specific formalism of spontaneous collapse models:
it is a generic dynamics for the statistical operator. We will then construct a spontaneous
collapse model type of dynamics, i.e. the dynamics discussed in Sec. 2, such that it satisfies
assumptions (i), (iii),(iv),(v) and also the assumptions (ii) collapse of the state vector and
(vi) the Gaussian noise is a R valued field over physical space (R3). We will refer to this
model as the cdCSL (a colored and dissipative generalization of the CSL model) model (Sec.
3.3): the corresponding dynamical map for the statistical operator will be by construction
the CD map (for relativistic extensions see Appendix D).

19
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3.2 CD Map

For simplicity we consider a single particle in the interaction picture, where, to keep the
notation simple, we omit the interaction picture notation (I). The generalization to the N
particle case is straightforward.

3.2.1 Conditions (i), (iii), (iv)

By imposing conditions (i) probabilistic interpretation and (iii) translational covariance we
obtain the map given in Eq. (A.21). Imposing condition (iv) stationary initial conditions we
obtain:

Djk(τ + u, s+ u) = Djk(τ, s), (3.1)

where u is a time. This condition is a straightforward generalization of the condition in Eq.
(2.64), derived in Sec. 2.3.4. We are left to impose two conditions (iii) rotational covariance,
which as we will see, will be trivially satisfied, and (v) asymptotic Gibbs state.

3.2.2 Condition (v)

In this section we address the long time behavior of the system. Assuming that the noise
correlation times are small compared to the evolution time of the system t, then the dynamics
of Eq. (A.21) becomes approximately Markovian for large values of t. We can show this by
considering a generic map (a heuristic argument):

Lt[ρ̂0] = T [exp

[ˆ t

0
ds

ˆ t

0
dτEQ[As,τ ]

]
ρ̂0], (3.2)

where As,τ is a generic superoperator-valued stochastic process. We make two assumptions:
t≫ τC and EQ[Aτ,s] ≃ 0 if |τ − s| < τC . Thus we can write

Lt[ρ̂0] = T [exp

[ˆ t

0
ds

ˆ t

0
dτ (EQ[As,τ ]δ(s− τ) +Os,τ )

]
ρ̂0], (3.3)

where
´ t
0 ds
´ t
0 dτOs,τ is an superoperator of order τc/t. We can rewrite this as

Lt[ρ̂0] = T [exp

[ˆ t

0
dsEQ[As,s]

]
exp

[ˆ t

0
ds

ˆ t

0
dτOs,τ

]
ρ̂0], (3.4)

We now take the time derivate and we obtain:

ρ̂t = EQ[At,t]ρ̂t + T [

ˆ t

0
ds(Os,t +Ot,s) exp

[ˆ t

0
dsEQ[As,s]

]
exp

[ˆ t

0
ds

ˆ t

0
dτO(τc/t)

]
ρ̂0],

(3.5)

where the second term is of order τc/t. Thus to lowest order in τc/t we obtain a Markovian
evolution:

ρ̂t = EQ[At,t]ρ̂t. (3.6)

We thus impose
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Djk(τ, s) = δ(τ − s)Djk (3.7)

in Eq. (A.21) which reduces to Eq. (A.36). In addition, imposing the stationary initial
condition given by Eq. (3.1), we obtain from Eq. (A.36) the following master equation (in
the Schrödinger picture):

dρ̂t
dt

=− i

ℏ
[Ĥ, ρ̂t] +

∑
l

ˆ
dQ

(
e

i
ℏQx̂J̃l(p̂, Q)ρ̂tJ̃

†
l (p̂, Q)e−

i
ℏQx̂ − 1

2
{J̃†

l (p̂, Q)J̃l(p̂, Q), ρ̂t}
)
,

(3.8)

where

J̃l(p̂, Q) = Jk(p̂, Q)dlk (3.9)

and Djk = d∗jldlk (a positive definite matrix). We now assume that
∑

l is a sum of only one
term, i.e. Djk(τ, s) in Eq. (A.21) reduces to a positive valued function: we will discuss this
assumption briefly below. Thus Eq. (3.8) simplifies to (in the Schrödinger picture):

dρ̂t
dt

= − i

ℏ
[Ĥ, ρ̂t] +

ˆ
dQ

(
e

i
ℏQx̂J̃(p̂, Q)ρ̂tJ̃

†(p̂, Q)e−
i
ℏQx̂ − 1

2
{J̃†(p̂, Q)J̃(p̂, Q), ρ̂t}

)
. (3.10)

For later convenience we also introduce the function f :

J̃(p̂, Q) = N exp(−f(Q, p̂)), (3.11)

where N is a normalization constant.
We now consider the Gibbs state:

ρ̂asm =

(
β

2mπ

)3/2

exp(−βĤ), (3.12)

where

Ĥ =
p̂2

2m
(3.13)

and β = 1/(kBT ), with kB the Boltzmann constant and T the temperature. We can now
impose that ρ̂asm, defined in Eq. (3.12), is a stationary state of Eq. (3.10). We thus make
the ansatz for the operators

J̃(p̂, Q) = N exp(−(a1Q+ a2p̂)
2), (3.14)

where a1, a2 are real-valued parameters. This choice for the operator is a natural one, given
the Gaussianity of the Gibbs state. Using Eqs. (3.14),(3.12), (3.10) we obtain the condition:

ˆ
dQe−2(a1Q+a2(p̂−Q))2e−β(p̂−Q)2/(2m) =

ˆ
dQe−2(a1Q+a2p̂)2e−βp̂2/(2m), (3.15)
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which implies

− 2(a1Q+ a2(p̂−Q))2 − β(p̂−Q)2/(2m) = −2(a1(Q+ b) + a2p̂)
2 − βp̂2/(2m) (3.16)

with b ∈ Re. Looking at each power in Q, we obtain three conditions:

Q0 : a21b
2 + 2a1a2bp̂ = 0, (3.17)

Q1 : 2a22p̂+ 2a21b+
β

2m
p̂ = 0, (3.18)

Q2 : − 2a22 + 4a1a2 −
β

2m
= 0. (3.19)

From Eq. (3.17) we obtain two solutions:

b = −2(a2/a1)p̂ (3.20)

and b = 0. However, we do not consider b = 0 as it leads to an imaginary a2 (see Eq. (3.18)),
in contradiction with our Ansatz in Eq. (3.14). The remaining two Eqs. (3.18),(3.19) are
not independent: we find a1, a2 as function of a free parameter, which we denote by rC .
Specifically, we write them, for later convenience, as:

a1 = (1 + kT )/(
√
2ℏ/rC), (3.21)

a2 = 2kT /(
√
2ℏ/rC), (3.22)

where

kT =
ℏ2

8mr2CkBT
. (3.23)

To summarize we have the following operator

J̃(p̂, Q) =

√
λ
m2

m2
0

(
rC√
πℏ

)3

exp(−(r2C/(2ℏ2))((1 + kT )/Q+ 2kT p̂)
2), (3.24)

where the overall normalization, chosen as in [34], is determined by the free parameter λ. In
particular, λ can be interpreted as a decoherence rate.

The above calculation thus constrains Eq.(A.21) to (in the interaction picture):

Mt = T exp
{ˆ t

0
dτ

ˆ t

0
ds

ˆ
dQD(τ − s)

(
[J̃L(p̂, Q)e

i
ℏQx̂L(s)] [J̃†

R(p̂, Q)e−
i
ℏQx̂R(τ)]

− θτ,s[J̃
†
L(p̂, Q)e−

i
ℏQx̂L(τ)] [e

i
ℏQx̂L(s)J̃L(p̂, Q)]

− θs,τ [J̃R(p̂, Q)e
i
ℏQx̂R(s)] [e−

i
ℏQx̂R(τ)J̃†

R(p̂, Q)]
}
.

(3.25)

We first note that condition (iii) rotationally covariance of the map in Eq. (3.25) is satisfied.
This map, to which we will refer as the CD map, is completely determined, apart from the
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function D(τ, s), the parameters λ, rC , T and the boost parameter u: the map is not Galilei
boost covariant (we will discuss this in detail in Sec. 4). The generalization to a matrix
Djk(τ − s) of arbitrary dimension leads to a more tedious calculation: however, from Eq.
(3.8) we see that increasing the dimensionality of the matrix Djk(τ − s) simply increases the
number of terms added to the von-Neumann map. Since these terms are all of the same form,
we can again assume Gaussian operators and proceed with the above calculation. We leave
the analysis of this situation for future research.

In particular, the map in Eq.(3.25) reduces to the cCSL and dCSL map for the statistical
operator in the limits T → ∞, τC → 0, respectively, where τC denotes the correlation time
of D(τ − s).

3.3 cdCSL

We now consider the collapse model dynamics developed in Sec. 2. We impose conditions
(i)-(iv): the most general one-particle Gaussian collapse model is given by Eq. (2.15) where
the operator Ô is defined in Eq. (2.31) and we set Ĉ = 0 (in the interaction picture, with
Ĥ = p̂2/2m). In addition, we also impose (vi) the Gaussian noise is a field over physical
space (R3), using Eq. (2.66), in Eq. (2.15), and after a straightforward calculation, we obtain
(in the interaction picture):

iℏ
d

dt
|ψt⟩ =

(ˆ
dx hct(x) B̂t(x)−

ˆ t

0
dτ

ˆ
dx1

ˆ
dx2

[
EQ[h

c
t(x1)h

c
τ (x2)]B̂t(x1)

− EQ[h
c∗
t (x1)h

c
τ (x2)]B̂

†
t (x1)

]
δ

δhcτ (x2)

)
|ψt⟩. (3.26)

In particular, from Eq. (2.11) we have:

B̂t(x) =

ˆ
dαdβK(α, β)eiα(x̂t−x)+β(p̂−p̄), (3.27)

where p̄ is a constant momentum value and K(α, β) is a generic complex function constrained
by ((iii) rotational covariance)

K∗(Rα1, Rβ1)K(Rα2, Rβ2) = K∗(α1, β1)K(α2, β2), (3.28)

where R is a rotation matrix. For later convenience, we rewrite the operator in Eq. (2.11)
as:

B̂t(x) = i

ˆ
dQeiQ(x̂t−x)J(p̂, Q), (3.29)

where the imaginary number i is inserted, as we will see, to satisfy condition (ii) collapse
of the state vector (see Sec. 2.3.2). The complex Gaussian field ht(x) defined over physical
space (R3) has zero mean and correlation functions

EQ[hτ (x1)hs(x2)] = Sτ,s(x1, x2), (3.30)
EQ[h

∗
τ (x1)hs(x2)] = Dτ,s(x1, x2), (3.31)
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In addition, we have the following symmetries ((iii) translational covariance and rotational
covariance and (iv) stationary initial conditions):

Dτ,s(x1, x2) = Dτ,s(x1 − x2) = Dτ,s(Rx1, Rx2) = Dτ+u,s+u(x1, x2),

where R is a rotation and u is a time (see Sec. 2.3.3). The corresponding dynamical map for
the statistical operator is given by Eq. (2.29) and by writing Ât as in Eq. (2.10) we obtain:

Lt[ρ̂0] = T [exp

[
− 1

ℏ2

ˆ t

0
ds

ˆ t

0
dτ

ˆ
dx1

ˆ
dx2Dτ,s(x1 − x2)

·
(
B̂†

τ,L(x1)B̂s,L(x2)θτs − B̂†
τ,R(x1)B̂s,L(x2) + B̂s,R(x2)B̂

†
τ,R(x1)θsτ

)]
ρ̂0],

(3.32)

where

ρ̂t = EQ[|ψt⟩⟨ψt|] (3.33)

We now impose, as is the case for all known collapse models, that the noise field is R
valued. In addition, we now make the following specific choices for the correlation functions
and for the operator (see Eqs. (3.30), (3.31) and (3.29), respectively):

Sτ,s(x1, x2) = δ(x1 − x2)Dτ,s, (3.34)
Dτ,s(x1 − x2) = δ(x1 − x2)Dτ,s, (3.35)

J(p̂, Q) =

√
λ
m2

m2
0

(
rC√
πℏ

)3

exp(−(r2C/(2ℏ2))((1 + kT )/Q+ 2kT p̂)
2), (3.36)

where we have Dτ,s > 0. In this way the map in Eq. (3.32), using Eq. (3.29) reduces to the
CD map in Eq. (3.25). In addition, we construct the Fock operator:

L̂(x) = i

ˆ
dP

ˆ
dP ′â†(P ′)⟨P ′|

ˆ
dQeiQ(x̂−x)J(p̂, Q)|P ⟩â(P ). (3.37)

We then insert L̂ in place of the one particle operator B̂ in Eq. (3.26), and using Eqs.
(3.34) and (3.35), we obtain the following stochastic differential equation (in the interaction
picture):

iℏ
d

dt
|ψt⟩ =

(ˆ
dx ht(x) L̂t(x)−

ˆ t

0
dτ

ˆ
dx D(t− τ)

(
L̂t(x)− L̂†

t(x)
) ∂

∂hτ (x)

)
|ψt⟩,

(3.38)

This equation completely determines the cdCSL model. In particular, this equation reduces
to the cCSL and dCSL equations in the limits T → ∞, τC → 0, respectively, where τC
denotes the correlation time of D(τ −s). We obtain the corresponding map for the statistical
operator from Eqs. (3.32), (3.34) and (3.35): we again replace the one particle operator B̂
with L̂. Specifically, we obtain the CD map in the second quantized form (in the interaction
picture):
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Lt[ρ̂0] = T [exp

[
− 1

ℏ2

ˆ t

0
ds

ˆ t

0
dτ D(τ − s)

ˆ
dx
(
L̂†
τ,L(x)L̂s,L(x)θτs

− L̂†
τ,R(x)L̂s,L(x) + L̂s,R(x)L̂

†
τ,R(x)θsτ

)]
ρ̂0], (3.39)

3.4 Conclusions

We have obtained the general modification of the von-Neumann map by imposing a minimal
set of requirements. In addition, we have constructed the cdCSL collapse model with the
noise field selecting a preferred reference frame: the interaction with the stochastic field solves
the issue of constant energy production of Galilean boost covariant models.

Here we make a small note about the QMUPL model: the QMUPL model can be derived
as the limit of the CSL model [36]. We expect that the cdQMUPL model can be obtained as
the limit of the cdCSL model.



Part II

Experimental constraints
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Chapter 4

Matter-Wave Interferometry: theory

4.1 Introduction

The interest in exploring, not only theoretically but also experimentally, the foundations of
quantum mechanics has significantly increased over the years. After the establishment of
quantum non-locality, first with the famous works of J. Bell [38, 1] and subsequently with the
experimental confirmation done by the groups of A. Aspect [39, 40, 41], perhaps the most
relevant question is if the collapse of the wave function is a physical phenomenon or not.

Recalling what we derived before (see Sec. 3), the CD map is the most general modifi-
cation of the quantum dynamics satisfying (i) probabilistic interpretation, (iii) translational
and rotational covariance, (iv) stationary initial conditions and (v) asymptotic Gibbs state:
the map determines the evolution for the statistical operator. On the other hand, the cdCSL
collapse model describes the evolution for the state vector such that the evolution for the
corresponding statistical operator is given by the CD map and that macroscopic objects are
well-localized in physical space (R3), i.e. we make the additional assumptions (ii) collapse of
the state vector and (vi) the Gaussian noise is a R valued field over physical space (R3).

The CD map is thus a reasonable candidate, to be tested in the laboratory. However,
at first sight the CD map might be difficult to test, as it contains, loosely speaking, at least
7 free parameters1. In this section, we address this point: we will show that the CD map
leads to predictions for interferometric experiments, which depend weakly on D(τ, s), T and
u: interferometric tests can therefore be used to test the CD map for specific values of λ
and rC . This implies that the CD map bounds on (λ, rC) for interferometric experiments
reduce to the CSL map bounds, i.e. non-Markovian and dissipative effects can be neglected
for interferometric experiments.

This section is organized in the following way. In Sec. 4.2 we discuss theoretical inter-
ference patterns: the interference pattern derived in the density matrix formalism, is not
limited only to collapse models, but is valid for a large class of dynamics. In particular,
we also discuss under which conditions diffraction experiments can be reduced to a one di-
mensional problem, since a general dynamics, unlike ordinary quantum mechanics, is not
separable in the three spatial dimension, even for the free particle dynamics. In this way we
justify the calculation of the interference pattern in the paraxial approximation. In addition,
the density matrix formalism outlines the similarities of far-field and near-field interference,
by presenting a unified derivation. We also reobtain the results for diffraction experiments

1We have the parameters λ, rC , T and u (3 spatial directions) and the function D(τ, s), which to first
order, can be approximated by a zero mean Gaussian function with standard devtiation τC .
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that were derived in the Wigner function formalism [42, 43, 44]. In Sec. 4.3 we provide a
brief summary of the most well known collapse models and the corresponding interference
patterns. Specifically, we discuss the Continuous Spontaneous Localization (CSL) model
[32, 31], the Ghirardi-Rimini-Weber (GRW) model [8], the Diósi-Penrose (DP) model [30],
the Quantum Mechanics with Universal Position Localization (QMUPL) model [30, 33], the
colored CSL (cCSL) model [45, 19, 20] and the dissipative CSL (dCSL) model [34]: the lat-
ter two maps can be used to discuss the CD map interference patterns. In Sec. (4.4) we
discuss the amplification mechanism of collapse models and the localization requirement for
macroscopic objects: the CD map bounds for (λ, rC) again reduce to the CSL map bounds,
i.e. non-Markovian and dissipative effects can be neglected for the localization requirement
of macroscopic objects (a rough estimate).

Figure 4.1: The common structure of far-field and near-field diffraction experiments. A
molecular beam from an incoherent source propagates along the z axis. Each molecule is
emitted from the source, propagates to the grating, where it is diffracted and then recorded
by the detector. The molecules individually recorded gradually form an interference pattern.
The figure shows a mechanical grating (with N = 4 slits), but the analysis applies to more
general gratings, e.g. optical gratings. The distance from the source to the grating is L1 and
the distance from the grating to detector is L2. Between the grating and the detector we
identify the paraxial (Fresnel) regime.
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4.2 Derivation of the interference pattern

For all collapse models considered here (see the next Section), the evolution of the free single-
particle density matrix has the form:

ρ(x,x′, t) =
1

(2πℏ)3

ˆ
dk̃

ˆ
w̃e−

i
ℏ k̃·w̃F (k̃,x− x′, t)ρQM(x+ w̃,x′ + w̃, t), (4.1)

where ρQM is the free standard quantum mechanical density matrix and the function F
depends on the type of collapse model.

The quantum mechanical description of matter-wave interferometry is usually treated as
a one-dimensional problem. This is justified by the fact that the free Schrödinger dynamics
is separable along the three directions of motion. On the contrary, in general the dynamics
given by Eq. (4.1) is not separable, not even in the free particle case. We show, however, that
due to the specific geometry and experimental parameters of the diffraction experiments here
considered, we can effectively separate the collapse dynamics in the three spatial directions,
thus considerably simplifying the problem. Along with this, we will investigate the assump-
tions that are required for the justification of the one dimensional approximation. Actually,
it is instructive to first carry out the calculation in the 1D (paraxial) approximation before
justifying it.

