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ABSTRACT	

Hearing	impairment	(HI)	and	hearing	loss	(HL)	are	the	most	frequent	birth	defects	in	

developed	societies	affecting	approximately	1	to	3	 in	every	1000	live	births.	HI/HL	

are	 remarkably	 complex	 and	 heterogeneous	 diseases	 presenting	 with	 various	

phenotypes	as	a	result	of	both	genetic	and	environmental	factors.	Within	genetic	or	

hereditary	hearing	impairment/loss	(HHI/HHL)	about	70%	of	cases	can	be	classified	

as	 non-syndromic	 (NSHI/NSHL),	 i.e.	 with	 the	 absence	 of	 abnormalities	 in	 other	

organs,	 and	 to	 date	 158	 NSHI/NSHL	 loci	 and	 95	 genes	 have	 been	 reported	 as	

causative.		

Considering	 that	 the	achievement	of	a	 correct	molecular	diagnosis	 is	essential	 for	

uncovering	the	molecular	mechanisms	of	hearing	loss,	in	order	to	provide	patients	

with	 prognostic	 information	 and	 personalized	 risk	 assessments	 and	 reduce	 public	

health	costs,	this	study	aims	to	define	the	genetic	cause	of	deafness	in	a	subset	of	

NSHI/NSHL	familial	cases	coming	from	both	Italy	and	Qatar.		

In	 order	 to	 overcome	 the	 high	 genetic	 heterogeneity	 of	 this	 disease	 and	 the	 fact	

that	 different	 major	 players	 seem	 to	 be	 involved	 in	 the	 Italian	 and	 Qatari	

populations,	 next	 generation	 sequencing	 techniques	 have	 been	 employed	 in	 this	

study.		

In	 particular,	 in	 the	 case	 of	 the	 Qatari	 population,	 this	 work	 represents	 the	 first	

high-throughput	 screening	 for	 the	molecular	 diagnosis	 of	 hearing	 loss,	 being	 thus	

extremely	valuable	from	an	epidemiological	point	of	view.	

As	a	first	step,	patients	have	been	screened	for	96	deafness-genes	using	a	custom	

targeted	 re-sequencing	 (TRS)	 panel.	 Data	 analysis	 led	 to	 the	 identification	 of	 the	

molecular	 cause	 in	 50%	 of	 all	 families,	 highlighting	 TECTA	 and	MYO7A	 as	 major	

players	in	the	Italian	population,	and	CDH23	and	TMC1	in	the	Qatari	one.		

.	
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Families	 negative	 to	 TRS	 have	 been	 selected	 for	 whole	 exome	 sequencing	 (WES)	

analysis,	with	the	purpose	of	discovering	new	disease-related	genes.	So	far	two	new	

candidates,	SPATC1L	and	PLS1,	in	two	Italian	families	have	been	identified.		

SPATC1L	encodes	the	speriolin-like	protein,	whose	function	is	still	unknown.	A	novel	

stop	variant	has	been	identified	in	an	Italian	family	affected	by	autosomal	dominant	

NSHL	 (ADNSHL)	 and	 some	 functional	 studies	 (i.e.	 expression	 analysis	 in	 mouse	

whole	 cochleae,	 protein	 modelling	 and	 in	 vitro	 molecular	 cloning)	 together	 with	

statistical	 analysis	 (i.e.	 a	 candidate-gene	 population-based	 statistical	 study	 in	

cohorts	from	Caucasus	and	Central	Asia)	supported	the	role	of	this	gene	in	hearing	

function	and	loss.		

In	the	case	of	PLS1,	a	new	missense	variant	has	been	identified	in	an	Italian	ADNSHL	

family.	The	gene	encodes	the	plastin-1	protein,	which	has	already	been	associated	

to	 hearing	 loss	 in	 mice.	 The	 generation	 of	 a	 knock-in	 in	 Zebrafish	 model	 (in	

collaboration	with	 ZeClinics,	 a	 Biotech	 Contract	 Research	 Organization	 (CRO)	 and	

early-phase	 biopharmaceutical	 (PHARMA)	 company	 that	 uses	 Zebrafish	 for	 the	

study	of	human	diseases,	located	in	Barcelona,	Spain)	is	now	in	progress	and	gene	

expression	in	Zebrafish	larvae	inner	ear	has	been	preliminary	confirmed.	

Altogether	 these	 results	 clearly	 proved	 that	 TRS	 followed	 by	WES	 and	 functional	

studies	are	powerful	tools	for	both	the	molecular	diagnosis	of	NSHI/NSHL,	and	the	

identification	of	new	disease-related	genes.		
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1.	INTRODUCTION	

1.1	The	Anatomy	of	the	Ear	and	the	Auditory	Transduction	
	

The	ear	is	the	primary	organ	of	the	auditory	system,	which	plays	a	fundamental	role	

in	both	detecting	sound	and	positioning	and	balancing	of	the	body.		

The	ear	consists	of	three	sections:	the	outer	ear,	the	middle	ear	and	the	inner	ear	

(Figure	1.1)	that	altogether	are	essential	for	the	mechanism	of	sound	transduction.		

	

Figure	1.1	Schematic	representation	of	the	auditory	system.	The	mammalian	ear	is	made	up	of	three	distinct	

sections:	the	outer	ear,	the	middle	ear	and	inner	ear.	The	outer	ear	consists	of	the	auricle,	the	auditory	canal	

and	the	eardrum,	that	marks	the	beginning	of	the	middle	ear.	The	middle	ear	contains	the	malleus,	 incus	and	

stapes,	 the	auditory	ossicles.	 The	 inner	ear	 consists	of	 the	 cochlear	and	 the	vestibular	 system	 (adapted	 from	

“The	human	ear	facts	and	functions	of	the	ear	-an	organ	of	hearing”	http://www.organsofthebody.com/ears/).	

	

1.1.1	The	Outer	Ear	

The	outer	ear	is	the	external	portion	of	the	ear	and	essentially	acts	as	a	resonator	

enhancing	the	transmission	of	sound	waves	(1).		

It	is	made	up	of	the	auricle	(also	called	pinna),	the	external	auditory	canal	and	the	

eardrum,	the	most	superficial	layer	of	the	tympanic	membrane.		
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The	 auricle	 collects	 sound	 waves	 and	 canalises	 them	 to	 the	 eardrum	 via	 the	

auditory	 canal.	 Vibration	of	 the	 tympanic	membrane	 represents	 the	 first	 stage	of	

the	sound	transduction	pathway.		

	

1.1.2	The	Middle	Ear	

The	middle	ear	is	an	air-filled	cavity	enclosed	by	the	temporal	bone	and	interposed	

between	 the	 eardrum	 and	 the	 oval	 window,	 a	 membrane-covered	 opening	 that	

connects	the	middle	ear	to	the	inner	ear.		

The	middle	ear	contains	three	small	bones,	also	known	as	the	ossicles:	the	malleus	

(hammer),	incus	(anvil)	and	stapes	(stirrup).		

These	 bones	 form	 the	 ossicular	 chain	 that	 allows	 amplifying	 and	 transferring	 the	

sound-induced	 vibrations	 of	 the	 tympanic	 membrane	 to	 the	 inner	 ear	 via	 a	

connection	between	the	stapes	footplate	and	the	oval	window	(2).		

	

1.1.3	The	Inner	Ear	

The	inner	ear	is	a	fluid-filled	cavity	located	in	the	temporal	bone.	

It	 consists	 of	 the	 cochlea,	 the	 auditory	 sense	 organ,	 and	 the	 vestibular	 system,	

which	is	required	for	balance	(3).		

Vibrations	of	the	tympanic	membrane	are	transferred	via	the	ossicles	chain	to	the	

cochlea,	where	the	mechanical	stimuli	are	converted	into	electrical	signals	that	can	

travel	along	the	eighth	cranial	nerve	to	the	brain	allowing	auditory	perception.		

	

1.1.3.1	Cochlear	Structure	

The	cochlea	 is	a	 fluid-filled	coiled	 structure	 spiralled	around	a	central	bone	called	

the	 modiolus.	 The	 cochlear	 duct	 is	 divided	 from	 the	 vestibular	 membrane	 (also	

known	as		

Reissner’s	membrane)	and	the	basilar	membrane	in	three	fluid-filled	chambers	(or	

scalae):	scala	vestibuli,	scala	media	and	scala	tympani	(Figure	1.2).		
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Figure	 1.2	 Diagram	 of	 a	 cross	 section	 of	 the	 cochlea.	 The	 cochlea	 is	 divided	 from	 the	 Reissner’s	

membrane	and	basilar	membrane	into	three	fluid-filled	sections,	named	scala	vestibuli,	scala	media	

and	 scala	 tympani	 (adapted	 from	 Guyton	 and	 Hall,	 Textbook	 of	 medical	 physiology,	 ed	 12,	

Philadelphia,	2011,	Saunders).		

	

The	 two	 outer	 sections	 of	 the	 cochlear	 duct	 are	 the	 scala	 vestibuli,	 which	 is	

connected	 to	 the	oval	window,	 and	 the	 scala	 tympani,	which	 is	 connected	 to	 the	

round	window,	the	second	opening	from	the	middle	ear	into	the	inner	ear,	sealed	

by	 the	 round	 window	 membrane.	 Although	 separated	 along	 the	 length	 of	 the	

cochlea,	 these	 two	 scalae	meet	 at	 the	 apex,	 in	 a	 region	 called	 helicotrema,	 thus	

forming	a	continuous	duct	that	surrounds	the	third	section,	the	scala	media.	

Both	 the	 scala	 vestibuli	 and	 the	 scala	 tympani	 are	 filled	 with	 a	 fluid	 known	 as	

perilymph,	 which	 is	 an	 extracellular-like	 fluid,	 with	 high	 concentration	 of	 sodium	

(150	mM),	and	low	concentration	of	potassium	(5	mM)	(4).		

The	scala	media	 is	 the	third	compartment	of	 the	cochlea.	 It	 is	a	 triangular-shaped	

duct	filled	with	endolymph.	The	endolymph	shows	an	ionic	composition	very	similar	

to	 that	 of	 an	 intracellular	 fluid,	 i.e.	 it	 is	 high	 in	 potassium	 (150	mM)	 and	 in	 low	

sodium	(5	mM)	and	calcium	(0.02	mM)	(while	 the	perilymph	has	a	higher	calcium	

concentration	of	about	1	mM)	(4).		

Furthermore,	this	solution	exhibits	an	endocochlear	potential	 (EP)	of	+80	mV	with	

respect	to	the	perilymph	(5).		
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The	scala	media	houses	 the	organ	of	Corti,	 the	receptor	organ	 for	hearing,	where	

the	auditory	transduction	takes	place.	

1.1.3.2	Organ	of	Corti	

The	organ	of	Corti	consists	of	an	array	of	mechanosensory	cells,	known	as	hair	cells,	

and	different	types	of	supporting	cells	(Figure	1.3).		

Hair	 cells	 are	 distributed	 in	 rows	 along	 the	 length	 of	 the	 cochlea	 and	 can	 be	

classified	in	inner	hair	cells	(IHCs),	and	outer	hair	cells	(OHCs).	In	particular,	a	single	

row	of	 IHCs	and	 three	 rows	of	OHCs	 sit	on	 the	basilar	membrane,	 anchored	by	a	

series	of	supporting	cells.	

	

Figure	 1.3	 Schematic	 representation	 of	 the	 organ	 of	 Corti.	The	organ	of	Corti	 contains	a	 sensory	

epithelium,	which	 sits	on	 top	of	 the	basilar	membrane,	made	of	 sensory	 cells	 known	as	hair	 cells.	

Three	 rows	of	outer	hair	 cells	and	one	 row	of	 inner	hair	 cells,	 surrounded	by	 supporting	cells,	are	

present.	 The	 tectorial	membrane	 is	 a	 collagen	 rich	extracellular	matrix	 that	 lies	on	 top	of	 the	hair	

cells	 and	 makes	 contact	 with	 the	 stereocilia,	 specialised	 actin-rich	 structures	 essential	 for	 the	

auditory	 transduction	 (adapted	 from	 “Encyclopaedia	 Britannica”	

https://www.britannica.com/science/organ-of-Corti).	

	

On	 the	 apical	 surface	 of	 the	 hair	 cells	 are	 specialised	 structures	 known	 as	

stereocilia.		

Stereocilia	 are	 actin-rich	 organelles	 that	 project	 out	 into	 the	 endolymph	 and	 are	

essential	for	the	auditory	transduction.		
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Stereocilia	are	usually	arranged	in	bundles	of	approximately	20-300	units	(6).	Within	

these	bundles	stereocilia	are	 lined	 up	 in	rows	 of	 increasing	 height,	 similar	 to	 a	

staircase,	in	which	a	row	of	shorter	stereocilia	is	connected	to	the	next	row	of	taller	

stereocilia	by	tip	links.	There	are	also	additional	connecting	links,	known	as	lateral	

links.	(Figure	1.4.A)		

	

	

Figure	 1.4	 Sterocilia	 organization.	(A)	Stereocilia	are	actin	rich	structures	which	protrude	from	the	

apex	 of	 hair	 cells.	They	 are	 organized	 in	 bundles,	formed	 with	 several	 rows	 of	 stereocilia	 in	

increasing	height.	Tip	links	connect	the	apex	of	the	stereocilia	in	adjacent	bundles	and	in	addition,	

there	are	lateral	links	along	the	length	of	the	stereocilia.	(B)	A	scanning	electron	micrograph	(SEM)	

showing	stereocilia	arrangement	in	the	cochlea.	There	are	three	rows	of	OHCs	and	one	row	of	IHCs.	