The derivation of the paraxial interference pattern is the main result of this section. We
then apply the paraxial interference formula to the far-field and near-field experimental se-
tups. In order to simplify the comparison with similar results obtained in the literature, we
will adopt the notation of [46]. We will also omit the overall normalization factors for the
wave functions, density matrices and probability densities. At any step of the calculation,
one can obtain a normalized quantity by dividing with an appropriate normalization factor.

4.2.1 Paraxial approximation

We first review the quantum mechanical derivation of the interference pattern in the paraxial
(Fresnel) region, as depicted in Fig. 4.1. We label with z1, z2, z3 the positions of source,
grating and detector along the optical axis z, respectively. Similarly, we label the horizontal
coordinates along the optical elements as x1, x2, x3, respectively.

In the paraxial diffraction region the evolution of the wave function can be approximated
by the free quantum mechanical wave function propagation in one spatial dimension2:

ψ(x; t = L/v) =

ˆ +∞

−∞
dx0ψ0(x0)e

ik
2L

(x−x0)2 , (4.2)

where k is the wave number of the matter wave, ψ0 is the initial wave function and ψ is the
wave function after it has propagated for a distance L in a time t = L/v, where v is the speed
of propagation along the optical axis z. One has the usual relation mv = ℏk, where m is the
mass of the system (the macromolecule). In the language of density matrices Eq. (4.2) reads:

ρQM(x, x′; t = L/v) =

ˆ +∞

−∞
dx′0

ˆ +∞

−∞
dx0ρ0(x0, x

′
0)e

ik
2L

((x−x0)2−(x′−x′
0)

2), (4.3)

2This coincides with the Fresnel diffraction integral.
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where ρ0(x0, x′0) is the initial density matrix and ρQM(x, x′; t) is the density matrix after it
has propagated for a distance L in a time t = L/v.

The calculation of the interference pattern can be summarized in the following steps.

[z1] We choose the initial wave function at z1. Both the far-field and near-field experiments
will be modeled by a completely incoherent source at z1, meaning that the wave func-
tions associated to different molecules are uncorrelated and spatially localized initially.
It is then sufficient to consider a single source at point (x1, z1). At the end, one can
integrate over the extension of the source. The corresponding initial wave function is
given by

ψ1(x̃1) = δ(x1 − x̃1). (4.4)

[z1 to z2] We propagate the wave function to z2 according to Eq. (4.2):

ψ2(x2) =

ˆ +∞

−∞
dx̃1ψ1(x̃1)e

ik
2L1

(x2−x̃1)2 . (4.5)

[z2] We now assume that the optical element at position z2 has a transmission function t2(x).
The wave function immediately after the grating at z2 is given by t2(x2)ψ2(x2).

[z2 to z3] We propagate the wave function from z2 to z3 according to Eq. (4.2):

ψ3(x3) =

ˆ +∞

−∞
dx2t2(x2)ψ2(x2)e

ik
2L2

(x3−x2)2 . (4.6)

[z3] The detector records the arrival of the molecules along the axis x3. The probability
distribution is p3(x3) = |ψ3(x3)|2. After combining the equations of the previous steps
we obtain the interference pattern:

p3(x3) =

ˆ +∞

−∞
dx2

ˆ +∞

−∞
dx′2t(x2)t

∗(x′2)

e
− ik

2L2
(x2−x′

2)x3e
ik

2L1
(x2

2−x′
2
2)
e

ik
2L2

(x′
2
2−x2

2)e
− ik

L1
(x2−x′

2)x1 .

(4.7)

Note that Eq. (4.7) was derived from Eq. (4.2), but it could equally well be derived from the
density matrix evolution given by Eq. (4.3).

We now consider what happens if in place of the standard quantum evolution, we have
the following density matrix evolution:

ρ(x, x′; t) =
1

2πℏ

ˆ +∞

−∞
dk̃

ˆ +∞

−∞
w̃e−

i
ℏ k̃w̃F (k̃, 0, 0;x− x′, 0, 0; t)ρQM(x+ w̃, x′ + w̃; t). (4.8)

We will justify Eq. (4.8) below, when we discuss the separability issue. The calculation of
the interference pattern can be again carried out as before.

[z1] We consider a single source at point (x1, z1). The corresponding initial wave function is
given by ψ1(x̃1) = δ(x1 − x̃1) and the corresponding density matrix is given by

ρ1(x̃1, x̃
′
1) = δ(x1 − x̃1)δ(x1 − x̃′1). (4.9)
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[z1 to z2] We propagate the density matrix from the point z1 to the point z2 along the
optical axis using Eq. (4.8):

ρ2(x2, x2) =
1

2πℏ

ˆ +∞

−∞
dk̃

ˆ +∞

−∞
w̃e−

i
ℏ k̃w̃F (k̃, 0, 0;x− x′, 0, 0; t)ρQM

2 (x2 + w̃, x′2 + w̃),

(4.10)
where according to Eq. (4.3) and Eq. (4.9):

ρQM
2 (x2, x

′
2) = e

ik
2L1

(x2
2−x′2

2 )
e
− ik

L1
(x2−x′

2)x1 . (4.11)

In Eq. (4.10) the w̃ integration yields a Dirac delta function δ(k̃ − ℏk
L1

(x2 − x′2)) and
hence after the k̃ integration we obtain:

ρ2(x2, x
′
2) = e

ik
2L1

(x2
2−x′2

2 )
e
− ik

L1
(x2−x′

2)x1F

(
ℏk
L1

(x2 − x′2), 0, 0;x2 − x′2, 0, 0; t1

)
. (4.12)

[z2] We apply the grating’s transmission function t(x) to the density matrix and obtain
t(x2)ρ2(x2, x

′
2)t

∗(x′2).

[z2 to z3] We perform a free propagation according to Eq. (4.8) from z2 to z3:

ρ3(x3, x
′
3) =

1

2πℏ

ˆ +∞

−∞
dk̃

ˆ +∞

−∞
w̃e−

i
ℏ k̃w̃F (k̃, 0, 0;x3 − x′3, 0, 0; t2)ρ

QM
3 (x3 + w̃, x′3 + w̃)

(4.13)
where

ρQM
3 (x3, x

′
3) =

ˆ +∞

−∞
dx2

ˆ +∞

−∞
t(x2)t

∗(x′2)dx
′
2ρ2(x2, x

′
2)e

ik
2L2

((x3−x2)2−(x′
3−x′

2)
2)
. (4.14)

[z3] The interference pattern is again proportional to the probability density p(x) = ρ3(x, x).
The w̃ integration yields a Dirac delta function δ(k̃ + ℏk

L2
(x2 − x′2)). Hence after the k̃

integration we obtain the interference pattern:

p(x) =

ˆ +∞

−∞
dx2

ˆ +∞

−∞
dx′2 D(x2 − x′2) t(x2)t

∗(x′2)

× e
−imv

ℏ (x2−x′
2)(

x1
L1

+ x
L2

)
e
imv

ℏ
L1+L2
2L1L2

(x2
2−x′2

2 )
,

(4.15)

where

D(x2 − x′2) = F (−ℏk
L2

(x2 − x′2), 0, 0; 0, 0, 0; t2)F (
ℏk
L1

(x2 − x′2), 0, 0; (x2 − x′2), 0, 0; t1).

(4.16)

As we can see, the interference pattern in Eq. (4.15) differs from the pure quantum mechan-
ical interference pattern of Eq. (4.7) by the presence of D(x2 − x′2).
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Figure 4.2: The grating has non-zero transmission function limited to a rectangle of size
sx×sy, e.g. here shown a mechanical grating with N = 4 slits with total horizontal extension
sx and slit height sy. The analysis of this section applies also to other types of gratings, e.g.
an optical grating.

4.2.2 Separability

We now perform the full 3D treatment of the problem to justify the 1D approximation. We
consider an initial Gaussian wave packet, evolving according to the full dynamics in Eq. (4.1).
For the geometry, we refer again to the experimental setup depicted in Fig. 4.1.

We will show under which assumptions the interference pattern is given by Eq. (4.15),
thus justifying the above analysis in the 1D (paraxial) approximation. The assumptions are:

1 The extension of the macromolecule σ(t) is much smaller then the distances L1, L2 during
the time of flight t:

σ(t) ≪ L1, L2. (4.17)

This key assumption allows to split the flight of the molecule from the source at time
t = 0 to the grating at time t1, from the motion from the grating at time t1 to the
detector at time t1 + t2, and to treat the non-free interaction with the grating as
instantaneous. This is necessary in order to conveniently introduce a transmission
function for the grating txy(x, y). In particular, we choose txy(x, y) = t(x)ty(y), where

t(x) = 0 if |x| > sx
2
, (4.18)

while for |x| < sx
2 it depends on the type of grating and

ty(y) =

{
1, if |y| ≤ sy

2 .

0, if |y| > sy
2 .

(4.19)

where sx, sy are described in Fig. 4.2 and t(x) is to be identified with the transmission
function used above, when working in the 1D (paraxial) approximation.

2 We assume that the molecule extension σ2 at time t1, as it reaches the grating, is much
larger than the molecule extension σ1, at time t = 0, as it leaves the source:

σ1 ≪ σ2. (4.20)

3 We require that the grating transmission function satisfies (see Fig. 4.2):

sx ≪ σ2, (4.21)
σ2 ≪ sy. (4.22)
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Using ordinary quantum mechanics it is easy to give an estimate for the molecule’s extension
at the grating σ2 = ℏt1

mσ1
, with σ1 the extension at the source (see analysis below). Using this

relation let us check the validity of the above assumptions for the two experiments considered.
For the far-field diffraction experiment [47] we have L1 = 0.702m, L2 = 0.564m, sx =

3µm, sy = 60µm and the molecular speed along the z axis v ∼ 100ms−1. The above
assumptions are satisfied if the initial molecular extension at the source is contained in the
interval 4 × 10−9m ≲ σ1 ≲ 7 × 10−8m. No one knows the actual value of σ1. The range of
values here considered make the initial spread much smaller than the extension of the source
(s = 1µm) as given by the collimator and also provides a justification as to why the source
is incoherent.

For the near-field KDTL diffraction experiment [48] we have L1 = L2 = 10.5cm, while
it is difficult to give estimates for parameters sx, sy of the light grating. Anyhow, making
the following guess for these parameters: sx = 10−3m, sy = 100 × 10−3m (and being the
molecular speed along the z axis v ∼ 100ms−1), the above assumptions are satisfied if the
initial molecular extension at the source is contained in the interval 10−13m ≲ σ1 ≲ 10−11m.
This is to be compared with the slit openings of the source grating l = 110nm. Without more
precise estimates for the molecule extension σ(t) it is difficult to assess the validity of the
above assumptions and hence of the 1D approximation. We stress that we are considering
a single molecule emitted from the source. In particular, the single molecule extension σ(t)
should not be confused with the spatial coherence length of the beam, which is a property of
an ensemble of particles emitted from the source.

As in the previous section, the calculation of the interference pattern can be split into
several steps.

[z1] It is convenient to work in a boosted reference frame along the z axis with molecular
velocity3 v, i.e. moving alongside the molecule. To simplify the analysis we neglect
gravity and we consider an initial Gaussian wave-function centered at (x1, 0, 0):

ψ1(x̃1, ỹ1, z̃1) = e
− (x1−x̃1)

2

4σ2
1 e

− ỹ21
4σ2

1 e
− z̃21

4σ2
1 , (4.23)

with the corresponding density matrix given by

ρ1(x̃1, ỹ1, z̃1; x̃
′
1, ỹ

′
1, z̃

′
1) = ψ1(x̃1, ỹ1, z̃1)ψ

∗
1(x̃

′
1, ỹ

′
1, z̃

′
1). (4.24)

[z1 to z2] We propagate the density matrix ρ1 from t = 0 to t = t1 = L1/v using Eq. (4.1).
We denote the resulting density matrix as ρ2(x2, y2, z2;x′2, y′2, z′2) (and by ρQM

2 (x2, y2, z2;x
′
2, y

′
2, z

′
2)

the quantum mechanical evolution of ρ1 at t = t1). In particular, using the separability
of ordinary quantum mechanics, the quantum mechanical wave function just before t1
is given by:

ψQM
2 (x2, y2, z2) = ψ

QM(1)
2 (x2;x1)ψ

QM(1)
2 (y2; 0)ψ

QM(1)
2 (z2; 0), (4.25)

where ψQM(1)
2 (x2;x1) = exp

[
− (x2−x1)2

4σ2
1(1+

iℏt1
2mσ2

1
)

]
. Hence the quantum mechanical density

matrix is given by:

ρQM
2 (x2, y2, z2;x

′
2, y

′
2, z

′
2; t1) = ρQM(1)

2 (x2, x
′
2;x1)ρ

QM(1)
2 (y2, y

′
2; 0)ρ

QM(1)
2 (z2, z

′
2; 0), (4.26)

3For non boost-invariant dynamics, one has to choose the correct function F depending on the reference
frame.
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where

ρQM(1)
2 (x, x′, x1) = exp [ − 1

σ22
( x2(1− iℏt1

2mσ21
) + x′2(1 +

iℏt1
2mσ21

)

− 2xx1(1 +
iℏt1
2mσ21

)− 2x′x1(1−
iℏt1
2mσ21

) + 2x21 ) ] .

(4.27)

and σ2 = ℏt1
mσ1

because of Eq. (4.20), i.e. ℏ2t21
4m2σ4

1
≫ 1. To summarize this step of the

calculation:

ρ2(x2, y2, z2;x
′
2, y

′
2, z

′
2) =

ˆ
dk̃x

ˆ
dw̃xρ

QM(1)
2 (x2 + w̃x, x

′
2 + w̃x;x1)e

− i
ℏ k̃xw̃x

×
ˆ
dk̃y

ˆ
dw̃zρ

QM(1)
2 (y2 + w̃y, y

′
2 + w̃y; 0)e

− i
ℏ k̃yw̃y

×
ˆ
dk̃z

ˆ
dw̃zρ

QM(1)
2 (z2 + w̃z, z

′
2 + w̃z; 0)e

− i
ℏ k̃zw̃z

× F (k̃x, k̃y, k̃z;x2 − x′2, y2 − y′2, z2 − z′2; t1)

(4.28)

[z2] We apply the transmission function on the x and y axis given by Eqs. (4.18) and (4.19)
respectively. Let us first consider the integrals along the x axis. Using Eq. (4.21) we
can simplify in Eq. (4.27) (which is contained in Eq. (4.28)):

ρQM(1)
2 (x, x′, x1)t(x)t

∗(x′) = exp

[
−
i(−x2 + x′2 − 2x1(x− x′)) σ2

2σ1

σ22

]
t(x)t∗(x′). (4.29)

The dependence on w̃x, which will be integrated out, is contained in:

e−
i
ℏ k̃xw̃xρQM(1)

2 (x2 + w̃x;x
′
2 + w̃x) = exp

[
iB(x2, x

′
2)w̃x

σ22

]
Exp

[
C(x2, x

′
2)

σ22

]
, (4.30)

where

B(x2, x
′
2) =

σ2
σ1

(x2 − x′2)−
1

ℏ
k̃xσ

2
2 (4.31)

C(x2, x
′
2) =

iσ2
2σ1

(
(x22 − x′22 ) + 2x1(x2 − x′2)

)
. (4.32)

Hence the w̃x integral yields the Dirac delta function δ(k̃x− (x2−x′2)
m
t1
), which we use

to perform k̃x integration. On the y axis, by assumption (4.22), we can replace ty(y)
by 1. To summarize, after performing the x-axis integrations we obtain:

ρ2(x2, y2, z2;x
′
2, y

′
2, z

′
2) =e

ik
2L1

(x2
2−x′2

2 )
e
− ik

L1
(x2−x′

2)x1

×
ˆ
dk̃y

ˆ
dw̃zρ

QM(1)
2 (y2 + w̃y, y

′
2 + w̃y; 0)e

− i
ℏ k̃yw̃y

×
ˆ
dk̃z

ˆ
dw̃zρ

QM(1)
2 (z2 + w̃z, z

′
2 + w̃z; 0)e

− i
ℏ k̃zw̃z

× F (
ℏk
L1

(x2 − x′2), k̃y, k̃z;x2 − x′2, y2 − y′2, z2 − z′2; t1)

(4.33)
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[z2 to z3] We apply Eq. (4.1) to ρ2(x2, y2, z2;x′2, y′2, z′2) for a time t2 = L2
v :

ρ3(x3, y3, z3;x
′
3, y

′
3, z

′
3) =

ˆ
d
˜̃
kx

ˆ
d ˜̃wxe

− i
ℏ
˜̃
kx ˜̃wx

ˆ
d
˜̃
ky

ˆ
d ˜̃wze

− i
ℏ
˜̃
ky ˜̃wy

×
ˆ
d
˜̃
kz

ˆ
d ˜̃wze

− i
ℏ
˜̃
kz ˜̃wzF (

˜̃
kx,

˜̃
ky,

˜̃
kz;x3 − x′3, y3 − y′3, z3 − z′3; t2)

× ρQM
3 (x3 + ˜̃wx, y3 + ˜̃wy, z3 + ˜̃wz;x

′
3 + ˜̃wx, y

′
3 + ˜̃wy, z

′
3 + ˜̃wz),

(4.34)

where

ρQM
3 (x3, y3, z3;x

′
3, y

′
3, z

′
3) =

ˆ +∞

−∞
dx2

ˆ +∞

−∞
dx′2e

ik
2L2

((x3−x2)2−(x′
3−x′

2)
2)

×
ˆ +∞

−∞
dy2

ˆ +∞

−∞
dy′2e

ik
2L2

((y3−y2)2−(y′3−y′2)
2)

×
ˆ +∞

−∞
dz2

ˆ +∞

−∞
dz′2e

ik
2L2

((z3−z2)2−(z′3−z′2)
2)

× ρ2(x2, y2, z2;x
′
2, y

′
2, z

′
2)

(4.35)

is the free quantum mechanical evolution of ρ2(x2, y2, z2;x′2, y′2, z′2) for a time t2.

[z3] We now set x = x3 = x′3, y = y3 = y′3 and z = z3 = z′3 to obtain the probability density
function p3(x, y, z) = ρ3(x, y, z;x, y, z), as the molecule interacts with the detector.
However, we are only interested in the probability of detecting a particle at a horizontal
coordinate x, therefore we consider:

p(x) =

ˆ +∞

−∞
dy

ˆ +∞

−∞
dz p3(x, y, z). (4.36)

It is straightforward to perform the integrations along the x axis in Eq. (4.36) at this
step of the calculation. In fact, these calculations are completely analogous to those
described above (Eqs. (4.9) to (4.16)), when working within the 1D approximation.