Stereocilia	 bundle	 of	 OHCs	shows	the	characteristic	 V	 shaped,	 whereas	 sterocilia	 of	 IHCs	 show	a	

more	linear	pattern	(adapted	from	Hackney	and	Furness,	“The	composition	and	role	of	cross	links	in	

mechanoelectrical	transduction	in	vertebrate	sensory	hair	cells”,	J	Cell	Sci	2013	126:	1721-1731;	doi:	

10.1242/jcs.106120).	

	

Stereocilia	 are	 embedded	in	a	 gelatinous	 structure	 called	tectorial	 membrane,	an	

extracellular	matrix	which	extends	along	the	length	of	the	cochlea	in	parallel	to	the	

basilar	membrane	overlying	the	OHCs	and	the	IHCs	

	

OHCs	

IHCs	

A B
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1.1.4	Auditory	Transduction	

As	previously	mentioned,	 in	 response	 to	an	auditory	 stimulus,	 sound	waves	enter	

the	outer	ear	and	propagate	along	the	auditory	canal	to	the	eardrum,	causing	it	to	

vibrate.	Vibration	of	the	tympanic	membrane	triggers	the	movement	of	the	ossicles	

chain.	 In	particular,	 the	malleus,	which	 is	attached	to	 the	tympanic	membrane	on	

one	end	and	to	the	 incus	on	the	other,	causes	the	movement	of	 the	 incus	that	 in	

turn	 is	 connected	 to	 the	 stapes.	Thus,	 the	 footplate	of	 the	 stapes	presses	against	

the	oval	window	inducing	a	change	in	pressure	within	the	inner	ear.		

The	 stapes-induced	 pressure	 waves	 propagate	 along	 the	 scala	 vestibuli	 and	 the	

scala	 tympani,	 exiting	 via	 the	 round	 window,	 and	 results	 in	 the	 vibration	 of	 the	

basilar	membrane.	

The	 basilar	 membrane,	 a	 stiff	 membrane	 that	 extends	 along	 the	 length	 of	 the	

cochlea,	divides	the	scala	media	from	the	scala	tympani.	It	has	different	properties	

along	its	length:	it	is	narrowest	and	stiffest	at	the	base	of	the	cochlea	(closest	to	the	

oval	window)	and	gets	wider	and	less	stiff	towards	the	apical	end.	This	gradient	in	

physical	 properties	 determines	 the	 frequency	 at	 which	 the	 membrane	 is	 most	

sensitive	 to	 sound	 vibrations	 and	 it	 is	 known	 as	 tonotopic	 organisation	 (7).	

Oscillations	of	the	basilar	membrane	cause	the	organ	of	Corti	to	rise	up	against	the	

tectorial	membrane.	 As	 a	 result	 stereocilia	 are	 sheared	 back	 and	 forth	 under	 the	

tectorial	 membrane.	 This	 movement	 causes	 the	 deflection	 of	 the	 hair	 bundle	

towards	the	tallest	row	and	the	stretching	of	the	tip	links	that	allows	the	opening	of	

non-selective	cation	channels	known	as	mechanotransduction	(MET)	channels	(8).		

The	opening	of	MET	channels	as	a	result	of	stereocilia	deflection	therefore	triggers	

K+	to	flood	into	the	hair	cells	down	a	concentration	gradient.	This	influx	leads	to	cell	

depolarisation	 (9).	Depolarization	 in	 turn	opens	voltage-gated	calcium	channels	 in	

the	hair	cell	membrane,	and	the	resultant	Ca2+	influx	causes	transmitter	(glutamate)	

release	from	the	base	of	the	cell	to	the	auditory	nerve	endings.	
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Afferent	 neurons	 form	 synapses	 with	 IHCs	 and	 relay	 the	 electrical	 signals	 to	 the	

spiral	 ganglion	 neurons	 (SGN).	 These	 neurons	 transmit	 the	 signals,	 via	 the	 eighth	

cranial	nerve,	to	the	auditory	centres	of	the	brain.		

On	the	other	hand,	OHCs	behave	as	cochlea	amplifiers	responsible	 for	sharpening	

the	 frequency-specific	 response	 of	 the	 cochlea	 and	 are	 innervated	 by	 efferent	

dendrites	(10).	

Repolarization	 of	 the	 hair	 cells	 takes	 place	 via	 K+	 efflux;	 the	 opening	 of	 MET	

channels	in	fact	leads	also	to	the	activation	of	K+	channels	located	in	the	membrane	

of	the	hair	cell	soma.	The	opening	of	somatic	K+	channels	favors	K+	efflux	(in	fact	the	

surrounding	 perilymph	 is	 low	 in	 K+	 relative	 to	 the	 cytosol).	 Moreover	 another	

avenue	for	K+	to	enter	the	perilymph	and	repolarize	the	cell	is	given	by	the	opening	

of	Ca2+-dependent	K+	channels	(9).	

	

1.2	Hearing	Impairment	and	Loss	
	

Hearing	 impairment	 and	 loss	 (HI/HL)	 are	 the	 most	 frequent	 birth	 defect	 in	

developed	societies,	and	congenital	hearing	impairment	affects	approximately	1	to	

3	in	every	1000	live	births	(11).		

The	 term	HI	 refers	 to	 all	 cases	of	 congenital	 deafness,	while	with	 the	 term	HL	all	

cases	of	acquired	hearing	deficit	are	indicated.	

Deafness	 is	 typically	 described	 based	 on	 its	 clinical	 presentation	 and	 can	 be	

classified	by	a	number	of	different	factors	such	as	age	of	onset,	severity,	aetiology	

and	pathobiology	(Table	1.1).		
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Classification	 Description	

Aetiology	
Genetic	

Acquired	(environmental,	e.g.	prenatal	or	postnatal	infections)	

Presentation	

Syndromic:	 HI/HL	 associated	 with	 additional	 clinical	 features	 (approximately	
400	 syndromes	 have	 been	 described	 where	 HL	 is	 associated	 with	 defects	 in	
other	systems	e.g.	renal,	ocular,	endocrine,	nervous	and	musculoskeletal)		

Non-syndromic:	HI/HL	is	the	only	clinical	abnormality	

Laterality	
Unilateral:	one	ear	affected	

Bilateral:	both	ears	affected	

Onset	

Congenital:	HI	is	present	at	birth	

Pre-lingual:	HI/HL	is	present	before	speech	develops	

Post	lingual:	HI/HL	occurs	after	the	development	of	normal	speech.	

Type	

Conductive	 HI/HL:	 abnormalities	 or	 damage	 of	 the	 external	 ear	 and/or	 the	
ossicles	 of	 the	middle	 ear	 (i.e.,	 otitis	media,	 otosclerosis,	 tumours,	 impacted	
cerumen)	

Sensorineural	HI/HL:	malfunction	of	inner	ear	(i.e.,	cochlea)	

Mixed	HI/HL:	combination	of	conductive	and	sensorineural	HI/HL	

Central	 auditory	 dysfunction:	 dysfunction	 or	 damage	 involving	 the	 eighth	
cranial	nerve,	the	auditory	brain	stem	or	the	cerebral	cortex	

Symmetry	
Symmetric	

Asymmetric	

Stability	

Progressive	

Non	progressive	

Fluctuating	

Degree	in	Decibels	
(dB)	

Mild:	26-40	dB	

Moderate:	41-55	dB	

Moderately	severe:	56-70	dB	

Severe:	71-90	dB	

Profound:	>90	dB	

Frequencies	
affected	

Low	(<500	Hz)	

Middle	(501-2000	Hz)	

High	(>2000	Hz)	

Configuration	of	
the	audiometric	

analysis	

Sloping	

Flat	

Rising	

Midfrequency	(cookie-bite)	
	
Table	1.1:	Audiometric	and	clinical	aspects	of	hearing	loss	(12)	(13)	(14)	(15)	(16)	
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Fifty	%	 to	 70%	 of	 cases	 of	 HI/HL	 are	 attributable	 to	 genetic	 causes	 (17).	 Genetic	

causes	 of	 deafness	 can	 be	 further	 categorised	 as	 to	 whether	 the	 gene	 causes	

hearing	impairment	or	loss	associated	with	multiple	clinical	features	(syndromic)	or	

whether	the	hearing	impairment	or	loss	is	the	only	clinical	sign	(non-syndromic).	

	

1.2.1	Syndromic	Hearing	Impairment	and	Loss	

The	term	syndromic	hearing	impairment/loss	(SHI/SHL)	refers	to	the	manifestation	

of	 hearing	 deficit	 together	 with	 other	 abnormalities.	 To	 date,	 approximately	 400	

syndromes	have	been	described	where	deafness	is	associated	with	defects	in	other	

systems	e.g.	renal,	ocular,	endocrine,	nervous	and	musculoskeletal	(11).		

Two	 major	 classes	 of	 SHI/SHL	 have	 been	 described:	 SHI/SHL	 due	 to	 middle	 ear	

defects	 together	with	or	without	 inner	ear	defects	 (e.g.	Crouzon	 facial	dysostosis,	

Stickler	 syndrome	and	Mucopolysaccharidoses)	 and	 SHI/SHL	due	 to	 isolated	 inner	

ear	defects	(e.g.	Usher,	Pendred,	Alport	and	Jervell	and	Lange	Nielsen	syndromes)	

(18).	

	

1.2.2	Non	Syndromic	Hearing	Impairment	and	Loss	

Non-syndromic	hearing	impairment/loss	(NSHI/NSHL)	accounts	for	the	vast	majority	

of	hereditary	HI/HL	cases	and	can	be	classified	according	to	the	inheritance	pattern.	

In	 ~80%	of	 cases	 inheritance	 is	 autosomal	 recessive	 (the	hearing	deficit	 is	 usually	

congenital,	labelled	as	‘DFNB’),	in	the	other	~20%	of	cases	inheritance	is	autosomal	

dominant	 (usually	 with	 delayed	 onset,	 labelled	 as	 ‘DFNA’).	 The	 rest	 of	 non-

syndromic	hearing	impairment/loss	is	either	X-linked	or	mitochondrial	(<1%)	(19).		

To	date,	158	NSHI/NSHL	loci	(60	DFNA	loci,	88	DFNB	loci,	6	X-linked	loci,	2	modifier	

loci,	1	Y-linked	locus	and	1	 locus	for	auditory	neuropathy)	and	95	genes	(27	DFNA	

genes,	 56	 DFNB	 genes,	 8	 DFNA/DFNB	 genes	 and	 4	 X-linked	 genes)	 have	 been	
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reported	 as	 causative	 (Hereditary	 Hearing	 Loss	 Homepage;	

http://hereditaryhearingloss.org/).		

The	structure	and	physiology	of	the	inner	ear	is	in	many	ways	unique	and	different	

from	 any	 other	 anatomical	 locations.	 This	 could	 explain	 why	 so	 many	 genes	 are	

thought	 to	 be	 involved	 in	 inner-ear	 function	 and	 why	 the	 ear	 is	 so	 sensitive	 to	

mutations	at	these	loci.		

1.2.3	Genes	and	Proteins	related	to	NSHI/NSHL	

Mutations	 in	 genes	 that	 control	 ionic	 homeostasis,	 adhesion	 of	 hair	 cells,	

neurotransmitter	 release,	cytoskeleton	of	hair	cells	and	 intracellular	 transport	can	

all	lead	to	malfunction	of	the	cochlea	(20).	

	

1.2.3.1	Ion	Homeostasis	and	Gap	Junctions	

The	cochlea	contains	two	types	of	fluids,	the	perilymph	and	the	endolymph,	which	

differ	 in	 ion	 composition.	 This	 difference	 contributes	 to	 the	 generation	 of	 the	

endocochlear	 potential,	 necessary	 to	 drive	mechanotransduction.	 It	 goes	without	

saying	 that	 a	 correct	 ion	 homeostasis	 is	 essential	 for	 the	maintenance	 of	 normal	

hearing	function.	

The	 process	 of	 ion	 homeostasis	 involves	 several	 tight	 junctions	 protein,	 such	 as	

claudin	14	(CLDN14),	tricellulin	(MARVELD2/TRIC),	tight	junction	protein	2	(TJP2),	a	

number	 of	 connexins	 (GJB’s),	 KCNQ4	 (KCNQ4),	 ATP2B2	 (ATP2B2/PMCA2),	 barttin	

(BSND)	and	pendrin	(SLC26A4),	all	of	which	are	related	to	NSHI	and	NSHL	(19).		

Tight	 junctions,	by	generating	a	 seal	between	adjacent	 cells,	 create	a	barrier	 that	

limits	the	free	diffusion	of	 ions.	As	a	consequence,	the	apical	side	of	the	hair	cells	

and	supporting	cells	 is	exposed	to	the	endolymph,	while	the	basolateral	surface	 is	

bathed	in	a	fluid	with	an	ionic	composition	similar	to	that	of	the	perilymph,	which	

fills	up	the	so-called	space	of	Nuel	(21).	When	tight	junction	proteins	are	absent	or	
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dysfunctional	 this	 space	 might	 change	 in	 electric	 potential,	 as	 in	 DFNB29	 (22),	

DFNB49	(23)	and	DFNA51	(24).		

On	the	other	hand	gap	junctions,	which	are	channels	that	extend	over	two	adjacent	

membranes,	enable	the	exchange	of	various	small	molecules	and	ions.		

They	 consist	 of	 specialised	 proteins	 called	 connexins,	 which	 are	 expressed	 in	 the	

supporting	 cells	 of	 the	 organ	 of	 Corti	 and	 the	 connective	 tissue	 of	 the	 spiral	

ligament	 (25)	 and	are	 associated	with	 the	 recycling	of	potassium	 ions	needed	 for	

normal	hearing.		

Six	 connexins	 form	 a	 hexamerical	 assembly,	 known	 as	 connexon	 or	 hemichannel	

that	 can	 be	 homomeric	 (made	 of	 the	 same	 type	 of	 connexins),	 or	 heteromeric	

(made	of	different	type	of	connexins).	When	two	hemichannels	from	adjacent	cells	

dock	and	join	they	form	an	intercellular	gap	junction	channel	(26).		

In	 the	Caucasian	population	mutations	 in	GJB2	gene,	which	encodes	connexin	26,	

are	the	most	common	cause	of	recessive	NSHI	(DFNB1a)	(even	though	GJB2	has	also	

been	 associated	 to	 autosomal	 dominant	hearing	 loss,	DFNA3a)	 (27).	 In	 particular,	

mutations	in	GJB2	account	for	30–50%	of	all	congenital	NSHI	cases,	and	1–4%	of	the	

average	 human	 population	 are	 estimated	 to	 be	 carriers	 (28).	 Other	 connexins	

associated	with	non-syndromic	hearing	impairment	and	loss,	are	connexin	31	(GJB3,	

DFNA2b/DFNB91)	and	connexin	30	(GJB6,	DFNA3b/DFNB1b).	In	particular,	connexin	

30	can	assembly	with	connexin	26	in	heteromeric	connexons	and	it	has	been	shown	

that	GJB6	deletions	 together	with	 in	 trans	GJB2	heterozygous	mutation	can	cause	

NSHI	(29).		

Given	the	significant	contribution	of	GJB2	and	GJB6,	 it	 is	a	common	use	to	screen	

these	two	genes	in	patients	affected	by	NSHI	(16).	

Other	genes	 involved	in	cochlear	 ion	homeostasis	and	causative	of	NSHI/NSHL	are	

KCNQ4,	 that	 encodes	 a	 voltage-gated	 potassium	 channel	 of	 the	 outer	 hair	 cells,	

mutated	 in	DFNA2a	 (30),	 and	ATP2B2/PMCA2,	 that	 encodes	 a	 calcium	pump	 that	

acts	as	modifier	of	DFNB12	(31).	
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Other	 two	 genes,	 BSND	 and	 SLC26A4,	 which	 encode	 barttin	 (a	 chloride	 channel	

subunit)	 and	 pendrin	 (an	 anion	 exchanger)	 respectively,	 are	 involved	 in	 both	

syndromic	 (i.e.	 Bartter	 syndrome	 and	 Pendred’s	 syndrome)	 and	 non-syndromic	

deafness	(32)	(33).	

	

1.2.3.2	Adhesion	Proteins		

Throughout	 their	 existence,	hair	 cells	 stereocilia	 are	 linked	and	 interconnected	 to	

the	tectorial	membrane	by	several	adhesion	proteins.		

During	the	maturation	of	the	hair	bundle,	a	set	of	temporary	links	maintain	stability	

(lateral	 links	and	ankle	 links)	and	 in	mature	hair	cells	 stereocilia	are	connected	by	

tectorial	attachment	crowns,	horizontal	top	connectors,	and	tip	links	(34).		

To	date,	several	genes	related	to	the	linking	apparatus	have	been	described.	These	

include:	 CEACAM16	 (carcinogenic	 antigen-related	 cell	 adhesion	 molecule	 16),	

CDH23	 (cadherin	 23),	 STRC	 (stereocilin),	 USH1C	 (harmonin),	 OTOA	 (otoancorin),	

PCDH15	(protocadherin	15),	WHRN	(whirlin),	TMHS	(tetraspan	membrane	protein),	

and	PTPRQ	(tyrosine	phospate	receptor	Q)	(19).		

CDH23,	 PCDH15,	 PTPRQ	 and	 TMHS	 genes	 make	 up	 the	 transient	 lateral	 links,	

preventing	 sterocilia	 fusion	 during	 development	 (21).	 In	 mature	 hair	 cells,	 they	

become	 a	 main	 component	 of	 the	 tip	 links	 and	 act	 as	 a	 gate,	 channelling	

mechanotransduction	 and	 providing	 stability,	 taking	 a	 central	 role	 in	 auditory	

function.		

Whirlin	 and	harmonin	are	 scaffolding	proteins.	Mutations	 in	 these	proteins	 cause	

both	autosomal	recessive	NSHI/NSHL	and	Usher	syndrome	(35–38).		

Stereocilin	 is	 an	 extracellular	 matrix	 protein	 that	 is	 thought	 to	 make	 up	 both	

horizontal	top	connectors	and	tectorial	membrane	attachment	links,	that	allow	the	

tallest	 stereocilia	 of	 the	 OHC	 to	 attach	 to	 the	 tectorial	 membrane	 (39).	 The	

attachment	 site,	 also	 known	 as	 attachment	 crown,	 is	 generally	 formed	 by	
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CEACAM16	 (40).	 In	 a	 similar	 way,	 otoancorin	 attaches	 nonsensory	 cells	 to	 the	

tectorial	membrane	(41).	

	

1.2.3.3	Transport	Proteins		

In	the	inner	ear,	all	transport	proteins	belong	to	the	unconventional	myosin	family	

(19).	These	proteins	can	bind	actin	cytoskeleton	and,	using	ATP,	can	move	forward	

along	 actin	 filaments.	 Seven	 unconventional	 myosins	 have	 been	 associated	 with	

hereditary	 deafness:	 myosin	 Ia	 (DFNA48),	 myosin	 IIIa	 (DFNB30),	 myosin	 VI	

(DFNA22/DFNB37),	myosin	VIIa	(DFNA11/DFNB2),	nonmuscle	myosin	heavy	chain	IX	

(DFNA17),	 nonmuscle	myosin	 heavy	 chain	 XIV	 (DFNA4),	 and	myosin	 XVa	 (DFNB3)	

(21).	All	these	proteins	have	their	own	specific	function	in	the	inner	ear.		

	

1.2.3.4	Protein	of	synapses		

Two	main	genes,	encoding	protein	acting	at	a	synaptic	level,	have	been	described	as	

causative	of	NSHI/NSHL.		

The	first	one	is	SLC17A8,	which	encodes	the	vesicular	glutamate	receptor	VGLUT3.	

It	plays	a	role	in	the	inner	hair	cells’	synapses	and	when	mutated	causes	autosomal	

dominant	hearing	impairment/loss	(42).		

The	 second	gene	 is	OTOF,	which	encodes	 the	otoferlin,	a	protein	 that	works	with	

myosin	VI	at	the	synaptic	cleft	of	the	IHC	and	plays	a	role	in	the	calcium-dependent	

fusion	of	vesicles	to	the	plasma	membrane	(43).		

	

1.2.3.5	Cytoskeleton	

Several	 genes	 involved	 in	 the	 organisation	 of	 the	 cytoskeleton	 can	 cause	

NSHI/NSHL,	 i.e.	 ACTG1	 (γ-actin),	 DIAPH1	 (diaphanous	 1),	 TRIOBP	 (trio-binding	

protein),	TPRN	 (taperin),	SMPX	 (small	muscle	 protein,	 X-linked),	ESPN	 (espin)	 and	

RDX	(radixin)	(19).		
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Mutations	 in	 ACTG1	 can	 cause	 autosomal	 dominant	 hearing	 loss,	 DFNA20/26,	

interfering	with	the	remodelling	process	of	the	actin	filaments	in	the	stereocilia.	In	

fact,	 stereocilia	 are	 constantly	 undergoing	 actin	 polymerisation	 at	 the	 tip	 and	

depolymerisation	at	 the	base,	 and	 it	 is	 known	 that	 γ-actin	 functions	 as	 a	building	

block	of	hair	cell	stereocilia	(44).		

The	organisation	and	binding	of	γ-actin	at	the	base	(the	so-called	‘taper	region’)	of	

stereocilia	 is	 regulated	 by	 TRIOBP	 gene,	 which	 is	 associated	 to	 DFNB28	 (45).	

Another	protein	that	localises	at	the	taper	region	is	the	regulating	protein	taperin,	

which	is	associated	with	DFNB79	(46).	

Together	 with	 γ-actin	 also	 diaphanous	 1	 protein	 is	 important	 in	 stereocilia	

remodelling	 process.	 In	 fact,	 DIAPH1	 regulates	 the	 polymerisation	 and	

reorganisation	 of	 actin	 monomers	 into	 polymers,	 and	 has	 been	 associated	 with	

DFNA1	(47).		

The	 X-linked	 gene	 SMPX	 (DFN4)	 seems	 to	 have	 a	 function	 in	 stereocilial	

development	and	maintenance	 in	response	to	the	mechanical	stress	that	they	are	

subjected	to	(48).	

The	protein	espin	acts	as	a	bundling	protein,	providing	 stability	 to	 the	 stereocilial	

cytoskeleton	 and	when	mutated	 causes	 DFNB3	 and	 autosomal	 dominant	 hearing	

loss	(49,	50).	

More	 stability	 is	 provided	 by	 radixin,	 which	 is	 present	 along	 the	 length	 of	 the	

stereocilia	 and	 links	 actin	 filaments	 to	 the	 plasma	membrane.	 Mutations	 in	 RDX	

cause	recessive	deafness,	DFNB24	(51).	

	

1.2.3.6	Electromotility	

Electromotility	 is	 a	 process	 that	 guarantees	 an	 amplification	of	OHC	 sensitivity	 to	

sound	 by	 a	 shortening	 of	 the	 cell	 during	 depolarisation	 and	 a	 lengthening	 during	

hyper-polarisation.		



	
	
	

	

	

20	

It	 is	 thought	 that	 the	protein	Prestin,	encoded	by	SLC26A5,	 is	 responsible	 for	 this	

mechanism,	 by	 changing	 its	 configuration	 in	 reaction	 to	 changes	 in	 membrane	

potential,	enabling	the	outer	hair	cell	length	to	be	altered	(52).		

Mutations	in	SLC26A5	are	the	cause	of	DFNB61	(53).	

	

1.2.3.7	Other	

Many	other	genes	that	do	not	belong	to	the	categories	above-mentioned	can	cause	

NSHI/NSHL.	 For	 instance,	TECTA	 (α-tectorin),	COL11A2	 (type	 XI	 collagen	 2),	COCH	

(cochlin),	many	transcription	factors,	such	as	POU4F3	(class	4	POU),	POU3F4	(class	3	

POU),	MIR96	(microRNA	96),	GRHL2	(grainy-head-like	2),	ESRRB	(oestrogen-related	

receptor),	 and	 EYA4	 (eyes	 absent	 4)	 etc.	 (Hereditary	 Hearing	 Loss	 Homepage;	

http://hereditaryhearingloss.org/).	

	

1.3	Next	Generation	Sequencing		
	

The	 identification	 of	 the	molecular	 cause	 of	 a	Mendelian	 disorder	 is	 essential	 for	

proper	genetic	 counselling,	 recurrence	 risk	estimation,	prognosis,	 and	 therapeutic	

options.	However,	in	the	case	of	NSHI/NSHL,	the	high	genetic	heterogeneity	of	the	

diseases	has	always	made	the	definition	of	a	molecular	diagnosis	really	challenging.	

Moreover,	 predicting	 the	 specific	 causative	 gene	 for	 NSHI/NSHL	 based	 on	 the	

audiological	phenotype	is	possible	only	for	a	few	genes	(e.g.	WFS1	(OMIM	606201),	

COCH	(OMIM	603196),	and	TECTA	(OMIM	602574))	(54).		

The	introduction	of	next	generation	sequencing	(NGS)	techniques	has	dramatically	

improved	the	diagnostic	 rate	of	non	syndromic	deafness,	offering	the	opportunity	

to	break	through	the	barriers	of	limitations	imposed	by	gene	arrays	and	by	a	single-

gene	based	analysis.		
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To	date,	due	to	the	low	throughput	and	cost-efficiency	of	Sanger	sequencing,	only	

few	genes	(e.g.	GJB2	(OMIM	121011),	SLC26A4	(OMIM	605646),	and	OTOF	(OMIM	

603681))	 or	 specific	 mutations	 (e.g.	 GJB6	 deletions,	 MTRNR1	 mitochondrial	

mutations)	 are	 regularly	 analysed	 for	 autosomal-recessive	NSHI	 (ARNSHI)	 in	most	

routine	diagnostic	settings	(55),	alternatively	NGS	approaches	are	preferable.		

So	 far,	 both	 Targeted	 Re-Sequencing	 (TRS)	 and	Whole	 Exome	 Sequencing	 (WES)	

have	been	applied	for	the	study	of	NSHI/NSHL	(56,	57).	

With	TRS,	a	subset	of	genes	or	regions	of	the	genome	are	isolated	and	sequenced.	

Targeted	approaches	allow	researchers	to	reduce	time	and	costs,	and	to	limit	data	

analysis	on	specific	areas	of	interest.		

Target	 genes	 can	 be	 captured	 in	 different	 ways,	 depending	 on	 the	 sequencing	

platform	 used.	 Among	 many	 current	 methods	 for	 targeted	 enrichment,	 the	

hybridization-based	method	is	the	most	widely	adopted	(58).		

Alternatively,	 it	 is	 possible	 to	 enrich	 target	 regions	 using	 PCR-base	methods,	 e.g.	

with	highly	multiplexed	PCR	(59).	

Both	approaches	present	pros	and	cons,	e.g.	both	probes	and	primers	are	designed	

based	on	 information	from	gene	annotation	databases,	thus	unknown	gene	exons	

are	 typically	 not	 included	 in	 the	 designs,	 and	 regions	 containing	 a	 high	 GC	

percentage	may	hybridize	 or	 amplify	 poorly	 for	 enrichment.	However,	 TRS	 allows	

sequencing	 specific	 subsets	 of	 genes	 with	 high	 accuracy	 (thanks	 to	 a	 deep	

achievable	 coverage),	 in	 a	 significantly	 shorter	 turnaround	 time,	 and	with	 a	more	

feasible	and	functionally	interpretable	data	set	for	bioinformatic	analysis.		