Let us now look at the tedious integrations associated with the y axis in Eq. (4.36). In
particular, we have from Eq. (4.34):
ˆ
dy

ˆ
dy2

ˆ
dy′2ρ2(x2, y2, z2;x

′
2, y

′
2, z

′
2)e

ik
2L2

(−2(y+ ˜̃wy)y2+2(y+ ˜̃wy)y′2)e
ik

2L2
(y22−y′22 ) (4.37)

By performing the y integration we obtain a Dirac delta function δ(y2 − y′2) and by
performing then also the y′2 integration, the expression given in Eq. (4.37) reduces to:

ˆ
dy2ρ2(x2, y2, z2;x

′
2, y2, z

′
2) (4.38)

Let us now write the integrations associated with the y axis contained within ρ2 (see
Eqs. (4.33) and (4.27)):

ˆ
dk̃y

ˆ
dw̃y

ˆ
dy2Exp

[
−
2w̃2

y + 2y22 + w̃y(4y2 +
i
ℏ k̃yσ

2
2)

σ22

]
× F (k̃x, k̃y, k̃z;x2 − x′2, 0, z2 − z′2; t1).

(4.39)
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By performing the y2 integration we remove the quadratic term containing w̃y:
ˆ
dk̃y

ˆ
dw̃yF (k̃x, k̃y, k̃z;x2 − x′2, 0, z2 − z′2; t1) exp

[
− i

ℏ
w̃yk̃y

]
. (4.40)

The w̃y integration yields a Dirac delta function δ(k̃y) and by then also performing the
k̃y integration, the expression given in Eq. (4.40) reduces to:

F (k̃x, 0, k̃z;x2 − x′2, 0, z2 − z′2; t1). (4.41)

In addition, we have just shown that ρQM
3 (x3+ ˜̃wx, y3+ ˜̃wy, z3+ ˜̃wz;x3+ ˜̃wx, y3+ ˜̃wy, z3+

˜̃wz) defined in Eq. (4.35) does not depend on ˜̃wy. Hence we can perform the following
integrations: ˆ

d ˜̃wy

ˆ
d
˜̃
kye

− i
ℏ
˜̃wz

˜̃
kzF (

˜̃
kx,

˜̃
ky,

˜̃
kz; 0, 0, 0, t2). (4.42)

Since the ˜̃wy integration yields a Dirac delta function δ(˜̃ky) we obtain from the expres-
sion given in Eq. (4.42):

F (
˜̃
kx, 0,

˜̃
kz; 0, 0, 0, t2). (4.43)

We have thus shown that the final probability density is not affected by the dynam-
ics along the y axis. A completely analogous calculation can be performed for the
integrations associated with the z axis. Hence we obtain from Eq. (4.36):

p(x3) =

ˆ +∞

−∞
dx2

ˆ +∞

−∞
dx′2t(x2)t

∗(x′2)D(x2 − x′2)

× e
− ik

L2
(x2−x′

2)x3e
ik

2L1
(x2

2−x′2
2 )
e

ik
2L2

(x2
2−x′2

2 )
e
− ik

L1
(x2−x′

2)x1 ,

(4.44)

where

D(x2 − x′2) = F (−ℏk
L2

(x2 − x′2), 0, 0; 0, 0, 0; t2)F (
ℏk
L1

(x2 − x′2), 0, 0; (x2 − x′2), 0, 0; t1).

(4.45)

This calculation thus justifies, and gives the limits of applicability, of the 1D treatment dis-
cussed before.

4.2.3 Far-field

The experimental setup for the far-field interference experiments is summarized in Fig. 4.3
(left).

The difference with respect to the idealized situation described in the previous section is
that instead of a single point source we have an incoherent source of horizontal extension s,
centered at x1 = 0. We obtain the interference pattern by integrating Eq. (4.15) over the
points x1 of the source from − s

2 to s
2 :

p(x) =

ˆ +∞

−∞
dx2

ˆ +∞

−∞
dx′2D(x2 − x′2)e

− ik
L2

(x2−x′
2)x

× sinc
(

k

2L1
(x2 − x′2)s

)
e
ik(x2

2−x′2
2 )( 1

2L1
+ 1

2L2
)
,

(4.46)
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Figure 4.3: Left: Far-field experimental setup. The optical elements are: an incoherent source at
z1 (centered on the optical axis, i.e. around x1 = 0), the diffraction grating at z2 (here we have
shown a mechanical grating with N = 7 slits) and the detector at z3. For the experiment described
in section 5.3 we have the following numerical values. The distance from z1 to z2 is L1 = 0.702m
and the distance from z2 to z3 is L2 = 0.564m. The source extension is taken to be s = 1µm. The
mechanical grating with N = 30 slits is described by the period d = 100nm and slit width l = 79nm.
The van der Walls forces due to the grating are modeled by an effective slit width leff = 43nm.
Right: Talbot Lau near-field experimental setup. In this case the optical elements are: an extended
incoherent source at z1, a diffraction grating at z2 (here, an optical grating produced by a standing
light wave) and the detector at z3. Two additional mechanical gratings block part of the molecules:
the mechanical grating located immediately after the source is held fixed, while the mechanical grating
immediately before the detector can move along the x3 axis (we denote the displacement from its
initial position by x3s). We assume that all elements have a very large horizontal extension such that
one can approximate them with periodic functions. The detector at z3 records molecules that arrive
at all points along the x3 axis in a certain amount of time. For the experiment described in section
5.3 we have the following numerical values. The distance from z1 to z2 and the distance from z2 to
z3 is L = L1 = L2 = 10.5cm. Both mechanical gratings are described by the same period d = 266nm
and slit width l = 110nm. The optical grating is described by the wavelength λlaser = 532nm, the
laser power Plaser = 1W, the optical polarizability αopt = 410×4πϵ0 and the absorption cross section
σa = 1.7× 10−21m2.

A related study of far-field decoherence effects in the Wigner function formalism is given in
[44].

Let us discuss how to evaluate numerically Eq. (4.46). We recognize from the factor

e
− ik

L2
(x2−x′

2)x3 a Fourier transform and an inverse Fourier transform. Fourier transforms can
be approximated with discrete Fourier transforms using the FFT algorithm. Hence the inte-
grations in Eq. (4.46) can be conveniently evaluated numerically with the row column FFT
algorithm.

4.2.4 Talbot Lau near-field

The experimental setup for the KDTL near-field interference experiment is represented in
Fig. 4.3 (right). This is essentially the same scheme as presented before (Fig. 4.1) except
that now we have two additional gratings at positions z1, z3 along the optical axis. We
assume that all gratings have a very large horizontal extension such that we can model
them by periodic functions. The first grating at z1 acts as a mask of an infinite incoherent
source and similarly the third grating at z3 acts as a mask of the infinite detection screen. The
experiment is performed by moving the masking grating at z3 along the x3 axis and recording
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the total number of molecules that reach the detector in a certain amount of time. At the
end one obtains the number of molecules that reach the detector given a certain displacement
x3s of the third grating from its initial position.

In section 5.3 we will describe the KDTL experiment, where the 3 gratings have the same
periodicity d and the distance from z1 to z2 and from z2 to z3 is L = L1 = L2. Due to the
periodicity of the 3 gratings, we adopt the following notation for the Fourier series of the
corresponding transmission functions (notation of Ref. [46]):

|t1(x1)|2 =
+∞∑

l=−∞
Ale

i2πl
x1
d , (4.47)

t(x2) =
+∞∑

j=−∞
bje

i2πj
x2
d , (4.48)

|t3(x3)|2 =
+∞∑

n=−∞
Cne

i2πn
x3
d . (4.49)

We can now directly proceed with the derivation of the interference pattern starting again
from Eq.(4.15):

S(x3s) =

ˆ +∞

−∞

ˆ +∞

−∞
dx1dx3p(x3;x1)|t1(x1)|2|t3(x3 − x3s)|2, (4.50)

where with respect to the far-field experiment, there is a further integration over all the
detector region, x3s is the horizontal shift of the third grating and p(x3;x1) is the interference
pattern due to a single source point at x1 given by Eq. (4.15). In other words, S(x3s) gives
the number of molecules that reach the infinite detector at z3 from the infinite source at z1
in a certain amount of time, given a displacement x3s of the third grating from its initial
position. Since this gives formally an infinite value, we have to properly normalize the result.
This is done in the following way.

The integrations in Eq. (4.50) over x1, x3 yield two delta functions δ(2πld − k
L1

(x2 − x′2)),
δ(2πnd − k

L2
(x2−x′2)). We perform the integration over dx′2 which gives the constraint x2−x′2 =

2πl
d

L
k , while the other delta function gives the constrain l = n. We now divide by δ(0) in

order to remove the infinite factor due to the delta function giving this first constrain. We
are left with the integration over dx2 which gives a delta function δ(4πnd + 2πj

d − 2πj′

d ), where
j′ is the index in the Fourier expansion of t∗(x′2). This gives the constraint j′ = j + 2n. We
again divide by δ(0) in order to remove the infinite factor due to the delta function giving
this second constrain. We are now left with a finite expression. In order to obtain a notation
consistent with that of [46] we relabel n as −n and use the fact that A−n = A∗

n, C−n = C∗
n.

Thus we obtain:
S(x3s) =

∑
n

A∗
nC

∗
nBnD

(
2πn

d

L

k

)
ei2πn

x3s
d , (4.51)

where Bn =
∑

j bjb
∗
j−ne

iπ
2

d2
L
k
(n2−2nj). The above equation coincides with the results derived

by using the Wigner function formalism [42, 43].
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4.3 Summary of Collapse Models and of the interference pat-
tern

4.3.1 Continuous Spontaneous Localization

Here we are referring to the mass-proportional version of the CSL model [49]. The single-
particle master equation in 3D is given by [50]:

d

dt
ρ̂(t) = − i

ℏ

[
Ĥ, ρ̂(t)

]
+ λ

m2

m2
0

((
rC√
πℏ

)3 ˆ
d3Qe−

Q2r2C
ℏ2 e

i
ℏQ·x̂ρ̂(t)e−

i
ℏQ·x̂ − ρ̂(t)

)
. (4.52)

λ gives the frequency of the localization events (a localization rate) for a reference object of
mass m0 = 1 amu, while rC describes how well an object is localized (a localization length).
In the free-particle case Ĥ = p̂2/2m, the equation can be solved exactly. In the coordinate
basis, it reads [8]:

ρCSL(x,x′, t) =
1

(2πℏ)3

ˆ +∞

−∞
dk̃

ˆ +∞

−∞
w̃e−

i
ℏ k̃·w̃FCSL(k̃,x−x′, t)ρQM(x+w̃,x′+w̃, t), (4.53)

where ρQM(x,x′, t) is the standard free quantum evolution for the density matrix (λ = 0)
and

FCSL(k̃, q, t) = exp

[
−λm

2

m2
0

t

(
1− 1

t

ˆ t

0
dτe

− 1

4r2
C

(q− k̃τ
m

)2
)]

. (4.54)

The interference pattern is given by Eq. (4.15) with the function D defined as follows:

DCSL(x2 − x′2) = exp

⎡⎣−λm2

m2
0

(t1 + t2)

⎛⎝1−
√
π

2

erf( (x2−x′
2)

2rC
)

(x2−x′
2)

2rC

⎞⎠⎤⎦ . (4.55)

Note that DCSL(x2 − x′2) was previously derived [42, 43, 44] by using the Wigner function’s
formalism.

The GRW single-particle master equation has the same mathematical structure as the
CSL single-particle master equation. Since our analysis is based entirely on this master equa-
tion the above CSL formulae apply also to the GRW model, the only difference being the
amplification mechanism discussed in section 4.4.

4.3.2 Diósi-Penrose

The single-particle master equation in 3D for a particle of mass m0 is given by [30, 50]:

dρ̂t
dt

= − i

ℏ

[
Ĥ, ρ̂t

]
+
Gm2

0

2πℏ2

ˆ
dQ

1

Q2
e−

Q2R2
0

ℏ2
(
e

i
ℏQ·x̂ρ̂te

− i
ℏQ·x̂ − ρ̂t

)
, (4.56)

where R0 is a regularization parameter, which has to be included in order to avoid divergences
at short distances4. For a point-like particle5 of mass m we have to replace m0 with m. In

4The DP model introduces only one cut-off length phenomenological parameter R0, which cures the ul-
traviolet divergence of the gravitational interaction. The effective collapse rate, analogous to λ, is given by
Gm2

0/
√
πℏR0, while R0 describes how well an object is localized, analogous to rC .

5We thank Prof. Lajos Diósi for signaling this point.
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the free-particle case, the equation can be solved exactly, and in the position representation
it reads [51]:

ρDP(x,x′, t) =
1

(2πℏ)3

ˆ
dk̃

ˆ
w̃e−

i
ℏ k̃·w̃FDP(k̃,x− x′, t)ρQM(x+w,x′ +w, t), (4.57)

where, again, ρQM(x,x′, t) is the free standard quantum evolution, and

FDP(k̃, q, t) = exp

[
−1

ℏ

ˆ t

0
dτ

(
U(− k̃τ

m
+ q)− U(0)

)]
(4.58)

with U(x) = −Gm2
0erf(|x|/2R0)/|x|.

The interference pattern is given again by Eq. (4.15), with the function D given by:

DDP(x2 − x′2) = exp

[
− Gm2

0

ℏ
√
πR0

(t1 + t2)

(
1− 2F2

(
1

2
,
1

2
,
3

2
,
3

2
;−
(
|x2 − x′2|

2R0

)2
))]

, (4.59)

where 2F2(
1
2 ,

1
2 ,

3
2 ,

3
2 ; z) =

∑∞
k=0

(
1

1+2k

)2
zk

k! .
It is instructive to compare DDP and DCSL. One can relate the role of λ in the CSL

model with λDP =
Gm2

0

ℏ
√
πR0

in the DP model, and the role of rC for CSL with R0 for DP. As
Fig. 4.6 shows, when appropriately rescaled, DDP and DCSL have a very similar behavior. In
particular, both are equal to 1 for |x2 − x′2| = 0 and decay more or less in the same way
towards the asymptotic value e−λ(t1+t2) as |x2 − x′2| → ∞.

4.3.3 Dissipative CSL

This is a recently developed new version of the CSL model, which includes dissipative effects,
which prevent the energy of the system to increase and eventually diverge. The single-particle
master equation in 3D is [34, 51]:

dρ̂t
dt

= − i

ℏ

[
Ĥ, ρ̂t

]
+ λ

m2

m2
0

((
rC(1 + kT )√

πℏ

)3 ˆ
dQe

i
ℏQ·x̂e−

r2C
2ℏ2 ((1+kT )Q+2kT p̂)2 ρ̂te

− r2C
2ℏ2 ((1+kT )Q+2kT p̂)2e−

i
ℏQ·x̂ − ρ̂

)
(4.60)

where kT = ℏ2
8mr2CkBT

, kB is Boltzmann constant and T the temperature the system thermal-
izes to. This is a new parameter of the theory, which together with λ and rC fully identifies
the model. In the limit kT → 0 (i.e T → ∞), one re-obtains standard CSL model.

We simplify the analysis, as in [51, 34], by considering only small values of kT :

kT ≪ 1. (4.61)

This assumption identifies a region in the parameter space (T, rc), depicted in Fig. 5.1.
In the free particle case the solution reads [34]:

ρdCSL(x,x′, t) =
1

(2πℏ)3

ˆ
dk̃

ˆ
w̃e−

i
ℏ k̃·w̃F dCSL(k̃,x− x′, t)ρQM(x+ w̃,x′ + w̃, t), (4.62)
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where as usual ρQM(x,x′, t) is the free standard quantum evolution, and

FdCSL(k̃, q, t) = exp

⎡⎣−λm2

m2
0

t

⎛⎝1− 1

t

ˆ t

0
dτe

− k̃2r2Ck2T
ℏ2 − (− k̃τ

m +q)2

4r2
C

(1+kT )2

⎞⎠⎤⎦ . (4.63)

The interference pattern is still given by Eq. (4.15), with the function D given by:

DdCSL(x2 − x′2) = exp [ − λ
m2

m2
0

(t1 + t2)

+ λ
m2

m2
0

(
t1e

− k2

L2
1
(x2−x′

2)
2r2Ck2T

+ t2e
− k2

L2
2
(x2−x′

2)
2r2Ck2T

) √
π

2

erf( (x2−x′
2)

2rC(1+kT ))

(x2−x′
2)

2rC(1+kT )

] .

(4.64)

We note that this equation reduces to the CSL D function, given in Eq. (4.55), when the
following condition is fulfilled:

1

rCt
≪ 8kBT

ℏ∆x
, (4.65)

for t = t1 and t = t2. This condition identifies a region in the parameter space (rc, T ),
depicted in Fig. 5.1.

However, the master equation (4.60) is not invariant under boosts. Indeed, the dissipative
CSL master equation has the same structure of a quantum linear Boltzmann equation of a
particle immersed in a finite temperature bath [52]. Thus the dissipative CSL model contains
an additional free parameter, a velocity u, which is analogous to the relative velocity between
bath and particle. In particular, the master equation in the boosted reference frame with
boost velocity u is given by the following equation:

dρ̂t
dt

=− i

ℏ

[
Ĥ, ρ̂t

]
+ λ

m2

m2
0

(

(
rC(1 + kT )√

πℏ

)3

×
ˆ
dQe

i
ℏQ·X̂e−

r2C
2ℏ2 ((1+kT )Q+2kT (P̂−mu))2 ρ̂te

− r2C
2ℏ2 ((1+kT )Q+2kT (P̂−mu))2e−

i
ℏQ·X̂ − ρ̂ ) .

(4.66)

We find the solution of Eq. (4.66) using the characteristic function approach [53]. The solution
is given by Eq. (4.62) with the function FdCSL replaced by:

F boosted
dCSL (k̃, q, t;u) = exp

[
− λ

m2

m2
0

t

⎛⎝1− 1

t

ˆ t

0
dτe

− k̃2r2Ck2T
ℏ2 − (− k̃τ

m +q)2

4r2
C

(1+kT )2 e
i
ℏ

2kTmu

1+kT
·(− k̃τ

m
+q)

⎞⎠].
(4.67)

The interference pattern is given by Eq. (4.15) with the function D replaced by:

Dboosted
dCSL (x2 − x′2) = exp [ − λ

m2

m2
0

(t1 + t2)

+ λ
m2

m2
0

(
t1e

− k2

L2
1
(x2−x′

2)
2r2Ck2T

+ t2e
− k2

L2
2
(x2−x′

2)
2r2Ck2T

)

×
´ ( (x2−x′2)

2rC (1+kT )
)

0 dτe−τ2 cos(2τ 2rCkTmux

ℏ )

(
(x2−x′

2)
2rC(1+kT ))

] ,

(4.68)
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where ux is the x component of u. We note that this equation reduces to the CSL D function,
given in Eq. (4.55), when in addition to Eq. (4.65), the following condition is fulfilled:

ux
r2C

≪ 8kBT

ℏ∆x
(4.69)

We note that Eq. (4.68) reduces to Eq. (4.64) as ux → 0ms−1 and that Eq. (4.64) reduces
to Eq. (4.55) as kT → 0. This condition identifies a region in the parameter space (rc, ux, T ),
depicted in Fig. 5.2.

A comparison of Dboosted
dCSL functions evaluated with different temperatures T and different

boosts ux is given in Figs. 4.4, 4.5 respectively. We see from these figures that the dCSL
model with large temperatures T and small boosts ux give the smallest modification with
respect to the standard quantum mechanical evolution (D = 1) and practically coincide with
the CSL model evolution. Hence, given that T and ux are unknown, the CSL model can be
used as a bound for all dCSL models with arbitrary T and u.