The	capacity	to	analyse	thousands	of	genes	simultaneously	provides	a	powerful	tool	

for	 detecting	 pathogenic	 mutations	 in	 disorders	 with	 genetic	 and	 phenotypic	

heterogeneity	 such	 as	 deafness,	 and	 for	 this	 reason	 many	 research	 laboratories	

developed	custom	TRS	panel	for	the	study	of	HHI/HHL	(60,	61).	
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However,	 considering	 that	 1%	 of	 human	 genes	 are	 thought	 to	 be	 necessary	 for	

normal	 hearing	 function	 (62),	 TRS	 approaches	 of	 known	 deafness-genes	 are	 not	

always	conclusive.		

In	 this	 light,	 WES	 has	 clearly	 proved	 to	 be	 a	 powerful	 tool	 for	 investigating	 the	

genetics	of	Mendelian	disorders,	such	as	NSHI/NSHL	(63).		

As	 for	 TRS,	 also	WES	enrichment	methods	may	be	based	on	hybridization	or	PCR	

techniques,	with	the	same	pros	and	limits.		

Since	 the	 introduction	 of	 the	 first	WES	 technology	 in	 2004	 (454	GS	 FLX	 (Roche)),	

more	than	1000	NGS-related	manuscripts	have	been	published	and	approximately	

more	 than	 a	 quarter	 of	 all	 known	 NSHI/NSHL	 genes	 have	 been	 successfully	

determined	in	the	last	5	years	(63).	Most	likely,	the	identification	of	other	deafness	

genes	will	soon	follow.	

This	is	an	essential	starting	point	for	both	uncovering	the	molecular	mechanisms	of	

HI/HL	and	for	providing	clues	to	therapeutic	approaches.	 	
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2.	AIMS	OF	THE	STUDY	
	

The	 definition	 of	 the	 molecular	 diagnosis	 of	 NSHI/NSHL	 is	 essential	 for	 both	

uncovering	the	molecular	mechanisms	of	deafness,	and	for	providing	patients	with	

prognostic	information	and	personalized	risk	assessments.	

Moreover,	the	achievement	of	a	correct	diagnosis	contributes	to	reduce	healthcare	

costs	by	directing	the	clinical	evaluation	and	avoiding	unnecessary	tests	such	as	the	

routine	use	of	imaging.		

The	aim	of	 this	 study	 is	 to	define	 the	genetic	 cause	of	hearing	 loss	 in	a	 subset	of	

NSHI/NSHL	familial	cases	coming	from	both	Italy	and	Qatar.		

Considering	the	high	genetic	heterogeneity	of	this	disease,	and	that	different	major	

players	 seem	 to	 be	 involved	 in	 the	 Italian	 and	 Qatari	 population	 (64),	 next	

generation	sequencing	techniques	have	been	employed.		

In	 particular,	 as	 a	 first	 step,	 patients	 have	 been	 screened	 for	 96	 deafness-genes	

using	 a	 custom	 targeted	 re-sequencing	 panel,	 in	 order	 to	 identify	 mutations	 in	

genes	already	known	to	cause	NSHI/NSHL.	

Where	negative	results	were	obtained	with	the	first	approach,	 families	have	been	

selected	for	whole	exome	sequencing	analysis,	with	the	purpose	of	discovering	new	

genes	involved	in	this	disease.		

Finding	 new	NSHI/NSHL-causative	 genes	will	 definitely	 increase	our	 knowledge	of	

the	 genetic	 basis	 and	 molecular	 mechanisms	 underlying	 this	 disorder,	 providing	

clues	to	new	therapeutic	options.	
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3.	MATERIALS	AND	METHODS		

	

3.1	Patients	Selection	and	Recruitment	

Subjects	affected	by	NSHI/NSHL	were	recruited	at	ENT	Department	of	IRCCS	“Burlo	

Garofolo”	 in	 Trieste	 (Italy),	 ENT	 Department	 of	 IRCCS	 “Cà	 Granda	 Osp.Maggiore	

Policlinico”	in	Milan	(Italy),	ENT	Department,	Hamad	Medical	Corporation	(HMC)	in	

Doha	(Qatar)	and	from	other	Genetics	and	ENT	Clinics	in	Italy	(in	particular	Torino,	

Siena,	Ferrara,	Monza,	Cesena	and	Bologna).		

A	comprehensive	family	history	was	collected.	In	particular,	for	all	Qatari	families	a	

special	attention	to	consanguinity	between	parents	has	been	paid.		

A	 complete	 medical	 evaluation	 has	 been	 performed	 on	 each	 family	 to	 exclude	

hearing	 loss	due	to	 infections,	 trauma,	or	other	non-genetic	causes.	Moreover,	all	

family	 members	 underwent	 a	 fully	 medical	 ascertainment	 to	 exclude	 syndromic	

deafness.		

All	 participants	 underwent	 pure	 tone	 audiometric	 testing	 (PTA)	 or	 auditory	

brainstem	 response	 (ABR)	 (depending	 on	 the	 probands’	 age)	 in	 order	 to	

characterise	the	severity	of	HI/HL	according	to	the	following	guidelines	(65):	

• Slight:	16-25	decibels	(dB)	

• Mild:	26-40	dB	

• Moderate:	41-55	dB	

• Moderately	severe:	56-70	dB	

• Severe:	71-90	dB	

• Profound:	91	dB	or	more	

Based	on	the	inheritance	pattern,	familial	cases	were	further	categorized	as:	

a) Presumed	 autosomal	 recessive	 (consanguineous	 parents	 and/or	 affected	

siblings)	

b) Presumed	autosomal	dominant	
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All	 patients	 included	 in	 the	 study	were	negative	 for	 the	presence	of	mutations	 in	

GJB2	and	MTRNR1	genes.	

A	written	 informed	consent	was	obtained	 from	all	participants;	 in	case	of	minors,	

their	 next	 of	 kin	provided	written	 informed	 consent.	 The	 study	was	 conducted	 in	

accordance	with	 the	 tenets	 of	 the	Helsinki	 Declaration	 and	was	 approved	 by	 the	

Ethics	 Committee	 of	 IRCCS-Burlo	 Garofolo	 of	 Trieste	 (Italy)	 and	 the	 International	

Review	Boards	of	Hamad	Medical	Corporation	Doha	(Qatar)	

	

3.2	DNA	Isolation	and	Quality	Control		

Genomic	DNA	was	extracted	from	peripheral	whole	blood	or	saliva	samples	using	a	

Qiasymphony	instrument	(Qiagen).		

DNA	quality	was	checked	with	a	1%	agarose	gel	electrophoresis.		

DNA	 concentration	 was	 measured	 with	 Nanodrop	 ND	 1000	 spectrophotometer	

(NanoDrop	Technologies)	and	later	verified	with	Qubit	fluorometer	(Thermo	Fisher	

Scientific).	

	

3.3	Targeted	re-Sequencing	(TRS)	
	

3.3.1	Custom	TRS	Panel	

A	hearing	loss	TRS	panel	including	known	NSHI/NSHL	genes,	few	NSHI/NSHL	mimics,	

and	some	SHI/SHL	genes	was	set	up	(66).		

Genes’	 function	was	 defined	 according	 to	 data	 obtained	 from	 scientific	 literature	

and	 from	 the	 most	 comprehensive	 public	 databases	 (Hereditary	 Hearing	 Loss	

Homepage,	 http://hereditaryhearingloss.org,	 Deafness	 Variation	 Database,	

http://deafnessvariationdatabase.org/,	 and	 Mouse	 Genome	 Informatics,	

http://www.informatics.jax.org/).	
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Briefly,	 38	 ARNSHI/ARNSHL	 genes,	 20	 ADNSHI/ADNSHL	 genes,	 5	 genes	 related	 to	

both	 dominant	 and	 recessive	 patterns	 of	 inheritance,	 4	 X-linked	 genes	 and	 13	

SHI/SHL	 genes	were	 selected.	Moreover	 16	 candidate	 genes	 have	 been	 included.	

These	genes	were	selected	based	on	the	following	criteria:	genes	related	to	hearing	

function	and/or	hearing	 loss	 in	mice	models,	genes	whose	protein	 localization	has	

been	detected	in	ear	structures,	like	cochlea	or	nervous	hearing	system,	genes	that	

are	known	to	be	involved	in	inner	ear	or	hair	cell	development	and	cochlear	wiring.		

The	 panel	 was	 designed	 using	 Ion	 AmpliSeq™	 Designer	 v1.2	 (Thermo	 Fisher	

Scientific).	

Two	 primer	 pools	 (Pool	 1:	 1747	 amplicons,	 Pool	 2:	 1740	 amplicons)	 intended	 for	

DNA	 library	 construction	 through	 mutiplex	 PCR	 were	 created.	 Targeted	 regions	

included	coding	regions	(CCDS),	3’	UTR,	5’	UTR	and	50	bp	exon/intron	boundaries	of	

each	 of	 the	 96	 selected	 genes.	 The	 primer	 design	 ensures	 92%	 overall	 targeted	

region	coverage	spanning	through	411	Kbp.	

All	panel	details	are	reported	in	Table	3.1.		
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Table	3.1	Details	of	the	custom	targeted	re-sequencing	panel	used	in	this	study.	

Gene		 Loci Covered	Bases Overall	Coverage Exons Gene		 Loci Covered	Bases Overall	CoverageExons
BDP1 DFNB49 9389 85% 39 GJB2 2109 90% 2
CATSPER2 DIS 2417 75% 15 GJB6 2399 96% 6
CDH23 DFNB12 13861 95% 74 MYO6 DFNB37/DFNA22 7379 85% 35
CLDN14 DFNB29 2274 97% 7 MYO7A DFNB2/DFNA11 8132 97% 53
COL11A2 DFNB53/DFNA13 6561 97% 67 TECTA DFNB21/DFNA8/12 6457 100% 23
DFNB59 DFNB59 1481 97% 7 TMC1 DFNB7/11/DFNA36 2796 87% 24
ESPN DFNB36 3167 90% 13 Totals 5 29272 93% 143
ESRRB DFNB35 2950 98% 11
GIPC3 DFNB15/DFNB95 3912 91% 6
GJA1 − 2898 93% 2 Gene		 Loci Covered	Bases Overall	CoverageExons
GJB4 − 2203 78% 2 POU3F4 DFNX2	(DFN3) 1165 77% 1
GPSM2 DFNB32/82 2984 98% 15 PRPS1 DFNX1	(DFN2) 2134 99% 7
GRXCR1 DFNB25 992 100% 4 SMPX DFNX4	(DFN6) 934 100% 5
HGF DFNB39 4350 96% 21 TIMM8A DFN1 1882 94% 4
LHFPL5 DFNB67 1612 75% 4 Totals 4 6115 93% 17
LOXHD1 DFNB77 8264 98% 47
LRTOMT DFNB63 4187 76% 11
MARVELD2/TRIC DFNB49 1789 83% 7 Gene		 Loci Covered	Bases Overall	CoverageExons
MSRB3 DFNB74 4101 88% 9 ATP6V1B1 − 1887 97% 14
MYO15A DFNB3 11057 93% 65 BCS1L − 1663 100% 9
MYO3A DFNB30 5741 99% 35 COL9A3 − 2485 100% 32
OTOA DFNB22 2792 73% 30 ERCC2 − 3009 95% 25
OTOF DFNB9 7755 99% 50 ERCC3 − 2750 100% 15
PCDH15 DFNB23/USH1F 12105 94% 43 KCNE1 − 2889 75% 6
PDZD7 − 4136 94% 18 KCNJ10 − 5306 100% 2
PTPRQ DFNB84 7000 93% 42 LHX3 − 2390 93% 7
RDX DFNB24 4128 92% 14 MTAP − 2969 60% 8
SERPINB6 DFNB91 1741 85% 8 SLC4A11 − 3470 97% 22
SLC26A4 DFNB4 4035 82% 21 Totals 10 28818 92% 140
SLC26A5 DFNB61 2688 93% 21
STRC DFNB16 1843 33% 29
TMIE DFNB6 1852 100% 4 Gene		 Loci Covered	Bases Overall	CoverageExons
TMPRSS3 DFNB8/10 2289 82% 14 PAX3 WS1/WS3 6147 100% 15
TMPRSS5 − 2165 98% 13 PMP22 − 3101 91% 8
TPRN DFNB79 2621 100% 4 TCF21 − 4155 93% 5
TRIOBP DFNB28 8861 82% 26 Totals 3 13403 95% 28
USH1C DFNB18/USH1C 3320 100% 28
WHRN DFNB31 4277 99% 14
Totals 38 169798 89% 840 Gene		 Loci Covered	Bases Overall	CoverageExons

ACTB − 1763 97% 6
AQP4 − 5423 96% 6

Gene		 Loci Covered	Bases Overall	Coverage Exons BSND − 1370 100% 4
ACTG1 DFNA20/26 2039 91% 7 FGF3 − 1543 100% 3
CCDC50 DFNA44 8092 90% 12 GATA3 − 3144 98% 7
CEACAM16 DFNA4 1578 93% 7 GJB1 − 1733 100% 3
COCH DFNA9 2788 93% 13 GSTP1 − 945 99% 7
CRYM − 1488 93% 11 JAG1 − 5820 97% 26
DFNA5 DFNA5 2495 97% 11 MTAP − 2969 60% 8
DIAPH1 DFNA1 5781 100% 28 MYO1C − 4459 88% 34
DIAPH3 AUNA1 4832 96% 30 MYO1F − 4009 96% 28
DSPP DFNA39 2154 50% 5 NR2F1 − 1897 59% 3
EYA4 DFNA10 5533 96% 21 OTOR − 1463 99% 4
GJB3 DFNA2B 3960 100% 4 SOX2 − 2487 99% 1
GRHL2 DFNA28 5128 98% 16 SPINK5 − 3819 98% 35
KCNQ4 DFNA2 4089 100% 14 TBL1X − 5805 97% 20
MYH14 DFNA4 6886 100% 43 Totals 16 48649 93% 195
MYH9 DFNA17 7505 100% 41
MYO1A DFNA48 3613 100% 28
POU4F3 DFNA15 1182 100% 2 96																
SLC17A8 DFNA25 2924 73% 12 1.562										
TJP2 DFNA51 6867 97% 28 343.475						
WFS1 DFNA6/14/38 3873 100% 9 92,4%
Totals 20 82807 93% 342

Mean	overall	coverage

AUTOSOMAL	DOMINANT	GENES

AD/AR	GENES

X-LINKED	GENES

GRAND	TOTALS

Number	of	BP	covered
Number	of	exons	targeted
Number	of	genes	included

CANDIDATE	GENES

AUTOSOMAL	RECESSIVE	GENES

AR	SYNDROMIC	HL	GENES

AD	SYNDROMIC	HL	GENES

DFNB1/DFNA3
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3.3.2	Library	Preparation	

DNA	libraries	were	constructed	using	Ion	AmpliSeqTMLibrary	Kit	2.0	(Thermo	Fisher	

Scientific).	