Figure 4.4: Comparison of DdCSL functions for different temperatures T at fixed boost ux =
0ms−1. The plot is obtained with rC = 10−7m, λ = 500s−1, t1 = t2 = 1ms and L1 =
L2 = 0.1m. The black solid line represents the quantum mechanical function (D = 1),
the green solid line represents the D function for the dCSL models with T > 10−7K (which
includes the CSL model), while the dashed lines represent the dCSL models with temperatures
T = 10−8K, T = 10−9K and T = 10−10K. The solid brown line represents the asymptotic
value of the D functions for all the considered collapse models as |x− x′| → +∞.

The dGRW single-particle master equation has the same mathematical structure as the
dCSL single-particle master equation. Since our analysis is based entirely on this master
equation the above dCSL formulae apply also to the dGRW model, the only difference being
the amplification mechanism discussed in section 4.4.

4.3.4 Colored CSL

This model presents an additional difficulty with respect to the white noise models discussed
in the previous sections. The calculation presented in 4.2 is split into two parts, the free
evolution from the source at time τ1 to the grating at time τ2 and the free evolution from the
grating at time τ2 to the detector at time τ3, whereas at time τ2 the molecule is subject to a
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Figure 4.5: Comparison of DdCSL functions for different boost along the x axis ux at fixed
temperature T = 1K. The plot is obtained with rC = 10−7m, λ = 500s−1, t1 = t2 = 1ms
and L1 = L2 = 0.1m. The black solid line represents the quantum mechanical function
(D = 1), the green solid line represents the D function for the dCSL models with boosts
along the x axis |ux| < 104ms−1 (which includes the CSL model), while the dashed lines
represent the dCSL models with boost along the x axis |ux| = 2× 104ms−1, |ux| = 105ms−1

and |ux| = 106ms−1. The solid brown line represents the asymptotic value of the D functions
for all the considered collapse models as |x− x′| → +∞.

non free evolution. Let us consider the times τ1 < tbefore < τ2 and τ2 < tafter < τ3. The non
white noise might correlate the evolution between tbefore and tafter. In order to simplify the
analysis we neglect the correlations between these times by assuming a small correlation time
τc ≪ τ3−τ1. A similar argument can be put forward for the correlation between times before
and after τ1. Hence we limit the discussion to non white CSL models with small correlation
times. In particular, this assumption justifies the following approximation of the free one
particle master equation in 3D [54, 19]:

dρ̂t
dt

=− i

ℏ

[
Ĥ, ρ̂t

]
− λ

m2

m2
0

(
rC√
πℏ

)3 ˆ t

0
dsf(t− s)

ˆ
dQe−

Q2r2C
ℏ2 [e

i
ℏ x̂·Q, [Û †(s− t)e−

i
ℏ x̂·QÛ(s− t), ρ̂t]],

(4.70)

where f(t− s) is the correlation function and Û(t) = e−
i
ℏ

p̂2

2m
t.

We now expand Û(τ) to first order: Û(τ) ≈ 1 − i
ℏ
p̂2

2mτ , which is justified since τ is
limited by the correlation time τC of the correlation function f(s) through the time integral in
Eq. (4.70). We make the following assumption (we will discuss the validity of this assumption
in Sec. 5.2):

1

ℏ
p̂2

2m
τC ≪ 1. (4.71)

Hence by performing the time integration we obtain from Eq. (4.70):

dρ̂t
dt

= LCSL[ρ̂] + Lcorrection[ρ̂], (4.72)
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where

LCSL[ρ̂] = − i

ℏ

[
Ĥ, ρ̂t

]
+ λ

m2

m2
0

((
rC√
πℏ

)3 ˆ
dQe−

Q2r2C
ℏ2 e

i
ℏQ·x̂ρ̂(t)e−

i
ℏQ·x̂ − ρ̂(t)

)
(4.73)

is the white noise CSL evolution,

Lcorrection[ρ̂] =
iτ̄

2mℏ
λ
m2

m2
0

(
rC√
πℏ

)3 ˆ
dQe−

Q2r2C
ℏ2 Q· ( [e

i
ℏQ·x̂ρ̂e−

i
ℏQ·x̂, p̂] + e

i
ℏQ·x̂[ρ̂, p̂]e−

i
ℏQ·x̂ )

(4.74)

is the first order correction due to the non white noise and

τ̄ =

ˆ t

0
f(s)sds. (4.75)

By performing a direct but tedious calculation, it can be shown that Eq. (4.72) is invariant
under boost and thus fully Galilean invariant.

Let us now find the solution of Eq. (4.72) by using the characteristic function approach [53].
We multiply Eq. (4.72) by e

i
ℏ (ν·x̂+µ·p̂) and take the trace:

∂

∂t
χ(ν,µ, t) =

ν

M
· ∂µχ(ν,µ, t) + λ (Φ(ν,µ)− 1) , (4.76)

where

Φ(ν,µ) = e
−µ2

4r2
C (1− µ · ν

4mr2C
τ̄) (4.77)

and
χ(ν,µ, t) = Tr[ρ̂te

i
ℏ (ν·x̂+µ·p̂]. (4.78)

The solution of the characteristic function in Eq. (4.76) is given by:

χ(ν,µ, t) = χ0(ν,µ, t)e−λt+
´ t
0 Φ(ν,ντ

m
+µ)dτ , (4.79)

where χ0(ν,µ, t) is the solution of equation ∂
∂tχ

0(ν,µ, t) = 1
mν · ∂

∂µχ
0(ν,µ, t). The density

matrix can be obtained from the characteristic function using the inversion formula:

ρ(x,x′, t) =

ˆ
dν

(2πℏ)3
e−

i
2ℏν·(x+x′)χ(ν,x− x′, t). (4.80)

Hence the solution of the master equation (4.72) is given by:

ρcCSL(x,x′, t) =
1

(2πℏ)3

ˆ
dk̃

ˆ
ỹe−

i
ℏ k̃·ỹFcCSL(k̃,x− x′, t)ρQM (x+ y,x′ + y, t), (4.81)

where

FcCSL(k̃, q, t) = FCSL(k̃, q, t) exp

[
λτ̄

2

⎛⎝e− (q− k̃t
m )2

4r2
C − e

− q2

4r2
C

⎞⎠]. (4.82)

For further details about the characteristic function approach see Ref. [53, 51]. The inter-
ference pattern is given by Eq. (4.15) with the function D replaced by DcCSL = DCSL given
in Eq. (4.55). Although FCSL and FcCSL in general differ, i.e. CSL and cCSL have different
free evolutions, we have the curious situation that the non Markovian effects in diffraction
experiments cancel exactly, i.e. the CSL and cCSL interference patterns coincide.
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Figure 4.6: Comparison of D functions for the considered collapse models. The plot is
obtained with rC = 10−7m, λ = 500s−1, t1 = t2 = 1ms, L1 = L2 = 0.1m, R0 = 10−7m,
λDP = λ = 500s−1, where the rescaled λ, λDP are such that λ(t1 + t2) = 1. The black solid
line represents the quantum mechanical function (D = 1), the orange solid line represents
the D function for the DP model, the green solid line represents that of the CSL, GRW,
dCSL, dGRW and cCSL models (for temperatures T > 10−7K and boost along the x axis
ux < 104ms−1 . The solid brown line represents the asymptotic value of the D functions for
all the considered collapse models as |x− x′| → +∞.

4.3.5 Quantum mechanics with universal position localization

Here we are referring to the mass-proportional version of the QMUPL model [30, 33]. The
single-particle master equation in 3D is given by [50]:

dρ̂

dt
= − i

ℏ

[
P̂2

2m
, ρt

]
− η

2

m

m0

[
X̂,
[
X̂, ρ̂

]]
(4.83)

The solution to this master equation can be obtained with the help of the characteristic
function:

ρQMUPL(x,x′, t) =
1

(2πℏ)3
1

(2πℏ)3

ˆ +∞

−∞
dk̃

ˆ +∞

−∞
w̃e−

i
ℏ k̃·w̃FQMUPL(k̃,x−x′, t)ρQM(x+w̃,x′+w̃, t),

(4.84)
where ρQM(x,x′, t) denotes the usual free quantum mechanical evolution (η = 0) and

FQMUPL(k̃, q, t) = exp

[
+
η

2

m

m0

[
q2 − q · k̃t

m
+

k̃2

m2

t2

3

]]
. (4.85)

The interference pattern is given by Eq. (4.15) with the function D defined as follows:

DQMUPL(x2 − x′2) = exp

[
−η
3

m

m0
(t1 + t2)(x2 − x′2)

2

]
. (4.86)

The function DQMUPL(q) completely encodes the modification to the quantum mechanical
interference pattern (η = 0).
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4.4 Center-of-mass motion for a rigid object and the amplifi-
cation mechanism

Matter-wave experiments use large molecules and create spatial superpositions of their center-
of-mass motion. In this section, starting from the many-particle collapse dynamics, we will
derive a closed equation for the center of mass, under the rigid-body approximation. We
will show and quantify the amplification mechanism: the larger the system, the faster the
collapse of the center-of-mass wave function.

We will start by considering the CSL model. Under suitable assumptions, discussed at
the end of this section, the analysis applies also to the dCSL, cCSL with small correlation
time, and to the DP model. We will discuss three approximations for the geometry of a
planar molecule, namely Adler’s formula [55], the homogeneous disk approximation and the
2D lattice structure approximation [56].

The N -particle CSL master equation reads:

d

dt
ρ̂(t) = − i

ℏ

[
Ĥ, ρ̂(t)

]
+ λ

m2

m2
0

(
rC√
πℏ

)3 N∑
j,l

ˆ
dQe−

Q2r2C
ℏ2

(
e

i
ℏQ·x̂j ρ̂(t)e−

i
ℏQ·x̂l − ρ̂(t)

)
,

(4.87)
where m is the mass of a single particle and x̂i is the position operator of particle i. By
performing a trace over the relative coordinates, we obtain the master equation for the
reduced density matrix ρ̂CM(t) describing the center-of-mass motion:

d

dt
ρ̂CM(t) = − i

ℏ

[
Ĥ, ρ̂CM(t)

]
+ λ

(
rC√
πℏ

)3 m2

m2
0

ˆ
dQR(Q)e−

Q2r2C
ℏ2 (e

i
ℏQ·X̂ ρ̂CM(t)e

− i
ℏQ·X̂ − ρ̂CM(t)),

(4.88)

where X̂ =
∑N

i=1 x̂i/N is the center of mass position operator and

R(Q) =

ˆ
dr1...drN

N∑
j=1,l=1

e
i
ℏQ·(rj−rl) (4.89)

encodes the distribution of atoms in space around the center of mass. By considering a rigid
body and neglecting rotations around the center of mass, we can remove the integrations over
the relative coordinates[32]:

R(Q) =
N∑

j=1,l=1

e
i
ℏQ·(rj−rl). (4.90)

The next step is to replace R(Q) with a function independent of the position of the particles,
so that Eq. (4.88) reduces to a single-particle master equation like Eq. (4.52), with λ replaced
by an enhanced factor Λ, which depends on the total number of particle and their geometrical
distribution. Hence we want to show that under suitable approximations:

λ
m2

m2
0

ˆ
dQR(Q)e−

Q2r2C
ℏ2 e

i
ℏQ·X̂ ρ̂CM (t)e−

i
ℏQ·X̂ −→ Λ

ˆ
dQe−

Q2r2C
ℏ2 e

i
ℏQ·X̂ ρ̂CM (t)e−

i
ℏQ·X̂ ,

(4.91)

−λm
2

m2
0

(
rC√
πℏ

)3 ˆ
dQR(Q)e−

Q2r2C
ℏ2 ρ̂CM (t) −→ − Λρ̂CM (t). (4.92)
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We now review the three possible methods of approximation mentioned above.

4.4.1 Adler’s formula

Consider first the situation when the molecule is enclosed in a radius rs ≪ rC (see Fig. 4.7).
According to Eq. (4.88) the weight exp(−Q2r2C/ℏ2) selects those values of |Q| such that
|Q| < ℏ/rC . Hence we have that |1ℏQ · (rj − rl)| < | (rj−rl)

rC
| ≈ 0, and we can write:

R(Q) ≈
N∑

j=1,l=1

1 = N2. (4.93)

On the opposite side, let us consider the situation when the distance between nearest
neighbor atoms ra is much bigger than rC , .i.e. rC ≪ ra. We group the terms e−Q2r2C/ℏ2(e

i
ℏQ·(rj−rl)+

e−
i
ℏQ·(rj−rl)), which can be rewritten as: 2e−Q2r2C/ℏ2 cos(Q · (rj − rl)/ℏ). Let us rewrite:

Q · (rj − rl) = |Q||rj − rl| cos(θ). Except for the cases when cos(θ) ≈ 0, if j ̸= l the condi-
tion rC ≪ ra implies that the oscillations of cos(|Q||rj − rl|cos(θ)/ℏ) make the Q integrals
negligible. Therefore, the dominant contribution in Eq. (4.90) comes from j = l terms, and
we can write:

R(Q) ≈
N∑
j=1

1 = N. (4.94)

The conclusion is that, when N particles in the system are distant less than rC , we have
a quadratic scaling (∼ N2) of Λ for the center of mass motion. On the other hand, when
the mutual distance between the N particles is larger than rC , then Λ for the center of mass
motion increases linearly with N .

We also need to consider the intermediate case, where a more careful analysis is needed.
In this situation, the behavior is expected to interpolate between the linear and quadratic
scaling. We model the macro-molecules used in the experiments by atoms uniformly dis-
tributed over a thin disk, as depicted in Fig. 4.7. We neglect the electrons, as their mass is
small compared to the nucleon mass and we describe the atomic nuclei as single particles of
average mass ma = m

na
(average atomic mass), where na is the total number of atoms. We

limit the discussion to values of rC larger than the nucleon size ∼ 10−15m.
The mean area covered by a single atom is πr2a, where we take the mean atomic radius

to be ra = 10−10m. The number of atoms contained within a circle of radius rC is:

n(rC) =

⎧⎪⎪⎨⎪⎪⎩
1, if rC < ra.
πr2C
πr2a

, if ra ≤ rC ≤ rs.

na if rs < rC .

(4.95)

These will contribute quadratically to the collapse rate. The molecule can be covered by
na/n(rC) circles of radius rC and atoms belonging to different circles contribute linearly to
the collapse rate. Thus we model the collapse rate for the center of mass of the molecule
according to the formula:

Λ =
na

n(rC)

(
man(rC)

m0

)2

λ. (4.96)
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Figure 4.7: Macro-molecule thin disk approximation with uniformly distributed atoms. The
blue circles represent atomic nuclei, the purple circles the atoms of radius ra and the orange
circle of radius rs denotes the area spanned by the molecule. We assume for simplicity, that
the purple circles denoting atoms completely fill the orange circle denoting the molecule, so
that empty spaces can be neglected. When rC > rs, the whole molecule is contained within
a circle of radius rC , and the quadratic scaling law applies (e.g. rC = r

(2)
C ) . When rC < ra,

only one nucleus is contained within a circle of radius rC , and the linear scaling law applies
(e.g. for rC = r

(1)
C ). When ra < rC < rs, we interpolate the two limiting cases with the

scaling law (4.96).

This is the formula we will use in following sections. We will describe the center of mass
motion as that of a single particle via Eq. (4.1), and in all formulas derived starting from it,

λ
(

m
m0

)2
is replaced by Λ. Of course, in the limiting case when the molecular radius rs is

smaller then rC , the above scaling reduces to the purely quadratic scaling law, while when
the atomic radius ra is larger than rC it reduces to the purely linear scaling law. We now
discuss two further approximation schemes which will confirm the validity of Eq. (4.96).

4.4.2 Homogeneous thin disk approximation

As a different way to tackle the problem, let us consider the molecule as a thin homogeneous
disk of radius rs and thickness d. In this continuous limit, we can approximate:

N∑
j=1

e
i
ℏQ·rj −→

ˆ
dxρrel(x)e

i
ℏQ·x = ρ̃rel(Q), (4.97)

where ρrel(x) is the matter distribution around the center of mass, and ρ̃rel(Q) its Fourier
transform. Then Eq. (4.90) reduces to:

R(Q) = |ρ̃rel(Q)|2. (4.98)

In particular, by labeling the axis of rotational symmetry of the disk as the z axis and its
orthogonal plane (x-y plane) with the label o, we find that

ρ̃rel(Q) =
2ℏ
QoR

J1(
QoR

ℏ
)sinc(

Qzd

2ℏ
), (4.99)
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where Qz,Qo are the z axis and the x-y plane components of Q, respectively and J1 denotes
the Bessel function of the first kind. We now insert ρ̃rel(Q) into Eqs. (4.91) and (4.92) and
take the limit d → 0 (very thin disk approximation). To perform the approximation in
Eq. (4.91) and Eq. (4.92), we work in the position basis, i.e. we apply ⟨x, y, z|, |x′, y′, z′⟩ from
the left and right, respectively. In addition, we assume that the superposition is on distances
much greater than the size of the system, i.e. ∆x = x−x′ is either |∆x| ≫ rs or ∆x = 0 and
similarly for the y axis. It is then easy to obtain the rescaling of the parameter λ:

Λ =

4λm2r2C

(
1− e

− r2s
4r2

C

)
m2

0r
2
s

. (4.100)

4.4.3 2D Lattice disk

As a different approximation, we consider a 2-D lattice, as depicted in Fig. 4.7, of point-
like nuclei (small blue circles) forming a thin disk of radius rs (orange circle). The axis of
rotational symmetry of the disk is z, the nuclei sit on the x-y plane and their position is
denoted as (nx, ny). The index nx runs from nmin = −⌊ rsa ⌋ to nmax = ⌊ rsa ⌋, where we take
a = 10−10m to be the lattice constant and ⌊.⌋ indicates the floor rounded value. Hence the ny

index runs from −
⌊√

r2s
a2

− n2
⌋

to
⌊√

r2s
a2

− n2
⌋

in accordance with the circular shape of the

molecule n2x + n2y ≤
(

rs
ra

)2
. In other words, we consider the following R(Q) function (4.90):

R(Q) =
∑

n2
x+n2

y≤n2
max

n′2
x +n′2

y ≤n2
max

e
i
ℏa(nx−n′

x)Qx+
i
ℏa(ny−n′

y)Qy (4.101)

where the primed and unprimed variables label the first and second sum, respectively.
Let us first deal with the rescaling in Eq. (4.92). We perform the dQ integration and we

get the rescaled parameter Λ:

Λ = λ
∑

n2
x+n2

y≤n2
max

n′2
x +n′2

y ≤n2
max

exp

(
−a

2 (∆nx)
2

4r2C
− a2 (∆ny)

2

4r2C

)
. (4.102)

where ∆nx = nx − n′x and ∆ny = ny − n′y.
Next, we consider the rescaling in Eq. (4.91). To ease the analysis, we work in the position

basis, i.e. we apply ⟨x, y, z|, |x′, y′, z′⟩ from the left and right, respectively. We consider a
single term in Eq. (4.101) and perform the dQ integration in Eq. (4.91), we get:

λ exp

(
−(a∆nx +∆x)2

4r2C
− (a∆ny +∆y)2

4r2C
− ∆z2

4r2C

)
, (4.103)

where ∆x,∆y,∆z are x − x′, y − y′, z − z′ respectively. Let us again assume that the su-
perposition varies on distances much greater than the size of the system, i.e. ∆x is either
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|∆x| ≫ a∆n or ∆x = 0. Hence we can approximate (a∆n +∆x) 2 ≈ (a∆n) 2 + (∆x) 2. A
similar argument can be carried also for the y axis variables. Thus, combining Eq. (4.102)
and Eq. (4.103) we finally obtain:

Λexp

(
−∆x2 +∆y2 +∆z2

4r2C

)
− Λ, (4.104)

which implies that the center of mass density matrix satisfies the one particle CSL master
equation with the rescaled parameter Λ.

4.4.4 Comparison and other collapse models

The three approximations discussed here above are compared in Fig. 4.8.

Figure 4.8: Amplification of the parameter Λ as a function of rC for three different approx-
imations: Adler’s formula (solid blue line), homogeneous disk approximation (dotted green
line), 2D lattice approximation (dashed orange line). We see, that Adler’s formula agrees very
well with the more sophisticated 2D lattice model approximation, while the homogenous disk
approximation breaks down at distances below the atomic radius (ra = 10−10m). The plot
is obtained for N = 100 atoms with atomic (nuclei) mass 12m0 = 12amu.

In particular, we see that Adler’s heuristic formula is in good agreement with the 2D lattice
model amplification mechanism. We also see that the homogeneous thin disk approximation
begins to break down for rC values smaller than the atomic radius ra.

We also stress the key assumption used in the derivation of the amplification mechanism:
rs ≪ rsup, where rs is the size of the system (e.g. molecular radius) and rsup is the size of the
macroscopic superposition. Only using this assumption, we were able to effectively describe
the center of mass motion master equation (4.88) by the single particle master equation (4.52)
with the rescaled parameter Λ. When rs ≳ rsup we have a weaker suppression of macroscopic
superpositions.

The dCSL and cCSL (with small correlation time) many particle master equations have
a similar structure as that of the CSL model. Hence, as in part argued in Refs. [34],[19], the
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amplification mechanism is analogous to the CSL amplification mechanism. For the dCSL,
one has to also consider the parameter kT , which limits the validity of the approximations.

The previous analysis is also applicable to the DP model, as it can be easily shown by
considering the many particle DP master equation. As previously stated, in the DP model,
R0 can be identified with rC and λ can be identified with Gm2

0

ℏ
√
πR0

. As in the CSL model λ

rescales to Λ(rC), in the DP model Gm2
0

ℏ
√
πR0

rescales to λDP =
Gm2

0

ℏ
√
πR0

Λ(R0)
λ .

In Fig. (4.4.4) we show how Λ varies as a function of the total number of atoms N
according to Eq. (4.96), where the atoms form a thin disk lattice structure, as described in
Fig. 4.7,

Figure 4.9: The plot shows the amplification of the effective collapse rate Λ according to
Eq. (4.96) for the thin disk model described in the text. The plot is obtained with λ =
10−16s−1, rC = 10−7m, atomic radius ra = 10m and atomic mass ma = 12m0 = 12amu. We
notice that at N = 106 the amplification mechanism changes behavior as the total size of the
system rs becomes equal to rC .

The GRW and dGRW models have a simple linear scaling of Λ with the mass of the
system by construction.

4.4.5 Localization requirement of macroscopic objects

In the next chapter we will derive the upper bounds on the collapse parameters, with reference
to the KDTL experiment, but there are also lower bounds, as the collapse cannot be too weak,
otherwise the model looses its usefulness. The basic requirement for any collapse model is the
rapid suppression of macroscopic superpositions. We make the following reasonable, although
arbitrary, minimal request: a macroscopic superposition of an object, visible by the naked eye
(with spatial resolution r), should decay within a short time, set by the temporal resolution
t of the eye. This implies for example that a macroscopic superposition for a single-layered
Graphene disk of radius r localizes with an effective rate t−1.

The quantitative analysis is carried out in the following way. We neglect the free quan-
tum mechanical evolution, while retaining the modification due to the collapse dynamics, i.e
we neglect Ĥ = p̂2/2m. This is a reasonable assumption since the free quantum mechani-
cal evolution is negligible for macroscopic objects on the time scale during which the wave
function localizes. We have solved the resulting dynamics for each of the collapse models
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using the characteristic function approach [53]. For each of the considered collapse models
the corresponding characteristic function equation is given by:

∂

∂t
χ(ν,µ, t) = Λ (Φ(ν,µ)− 1) , (4.105)

where Φ depends on the model. We can easily obtain the solution to this equation:

χ(ν,µ, t) = χ(ν,µ, 0) exp (−Λt(1− Φ(ν,µ))) , (4.106)

Using the inversion formula given by Eq. (4.80) we obtain the corresponding density matrix:

ρ(x,x′, t) =
1

(2πℏ)3

ˆ
dk̃

ˆ
w̃e−

i
ℏ k̃·ỹ exp

(
−Λt(1− Φ(k̃,x− x′))

)
ρ(x+w,x′ +w, 0),

(4.107)
where ρ(x+w,x′ +w, 0) is the initial density matrix.

Formally, we can also obtain the solution of the collapse dynamics (without the free
quantum mechanical term) from the full solution (with the free quantum mechanical term) by
taking the limit m→ ∞ kg in the expressions originating from the free quantum mechanical
evolution, while keeping finite m in the other expressions.

We now list the solutions for the considered collapse models using the notation of section
4.3. For the CSL we obtain:

ρCSL(x,x
′, t) = ρ(x,x′, 0) exp

(
−Λt

(
1− e

− (x−x)2

4r2
C

))
. (4.108)

The same formula applies also for the cCSL model with small correlation times τC .
For the QMUPL we obtain:

ρQMUPL(x,x
′, t) = ρ(x,x′, 0) exp

(
−η m

m0
t(x− x′)2

)
. (4.109)

For the DP we obtain:

ρDP(x,x
′, t) = ρ(x,x′, 0) exp

(
− t

ℏ
(
U(x− x′)− U(0)

))
(4.110)

For the dCSL we obtain:

ρdCSL(x,x
′, t) =

1

(2πℏ)3

ˆ
dw̃ρ(x+ w̃,x′ + w̃, 0)

ˆ
dk̃e−

i
ℏ k̃·w̃ exp ( − Λt(1− e−

k̃2r2Ck2T
ℏ2 e

− (x−x′)2

4r2
C

(1+kT )2 e
i
ℏ

2kTmu

(1+kT )
·(x−x′)

) ) ,

(4.111)

where in the limit kT → 0 we obtain the CSL solution given by Eq. (4.108). While for the
CSL, cCSL and DP models we were able to perform the k̃ and w̃ integrations, for the dCSL
the two integrations in general cannot be performed analytically. Hence for the dCSL we do
not have in general a simple exponential decay of the off-diagonal elements. However, we
can still investigate the dCSL decay of the off-diagonal elements by considering a particular
initial state and performing a numerical simulation. In particular, we have considered a
superposition state of two Gaussians centered at points (r/2, 0, 0) and (−r/2, 0, 0):

ψ(x, 0) =

(
exp[−(x− r/2)2

4σ2
] + exp[−(x+ r/2)2

4σ2
]

)
exp[− y2

4σ2
] exp[− z2

4σ2
] (4.112)
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with r the spatial resolution of the eye and σ = 10−5m.
For the considered collapse models we can thus write the localization requirement for

macroscopic objects as an inequality:⏐⏐⏐⏐ ρ (x,x′, t)

ρ (x,x′, 0)

⏐⏐⏐⏐ < exp(−1), (4.113)

where we set x = (r/2, 0, 0), x′ = (−r/2, 0, 0) and t and r are the eye temporal and spatial
resolutions, respectively. The constant exp(−1) ∼ 0.37 is chosen arbitrarily, reflecting that
for most collapse models the decay of the off-diagonal elements is exponential. This inequality
will be used to obtain bounds on collapse parameters.

The same analysis applies also for the GRW and dGRW models, the only difference being
the amplification mechanism discussed in section 4.4.



Chapter 5

Matter-Wave Interferometry:
experiments

5.1 Introduction

Bounds on collapse models parameters were first investigated in [55] and an overview is given
in [57]. Tests of the CSL model with matter-wave interferometry experiments were first in-
vestigated in [55, 58], in particular, the OTIMA experiment [42]. In this section, we complete
and improve the previous results. The bounds on the parameters (λ, rC) can be conveniently
studied in the parameter space [59, 60] shown in Fig. 5.5, while the bounds on the DP pa-
rameter R0 and QMUPL parameter η are shown in Figs. 5.7 and 5.6 respectively. We obtain
bounds for all the collapse models introduced in Sec. 4.3: from the localization requirement
of macroscopic objects and from matter-wave interferometry. In addition, as argued in Sec.
4, the bounds we obtain on the CSL model, both from interferometric experiments and from
the localization requirement of macroscopic objects, are also bounds on the CD map (within
the limits of validity).

This section is organized in the following way. In section 5.2 we discuss the limits of
validity of the CD bounds for the parameters (λ, rC). We compare the theoretical interfer-
ence patterns with the experimental data from the 2012 far-field matter-wave interferometry
experiment [47] and the 2013 Kapitza Dirac Talbot Lau (KDTL) near-field matter-wave in-
terferometry experiment [48], both performed by Arndt’s group in Vienna, in section 5.3.
In section 5.4, we combine all the bounds for the CSL, dCSL and cCSL models in a single
parameter diagram, which is also the parameter diagram for the CD map. In addition, we
discuss the bounds on the parameters of the DP and QMUPL models.

5.2 Limits of validity of the CD bounds

In this section we discuss the limits of validity of the bounds on the CD map parameters
(λ, rC) for a wide range of values of the other parameters. There is a natural reason for
choosing (λ, rC) among the free parameters. These are the two parameters that characterize
the Galilean boost covariant (non-dissipative) and Markovian limits:

T → ∞,

D(s) → δ(s),

54
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respectively. In other words, the freedom in T , u and D(s) characterizes dissipative and non-
Markovian effects, respectively. We consider the boost parameter to satisfy |u| < c, where
c ≈ 108ms−1 is the speed of light: each component has to be smaller or equal to u = |u|.
In addition, when we are close the the Markovian limit the function D(s) is non-negligible
only on a small interval: we denote the cut-off value, i.e. the correlation time, by τC . In
conclusion, we will now discuss the limits of validity of the CD map parameters (λ, rC) for a
wide range of values of the parameters (T, u, τC).

We will discuss separately the limits of validity when only dissipative effects are present
(the CD map reduces to the dCSL map in Sec. 4.3.3) and when only non-Markovian effects
are present (the CD map reduces to the cCSL map in Sec. 4.3.4). We estimate these limits
for experimental situations where the spatial and temporal extension of the superpositions is
limited to distances ∆x > 10−5m and duration t > 10−2s, respectively.

We first discuss the limits of validity of dissipative effects parametrized by T ,u. We have
three conditions: the condition given by Eq. (4.61) is depicted together with the condition
given in Eq. (4.65) in Fig. 5.1, while the condition given by Eq. (4.69) is depicted in Fig.
5.2.

approximation

breaks down

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
-12

10
-8

10
-4

10
0

10
4

10
8

10
12

rc / m

T
/
K

Figure 5.1: Graphical depiction of the conditions given in Eqs. (4.61), (4.65). The condition
given by Eq. (4.61) is satisfied in the orange and green regions, while the condition given
in Eq. (4.65) is satisfied in the gray and green regions: both conditions are satisfied in the
green region.

We next discuss the limits of validity of non-Markovian effects parametrized by τC .
We have only the condition given by Eq. (4.71). We can make a rough estimate for the
maximum value of τC by replacing the operator with the expectation value in Eq.(4.71):
⟨p̂2/2m⟩τC/ℏ ≪ 1, We consider the temperature of the system to be T ≈ 102 − 103K.
Thus based on the equipartition theorem we replace ⟨p̂2/2m⟩ by kBT which gives the con-
dition τc > 10−13s. This gives us a corresponding minimum ultraviolet frequency cut-off
Ω ≫ 13GHz for the Fourier transform of the correlation function.
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Figure 5.2: Graphical depiction of the condition given in Eq. (4.69). The color indicates
the minimum temperature, for a given value of rC and u, such that the condition given in
Eq. (4.69) is satisfied.

5.3 Experimental data analysis

We are now ready to apply the above results to the experiments [47] and [48]. For concrete-
ness, we illustrate the procedure with the CSL model. The same procedure is applicable for
each collapse model described in Sec. 4.3.

In these experiments one has a source of molecules that have different velocities v along
the optical axis z. Hence the real far-field interference pattern is given by:

ˆ +∞

0
pf (v)p(x; v)dv, (5.1)

where p is given by Eq. (4.46) and pf (v) is the macromolecule velocity profile. Similarly the
real near-field interference pattern is given by

ˆ +∞

0
pn(v)S(x3s; v)dv, (5.2)

where S is given by Eq. (4.51) and pn(v) is the macromolecule velocity profile.
To make a quantitative comparison with experimental data, we consider a grid of pairs

(λ, rC) and for each pair we perform a χ2 minimization procedure for the predicted CSL
pattern according to Eqs. (5.1) and (5.2). In this way, we obtain a parameter diagram with
an exclusion zone of pairs (λ, rC) that are incompatible with experimental data.

A note of caution is at order. We have initially attempted to fit the experimental data by
adopting the Poisson experimental error

√
I for each value I recorded by the detector since

error bars were not reported in the papers. With this choice we were unable to obtain rea-
sonable values of χ2 even for the standard quantum mechanical predictions. This is probably
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due, at least in part, to the approximations of the models used and to unknown sources of
error in the experiment. In order to circumvent this problem and to obtain reasonable values
of χ2, we used an enlarged Poisson experimental error a

√
I, where a is a constant. In order

for the standard quantum mechanical fits to have reasonable χ2 values, we take a = 4.5 for
both experiments, but different values of a (within the same magnitude) do not change the
final result.

5.3.1 Far-field

We first analyze the interference experiment with Phthalocyanine C32H18N8 molecules re-
ported in [61], with the date taken from Ref. [47]. The experimental setup is shown in
Fig. 4.3. The velocity profile was estimated according to Ref. [47]. One has to be careful in
considering the van der Walls forces between the molecules and the grating. This is modeled
by considering an effective slit width smaller than the real one as described in [61]. The
effective value is leff = 43nm. The finite spatial resolution of the detector 4µm was also
taken into account.

As an example, in Fig. 5.3 we plot a comparison between the experimental interference
pattern, the quantum mechanical fit and the CSL fit, for some arbitrarily chosen pair of
parameters λ, rC .

Figure 5.3: Left: Far-field experiment [47]: λ ≈ 3.8 ·10−3s−1 and rC = 10−7m. Right: KDTL
near-field experiment [48]: λ ≈ 0.98 · 10−5s−1, rC = 10−7m, laser power Plaser = 1W. The
orange dashed line represents the quantum mechanical fit, the solid orange line represents
the CSL fit for an arbitrarily chosen (large) parameter λ and the conventional rC value and
the blue points and blue error bars represent the experimental data. The y axis values are
rescaled such that the maximum value is equal to unity.

More importantly, we repeated the simulation for different pairs of parameters λ, rC as
described before, obtaining the CSL parameter diagram shown in Fig. 5.4.

5.3.2 Near-field KDTL

We now consider the experiment with L12 = C284H190F320N4S12 molecules reported in [48].
The experimental setup is shown in Fig. 4.3. The Fourier coefficients defined in Eqs. (4.47)
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Figure 5.4: Left: CSL parameter diagram for the far-field experiment [47]. Right: CSL
parameter diagram for the KDTL near-field experiment [48]. Each λ, rC pair is colored by
the corresponding χ2 value obtained from the χ2 minimization procedure. The yellow color
indicates pairs that can be excluded by our analysis, while the blue color indicates pairs that
cannot be excluded. The dashed and dotted lines represents the boundary of the exclusion
zone according to the quadratic scaling law and to the linear scaling law, respectively. The
values of the CSL parameters suggested in [8] and [55] are λ = 10−16s−1, rC = 10−7m and
λ = 10−9s−1, rC = 10−7m, respectively.

and (4.49) for the transmission functions of the mechanical gratings can be calculated analyt-
ically: An = Cn = 2l

d sinc( ldn). The velocity profile was approximated by a Gaussian centered
around v = 85ms−1 with spread ∆vFWHM = 30ms−1 [48].

As an example, in Fig. 5.3 we plot a comparison between the experimental interference
pattern, the quantum mechanical fit and the CSL fit, for an arbitrarily chosen pair of param-
eters λ, rC . We repeated the simulation for different pairs of parameters λ, rC as previously
described. We obtain the parameter diagram shown in Fig. 5.4.

5.3.3 Comparison of near and far field experiments.

Fig. 5.4 shows the exclusion zone of the CSL parameters λ,rC for the far and near field
experiments here considered. As we can see, they are similar: the near-field experiment sets
a bound which is roughly two orders of magnitude stronger than the far-field experiment.
This can be understood by the following argument. Let us fix rC and focus our attention to
the CSL model. The only remaining parameter is λ.

We expect that deviations from standard quantum mechanics become important as λt
increases. For the far-field experiment we have a typical flight time t ≈ 5ms and molecular
mass m ≈ 500amu. For the near-field experiment we have a typical flight time t ≈ 2ms and
molecular mass m ≈ 10000amu. Hence the ratio of bounds on λ from the two experiments is
approximately:

λt|KDTL

λt|far
=

(10000amu)2 2ms

(500amu)2 5ms
≈ 100. (5.3)
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This rough estimate provides a simple explanation why the KDTL near-field experiment gives
bounds which are 2 order of magnitude stronger than the bounds obtained from the far-field
experiment.

5.4 Parameter space bounds

Let us now combine the results of the previous sections to determine the region of the param-
eter space, which can be ruled out for the CD map: these are also the bounds for the CSL,
cCSL and dCSL models. Specifically, the limits of validity of the cCSL and dCSL maps, as
discussed in Sec. 5.2, give the limits of validity for the parameter space λ, rC for the CD
map.

The bounds on the CD map are shown in Fig. 5.5 with reference to the KDTL experiment
which sets the strongest bound among the two experiments here considered. The figure also
shows the bounds coming from requiring that macroscopic objects are always well localized.
This bound puts the original value proposed by GRW right on the border of the exclusion
zone (the shaded region).

The dCSL bounds from interferometry and the macroscopic localization requirement
change only slightly until we consider very low temperatures or very high boosts. In addition,
as already stressed before, the smallest modification of the quantum mechanical interference
pattern is given by the dCSL model with infinite temperature and no boost, i.e. the CSL
model. Hence, since we do not know the temperature and speed of the noise, the most
conservative interferometric bounds for all dCSL models coincide with the CSL bounds. On
the other hand, the macroscopic localization requirement is not to be taken too rigidly, as it
relies on an arbitrary notion of a macroscopic object. We also remark, as discussed in Sec.
4, that for very small values of rC , the bounds for dCSL models with very low temperature
may become invalid, as the approximations used begin to break down (see Figs. 5.1, 5.2).