Ten	 ng	 of	 genomic	 DNA	 were	 used.	 Target	 genes	 were	 amplified	 by	 highly	

multiplexed	PCR	according	to	the	following	protocol:	

Component	 Volume	
	

Stage	 Step	 Temperature	 Time	

5X	Ion	AmpliSeqTM	HiFi	Mix		 4	μl	
	

Hold	 Activate	the	enzyme	 99°C	 2	min	

2X	Ion	AmpliSeqTM	Primer	Pool	 10	μl	
	

14	cycles	
Denature	 99°C	 15	sec	

DNA	(10ng/6μl)	 6	μl	
	

Anneal	and	extend	 60°C	 8	min	

Total	 20	μl	
	

Hold	 -	 10°C	 Hold	

	

Amplified	DNA	samples	were	then	digested	with	2	μl	of	FuPa	enzyme	(50°C	for	10	

min,	55°C	for	10	min	followed	by	the	enzyme	inactivation	at	60°C	for	20	min).		

After	digestion,	DNA	fragments	we	indexed	using	Ion	XpressTMBarcode	Adapters	1-

16	Kit	(Thermo	Fisher	Scientific)	adding	0,5	μl	of	Ion	P1	adpter,	0,5	μl	of	Ion	Xpress	

Barcode	 X,	 1	 μl	 of	 Nuclease	 free	water,	 4	 μl	 of	 Switch	 solution	 and	 2	 μl	 of	 DNA	

Ligase	(30	min	at	22°C	followed	by	ligase	inactivation	at	60°C	for	20	min).	Adaptor	

ligated	 amplicon	 libraries	 were	 purified	 with	 the	 Agencourt	 AMPure	 XP	 system	

(Beckman	Coulter	Genomics).		

Libraries	 were	 quantified	 using	 KAPA	 Library	 Quantification	 Kits—Ion	

Torrent/Universal	 	(KAPA	Biosystems)	 and	 the	7900HT	Fast	Real	 Time	PCR	 system	

(Applied	Biosystems)	and	after	diluted	to	10pM.	

Four	indexed	patients’	libraries	were	pooled	for	one	sequence	reaction.	

	

3.3.3	Template	Preparation	and	Sequencing	

Library	fragments	were	amplified	onto	Ion	Sphere™	particles	by	emulsion	PCR	using	

the	 Ion	PGM™	Hi-Q™	OT2	Kit	 (Thermo	Fisher	 Scientific)	 on	 the	 Ion	OneTouch™	2	

instrument	(Thermo	Fisher	Scientific).		



	
	
	

	

	

29	

After	amplification	the	template-positive	Ion	Sphere™	particles	were	isolated	using	

the	Ion	OneTouch™	ES	(Thermo	Fisher	Scientific)	and	then	loaded	directly	onto	an	

Ion	318TMChip	(Thermo	Fisher	Scientific).	

Fragments	were	sequenced	using	the	Ion	PGM™	Hi-Q	sequencing	kit	(Thermo	Fisher	

Scientific)	 on	 the	 Ion	 Torrent	 Personal	 Genome	Machine	 (PGM)	 System	 (Thermo	

Fisher	Scientific).	

This	platform	uses	 the	 ion	semiconductor	 technology,	a	method	of	 sequencing	by	

synthesis.	 The	 machine	 sequentially	 floods	 the	 chip	 with	 one	 nucleotide	 after	

another.	 The	 chip	 consists	 of	 ~11.3	millions	 of	micro-wells	 that	 are	 associated	 to	

sensors	able	to	detect	pH	change.	If	a	nucleotide	complements	the	sequence	of	the	

DNA	molecule	in	a	particular	micro-well,	 it	will	be	incorporated	and	hydrogen	ions	

are	released.	The	pH	of	the	solution	changes	in	that	well	and	is	detected	by	the	ion	

sensor,	essentially	going	directly	from	chemical	information	to	digital	information.	

	

3.4	Whole	Exome	Sequencing	(WES)	

WES	 was	 performed	 at	 the	 Europe	 Life	 Technologies	 Ion	 AmpliSeq™	 Exome	

Certified	Service	Providers,	CRIBI	Sequencing	Core,	University	of	Padua,	Italy	(67).		

DNA	 libraries	 were	 prepared	 employing	 the	 Ion	 AmpliSeq™	 Exome	 Kit	 (Thermo	

Fisher	 Scientific)	 and	 were	 then	 sequenced	 by	 the	 Ion	 Proton™	 System	 (Thermo	

Fisher	Scientific),	according	to	standardized	procedures.		

Exome	was	 enriched	 using	 a	 PCR-based	method	 that	 targeted	 ~33	Mb	 of	 coding	

exons,	thus	greater	than	97%	of	coding	regions	as	described	by	Consensus	Coding	

Sequences	(CCDS)	annotation.	Twelve	primer	pools	for	highly	specific	enrichment	of	

exons	within	 the	human	genome	were	employed	 (total	design	 coverage	 including	

padding	and	flanking	regions	is	~58	Mb).	
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3.5	Data	Analysis	

Both	 TRS	 and	WES	 sequencing	 data	were	 analysed	with	 Ion	 Torrent	 SuiteTM	 v4.0	

software,	set	up	with	standardized	parameters.	

Single	 Nucleotides	 Variations	 (SNVs)	 and	 Small	 Insertions	 and	 Deletions	 (INDELs)	

were	collected	into	a	standardized	Variant	Call	Format	(VCF)	version	4.1	(68).	SNVs	

and	 INDELS	were	 then	annotated	with	ANNOVAR	 (69)	using	human	genome	build	

19	(hg19)	as	the	reference.		

SNVs	 leading	to	synonymous	amino	acids	substitutions	not	predicted	as	damaging	

and	not	affecting	highly	conserved	residues	were	excluded,	as	well	as	SNVs/INDELs	

with	quality	score	(QUAL)	<20	and	called	in	off-target	regions.		

A	 comparison	 between	 the	 identified	 genetic	 variants	 and	 data	 reported	 in	 NCBI	

dbSNP	 build137	 (http://www.ncbi.nlm.nih.gov/SNP/)	 as	 well	 as	 in	 ExAC	

(http://exac.broadinstitute.org/),	 1000	 Genomes	 Project	

(http://www.1000genomes.org/)	and	NHLBI	Exome	Sequencing	Project	(ESP)	Exome	

Variant	 Server	 (http://evs.gs.washington.edu/EVS/)	 led	 to	 the	 exclusion	 of	 those	

variants	 previously	 reported	 as	 polymorphism.	 In	 particular	 a	 Minor	 Allele	

Frequency	 (MAF)	 cut	 off	 of	 0.01	 and	 one	 of	 0.001	 were	 used	 for	 recessive	 and	

dominant	families	respectively.		

The	 pathogenicity	 of	 known	 genetic	 variants	 was	 evaluated	 using	 ClinVar	

(http://www.ncbi.nlm.nih.gov/clinvar/),	 Deafness	 Variation	 Database	

(http://deafnessvariationdatabase.org/)	 as	 well	 as	 The	 Human	 Gene	 Mutation	

Database	(http://www.hgmd.cf.ac.uk/ac/index.php).		

On	 the	 other	 hand,	 for	 novel	 variants,	 several	 in	 silico	 tools,	 such	 as	 PolyPhen-2	

(70),	 SIFT	 (71),	 MutationTaster	 (72),	 LRT	 (73),	 CADD	 score	 (74)	 were	 used.	

Moreover,	the	conservation	of	residues	across	species	was	evaluated	by	PhyloP	(75)	

and	GERP	(76)	scores.	
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Human	 Splicing	 Finder	 (HSF)	 version	 2.4.1	 (http://www.umd.be/HSF/)	 (77)	 and	

Splice	 Site	 Prediction	 by	 Neural	 Network	 (NNSPLICE)	 version	 9	 (www.fruitfly.org)	

were	used	to	predict	the	effect	of	the	mutations	on	splicing.		

We	manually	investigated	the	raw	sequence	reads	for	all	the	candidate	pathogenic	

variants	 using	 the	 Integrative	 Genomics	 Viewer	 (IGV)	 (78)	 with	 the	 purpose	 of	

excluding	likely	false	positive	calls	due	to	read	misalignment.		

Finally,	the	most	likely	disease-causing	SNVs/INDELs	were	analysed	by	direct	Sanger	

sequencing	on	a	3500	Dx	Genetic	Analyzer	 (Applied	Biosystems),	using	ABI	PRISM	

3.1	Big	Dye	terminator	chemistry	(Applied	Biosystems).		

Sanger	 sequencing	was	employed	also	 to	perform	 the	 segregation	analysis	within	

the	family.		

Moreover,	 an	 analysis	 of	 read	 depth	 in	 NGS	 data	 has	 been	 used	 to	 detect	 the	

presence	of	Copy	Number	Variations	(CNVs).			

To	 this	 aim,	 the	 sequence	 alignment	 data	 in	 BAM	 file	 format	 has	 been	 obtained	

from	 the	 Ion	 Torrent	 Suite™v4.0	 and	 then	 analysed	with	 CoNVaDING,	 a	 free	 tool	

recently	 developed	 to	 identify	 CNVs	 specifically	 from	 targeted	 NGS	 data	 (79).	

Briefly,	 for	each	patient	 the	algorithm	exploits	 the	 information	of	a	 set	of	 control	

samples	to	detect	any	possible	fall	or	increase	in	the	patient’s	DNA	that	is	not	due	

by	coverage	noise	but	instead	to	the	presence	of	DNA	deletions	or	duplications.			

The	method	consists	of	4	steps:	

1. Selection	of	control	samples	with	a	coverage	pattern	that	is	most	similar	to	

that	of	the	sample	analysed.	

2. Normalization	 of	 coverage	 data	 across	 all	 samples	 in	 order	 to	 make	 it	

comparable.	

3. Computation	 in	 each	 target	 of	 the	 ratio	 of	 the	 normalized	 average	 read	

depth	 of	 the	 sample	 to	 that	 of	 the	 controls	 and	 its	 examination	 for	

prediction	of	CNVs.	
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4. Analysis	 of	 the	 coverage	 of	 all	 the	 targets	 containing	 candidate	 CNVs	 and	

exclusion	of	those	showing	a	high	variability	(indicating	low-quality)		

For	each	sample	30	control	 individuals	were	taken.	The	ratio	cut-offs	has	been	set	

as	default	(0.65,	1.4).	

	

3.6	Functional	Validation	

In	case	of	interesting	results,	functional	experiments	have	been	performed.	

	

3.6.1	Protein	Modelling	

In	order	to	test	the	effect	of	the	most	interesting	mutations	detected	both	in	known	

deafness-genes	 and	 new	 candidates,	 protein	 modelling	 and	 molecular	 dynamics	

(MD)	 simulations	 were	 performed	 (in	 collaboration	 with	 Dr	 Navaneeth	

Krishnamoorthy,	 Sidra	 Medical	 Research	 Hospital-Qatar).	 In	 particular,	 the	

structural	 consequences	 of	 one	 missense	 mutation	 found	 in	 CDH23	 (UniProt:	

Q9H251),	 two	missense	mutations	of	TMC1	(UniProt:	Q8TDI8),	and	one	nonsense,	

one	frameshift	and	one	missense	mutation	of	SPATC1L	(Uniprot	ID:	Q9H0A9)	were	

further	 investigated.	 As	 regards	 CDH23	 and	 TMC1,	 for	 both	 regions	 investigated	

(cadherin	domains	20-21	and	TMC1	residues	402-652	respectively),	there	were	no	

3D	 structures	 available.	 As	 a	 consequence,	 for	 CDH23,	 the	 crystal	 structure	 of	

mouse	N-cadherin	ectodomain	protein	(PDB	ID:	3Q2W)	(80),	sharing	42%	similarity	

with	human	CDH23,	was	used,	while,	 for	TMC1,	 the	crystal	 structure	of	a	calcium	

(Ca	2+)	channel	protein	(PDB	ID:	4WIS)	from	the	fungus	(Nectria	haematococca)(81)	

that	 shares	 26%	 similarity	 with	 human	 TMC1	was	 considered.	 The	 quality	 of	 the	

models	was	evaluated	using	methods	previously	reported	(82).		

The	 constructed	wild	 type	 structures	were	used	 for	 producing	mutational	models	

(p.P2205L	 in	 CDH23	 and	 p.R445H	 &	 p.L603H	 in	 TMC1)	 in	 the	 Discovery	 Studio	

(Accelrys	Inc.,	San	Diego,	CA,	USA)	as	described	by	Gajendrarao	et	al.,	2013	(83)	and	
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to	identify	functional	(Ca2+	binding)	sites	and	the	key	residues	involved.	PyMOL	was	

used	 to	 visualize	 the	 proteins	 and	 to	 prepare	 model	 representations	

(www.pymol.org).	