The cCSL bounds from interferometry experiments are valid for noises with a frequency
cut-off Ω ≫ 1013Hz. For comparison, bounds from X-ray experiments [62], refer to the cCSL
model with a frequency cut-off Ω ≫ 1018Hz. For completeness, we have also shown the
bounds from the LISA experiment [63], which are valid for the CSL model.

The fact that the CD, CSL, dCSL and cCSL bounds in Fig. 5.5 coincide is due to the
fact the time scale of dissipative and non-Markovian effects: much longer and much shorter
than the experimental times, respectively. This result, shows that interferometric experiments
provide bounds that are insensitive to dissipative or non-Markovian extensions of the original
models. Interferometric experiments can thus provide a test for the CD map.

The bounds for the GRW and dGRW models can be obtained from the bounds of the
CSL and dCSL models, respectively, by changing the amplification factor Λ (see Sec. 4).

The bounds on the QMUPL model parameter η are shown in Fig. 5.6. We can obtain
some reference values for the parameter η in the following way: the QMUPL model can be
obtained as the limit of the CSL model, specifically, we have η = λ/(2r2C). Using the values
suggested in [8] we obtain (λ = 10−16s−1, rC = 10−7m):

ηGRW =10−2s−1m−2 (5.4)

We will refer to these value as the Ghirardi values. In [55] we have two different choices:
λ = 10−8±2s−1 (λ = 10−6±2s−1) and rC = 10−7m (rC = 10−6m). These give the following
value:
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Figure 5.5: Parameter diagram for the CD, CSL, dCSL and cCSL map. The shaded exclusion
zone bordered by the red solid lines applies for the CD, CSL, cCSL and dCSL maps. The limits
of validity are discussed in Sec. 5.2: the frequency cutoff is Ω ≳ 1013Hz and T , u are discussed
in Figs. 5.1, 5.2). On the bottom of the diagram, it denotes the parameter subspace excluded
by the requirement that a single-layered Graphene disk of radius r = 0.01mm is localized
within t = 10ms. On the top it denotes the parameter subspace excluded by the KDTL
macromolecule interferometry experiment [48]. For comparison we have included the bounds
from X-ray experiments [62], valid for the CSL model and the cCSL model with frequency
cutoff Ω ≫ 1018Hz, and the bounds from the LISA experiment [63], valid for the CSL model:
the exclusion zones are denoted by the blue and brown colors, respectively. We have also
included for reference, the values (λ = 10−16s−1, rC = 10−7m), (λ = 10−8s−1, rC = 10−7m)
proposed by GRW [8] and Adler [55], respectively.

ηAdler =105±2s−1m−2 (5.5)

We will refer to this value as the Adler value.
The bounds on the DP are shown in Fig.5.7. The KDTL bounds fall below the regime

of applicability of the DP model (R0 > 10−15m). In fact, the effective collapse rate of
the DP model λDP =

Gm2
0

ℏ
√
πR0

is very small above 10−15m, e.g. for R0 = 10−15m we have
λDP ≈ 10−15s−1, while for R0 = 10−7m we have λDP ≈ 10−23s−1: the total effective
collapse rate ΛDP = AλDP , where A is the amplification factor of the macro-molecule, is still
orders of magnitude below the CSL bounds λ ≈ 10−3s−1(λ ≈ 10−6s−1) for rC = 10−15m
(rC = 10−7m), respectively. On the other hand, the requirement that macroscopic objects
are always well localized provide very strong bounds. If we require that a single layered
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Figure 5.6: Bounds on the parameter η from matter-wave interferometry (denoted by KDTL)
and from the request of suppression of macroscopic superpositions (denoted by Disk). The
excluded values are denoted by red lines.

Graphene disk of radius r = 0.01mm is to be localized within t = 10ms, as we have done for
the CSL family of models, we can already exclude all R0 values. However, even if we consider
a larger value, for example r = 1mm, as in Fig. 5.7, the values R0 = 10−15m, R0 = 10−7m
proposed by Diósi [64] and Ghirardi [50], respectively, are still excluded.

Figure 5.7: Parameter diagram for the DP model parameter R0. The excluded intervals are
denoted by red lines: the lines labeled by “Disk” are obtained from the requirement that a
single-layered Graphene disk of radius r = 1mm is localized within t = 10ms, while the line
labeled by “KDTL” is obtained from the KDTL interferometry experiment [48]. We have also
included for reference, the values R0 = 10−15m and R0 = 10−7m proposed by Diósi [64] and
Ghirardi [50], respectively.

In conclusion, interferometry experiments provide the most direct test for the collapse
models. In particular, the bounds obtained for the most well-known non-dissipative, Marko-
vian models are bounds also for more general, dissipative or non-Markovian generalizations.
This is in stark contrast with other indirect experiments, which test only particular collapse
models. In addition, we have seen that a single-layered Graphene disk provides very stringent
bounds for the collapse parameters.

We thank Prof. Markus Arndt for the data and the setup parameters of the experiment
in [47] and for useful discussions.
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Conclusion

We have discussed theoretical (Part I) and experimental (Part II) constraints on the collapse
mechanism. In part I we have, starting from a set of minimal requirements, obtained a single
dynamical map parametrized by the localization rate λ, the characteristic localization rate
rC , the temperature T and the temporal correlation function f(s), namely the CD map: in
addition, we have constructed the cdCSL model, a colored and dissipative extension of the
CSL model. Here we remark that the derivation of the CD map is based only on a small set
of assumptions: the CD map applies to all (non-unitary) modifications of the von Neumann
map, i.e. it is not limited to collapse models. In part II we have discussed interferometry
experiments with macro-molecules, which provide a direct test of the superposition principle
in the mesoscopic regime. In particular, we have shown that the bounds on the CD map
parameters λ, rC are robust, i.e. the bounds, for reasonable values of T and f(s), depend
weakly on T and f(s).

However, the analysis of non-relativistic modifications of the von Neumann map has
lead us to a Galilei non-covariant map. This raises an important question: if the map is
not Galilean covariant, what can we say about relativistic extensions, in particular, what
can we say about Lorentz covariance of classicalization maps? We discuss these points in
the appendices: we consider a relativistic theory, based on the F-W transformation, where
particle/antiparticle interaction are suppressed (Appendix B), we discuss the role of par-
ticle/antiparticle interactions for classicalization maps (Appendix C) and give relativistic
extensions of the CD map and of the cdCSL model, namely the rCD map and rcdCSL model,
respectively (Appendix D).

We conclude, based on the analysis of this thesis, with the following question: what is
the relation between relativity, classicalization maps and system - environment interactions?
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Appendix A

Galilean covariant Gaussian maps

A.1 Introduction

The evolution of the statistical operator is constrained by the basic request of trace-preservation
(TP) and complete positivity (CP). In addition, if one imposes the request of Markovian-
ity, one obtains the well-known structure of the Lindblad generator [65, 66]. Other types
of constraints are obtained by imposing the covariance under space-time transformations.
In particular, for a Markovian evolution, imposing the covariance under translations and
Galilean boosts one obtains the well-known structure of the Holevo generator [67, 68, 69, 70].

Recently, the Lindblad generator has been generalized to a non-Markovian Gaussian
dynamics [29]. In particular, it has been shown that the most general, completely positive
(CP) Gaussian map (in interaction picture) has the following structure (Einstein summation
convention):

Mt = T exp

{ˆ t

0
dτ

ˆ t

0
dsDjk(τ, s)

(
Âk

sLÂ
j
τR − θτ,sÂ

j
τLÂ

k
sL − θs,τ Â

k
sRÂ

j
τR

)}
(A.1)

where the subscript L (R) denotes the operator acting on the statistical operator ρ from the
left (right), e.g. Âk

LÂ
j
Rρ = ÂkρÂj , T denotes the time-ordering operator acting separately

on left and right operators, Djk(τ, s) is the j, k element of a complex valued positive semi-
definite matrix and Âk are hermitian self-adjoint operators. We will impose on this structure
the additional request of covariance under specific space-time transformations. In particular,
we will characterize translational and Galilean covariant maps. In this way we will obtain a
generalization of the Holevo generators to non-Markovian Gaussian maps.

A.2 Map

It is convenient for our purpose to decompose the operators in Eq. (A.1) by using Weyl’s
decomposition [21]:

Ât =

ˆ
dα

ˆ
dβgt(α, β)e

i(αx̂+βp̂), (A.2)

where gt(α, β) is a complex function of the real parameters α and β.
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It is then straightforward to show that

Mt = T exp

{ˆ t

0
dτ

ˆ t

0
ds

ˆ
dα1

ˆ
dβ2

ˆ
dα2

ˆ
dβ2D(α1, β1, α2, β2, τ, s)(

ei(α1x̂L(s)+β1p̂L)e−i(α2x̂R(τ)+β2p̂R)

− θτ,se
−i(α1x̂L(τ)+β1p̂L)ei(α2x̂L(s)+β2p̂L)

− θs,τe
i(α1x̂R(s)+β1p̂R)e−i(α2x̂R(τ)+β2p̂R)

)}
, (A.3)

where x̂L(s) is the interaction picture operator and

D(α1, β1, α2, β2, τ, s) = Djk(τ, s)g
j ∗
τ (α1, β1)g

k
s (α2, β2) (A.4)

is a kernel that satisfies the following symmetry property1:

D(α1, β1, α2, β2, τ, s) = D∗(α2, β2, α1, β1, s, τ) (A.5)

A.3 Covariance

We start from the single particle Hilbert space H (the generalization to the N -particle Hilbert
space is straightforward). We consider the generators of the centrally extended unitary
representation of the Galilei group (G) on H in the interaction picture, with H = p̂2/2m. In
particular, the generators of translations, rotations and boosts are

P̂ = p̂, (A.6)

Ĵ = x̂× p̂, (A.7)

K̂ = mx̂, (A.8)

respectively. A generic dynamical map is covariant under the Galilei group transformation if
[71, 72]:

Mt = G−1 ◦Mt ◦ G (A.9)

where the Galilei group is rappresented as:

G[·] = Û † · Û (A.10)

and Û denotes a unitary transformation generated by the operators given in Eqs. (A.6),
(A.7) and (A.8). Exploiting Eq. (A.10), and the fact that we are considering a unitary

1By construction we have Dkj(s, τ)
∗ = Djk(τ, s) [29].
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representation, we can rewrite Eq. (A.9) in the more explicit form:

T exp

{ˆ t

0
dτ

ˆ t

0
ds

ˆ
dα1

ˆ
dβ2

ˆ
dα2

ˆ
dβ2D(α1, β1, α2, β2, τ, s)(

ei(α1x̂L(s)+β1p̂L)e−i(α2x̂R(τ)+β2p̂R)

− θτ,se
−i(α1x̂L(τ)+β1p̂L)ei(α2x̂L(s)+β2p̂L)

− θs,τe
i(α1x̂R(s)+β1p̂R)e−i(α2x̂R(τ)+β2p̂R)

)}
=

T exp

{ˆ t

0
dτ

ˆ t

0
ds

ˆ
dα1

ˆ
dβ2

ˆ
dα2

ˆ
dβ2D(α1, β1, α2, β2, τ, s)(

ei(α1G[x̂L(s)]+β1G[p̂L])e−i(α2G[x̂R](τ)+β2G[p̂R)]

− θτ,se
−i(α1G[x̂L(τ)]+β1G[p̂L)]ei(α2G[x̂L(s)]+β2G[p̂L)]

− θs,τe
i(α1G[x̂R(s)]+β1G[p̂R])e−i(α2G[x̂R(τ)]+β2G[p̂R])

)}
, (A.11)

It is straightforward to show that the above equation is satisfied if only if the following
conditions are simultaneously satisfied:
ˆ t

0
dτ

ˆ t

0
ds

ˆ
dα1

ˆ
dβ2

ˆ
dα2

ˆ
dβ2D(α1, β1, α2, β2, τ, s)[

ei(α1G[x̂L(s)]+β1G[p̂L])e−i(α2G[x̂R](τ)+β2G[p̂R]) − ei(α1x̂L(s)+β1p̂L)e−i(α2x̂R(τ)+β2p̂R)
]
= 0

(A.12)ˆ t

0
dτ

ˆ t

0
ds

ˆ
dα1

ˆ
dβ2

ˆ
dα2

ˆ
dβ2D(α1, β1, α2, β2, τ, s)

θτ,s

(
e−i(α1G[x̂L(τ)]+β1G[p̂L)]ei(α2G[x̂L(s)]+β2G[p̂L)] − e−i(α1x̂L(τ)+β1p̂L)ei(α2x̂L(s)+β2p̂L)

)
= 0

(A.13)ˆ t

0
dτ

ˆ t

0
ds

ˆ
dα1

ˆ
dβ2

ˆ
dα2

ˆ
dβ2D(α1, β1, α2, β2, τ, s)

θs,τ

(
ei(α1G[x̂R(s)]+β1G[p̂R])e−i(α2G[x̂R(τ)]+β2G[p̂R]) − ei(α1x̂R(s)+β1p̂R)e−i(α2x̂R(τ)+β2p̂R)

)
= 0

(A.14)

These equations give general constraints on the structure of the dynamical map under the
request of Galilei covariance. In particular, as we will see in the following section, the request
of translation (boost) covariance completely characterizes the structure of the dynamical
map.

A.3.1 Translation-covariance

Restricting to the case where G describes the group of translations we have that

G[x̂(s)] = x̂(s) + a, (A.15)
G[p̂] = p̂, (A.16)
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where a is the translation vector. Using Eqs. (A.15), (A.16) we obtain from Eq. (A.12):
ˆ t

0
dτ

ˆ t

0
ds

ˆ
dα1

ˆ
dβ2

ˆ
dα2

ˆ
dβ2D(α1, β1, α2, β2, τ, s)

ei(α1x̂L(s)+β1p̂L)e−i(α2x̂R(τ)+β2p̂R)(1− ei(α1−α2)a) = 0 (A.17)

Since this relation must be satisfied ∀a, it follows that Eq. (A.17) is satisfied only if, under
the integral

´
dα1dα2, the following equality holds

D(α1, β1, α2, β2, τ, s) = δ(α1 − α2)DT (α1, β1, α2, β2, τ, s), (A.18)

where DT is a complex valued function. It is now easy to verify that the condition given by
Eq. (A.18) is enough to guarantee the validity of Eq. (A.13) and Eq. (A.14). Using Eqs.
(A.18), (A.4) and the standard commutation relation, we can rewrite the first exponent of
Eq. (A.3) as
ˆ t

0
dτ

ˆ t

0
ds

ˆ
dα1

ˆ
dβ2

ˆ
dα2

ˆ
dβ2D(α1, β1, α2, β2, τ, s)e

i(α1x̂L(s)+β1p̂L)e−i(α2x̂R(τ)+β2p̂R)

=

ˆ t

0
dτ

ˆ t

0
ds

ˆ
dαDjk(s, τ)J

k
s,L(p̂, α)e

iαx̂L(s)J j†
τ,R(p̂, α)e

−iαx̂R(τ), (A.19)

where

Jk
τ (p̂, α) =

ˆ
dβ gkτ (α, β)e

iβ(p̂−α/2) (A.20)

are arbitrary operator valued functions. Performing an analogous calculation for the remain-
ing two terms we can rewrite Eq. (A.3) as

Mt =T exp
{ˆ t

0
dτ

ˆ t

0
ds

ˆ
dαDjk(τ, s)

(
[Jk

sL(p̂, α)e
iαx̂L(s)] [J j†

τR(p̂, α)e
−iαx̂R(τ)]

− θτ,s[J
j†
τL(p̂, α)e

−iαx̂L(τ)] [eiαx̂L(s)Jk
sL(p̂, α)]− θs,τ [J

k
sR(p̂, α)e

iαx̂R(s)] [e−iαx̂R(τ)J j†
τR(p̂, α)]

}
(A.21)

This equation completely characterizes the translation covariant completely positive Gaussian
maps.

A.3.2 Boost-covariance

Restricting to the case where G describes the group of boost we have that:

G[x̂(s)] = x̂(s) + vt, (A.22)
G[p̂] = p̂+mv, (A.23)

where v is the boost vector. In order to find the structure of the boost covariant dynamical
map Mt we perform an analogous calculation as in Sec. A.3.1. We obtain the following
equality:

D(α1, β1, α2, β2, τ, s) = δ(α1s− α2τ + β1m− β2m)DB(α1, β1, α2, β2, τ, s) (A.24)
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where DB is a complex valued function. Using Eq. (A.24) we can then eventually rewrite
Eq. (A.3) as:

Mt = T exp
{ˆ t

0
dτ

ˆ t

0
ds

ˆ
dβ Djk(τ, s)

(
[Jk

sL(x̂(s), β)e
iβp̂L ][J j†

τR(x̂(τ), β)e
−iβp̂R ]

− θτ,s[J
j†
τL(x̂(τ), β)e

−iβp̂L ] [eiβp̂LJk
sL(x̂(s), β)]− θs,τ [J

k
sR(x̂(s), β)e

iβp̂R ] [e−iβp̂R J j†
τR(x̂(τ), β)]

)}
,

(A.25)

where Jk
s (x̂(s), β) are arbitrary operator valued functions. This equation completely charac-

terizes boost covariant completely positive Gaussian maps.

A.3.3 Translation-boost Covariance

We consider now translation and boost covariant maps. The dynamical map Mt must satisfy
both condition (A.18) and (A.24), i.e.

D(α1, β1, α2, β2, τ, s) = δ(α1 − α2)δ(α1s− α2τ + β1m− β2m)DTB(α1, β1, α2, β2, τ, s),
(A.26)

where DTB is a complex valued function. Replacing Eq. (A.26) in Eq. (A.3) one eventually
obtains

Mt = T exp

{ˆ t

0
dτ

ˆ t

0
ds

ˆ
dα

ˆ
dβ F(α, β, τ, s)

(
ei(αx̂L(s)+βp̂L)e−i(αx̂R(τ)+βp̂R)

− θτ,se
−i(αx̂L(τ)+βp̂L)ei(αx̂L(s)+βp̂L) − θs,τe

−i(αx̂R(s)+βp̂R)ei(αx̂R(τ)+βp̂R)
)}
, (A.27)

where F(α, β, τ, s) is an arbitary complex valued function. This equation completely charac-
terizes translation and boost covariant completely positive Gaussian maps.

A.3.4 Rotation Covariance

For completeness we also analyze rotation covariance:

G[x̂(s)] = Rx̂(s), (A.28)
G[p̂] = Rp̂, (A.29)

where R denotes the rotation matrix. We define R−1 as the dual map of R associated to
the scalar product between the operator vectors x̂, p̂ and the real vectors α, β. Using Eqs.
(A.28), (A.29) can now rewrite Eq. (A.12) as:ˆ t

0
dτ

ˆ t

0
ds

ˆ
dα1

ˆ
dβ2

ˆ
dα2

ˆ
dβ2D(α1, β1, α2, β2, τ, s)[

ei(R
−1[α1]x̂L(s)+R−1[β1]p̂L)e−i(R−1[α2]x̂R(τ)+R−1[β2]p̂R) − ei(α1x̂L(s)+β1p̂L)e−i(α2x̂R(τ)+β2p̂R)

]
= 0

(A.30)

Recalling that the integral measure dαjdβj is invariant under rotations one can perform the
change of variables αj → Rαj , βj → Rβj to obtainˆ t

0
dτ

ˆ t

0
ds

ˆ
dα1

ˆ
dβ2

ˆ
dα2

ˆ
dβ2 e

i(α1x̂L(s)+β1p̂L)e−i(α2x̂R(τ)+β2Rp̂R)

[D(Rα1, Rβ1, Rα2, Rβ2, τ, s)−D(α1, β1, α2, β2, τ, s)] = 0. (A.31)
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It is now easy to verify that the above equation constrains D to be invariant under rotations,
i.e.

D(Rα1, Rβ1, Rα2, Rβ2, τ, s) = D(α1, β1, α2, β2, τ, s) (A.32)

and that the rotation invariance of D is enough to guarantee the validity of Eq. (A.13) and
Eq. (A.14).

A.3.5 Markovian limits

The general completely positive Gaussian translational (boost) covariant maps reduce in the
Markovian limit to the well known characterization of Markovian completely positive Gaus-
sian translational (boost) covariant maps. In particular, we reobtain the Holevo structures
for the generators of the covariant quantum dynamical semi-group. This can be seen by
setting the correlation function to be delta correlated in time, i.e.

D(α1, β1, α2, β2, s, τ) = δ(s− τ)DM (α1, β1, α2, β2, s), (A.33)

where DM is a complex valued function. In particular, Eq. (A.3) reduces to

Mt = T exp

{ˆ t

0
dτ

ˆ
dα1

ˆ
dβ2

ˆ
dα2

ˆ
dβ2DM (α1, β1, α2, β2, τ)(

ei(α1x̂L(τ)+β1p̂L)e−i(α2x̂R(τ)+β2p̂R)

− 1

2
e−i(α1x̂L(τ)+β1p̂L)ei(α2x̂L(τ)+β2p̂L)

− 1

2
ei(α1x̂R(τ)+β1p̂R)e−i(α2x̂R(τ)+β2p̂R)

)}
, (A.34)

It is straightforward to obtain the generator Lt of the map Mt:

Lt = (∂tMt)M−1
t (A.35)

In particular, the generator of translation covariant maps is given by (in Schrödinger picture)

Lt =

ˆ
dαDjk(t)

(
Jk
tL(p̂, α)e

iαx̂LJ j†
tR(p̂, α)e

−iαx̂R

− 1

2
J j†
tL(p̂, α) J

k
tL(p̂, α)−

1

2
Jk
tR(p̂, α) J

j†
tR(p̂, α)

)
, (A.36)

the generator for the boost-covariant maps is given by (in Schrödinger picture)

Lt =

ˆ
dβ Djk(t)

(
Jk
tL(x̂, β)e

iβp̂LJ j†
tR(x̂, β)e

−iβp̂R

− 1

2
J j†
tL(x̂, β) J

k
tL(x̂, β)−

1

2
Jk
tR(x̂, β) J

k†
tR(x̂, β)

)
(A.37)

and the generator for the boots and translation covariant maps is given by (in Schrödinger
picture)

Lt =

ˆ
dα

ˆ
dβ FM (α, β, t)

(
ei(αx̂L+βp̂L)e−i(αx̂R+βp̂R) − 1

)
, (A.38)

where FM is a complex valued function. Eqs. (A.36), (A.37) and (A.38) correspond to the
Holevo results for covariance under translation, boost and boost-translation, respectively.
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A.4 Discussion and conclusions

We analyzed the non-Markovian Gaussian dynamics under the request of covariance under
translation, rotation and boost. We generalized the fundamental features of the well-known
translation and boost covariant Lindblad master equation for non-Markovian Gaussian dy-
namics.



Appendix B

Canonical quantum mechanics

B.1 Canonical quantum mechanics

Foldy’s canonical quantum-mechanical framework [73, 74, 75, 76] is a theory of particles,
valid when particle/antiparticle interactions are negligible. This is a reasonable choice, as
particle/antiparticle phenomena are not expected to play a significant role in the mesoscopic
and macroscopic regimes. In this framework, loosely speaking, we have the kinematics of non-
relativistic quantum mechanics with a relativistic dynamics. The properties, in particular
the causality of the theory, have been investigated in [75], while some important cases, such
as the free particle evolution, have been investigated in [76]. This theory can be motivated by
the Foldy-Wouthuysen transformation [77]: a perturbative method to separate the particle
and anti-particle sector to a given order in O(1/c2). In particular, the non-relativistic limit
within this theory is straightforward, and as often claimed, it is the only way to obtain a
meaningful non-relativistic limit.

In this section we summarize the framework discussed in [74]. Latin indices denote the
three spatial axis, i.e. i,j from 1 to 3, while Greek indices denotes the particle number, i.e.
µ,ν from 1 to N .

B.1.1 Canonical Poincaré covariant quantum mechanics

We impose the canonical commutation relations:

[x̂iµ, x̂
j
ν ] = [p̂iµ, p̂

j
ν ] = [ŝiµ, x̂

j
ν ] = [ŝiµ, p̂

j
ν ] = 0 (B.1)

[x̂iµ, p̂
j
ν ] = iδµνδij (B.2)

[ŝiµ, ŝ
j
ν ] = iδµνϵijkŝ

k
ν (B.3)

where r̂µ,p̂µ,ŝµ are the position, momentum and spin operators of particle µ, respectively.
We then construct the following operators
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P =
∑
µ

p̂µ, (B.4)

J =
∑
µ

(
x̂µ × p̂µ + ŝµ

)
, (B.5)

K =
∑
µ

(
K̂µ + βV̂ ), (B.6)

H =
∑
µ

(
Ĥµ + βÛ

)
, (B.7)

where

K̂µ =
(
1/(2c2)(x̂µĤµ + Ĥµx̂µ)−

ŝµ × p̂µ

mµc2 + Ĥµ

− tp̂µ, (B.8)

Ĥµ = (p̂2µc
2 +m2

µc
4)1/2. (B.9)

The operators defined in Eqs. (B.4),(B.5),(B.6),(B.7) form an algebra isomorphic to the
Poincaré algebra:

[Pi,Pj ] = 0, (B.10)
[Pi,H] = 0, (B.11)
[J i,H] = 0, (B.12)
[Ji,Jj ] = iϵijkJk, (B.13)
[Ji,Pj ] = iϵijkPk, (B.14)
[Ji,Kj ] = iϵijkKk, (B.15)
[Ki,H] = iPi, (B.16)

[Ki,Kj ] = −iϵijkJk/c
2, (B.17)

[Ki,Pj ] = iδijH/c2. (B.18)

In particular, we can identify P, J , K, H with the generators of translations, rotations,
boosts and time-evolution, respectively.

The time-evolution for the state vector is given by the Schrödinger-Foldy equation:

i
d

dt
|ψ⟩ = H|ψ⟩. (B.19)

and the corresponding evolution map for the statistical operator is given by

ρt2 = M(P )(t2, t1)[ρt1 ], (B.20)

where ρtj denotes the statistical operator at time tj and the map M(P )(t2, t1), derived from
Eq. (B.19), is given by:

M(P )(t2, t1)[ · ] = exp(−iH(t2 − t1))[ · ] exp(iH(t2 − t1)). (B.21)
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In Eqs. (B.6), (B.7) we have introduced an internal potential Û and the corresponding
“interaction boost” V̂ . From the commutation relations given by Eqs. (B.11), (B.12) we get
the following constraints for Û :

[Û ,P] = [Û ,J ] = 0. (B.22)

From Eq. (B.18) we see that a nonzero Û implies the existence of a nonzero V̂ :

[V̂i,Pj ] = iδijÛ/c
2, (B.23)

In addition, Eqs. (B.15), (B.17) give the additional constrains on V̂ :

[Ji, V̂j ] = iϵijkV̂k, (B.24)

[V̂i,
∑
µ

K̂j
µ]− [V̂j,

∑
µ

K̂i
µ] + β[V̂i, V̂j ] = 0, (B.25)

respectively.

B.1.2 The non-relativistic limit

We can obtain the non-relativistic limit, namely the canonical Galilean covariant quantum
mechanics, by setting c→ ∞ and removing the rest-energy term mc2, i.e. the Inönü-Wigner
contraction [78]. In particular, from the generators given by Eqs. (B.4),(B.5),(B.6),(B.7) we
obtain:

P =
∑
µ

p̂µ, (B.26)

J =
∑
µ

(
x̂µ × p̂µ + ŝµ

)
, (B.27)

K =
∑
µ

K̂µ + βV̂ (0), (B.28)

H =
∑

Ĥµ + βÛ (0), (B.29)

where

K̂µ = mx̂µ − tp̂µ, (B.30)

Ĥµ = p̂2µ/2m. (B.31)

These generators form an algebra isomorphic to the Galilei algebra. Û (0), V̂ (0) are the
non-relativistic part of the interaction potential and interaction boost Û , V̂ , respectively.
However, as shown in [73], we can always, by a change of rappresentation, set V̂ (0) = 0 in
full generality.

The algebra is given by the commutators in Eqs. (B.10)-(B.16), while in place of the
commutators given by Eqs. (B.17), (B.18) we have
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[Ki,Kj ] = 0, (B.32)
[Ki,Pj ] = iδijm, (B.33)

respectively. In addition, Eq. (B.19) reduces to the usual Schrödinger map and the map
for the statistical operator given by Eq. (B.21) reduces to the usual non-relativistic von
Neumann map.



Appendix C

Relativity and classicalization maps

C.1 Introduction

Combining relativity and quantum mechanics was, and in part still is, a difficult problem.
However, the two theories, when successfully combined, lead to important and highly non-
trivial results. In this section, we investigate the two frameworks within the theory of rela-
tivistic open quantum systems. In particular, we look at the problem of constructing trans-
lational and Lorentz boost covariant dynamical maps: we argue that such a modification
cannot be constructed when particle/antiparticle interaction is suppressed. This is in stark
contrast with fully relativistic dynamical maps, where particle/antiparticle interaction is not
suppressed [79]. The discussion of relativistic maps, where particle/antiparticle interaction
is suppressed, will bridge the gap between the fully relativistic maps and the non-relativistic
maps. In addition, we will discuss two implications for non-relativistic quantum mechanics:
for the intrinsic non-unitary modifications of the dynamics and for the measures of macro-
scopicity.

We will work in the framework of canonical Poincaré covariant quantum mechanics in-
troduced in Appendix B. In Sec. (C.2.5) we present the main result: there exist only trivial
translational and Lorentz covariant relativistic maps. We will prove this explicitly at order
1/c2 and argue that the same result applies also for higher order relativistic corrections.
In Sec. (C.3) we briefly discuss the implications for non-unitary modification of canonical
quantum mechanics and for the measure of macroscopicity.

C.2 Covariance of relativistic maps

We first discuss Weyl-Wigner type decompositions of generic maps in Sec C.2.1. We define
covariance of (non) relativistic maps in Sec. C.2.2. We then first consider non-relativistic
translations and boosts in Sec. C.2.3. In Sec. C.2.4 we present the main result: at order 1/c2

there are only trivial translational and Lorentz covariant relativistic maps. In Sec. C.2.5 we
give some physical insight into this result and argue that the same applies also for higher
order relativistic corrections. In this appendix we explicitly indicate scalar products (with
·), to emphasize the role of three spatial dimensions in the 1+3 Minkowski spacetime in the
calculations.
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C.2.1 Map decompositions

We consider first, for simplicity of presentation, a single particle with spin s = 0. It is
convenient to switch to the interaction picture

|ψ(I)
t⟩ = eiHt|ψt⟩, (C.1)

Â(I)(t) = eiHtÂe−iHt, (C.2)

where H is given by Eq.(B.7) or Eq.(B.29) depending on the symmetry group.
A generic operator Â(I)(t) can be written in Weyl - Wigner decomposition [21]:

Â(I)(t) =

ˆ
dα

ˆ
dβg(α, β, t)ei(α·x̂+β·p̂), (C.3)

where x̂, p̂ on the right hand-side are the usual Schrödinger picture operators. However, this
decomposition is not unique. We now introduce an alternative decomposition, which, as we
will see, is more convenient for discussing relativistic covariance. To this end we consider a
unitary transformation ξ=exp(−iϕ). We now write:

Â(I)(t) = ξ
[
ξ†Â(I)(t)ξ

]
ξ†, (C.4)

where ξ†Â(I)(t)ξ, a completely general operator, can be decomposed using Eq. (C.3). Thus,
using Eqs. (C.3) for ξ†Â(I)(t)ξ in Eq. (C.4) we obtain the alternative general decomposition:

Â(I)(t) =

ˆ
dα

ˆ
dβg(α, β, t)ei(α·χ̂+β·π̂), (C.5)

where

χ̂ = ξx̂ξ†, (C.6)

π̂ = ξp̂ξ†. (C.7)

We will refer to this decomposition as the generalized Weyl Wigner decomposition: for ξ = I
we reobtain the usual Weyl Wigner decomposition.

Let us now consider a generic map (in interaction picture) M(I)
t2,t1

[ · ] in place of the map
given by Eq. (B.21). We can always write a generic map as:

M(I)(t2, t1)[.] =
∑
i

Âi(t2, t1)[.]B̂i(t2, t1), (C.8)

where Âi, B̂i are generic operators. We now use the generalized Weyl Wigner decomposition
of operators defined in Eq. (C.5) and obtain the following decomposition of a generic map:

M(I)(t2, t1)[.] =

ˆ
dαL

ˆ
dβL

ˆ
dαR

ˆ
dβR g(t2, t1, αL, βL, αR, βR)

× ei(αL·χ̂+βL·π̂)[.]e−i(αR·χ̂+βR·π̂), (C.9)

where x̂, p̂ on the right hand-side are the usual Schrödinger picture operators.
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C.2.2 Covariance

The map M transforms covariantly when

M(I)(t2, t1) = G−1 ◦M(I)(t2, t1) ◦ G, (C.10)

where

G[·] = U (I)† · U (I)

and U (I) is an element of the unitary rappresentation of the symmetry group in interaction
picture. Combining Eqs. (C.9), (C.10) we obtain the covariance condition:

ˆ
dαL

ˆ
dβL

ˆ
dαR

ˆ
dβR g(t2, t1, αL, βL, αR, βR)

×
(
ei(αL·U(I)†χ̂U(I)+βL·U(I)†π̂U(I))[.]e−i(αR·U(I)†χ̂U(I)+βR·U(I)†π̂U(I))

−ei(αL·χ̂+βL·p̂)[.]e−i(αR·χ̂+βR·π̂)) = 0, (C.11)

Specifically, in the following sections we will consider the unitary operators rappresenting
translations and boosts (in interaction picture):

U (I)
P =exp(iP(I)a), (C.12)

U (I)
K =exp(iK(I)η), (C.13)

where P, K are defined in Eqs. (B.4), (B.6), respectively. a is a translation vector and
η = ctanh−1(v/c) is the rapidity, which for infinitesimal transformations, reduces to the
infinitesimal velocity v.

In the following sections, we will consider infinitesimal transformations. Specifically, the
unitary transformations in Eqs. (C.12), (C.13) reduce to:

U (I)
P · U (I)†

P ≈ · + i [P(I)a, · ], (C.14)

U (I)
K · U (I)†

K ≈ · + i [K(I)v, · ], (C.15)

respectively. Thus a necessary condition for the covariance condition in Eq. (C.11) to be
true is given by:

[G · θ, α · χ̂+ β · π̂] = λI, (C.16)

where α, β are R numbers, λ is a C number, G denotes P(I) or K(I), while θ denotes a or v,
respectively. In this way the operators in the exponents, acting on the statistical operators
from the left and right in Eq. (C.11), reduce to

(αL · U (I)†χ̂U (I) + βL · U (I)†π̂U (I)) = (αL · χ̂+ βL · π̂) + iλLI, (C.17)

(αR·U (I)†χ̂U (I) + βR · U (I)†π̂U (I)) = (αR · χ̂+ βR · π̂) + iλRI, (C.18)

respectively. If we are now able to set λL = λR, by imposing a constraint on g(t2, t1, αL, βL, αR, βR),
then the covariance condition in Eq. (C.11) is satisfied.
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C.2.3 Non-relativistic translations and boosts

To gain some familiarity with the formalism we first consider non-relativistic maps and the
non-relativistic generators of translations and boosts given in Eqs. (B.26), (B.28), respec-
tively. We write them in the interaction picture:

P(I) = p̂, (C.19)

K(I) = mx̂. (C.20)

We now consider the necessary condition for the covariance given by Eq. (C.16). Specif-
ically, for translations and boosts we obtain the following two conditions:

[p̂ · a, α · χ̂+ β · π̂] = λI, (C.21)

[mx̂ · v, α · χ̂+ β · π̂] = λ̃I, (C.22)

respectively, where λ, λ̃ are C numbers. These two conditions are satisfied by considering
ξ = I in Eqs. (C.6),(C.7):

χ̂ = x̂, (C.23)
π̂ = p̂. (C.24)

Specifically, with this particular ξ, from Eqs. (C.21),(C.22) we obtain:

λ =α · a,
λ̃ =β · v,

respectively. We can now set λL = λR and λ̃L = λ̃R, where λL = αL · a, λR = αR · a,
λ̃L = βL · v and λ̃R = βR · v, by imposing the following symmetry:

g(t2, t1, αL, βL, αR, βR) = δ(αL − αR)δ(βL − βR)g(t2, t1, αL, βL, αR, βR), (C.25)

Thus the request of translation and Galilean boost covariance only restricts the class of
possible modifications of the dynamics, but does not exclude a priori all modifications (for
Gaussian maps see [17]).

C.2.4 Relativistic translations and boosts

We now consider the generators of translations and boosts given in Eqs. (B.4), (B.6), re-
spectively. Specifically, the generators in the interaction picture up to (including) order 1/c2

reduce to:

P(I) = p̂, (C.26)

K(I) = mx̂+
1

2c2
{x̂, p̂

2

2m
}. (C.27)
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We now consider the necessary condition for covariance given by Eq. (C.16). Specifically,
for translations and boosts we obtain the following two conditions:

[p̂ · a, α · χ̂+ β · π̂] = λI, (C.28)

[mx̂ · v + 1

2c2
{x̂ · v, p̂

2

2m
}, α · χ̂+ β · π̂] = λ̃I, (C.29)

respectively, where λ, λ̃ are C numbers. From Eq. (C.28) we obtain the condition

α · χ̂+ β · π̂ = f(p̂) + b · x̂ (C.30)

where f( · ) is an operator valued function and b a C number. We now use Eq. (C.30) in Eq.
(C.29) to obtain:

[mx̂ · v + 1

2c2
{x̂ · v, p̂

2

2m
}, f(p̂) + b · x̂] = λ̃I, (C.31)

which, after some algebra, reduces to:

i

(
1

c2
p̂2

2m
+m

)
(v · ∂p̂) f(p̂)−

i

2c2
{x̂ · v, p̂ · b

m
} = λ̃I. (C.32)

From the first term we obtain the condition that f(p̂) = C is a C number. From the second
term we obtain the condition that p̂⊥ b, which implies in Eq. (C.30) that b · x̂ = 0. Thus we
obtain that Eq. (C.30) reduces to

α · χ̂+ β · π̂ = C (C.33)

This equation, in case χ̂ and π̂ are non-trivial, i.e. are not 0 or I, can be satisfied only by
setting C = 0 together with α = 0 and β = 0.