In	 the	 case	 of	 SPATC1L,	 since	 no	 homologues	 structures	 for	 modelling	 were	

available,	a	new	structure,	by	applying	iterative	threading	assembly	refinement,	was	

built	(84).	The	quality	of	the	wild	type	model	was	assessed	by	methods	previously	

reported	 (82)	 that	 showed	 a	 biologically	 reliable	model.	 To	 produce	 the	mutants	

(Y282*,	 p.K115fs*12,	 p.Y219S),	 the	 wild	 type	 was	 used	 in	 the	 Discovery	 Studio	

(Accelrys	Inc.,	San	Diego,	CA,	USA)	as	described	previously	(83).		

The	wild	type	and	mutant	proteins	were	used	in	GROMACS	simulation	package	for	

MD	 simulations	 by	 applying	 GROMOS96	 force	 filed	 (85–87).	 The	 proteins	 were	

solvated	in	the	water	model	of	SPC3	in	a	cubic	box	with	a	size	of	1.5	nm	(88).	The	

systems	were	neutralized	adding	counter	ions	and	the	periodic	boundary	conditions	

were	 applied	 in	 all	 directions.	 The	 resulting	 systems	 contained	 from	 ~52000	 to	

~88000	 atoms.	 For	 long-range	 interactions	 a	 twin	 range	 cut-off	was	used,	 i.e.	 0.8	

nm	 for	 van	 der	Waals	 and	 1.4	 nm	 electrostatic	 interactions.	 The	 LINCS	 algorithm	

(89)	was	used	to	constrain	all	 the	bond	 lengths.	To	constrain	the	geometry	of	 the	

water	 molecules,	 the	 SETTLE	 algorithm	 (90)	 was	 utilized.	 The	 systems	 were	

undergone	 to	 energy	minimization	using	 the	 steepest	 descent	 algorithm	with	 the	

tolerance	 of	 2000Kj/mol/nm	 followed	 by	 100ps	 pre-equilibration	 and	 10ns	 of	

production	MD	simulations.	This	is	with	a	time-step	of	2	fs	at	constant	temperature	

(300	K),	pressure	 (1	atm)	and	number	of	particles,	without	any	position	 restraints	

(91).	 At	 every	 100ps	 a	 structural	 snapshot	 was	 collected	 and	 the	 tools	 available	

within	GROMACS	were	used	for	analysing	the	collected	trajectories.		

The	 cluster	 analysis	 was	 used	 to	 select	 the	 representative	 structures	 from	 MD	

simulations.	Each	simulation	produced	10000	structures	that	were	all	grouped	into	

clusters	 based	 on	 their	 structural	 deviation,	 in	 which	 the	 top	 ranked	 cluster	 was	

chosen	 for	 representation.	The	PyMOL	package	 (www.pymol.org)	was	used	 for	all	
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the	graphical	representations.	Sequence	alignment	of	human	SPATC1L	with	mouse	

Speriolin	 (Uniprot:	 Q148B6)	 was	 performed	 using	 program	 CLUSTALO	 (	

http://www.clustal.org/).	

	

3.6.2	In	vitro	Molecular	Cloning	

The	 impact	of	the	 identified	mutations	on	mRNA	and	protein	 levels	was	tested	by	

transient	transfection	in	Hek	293	cells	using	expression	clones	containing	either	the	

wild-type	(Wt)	or	the	mutant	cDNA.	cDNAs	were	cloned	into	a	pCMV6-Entry	vector	

(Origene,	Rockville,	MD),	Myc-tagged.		

The	calcium	phosphate	transfection	method	was	used	(92).	Forty-eight	hours	after	

transfection	total	cell	proteins	and	RNAs	were	prepared	and	analysed	by	Western	

blot	and	quantitative	Real	Time	PCR	(qRT-PCR),	respectively.	

3.6.2.1	Western	Blot	Analysis	

For	protein	analysis,	Hek	293	cells	were	lysed	in	IPLS	buffer	(50	mM	Tris-HCL	pH7.5,	

120	mM	NaCl,	0.5	mM	EDTA	and	0.5%	Nonidet	P-40)	supplemented	with	proteases	

inhibitors	 (Roche).	 After	 sonication	 and	 pre-clearing,	 protein	 lysate	 concentration	

was	determined	by	Bradford	Assay	(Biorad).	An	8%	polyacrylamide	gel	was	used	for	

protein	electrophoresis.	After	blotting,	membranes	were	blocked	with	5%	skim	milk	

in	Tris-buffered	saline,	0.1%	Tween	20	(TBST)	and	then	incubated	with	primary	anti-

Myc	antibodies	overnight.	Secondary	antibodies	were	diluted	in	blocking	buffer	and	

incubated	 with	 the	 membranes	 for	 45	 min	 at	 room	 temperature.	 Proteins	 were	

detected	with	the	ECL	detection	kit	(GE	Health	Care	Bio-Sciences).	

Housekeeping	proteins	(e.g.	β-actin	or	Hsp90)	were	used	as	an	internal	control	for	

protein	loading	as	well	as	for	reference	in	the	western	blotting	analysis.	
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3.6.2.2	Quantitative	Real-Time	PCR	(qRT-PCR)	

RNA	was	extracted	from	cell	pellets	using	High	Pure	RNA	isolation	Kit	(Roche).	Total	

RNA	 (1ug)	was	 reverse	 transcribed	 to	 cDNA	 using	 Transcriptor	 First	 Strand	 cDNA	

Synthesis	 kit	 (Roche).	Quantitative	Real	 time	PCR	 (qRT-PCR)	was	 performed	using	

standard	 PCR	 conditions	 in	 a	 7900HT	 Fast	 Real	 Time	 PCR	 System	 (Applied	

Biosystems)	 with	 Power	 SYBR	 Green	 PCR	 Master	 Mix	 (Thermo	 Fisher	 Scientific).	

Gene-specific	 primers	 were	 designed	 by	 using	 Primer3Web	 software	

(http://bioinfo.ut.ee/primer3/).	All	experiments	have	been	performed	 in	biological	

triplicate.	Expression	levels	have	been	standardized	to	Neo	gene	expression	and	all	

data	have	been	analyzed	using	the	2–ΔΔCT	Livak	Method	(93).		

	

3.6.3	In	vivo	expression	studies	

Expression	studies	in	mouse	tissues	or	in	Zebrafish	larvae	have	been	performed	to	

test	the	expression	profile	of	different	genes	of	interest.	

	

3.6.3.1.	Gene	expression	in	mouse	tissues	

Total	 RNA	 samples	were	 extracted	 from	wild-type	 CD1	mouse	whole	 cochleae	 at	

post-natal	day	3	(P3),	P8,	P12	and	2	month-old.	Moreover,	total	RNA	from	different	

tissues,	 including	 liver,	 spleen,	 lung,	kidney,	brain,	 testis	and	heart,	was	extracted	

from	2-month	old	mice.	The	extraction	was	made	using	Direct-zol	RNA	MiniPrep	Kit	

(Zymo	Research).	RNA	was	quantified	using	Nanodrop	ND-1000	spectrophotometer	

(NanoDrop	Technologies).	Complementary	DNAs	were	generated	from	1μg	of	total	

RNA	using	the	Transcriptor	First	Strand	cDNA	Synthesis	Kit	(Roche)	according	to	the	

manufacturer’s	protocol.	cDNAs	were	used	for	semi-quantitative	RT-PCR	(sqRT-PCR)	

or	quantitative	RT-PCR	(qRT-PCR).	 In	 the	case	of	sqRT-PCR,	6μl	of	 the	RT	products	

was	used	for	PCR	amplification,	while	for	qRT-PCR	2μl	of	the	RT	products	was	used	

for	 Real	 Time	 PCR.	 Gene-specific	 primers	 were	 designed	 by	 using	 Primer3Web	
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software	 (http://bioinfo.ut.ee/primer3/).	 sqRT-PCR	 amplified	 products	 were	

resolved	on	2%	agarose	gels	and	visualized	by	EB	staining.		

qRT-PCR	expression	levels	have	been	standardized	to	βActin	gene	expression	and	all	

data	were	analyzed	using	the	2–ΔΔCT	Livak	Method	(93).		

The	experiments	were	performed	in	biological	triplicates.	βActin	primers	were	used	

as	internal	control.	

	

3.6.3.2.	Gene	expression	in	Zebrafish	larvae	

Gene	expression	in	Zebrafish	larvae	(5	days	post	fertilization	(dpf))	was	performed	

in	collaboration	with	ZeClinics	(Barcelona,	Spain).		

Whole	mount	in	situ	hybridization	(ISH)	was	carried	out.		

Specific	riboprobes	intended	to	recognize	the	mRNA	of	the	genes	of	 interest	were	

designed.	 cDNAs	 were	 amplified	 by	 PCR	 from	 a	 custom	 Zebrafish	 cDNAs	 library	

obtained	by	RT-PCR	 from	a	mRNA	pool	 coming	 from	5	dpf	 Zebrafish	 larvae.	A	 T7	

sequence	linker	in	reverse	primers	was	included	to	directly	use	the	synthesized	PCR	

products	 as	 templates	 to	 amplify	 the	 reverse	digoxigenin-labeled	 riboprobe	 to	be	

used	for	ISH.	

Once	dissected,	embryos	were	fixed	in	4%	paraformaldehyde	(PFA)	over	night,	and	

then	 dehydrate	 with	 increasing	 concentrations	 of	 Metanol	 PBT	 for	 long-term	

storage.	 Embryos	 were	 then	 rehydrated,	 dechorionated	 and	 treated	 with	

proteinase	 K.	 Afterwards	 embryos	 were	 incubated	 with	 a	 hybridization	 mix	

containing	 the	 riboprobe	 and	 then	 with	 antibody	 against	 digoxigenin.	 Nitroblue	

Tetrazolium	 (NBT)	was	 used	with	 the	 alkaline	 phosphatase	 substrate	 5-Bromo-	 4-

Chloro-3-Indolyl	 Phosphate	 (BCIP).	 These	 substrate	 systems	 produce	 an	 insoluble	

NBT	diformazan	product	that	is	blue	to	purple	in	color	and	can	be	observed	visually	

(94).		

In	 order	 to	 check	 gene	 expression	 in	 hair	 cells,	 marked	 with	 GFP	 through	 its	

activation	by	the	Brn3c	promoter,	secondary	antibody	against	GFP	was	used.	
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Stained	embryos	were	processed	for	imaging	through	2	different	methods:	

1.	Whole	 embryos	were	 imaged	with	 a	 bright	 field	 stereoscope	 to	determine	 the	

overall	expression	pattern.	

2.	Transversal	sections	were	acquired	though	a	cryostat	(20	μm	width)	to	determine	

precisely	the	mRNA	location	within	the	inner	ear	across	3	different	anterioposterior	

positions.	 Gene	 expression	 pattern	was	 compared	with	 the	 position	 of	 hair	 cells,	

marked	 with	 GFP	 through	 its	 activation	 by	 the	 Brn3c	 promoter.	 Sections	 were	

imaged	with	Leica	DM5	light/fluorescent	microscope	at	40x	magnification.	
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4.	RESULTS	AND	DISCUSSION	

4.1	Patients	

A	 total	 of	 32	 Italian	 and	 27	Qatari	 probands	 affected	 by	NSHL	 and	 their	 relatives	

(when	 available)	 for	 a	 grand	 total	 of	 305	 samples,	 were	 sequentially	 collected	

during	the	past	three	years.		

Based	on	the	family	history,	Italian	cases	were	categorized	as	presumed	autosomal	

recessive	(15%),	presumed	autosomal	dominant	(78%)	and	ambigous	(7%),	while	all	

Qatari	cases	were	categorized	as	presumed	autosomal	recessive	(100%).	

The	most	common	characteristics	of	our	probands	included:	

• pediatric	age	(60%	were	<	18	years)	

• childhood	hearing	loss	(48%)	

• severe-profound	hearing	loss	(51%)	

	

4.2	Targeted	Resequencing	(TRS)	

TRS,	based	on	Ion	Torrent	PGMTM	technology	was	applied	to	32	Italian	families	and	

18	 Qatari	 families,	 negative	 for	 mutations	 in	 GJB2	 and	 for	 the	 A1555G	

mitochondrial	mutation.	

On	average	95%	of	the	targeted	region	was	covered	at	least	20X,	and	334,12	mean-

depth	total	coverage	was	obtained.	A	total	of	170	Mbp	of	raw	sequence	data	was	

produced	per	individual.		

We	identified	an	average	of	503,2	genetic	variants	(SNVs/INDELs)	per	subject,	and	

after	 the	 filtering	 pipeline	 described	 in	 the	 Materials	 and	 Methods	 section	 an	

average	of	17	residual	SNVs/INDELs	for	each	subject	remained.		

After	 segregation	 analysis,	 a	 molecular	 cause	 was	 identified	 in	 16	 Italian	 and	 9	

Qatari	 families,	 for	 an	 overall	 detection	 rate	 of	 50%	 (Table	 4.1)



ID	 Origin	 Inheritance	
Pattern	

Affected	
members	 Type	of	HL	 Gene	 Variant	 Zygosity	 Frquency	

(ExAc)	
Path	
Pred1	 Reference	

Family_1	 Italy	 AR	 2	siblings	

Postlingual	bilateral	

asymmetric	moderate	to	

severe	high	frequencies		

SNHL	

TMPRSS3	 NM_024022.2	:c.C1019G:p.T340R;	 het	 NA	 4/4	 This	study	

TMPRSS3	 NM_024022.2:c.C1291T:p.P431S	 het	 2,48E-05	 4/4	 (Vozzi	et	al.,	

2014)(66)	

Family_2	 Italy	 AD	
2	siblings,	

F,	U,	PGM	

Postlingual	bilateral	

symmetric	moderatly-

severe	SNHL	

TECTA	 NM_005422:c.G775C:p.G259R	 het	 NA	 4/4	 This	study	

Family_3a
2
	

Italy	 AD	

2	siblings,	

F,	U,	and	

other	

relatives	

Adult	onset	progressive	

moderate	high	

frequencies	SNHL	

DFNA5	 NM_001127454:c.666_669delCTAC:
p.Y223Sfs*49	 het	 NA	 1/1	 This	study	

Family	3b
2
	

Childhood	onset	

moderate	SNHL	

GJB2	 NM_004004:c.G109A:p.V37I	 het	 6,59E-03	 3/4	 (Abe	et	al.,	2000)	

(95)	

GJB2	 NM_004004:c.T101C:p.M34T	 het	 8,50E-03	 3/4	 (Kelsell	et	al.,	1997)	

(96)	

Family_4	 Italy	 AR	 2	siblings	

Prelingual	bilateral	

moderate	symmetric	

SNHL	

STRC	 Whole	gene	deletion	 hom	 NA	 NA	 (Vona	et	al.,	2015)	

(97)	

Family_5	 Italy	 AD	
2	siblings,	

F,	PGM	

Postlingual	bilateral	

symmetric	severe	to	

profound	progressive	

SNHL	

MYO6	 NM_004999:c.A599G:p.N200S	 het	 NA	 3/3	 This	study	

Family_6	 Italy	 AD	 2	siblings	

Adult	onset	bilateral	mild-

moderate	symmetric	

SNHL	

ACTG1	 NM_001199954:c.A847G:p.M283V	 het	 NA	 3/4	 This	study	

Family_7	 		 AD	

P,	F,	U,		

PGM	and	

other	

relatives	

Postlingual	bilateral	

symmetric	moderate	to	

severe	progressive	SNHL	

POU4F3	 NM_002700:c.G690C:p.R230S	 het	 8,28E-06	 4/4	 This	study	

Family_8	 Italy	 AR	 2	siblings	

Postlingual	bilateral	

symmetric	moderate	to	

severe	SNHL	

MYO7A	 NM_000260:c.G1556A:p.G519D	 het	 1,67E-05	 4/4	 (Bharadwaj	et	al.,	

2000)	(98)	

MYO7A	 NM_000260:c.G3670A:p.A1224T	 het	 4,37E-05	 4/4	 This	study	

Family_9	 Italy	 AD	 P,	M	

Postlingual	bilateral	

symmetric	mild	to	

moderate	progressive	

SNHL	

MYH14	 NM_001145809:c.G1150T:p.G384C	 het	 2,86E-03	 2/2	 (Donaudy	et	al.,	

2004)	(99)	

Family_10	 Italy	 AD	 P,	M	

Postlingual	bilateral	

symmetric	moderate	to	

severe	SNHL	

MYO7A	 NM_000260.3:c.C4268T:p.T1423M	 het	 3,64E-05	 3/4	 This	study	
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Family_11	 Italy	 AD	
P,	F,	A,		
PGF	

Congenital	bilateral	mild	
to	moderate	symmetric	
SNHL	

TECTA	 NM_005422:c.G589A:p.D197N	 het	 NA	 4/4	 (Hildebrand	et	al.,	
2011)(100)	

Family_12	 Italy	 AR	
P,	F,	U,		
PGM	

Postlingual	bilateral	
symmetric	moderate	
SNHL	

KCNQ4	 NM_172163:c.G947T:p.G316V	 het	 NA	 4/4	 This	study
3
	

KCNQ4	 NM_172163:c.A1438G:p.I480V	 het	 NA	 3/4	 This	study
3
	

Family_13	 Italy	 AD	
3	siblings,	
F	

Congenital	bilateral	
severe	symmetric	SNHL/	
sevre	high	frequency	
SNHL	

TECTA	 NM_005422:c.6000-1G>T	 het	 NA	 1/1	 This	study	

Family_14	 Italy	 No	FH	 P	
Congenital	bilateral	mild	
to	moderate	symmetric	
SNHL	

PDZD7	 NM_001195263:c.G329A:p.G110D	 hom	 NA	 4/4	 This	study	

Family_15	 Italy	 No	FH	 P	
Postlingual	bilateral	
symmetric	moderate	to	
severe	SNHL	

POU3F4	 NM_000307:c.G989A:p.R330K	 hem	 NA	 3/4	 This	study	

Family_16	 Italy	 No	FH	 P	
Postlingual	bilateral	
symmetric	moderate	
SNHL	

SLC26A4	 NM_000441:c.T1790C:p.L597S	 hom	 8,26E-03	 4/4	 (Yuan	et	al.,	2012)	
(101)	

Family_17	 Qatar	 AR	 P	

Pre-lingual	bilateral	
severe	to	profound	SNHL	

CDH23	 NM_022124:c.C6614T:p.P2205L	 hom	 NA	 4/4	 This	study	Family_18	 Qatar	 AR	 P	

Family_19	 Qatar	 AR	 3	siblings	

Family_20	 Qatar	 AR	 P	
prelingual	bilateral	
profound	SNHL	 GJB6	 NM_006783:c.C209T:p.P70L	 hom	

1,65E-05	 4/4	 This	study	

Family_21	 Qatar	 AR	 2	siblings	
prelingual	profound	NSHL		

TMC1	
NM_138691:c.G1334A:p.R445H	 hom	

8,24E-06	 4/4	 (Kalay	et	al.,2005)	
(102)	

Family_22	 Qatar	 AR	 P	
early	onset	profound	
NSHL	 NM_138691:c.1808T>A:p.L603H	 hom	

NA	 4/4	
This	study	

Family_23	 Qatar	 AR	 2	siblings	
early	onset	severe	to	
profound		NSHL	 MYO6	 NM_001300899:c.G178C:p.E60Q	 hom	

6,06E-05	 4/4	
This	study	

Family_24	 Qatar	 AR	 P	 early	onset	bilateral	
severe	NSHL	 OTOF	 NM_194322:c.G169T:p.E75X	 hom	

NA	 2/2	
(Rodríguez-
Ballesteros	et	al.	
2008)	(103)	

Family_25	 Qatar	 AR	 3	siblings,		 congenital	severe	NSHL	 OTOA	 all	gene	deletion	 hom	 NA	 NA	 (Shahin	H	et	al.,	
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2010)(104)	

	

Table	4.2	Causative	mutations.	In	bold	are	the	novel	mutations.	
1
	Prediction	consensus	value	indicates	the	number	of	prediction	scores	which	reports	if	the	

variant	is	 likely	to	be	disease	causing	or	conserved.	The	following	scores	vote	in	towards	consensus:	SIFT	(<=0.05	"D"),	LRT	("D"),	Mutation	Taster	("A"	or	

"D"),	 polyPhen2	 HDIV	 ("P"or	 "D").	
2
	 Family_3	 is	 a	 multigenerational	 family	 in	 which	 we	 detect	 two	 different	 causative	 genes	 segregating	 in	 the	 same	

pedigree.	
3
	Both	KCNQ4	variants	co-segregates	in	the	affected	members	of	this	AD	family.	Legend:	P=	Proband,	F=	Father,	M=	Mother,	U=	Uncle,	A=	Aunt,	

PGM=	 Paternal	 Grand	 Mother,	 PGF=	 Paternal	 Grand	 Father.
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We	 found	 that	82%	 of	 variants	 were	 missense,	 one	 was	 a	 frameshift	 deletion,	 one	a	splice-site	

variant,	one	a	stop-gain	mutation	and	2	were	large	deletions.	

Among	 the	 identified	 mutations,	13	were	 novel.	 In	 particular,	 in	 the	 Italian	 population	 new	

mutations	in	TMPRSS3,	DFNA5,	MYO6,	ACTG1,	TECTA,	PDZD7,	KCNQ4	and	POU3F4	genes	were	

identified,	 while	in	the	 Qatari	 population	 new	 variants	 in	CDH23,	 MYO6	and	TMC1	were	

discovered.		

Consistent	 with	literature	 data	(105)	our	 results	confirmed	that	 different	 genetic	 players	 are	

involved	 in	 the	 Italian	 population	compared	 with	the	 Qatari	 one,	 and	 that,	 even	 though	 the	

number	of	Qatari	families	analysed	is	lower,	the	Italian	population	seems	to	be	characterised	by	a	

higher	genetic	heterogeneity,	both	in	terms	of	genes	and	mutations	(Figure	4.1).	

	

	

Figure	4.1	Distribution	of	causative	HHL	genes	in	our	populations.	As	expected	different	genetic	players	are	involved	

in	the	etiopathogenesis	of	HHI/HHL	in	the	Italian	and	Qatari	populations.	Moreover,	a	higher	genetic	heterogeneity	

characterized	the	Italian	families	compared	to	the	Qatari	ones.	

	

In	our	cohort	of	Italian	families	two	genes	were	more	frequently	mutated:	TECTA	and	MYO7A.	

As	 regards	TECTA,	 which	 encodes	 the	 α-tectorin,	 a	 non-collagenous	 proteins	 of	 the	 tectorial	

membrane,	three	 different	 alleles	 have	 been	 identified	 in	3	families	 presenting	 an	 early	 onset,	

symmetrical	ADNSHL,	with	different	degrees	of	severity.	

One	 of	 these	 mutations	(NM_005422:c.G589A:p.D197N)	was	 already	 known	 for	 causing	 NSHL	

(100),	while	 the	 other	 two	(NM_005422:c.G775C:p.G259R;	 NM_005422:c.6000-1G>T)	were	

identified	in	the	present	study.	
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All	 the	 mutations	 affect	 functional	 domains	 of	 the	 α-tectorin	 (the	 entactin	 (ENT)-like,	

zonadhesin	 (ZA),	 and	 zona	 pellucida	 (ZP)	 domains	 respectively),	 involve	 highly	 conserved	

residues,	and	are	predicted	as	pathogenic.	

Even	 though	 with	 different	 alleles,	 TECTA	 represents	 one	 major	 player	 in	 our	 Italian	

population,	 suggesting	 that	DFNA8/12	 is	one	of	 the	most	 frequent	subtypes	of	autosomal	

dominant	hearing	loss.		

As	 concerns	MYO7A,	 which	 encodes	 the	 unconventional	 myosin7A,	 we	 identified	 three	

different	alleles	affecting	two	families	of	our	cohort.	

Mutations	 of	 this	 gene	 have	 been	 associated	 to	 Usher	 syndrome	 type	 1b,	 ARNSHL	 and	

autosomal	dominant	NSHL	(ADNSHL)	(12).		

Thanks	to	our	TRS	panel	we	identified	two	heterozygous	missense	mutations	in	one	family	

with	 two	 affected	 siblings	 (compound	 heterozygotes)	 and	 healthy	 parents	 (carriers):	 the	

first	 (NM_000260:c.G1556A:p.G519D)	 described	 as	 causative	 of	 Usher	 1b	 (98),	 and	 the	

second	 (NM_000260:c.G3670A:p.A1224T)	described	 in	 the	ExAC	database	with	a	very	 low	

frequency	 (MAF:4.371e-05).	 Interestingly	 this	 second	 variant	 interests	 the	 same	 amino	

acidic	 residue	 described	 by	 Ma	 et	 al.	 (106)	 (who	 reported	 the	 p.A1224D	 mutation)	 as	

associated	 to	Usher	syndrome	1b.	 In	 this	 light,	despite	patients	showed	only	moderate	 to	

severe	sensorineural	HL,	considering	their	young	age	(5	and	10	y.o.)	and	the	fact	that	Usher	

syndrome	 1b	 is	 characterised	 by	 adolescent-onset	 retinitis	 pigmentosa	 (107),	 it	 is	 highly	

recommended	to	perform	some	routine	ophthalmologic	tests.		

This	 result	 highlights	 how	 genetic	 tests	 may	 lead	 to	 a	 proper	 diagnosis	 even	 before	 the	

appearance	 of	 clinical	 symptoms,	 thus	 correctly	 guiding	 the	 clinical	 management	 of	

patients.	

In	 the	 second	 family,	 affected	 by	 ADNSHL,	 a	 heterozygous	 missense	 mutation	 was	

identified.	The	mutation	(NM_000260:c.C4268T:p.T1423M),	described	in	the	ExAC	database	

with	a	very	low	frequency	(MAF:	3.636e-05),	and	predicted	as	damaging,	affects	a	functional	

domain	of	the	protein,	the	B41	domain,	which	is	a	plasma	membrane	binding	domain.	The	

substitution	of	a	polar	hydrophilic	Threonine	with	a	non-polar	hydrophobic	Methionine	may	

alter	protein	structure,	leading	to	clinical	consequences.	Interestingly	the	proband	presents	

a	 phenotype	 very	 similar	 to	 the	 one	 described	 in	 another	ADNSHL	 case	 due	 to	 a	MYO7A	

mutation	(108).	
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In	the	Qatari	population,	two	genes,	CDH23	and	TMC1,	showed	a	higher	prevalence,	being	

mutated	in	three	and	two	families	respectively.		

As	 regards	 CDH23,	 which	 encodes	 the	 cadherin	 23	 protein,	 we	 identified	 a	 homozygous	

missense	mutation	(NM_022124:c.C6614T:p.P2205L)	never	described	in	the	ExAC	database	

or	associated	with	hearing	phenotype	in	three	consanguineous	families	affected	by	ARNSHL.	