The analysis of the previous paragraph applies both for the operators acting on the
statistical operator from the left and from the right. We can set αL = αR = 0 and βL =
βR = 0 by imposing the following constraint:

g(t2, t1, αL, βL, αR, βR) = δ(αL)δ(αR)δ(βL)δ(βR)g(t2, t1, αL, βL, αR, βR) (C.34)

In other words, we can only have trivial relativistic translation and Lorentz boost covariant
maps, i.e. proportional to 0 or I. On the other hand, if χ̂ or π̂ are trivial, we still reach the
same conclusion. The same should be true also for higher order relativistic corrections: we
leave a rigorous analysis for future research.

Let us now consider a particle with spin s ̸= 0. In place of the map given in Eq. (C.9) we
have a (2s+1)-dimensional matrix map. Based on the results above, the (2s+1)-dimensional
matrix map cannot depend on x̂ and p̂. A similar extension also applies to the n particle
case.

In the next section we give some physical insight into this result and argue that the
analysis of this section extends to higher order relativistic corrections.
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C.2.5 Physical insight

We consider a system S immersed in an environment E and the corresponding statistical
operator ρ defined on the Hilbert space H(S)⊗H(E). We assume, for simplicity of presentation,
that the system is composed of a single particle and that the environment is composed byN−1
particles. In addition, we assume that the N particles are interacting, with the interaction
described by Û , constrained by Eq. (B.22). Thus, as discussed above, it is possible to write a
rappresentation of the Poincaré group with the generators given by Eqs. (B.4), (B.5), (B.6),
(B.7): in particular, the evolution map M is given by Eq. (B.21). We now ask the question:
is the map given by Eq. (B.21) covariant under a boost of only the system S? In the following
we assume that Eq. (B.21) is covariant under a translation of only the system S: the key
issue, as we have seen in the previous section, is related to Lorentz boosts.

Let us first consider the non-relativistic limit: the generators reduce to the expressions
in Eqs. (B.26),(B.27),(B.28),(B.29). By construction, the map M is Galilei boost covariant,
where the boost generator is K. As discussed above, by an appropriate choice of rappresen-
tation we can set V̂ (0) = 0 and thus we have

K =
∑
µ

K̂µ. (C.35)

Thus, since [K̂i
µ,Kj ] = 0, it follows immediately that it is also covariant under a Galilean

boost of the system S.
On the other hand, in the relativistic case, if we have [K̂k

µ, V̂
l] ̸= 0 we cannot set V̂ = 0

by a change of rappresentation as in the non-relativistic case. In addition, from Eq. (B.25)
we see that we cannot have [K̂k

µ, V̂
l] = 0, when we have interaction, i.e. β ̸= 0. This

argument can be avoided only if we restrict to one spatial dimension, i.e. to a pathological
1 + 1 space-time, where the Poincaré algebra contains only the generators of translation in
space, evolution in time and boost (without rotations): because the generator of rotations is
absent, the constraint given by Eq. (B.25) is trivially satisfied, i.e. it reduces to 0 = 0, and
thus we are allowed to set V̂ = 0 even in the relativistic case. We thus conclude, for a system
of interacting particles in the 1+3 Minkowski space-time, that we always have [K̂i

µ,Kj ] ̸= 0,
and thus the dynamics is not covariant under a boost of only the system S: the evolution for
the system S cannot be described by a Lorentz covariant map.

We now give some physical insight into this result. In particular, we give a heuristic an-
swer to the following question: why, differently from the non relativistic case, is the relativistic
N particle boost K not a sum of single particle boosts? We argue that this can be explained
already looking at the classical relativistic system of N particles with the interaction medi-
ated by a classical field, e.g. charged particles interacting through the electromagnetic field
[80]. The field degrees of freedom can be integrated away and thus we obtain a Lagrangian
(Hamiltonian) depending only on the particle degrees of freedom, which after quantization
can be identified with quantum mechanical operators.

In the non-relativistic case, the interaction becomes instantaneous, and thus the resulting
Lagrangian depends only on the positions and velocities of the particles. Based on this
analysis, we do not expect anything different from Eq. (C.35). On the other hand, in the
relativistic case, considering relativistic corrections due to retardation effects, the resulting
Lagrangian will depend also on higher time derivatives of position. Thus, loosely speaking,
retardation effects can be associated to a volume around the particle position (higher time
derivatives), and the free particle Lorentz boost fails to account for this volume. In other
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words, the particle and the volume around the particle, originating from the field degrees
of freedom, should be boosted together. Thus, based on this heuristic argument, in the
relativistic case it is reasonable to expect Eq. (B.6) in place of Eq. (C.35) for the boost
generator (see Fig. C.1).

Figure C.1: Depiction of a classical relativistic system (left) and of the Lorentz boosted
system (right). The one-particle system S is denoted by the small blue circle, while the
environment particles E are depicted by small gray circles. Because of the retardation effects,
arising from the finite speed of light, one must consider not only the position of the system
particle, but also an effective volume around the particle, denoted by the blue colored region,
to correctly boost the system S within the environment E. In particular, the “interaction
volume” gets deformed after a Lorentz boost: the sphere gets contracted along the boost
axis, i.e. r′eff < reff . This classical relativistic effect prevents the construction of Lorentz
covariant maps in a quantum mechanical framework, where particle/antiparticle interactions
are suppressed.

C.3 Implications

In this section we look at the implications of the result derived in the previous section.

C.3.1 Non-unitary modification of canonical quantum mechanics

The most well-known examples of non-unitary modifications of the Schrödinger dynamics
lead to dynamical maps that also describe decoherence [7, 6]: these maps can be obtained,
within the theory of open quantum systems, by tracing away the environment degrees of
freedom (both for non-relativistic and fully relativistic modifications). We thus look, based
on the result of the previous Sec. C.2.5, at the implications for relativistic modifications of the
Schrödinger dynamics, where particle/antiparticle interactions are suppressed, and address
the implications for non-relativistic modifications.

The impossibility of a Lorentz covariant modification of the canonical quantum me-
chanics has an interesting implication for non-relativistic non-unitary modifications of the
Schrödinger dynamics: the constraint of exact Galilean covariance can be abandoned. Thus
non-relativistic quantum-mechanical modifications are constrained by only an approximately
Galilean boost covariance as, within experimental errors, both the microscopic and macro-
scopic objects obey approximately Galilei covariant laws. An example of such a modification
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is given by the dissipative (dCSL) extension [34] of the continuous spontaneous localization
(CSL) collapse model [32]: the exact Galilean covariance is broken by a preferred reference
frame of a classical noise field. In addition, such models, with only approximate Galilei boost
covariance, are motivated by Trace Dynamics [9]. In this theory canonical quantum mechan-
ics is recovered after a coarse graining: in particular, Lorentz covariance is recovered only
approximately.

A remark is in order. Relativistic canonical quantum mechanics is only an approximate
theory: the approximations involved could potentially be the cause of the impossibility re-
sult of this section. Thus, as with all no-go results, the implications have to be carefully
considered. In particular, we have shown the impossibility of a relativistic Lorentz covari-
ant quantum theory only within the framework of canonical quantum mechanics, where
particle/antiparticle interactions are suppressed. The result of this section could thus be
understood as an argument that particle/antiparticle interactions are an essential part of
non-unitary modifications of the Schrödinger dynamics: this is the case of recently proposed
relativistic spontaneous collapse models [81] (and references therein).

C.3.2 Macroscopicity measure

Recently a measure of macroscopicity µ based on Galilean covariance has been introduced
[82]: it is a quantitative measure of the degree of macroscopicity achieved in an experiment.
In particular, the macroscopicty measure is constructed from Galilei covariant modifications
of the von-Neumann map:

M = M(vN) +
1

τ
M(GM), (C.36)

where M(vN) is the von Neumann map discussed in Sec. B.1.2, M(GM) denotes a Markovian
Galilei covariant modification and τ is a characteristic time that quantifies the suppression of
linear superpositions. The degree of macroscopicity obtained in a given experiment is defined
as:

µ = log10(τe/1s), (C.37)

where τe is the greatest excluded time τ of the modification M(GM).
The assumption of Markovianity and Galilean covariance is a reasonable one, as both mi-

croscopic and macroscopic objects, in the non-relativistic regime, are described by Markovian
Galilei covariant theories, namely, Quantum and Classical mechanics, respectively. However,
as discussed in [58], a relativistic macroscopicity measure is still an open problem. We now
address this problem.

Based on the impossibility result of a Lorentz covariant canonical Quantum mechanics,
it is reasonable to consider the map:

M(aGM) = M(vN) +M(GM) +M(nGM), (C.38)

where M(nGM) is a term that breaks Galilei boost covariance. Thus the map M(aGM) is
only approximately Galilean covariant. Although for most experiments the term M(nGM) is
negligible, it might become important for certain experimental predictions.

A similar discussion also applies to non-Markovian effects. The map M(GM) is a Marko-
vian modification of the von-Neumann map M(vN). This is again a reasonable assumption
as both microscopic and macroscopic objects, in the non-relativistic regime, are described
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by approximately Markovian theories, namely, Quantum and Classical mechanics, respec-
tively. However, certain experimental predictions might be sensitive to a non-Markovian
modification.

Thus, combining non-Galilei covariant and non-Markovian terms, it might be reasonable
to consider the map given by Eq. (C.38), where M(nGM) is a term that breaks Galilei
covariance and is also non-Markovian: M(aGM) is thus only approximately Galilean boost
covariant and only approximately Markovian. We leave for future research the implications
for the macroscopicity measure µ in specific experiments.

C.4 Conclusions

We have shown the impossibility of constructing a Lorentz covariant canonical Quantum
mechanics. We have briefly discussed the implications. These results may be of relevance for
the theoretical development of non-unitary models as well as for definition of macroscopicity.
In particular, experiments that probe the lowest order relativistic corrections, i.e. to order
O(1/c2), could become reality in the near future and could thus provide a test for the ideas
of this section.



Appendix D

Relativistic corrections

D.1 Introduction

In this appendix we discuss relativistic extensions of the collapse dynamics introduced in
Sec. 3, namely the relativistic CD (rCD) map and the relativistic cdCSL (rcdCSL) model.
Specifically, we will obtain, within Foldy’s canonical quantum-mechanical framework intro-
duced in Appendix B, explicit 1/c2 corrections to the CD map and for the cdCSL model. In
addition, we will discuss the procedure to obtain higher order corrections, i.e. to order 1/c2n

with n a positive integer.
In Sec. D.2 we generalize the CD map to first order in O(1/c2). In Sec. D.2 we generalize

the cdCSL model to first order in O(1/c2). In Sec. D.3 we will discuss the relation of the
rcdCSL model with the relativistic CSL proposed in [83].

D.2 Dynamical map

We consider the Gibbs state:

ρ̂asm =

(
β

2mπ

)3/2

exp(−βĤ), (D.1)

where

Ĥ =

√
(p̂c)2 +m2c4 (D.2)

and β = 1/kBT , with kB the Boltzmann constant. For later convenience we introduce the
notation

Ĥ = ĤNR + ĤRC , (D.3)

where ĤNR = mc2 + p̂2/2m is the non-relativistic Hamiltonian and ĤRC denotes relativistic
corrections. Specifically, to order 1/c2 we have:

ĤRC = − 1

c2

[
p̂4

8m3

]
. (D.4)

We thus make the ansatz for the operators
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J̃(p̂, Q) =
[
J̃(p̂, Q)

]
NR

exp(−R(p̂, Q)), (D.5)

where
[
J̃(p̂, Q)

]
NR

is the non-relativistic operator given in Eq. (3.24) and R(p̂, Q) is an

operator valued function to be determined. Specifically, to order 1/c2 we make the ansatz:

R(p̂, Q) =
1

c2
[
a3p̂

4
]

(D.6)

We now essentially repeat the same procedure as for the non-relativistic calculation in
Sec. 3. We impose, to order 1/c2, the asymptotic Gibbs state D.1 in Eq.(3.10), where J̃(p̂, Q)
is given in Eq. (D.5):

ˆ
dQ
[
J̃(p̂−Q,Q)

]2
NR

ρ̂NR(p̂−Q)e−R(p̂−Q,Q)e−βĤRC(p̂−Q)

=

ˆ
dQ
[
J̃(p̂, Q)

]2
NR

ρ̂NR(p̂)e
−R(p̂,Q)e−βĤRC(p̂), (D.7)

where ρ̂NR denotes the non-relativistic part of the statistical operator. We now change
Q→ Q− b on the left hand-side, where b is given in Eq. (3.20):

ˆ
dQ
[
J̃(p̂, Q)

]2
NR

ρ̂NR(p̂)
[
e−R(p̂−(Q−b),Q−b)e−βĤRC(p̂−(Q−b))

− e−R(p̂,Q)e−βĤRC(p̂)
]
= 0. (D.8)

We now expand the exponentials to order 1/c2 to obtain:

ˆ
dQ
[
J̃(p̂, Q)

]2
NR

ρ̂NR(p̂)

[(
β

8m3
− a3

)
(p̂− (Q− b)) 4 −

(
β

8m3
− a3

)
p̂4
]
= 0, (D.9)

which has the solution:

a3 =
β

8m3
. (D.10)

This concludes the determination of the map rCD to order 1/c2. A remark is in order. This
result follows from the ansatz in Eq. (D.6): we will briefly discuss the freedom in the choice
of the ansatz in Sec. D.4.

D.3 rcdCSL

In the previous section we have identified the map rCD to order 1/c2. We can now define the
rcdCSL model to order 1/c2 by following the procedure of Sec. 3.3 for the non-relativistic
cdCSL model. We impose Eqs. (3.34), (3.35), where we again assume a R valued noise field,
and in place of Eq. (3.36) we set:

J(p̂, Q) = JNR(p̂, Q)exp(−βp̂4/8m3c2), (D.11)

where JNR(p̂, Q) is the operator in Eq. (3.36). The rcdCSL model dynamics, in the second
quantized formalism, is then defined by Eqs. (3.37), (3.38) and the corresponding dynamical
map is given by Eq. (3.39).
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D.4 Higher order corrections

The derivation of the operator J̃(p̂, Q) in Sec. D.2 (which we denote as J(p̂, Q) in Sec. D.3)
can be extended to higher order relativistic corrections. The rcdCSL model dynamics, in the
second quantized formalism, is again defined by Eqs. (3.37), (3.38), with the corresponding
dynamical map given by Eq. (3.39). We start from Eq. (D.8), which is valid to arbitrary
order in 1/c2n with n positive integer. We introduce the following compact notation

R =
∑
n=1

R(n)

c2n
(D.12)

ξs = e−R(p̂−(Q−b),Q−b) = 1 +
∑
n=1

ξ
(n)
s

c2n
, (D.13)

Θs = e−βĤRC(p̂−(Q−b)) = 1 +
∑
n=1

Θ
(n)
s

c2n
, (D.14)

ξ = e−R(p̂,Q) = 1 +
∑
n=1

ξ(n)

c2n
, (D.15)

Θ = e−βĤRC(p̂) = 1 +
∑
n=1

Θ(n)

c2n
, (D.16)

It is straightforward to obtain the condition to order 1/c2n from (D.8):

ˆ
dQ

(√
D̃(Q)J(p̂, Q)

)2

NR

ρ̂NR(p̂)F (ξ,Θ) = 0, (D.17)

where

F (ξ,Θ) = ξ(n)s +Θ(n)
s +

n−1∑
j=1

ξ(j)s Θ(n−j)
s −

⎛⎝ξ(n) +Θ(n) +
n−1∑
j=1

ξ(j)Θ(n−j)

⎞⎠ . (D.18)

Using the condition given in Eq. (D.17) we can obtain the ξ(n) iteratively from the lower
order correction ξ(j) with j < n, by setting F (ξ,Θ) = 0. We have seen that for the first
relativistic correction, i.e. to order 1/c2, Eq. (D.18) reduces to

ξ(1)s +Θ(1)
s −

(
ξ(1) +Θ(1)

)
, (D.19)

which can be set to 0 by setting ξ(1) = −Θ(1). However, already at order 1/c4 we get a more
complicated condition:

ξ(2)s +Θ(2)
s + ξ(1)s Θ(1)

s −
(
ξ(2) +Θ(2) + ξ(1)Θ(1)

)
. (D.20)

We leave for future research, the determination of the explicit expressions for ξ(n). In addition,
from the Eqs. (D.12),(D.15) we can obtain the expression for R to each order in 1/c2n:

∑
n=1

ξ(n)

c2n
=
∑
k=1

1

k!

⎡⎣∑
j=1

R(j)

c2j

⎤⎦k

(D.21)
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There is a particularly important question we have not yet addressed: what is the residual
freedom in the determination of ξ(n) and thus of R(n)? The answer to this question, i.e.
characterizing the dynamics that leads to an asymptotic Gibbs state, may not be trivial. In
particular, we want to fix higher order corrections without introducing new free parameters
in the dynamics: rC and T should be the only free parameters of the dynamics to all orders in
1/c2n (this is the case for the first relativistic correction to order 1/c2). We leave the answer
to this question for future research.

D.5 Comparison with fully relativistic collapse models

We have obtained a relativistic collapse models with the noise field selecting a preferred
reference frame: for example the noise can be identified with a non-quantum background
cosmological field. In particular, the interaction with the stochastic field solves the issue
of constant energy production of Galilean boost covariant models. This is in stark contrast
with previous relativistic collapse models: these models are fully Lorentz-covariant and do not
suppress particle/antiparticle interactions. These models, based on the Schwinger-Tomonaga
equation, had for a long time suffered from a non-physical constant energy production in con-
flict with experimental data[6]: only recently this problem was solved with the introduction
of a non-standard quantum operator [84]. In particular, a relativistic extension of the CSL
was considered in [83].

Besides providing a simple resolution to the energy production issue, the preferred refer-
ence frame approach can be also used to define the ontology in a natural way: the relation
between the wave-function and matter in physical space. For example, the preferred reference
frame can be used to define the following matter-density ontology[6]:

m(x, t) =
N∑
i=1

mi

ˆ
dy1...dyNδ(x− yi)|ψt(y1, ...yN )|2, (D.22)

where m(x, t) denotes the mass density in R3 for N with masses mi and ψt(y1, ...yN ) is
the wave-function in the preferred reference frame of the noise field. This fixes the matter-
density on the whole manifold. On the other hand, the matter density ontology for the
Lorentz covariant models proposed in the literature is defined with the help of the light cone
[81].

There is another benefit of the preferred reference frame approach: the theory has a
straightforward non-relativistic limit and relativistic corrections are easy to evaluate. In
particular, the first relativistic correction to order O(1/c2) puts the predictions of this model
within reach of current experiments.

We will analyze in detail the properties of the rcdCSL model (collapse mechanism, am-
plification mechanism) and investigate the connection with the relativistic CSL considered in
[83] in a future work.
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