Until	 now	 14	 CDH23	 missense	 mutations	 were	 reported	 in	 affected	 families	 of	 Middle	

Eastern	populations	(Jewish-Algerian,	Palestinian,	Turkish,	 Iranian	and	Pakistani	(104,	109–

112)).	 Interestingly,	 among	 them	 the	 p.D2202N	 variant	 is	 located	 in	 the	 same	 protein	

domain	of	 the	mutation	 identified	 in	 this	 study	 (110–112).	 Considering	 that	 the	 c.C6614T	

allele	affects	17%	of	our	cohort	of	families	a	molecular	protein	modelling,	 in	collaboration	

with	 Dr.	 Navaneeth	 Krishnamoorthy	 (Sidra	 Medical	 Research	 Hospital-Qatar)	 was	

performed.			

The	protein	modelling	analysis	revealed	the	relation	between	p.D2202	and	p.P2205	residues	

as	they	both	share	the	same	structural	loop	that	is	directly	involved	in	the	formation	of	the	

functional	 Ca2+	 binding	 site.	 In	 the	 case	of	 p.P2205L	mutation,	 the	 change	 from	a	Proline	

(cyclic	 structured	 side	 chain)	 to	 a	 Leucine	 (linear	 structured	 side	 chain)	 impacts	 the	 loop	

structure	and	the	negatively	charged	Ca2+	binding	site,	and	thereby	the	regular	function	of	

the	protein	(Figure	4.2).	

	

Figure	4.2.	Molecular	models	of	CDH23	protein.	(A)	Schematic	diagram	of	CDH23	where	the	red	arrow	
indicates	the	mutational	region.	(B)	The	3D	model	structures	of	(B)	p.P2205	and	(C)	p.P2205L	of	CDH23.	Here,	
the	functional	site	residues	are	in	orange	sticks	around	the	Ca2+	as	a	gray	sphere.		
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The	 other	 gene	 found	 mutated	 in	 two	 different	 families	 is	 TMC1,	 which	 encodes	 the	

Transmembrane	Channel	Like	1	protein.	We	identified	two	homozygous	missense	mutations	

affecting	patients	presenting	an	early	onset	profound	NSHL.		

The	first	one	(NM_138691:c.G1334A:p.R445H)	was	previously	reported	in	Turkish,	Pakistani	

and	 Chinese	 families	 (102,	 113,	 114),	 while	 the	 second	 one	 (NM_138691: 

c.T1808TA:p.L603H),	is	a	novel	variant,	located	in	a	highly	conserved	region	of	the	protein.	

Recently	Bakhchane	et	al.	described	a	missense	variant	 located	only	one	amino	acid	after	

the	p.L603	residue	that	was	classified	as	pathogenic	after	a	3D	modelling	approach	(115).		

With	 the	 finding	of	 these	 two	mutations,	 this	 gene	 seems	 to	play	a	 significant	 role	 in	 the	

Qatari	 population,	 affecting	 11%	 of	 our	 families.	 In	 this	 light	 we	 decided	 to	 perform	 a	

protein	modelling	of	both	mutations,	 in	collaboration	with	Dr.	Navaneeth	Krishnamoorthy	

(Sidra	Medical	Research	Hospital-Qatar),	in	order	to	further	prove	their	pathogenic	role.	

The	modelled	structure	confirmed	the	pathogenic	role	the	first	allele	(Figure	4.3).		

For	 the	 second	 mutation	 (p.L603H),	 our	 molecular	 modelling	 correlates	 with	 the	

computational	structure	previously	described	by	Bakhchane	et.	al	(Figure	4.3).	In	particular,	

the	substitution	of	a	hydrophobic	Leucine	with	a	positive	charged	Histidine	can	impact	the	

local	structural	integrity.	

Overall,	we	 can	 hypothesize	 that	 the	 replacement	 of	 residues	with	 long	 (R)	 and	 short	 (L)	

linear	side	chains	at	445	and	603	positions	with	an	Histidine	that	has	an	imidazole	ring	as	a	

side	 chain	most	 likely	 alters	 the	 normal	 protein	 function	 (Figure	 4.3C).	 Altogether,	 these	

mutations	could	introduce	structural	destabilization	on	both	the	sides	to	affect	the	nearby	

Ca2+	binding	residues	(p.N576,	p.A579	and	p.S608)	thus	leading	to	malfunction	of	TMC1.		
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Figure	4.3.	Molecular	models	of	TMC1	protein.	(A)	Schematic	representation	of	TMC1,	where	the	red	arrows	

show	 the	 location	 of	 the	mutations.	Molecular	models	 of	 (B)	wild	 type	 and	 (C)	mutant	 of	 TMC1.	Here,	 the	

functional	site	residues	are	in	orange	sticks	around	the	Ca2+	as	a	gray	sphere.	

	
Interestingly	both	in	the	Italian	and	in	the	Qatari	populations	we	were	able	to	identify	two	

CNVs	affecting	STRC	and	OTOA	genes	respectively.	

CNVs	have	recently	been	found	to	be	an	important	cause	of	NSHL	(116).	The	main	example	

is	 the	deletion	of	 the	region	of	chromosome	15	that	 includes	 the	STRC	gene	and	that	can	

cause	ARNSHL	(117)	or	deafness-infertility	syndrome	(DIS)	in	males	if	the	adjacent	CATSPER2	

gene	is	also	involved	in	the	deletion	(118).	STRC	deletions	frequency	have	been	calculated	to	

be	 of	 >1%	 in	 mixed	 deafness	 populations	 (119,	 120)	 making	 it	 a	 major	 contributor	 to	

congenital	 hearing	 impairment.	 In	 our	 study	 we	 identified	 a	 homozygous	 deletion	

(chr15:43,891,024-43,940,259)	of	49	Kb,	spanning	the	whole	STRC	gene	and	CATSPER2	gene	

in	 an	 Italian	NSHL	 family	 characterized	 by	 an	 autosomal	 recessive	 pattern	 of	 inheritance.	

The	family	consists	of	4	members,	2	affected	siblings	(a	5-year-old	girl	and	a	3-year-old	boy)	

and	 their	 normal	 hearing	 parents.	 Both	 children	 showed	 a	 bilateral	moderate	 symmetric	

SNHL	 characterized	 by	 a	 pre-lingual	 onset.	 Considering	 that	 the	 deletion	 involved	 also	

CATSPER2	 gene	 it	 would	 be	 important	 to	 evaluate	 any	 fertility	 problems	 in	 the	 male	

proband.	

The	second	most	common	CNV	described	in	NSHL	involves	OTOA	gene.	In	particular	Shahin	

H	 et	 al.	 identified	 a	 large	 genomic	 deletion	 (500kb	 size)	 spanning	OTOA	 harboured	 by	 a	

family	 of	 Arabic	 origin	 (Palestine),	 and	 estimated	 a	 carrier	 frequency	 of	 1%	 in	 unrelated	
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Palestinian	 controls	 (104).	 In	 this	 study,	 we	 found	 a	 large	 homozygous	 deletion	 in	 three	

affected	 children	 of	 a	 Qatari	 consanguineous	 family,	 with	 healthy	 parents.	 The	 deletion	

spans	 through	 at	 least	 58.016	 bp	 (chr16:21,689,514-21,747,721),	 encompassing	 almost	

most	of	the	OTOA	genomic	region	(chr16:21,678,514-21,760,729)	and	it	 is	 included	in	that	

previously	reported	by	Shahin	H	et	al.	This	finding	suggests	that	OTOA	deletions	should	be	

further	investigated	in	Arabic	populations,	and	thus	included	in	routine	screening	

Overall	these	results	confirmed	the	importance	of	CNVs	analysis	in	NSHL	patients.	

	

4.3	Whole	Exome	Sequencing	(WES)	

Eleven	Italian	and	three	Qatari	families,	that	have	been	shown	to	be	negative	for	TRS,	have	

been	selected	for	WES	analysis	(using	the	Ion	ProtonTM	platform-LifeTechnologies).	

Families	were	selected	based	on	the	following	criteria:	

1. Well-defined	 phenotype	 and	 consistent	 between	 the	 affected	 members	 of	 the	

pedigree;	

2. Multigenerational	pedigree	with	affected	subjects	in	different	generations;	

3. Availability	of	complete	clinical	information,	in	particular	audiometric	information;	

4. Availability	 of	 DNA	 samples	 of	 at	 least	 4	 family	members	 (both	 affected	 and	 non	

affected).	

So	far,	WES	analysis	led	to	the	identification	of	two	new	HL-candidate	genes:	SPATC1L	and	

PLS1	in	two	ADNSHL	Italian	families.		

The	remaining	11	families	are	now	going	through	data	analysis	and	variants	filtering	steps.		

	

4.3.1	SPATC1L	

In	 this	 study,	 an	 Italian	 ADNSHL	 family	 (Figure	 4.4A)	 showing	 a	 moderately	 severe	 to	

profound	progressive	hearing	impairment	(Figure	4.4B)	was	analysed	by	WES.		

In	particular	subjects	I:1,	II:1,	II:2,	II:3,	II:4	and	III:1	were	selected	for	the	sequencing.	
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Figure	4.4.	Pedigree	and	clinical	features	of	the	family.	(A)	Pedigree	of	the	Italian	family	carrying	the	mutation	

in	SPATC1L	gene.	Filled	symbols	represent	affected	individuals.	(B)	Audiograms	of	the	patients	(I:1,	II:3,	III:1,	

II:4).	

	

The	 overall	 mean-depth	 base	 coverage	 for	 WES	 was	 108X,	 while	 on	 average	 89%	 of	 the	

targeted	region	was	covered	at	least	20-fold.	A	total	of	91.597	genetic	variants	were	called	

among	 the	 six	 subjects	 included	 in	 WES	 study.	 After	 variants-filtering	 procedure,	 we	

identified	 8	 candidate	 single	 nucleotide	 variants	 (SNVs).	 Three	 of	 them	 were	 excluded	

because	of	their	recurrence	in	our	internal	sequencing	database	(i.e.	NGS	data	from	overall	

1071	unrelated	individuals).	The	remaining	ones	have	been	prioritized	according	to:	1)	role	

of	 the	 gene	based	 on	 literature	 research,	 2)	 type	 of	 mutation.	 Four	 missense	 mutations	

affecting	 genes	 associated	 to	 specific	 syndromes	 i.e.	COL11A1	associated	 to	 Stickler	

Syndrome	(OMIM	604841),	Marshall	Syndrome	(OMIM	604841)	and	Fibrochondrogenesis	1	

(OMIM	 228520),	GUCY2C	associated	 to	 Meconium	 Ileus	 (OMIM	 614665)	 and	 Diarrhea	

(OMIM	 614616),	 or	 phenotypes	 clearly	 not	 present	 in	 any	 of	 the	 affected	 members,	 i.e.	

ZNF236	associated	 to	 congenital	 aural	 atresia	 in	 18q	 deletion	 syndrome	(121),	FSTL5	

possiblly	involved	in	maintaining	odor	perception	in	mouse	(122)	and	described	as	a	tumoral	
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biomarker	(123),	 were	 excluded	 from	 the	 analysis.	 The	 remaining	 nonsense	 mutation,	

c.C846G	(NM_001142854,	ENST00000291672.5),	was	present	in	SPATC1L	gene	and	leads	to	

a	premature	stop	codon	with	the	loss	of	the	last	58	amino	acids	of	the	protein	(p.Y282*).	

This	mutation	causes	the	loss	of	a	series	of	highly	conserved	residues	(Figure	4.5B),	and	was	

not	 described	in	 any	 public	 database	or	in	 our	 internal	 database.	 Sanger	 sequencing	

demonstrated	the	correct	segregation	within	the	family	(Figure	4.5A).	

	

Figure	4.5	DNA	 sequence	 chromatograms	 and	 protein	 sequence	 alignment.	(A)	The	 figure	 displays	 DNA	

sequence	chromatograms	showing	the	nucleotide	variant	identified	in	SPATC1L.	(B)	Protein	alignment	shows	

conservation	of	the	mutated	residue	across	species.	Dashed	lines	indicate	the	series	of	amino-acids	lost.		

	

Interestingly	two	independent	analyses	conducted	in	our	laboratory	supported	the	possible	

involvement	 of	 this	 gene	 in	 the	 auditory	 function/loss.	 In	 particular,	a	 candidate-gene	

population-based	 statistical	 study	 in	 cohorts	 from	 Caucasus	 and	 Central	 Asia	 revealed	 a	

significant	association	of	this	gene	with	normal	hearing	function	at	low	and	medium	hearing	

frequencies,	and	TRS	of	a	cohort	of	464	age-related	hearing	loss	(ARHL)	patients	led	to	the	

identification	of	two	deleterious	SPATC1L	mutations.		

SPATC1L RefSeq 
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A 
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Homo sapiens 
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More	 in	 details,	 as	 regards	 the	 candidate-gene	 population-based	 statistical	 study,	 604	

people	from	several	rural	communities	located	along	the	Silk	Road	countries	were	collected	

(124).	 Audiometric	 tests	 and	 a	 clinical	 examination	 were	 carried	 out	 for	 each	 individual.	

From	 the	 six	 hearing	 thresholds	 values	 collected,	 three	 pure	 tone	 averages	 (PTAs)	 of	 air-

conduction	thresholds	were	calculated:	PTAL	at	low	frequencies	(0.25,	0.5	and	1	kHz),	PTAM	

at	middle	frequencies	(0.5,	1	and	2	kHz)	and	PTAH	at	high	frequencies	(4	and	8	kHz).	These	

three	PTAs	were	used	as	quantitative	traits	 in	the	association	analysis.	Moreover,	to	avoid	

non-genetic	 variations	 in	 the	 hearing	 phenotype	 (e.g.	monolateral	 hearing	 loss),	 the	 best	

hearing	ear	was	considered	for	the	analyses.	Subjects	affected	by	syndromic	forms	or	other	

systemic	illnesses	linked	with	sensorineural	hearing	loss	were	excluded.	DNA	samples	were	

genotyped	 with	 the	 Illumina	 Exome	 Chip	 and	 a	 candidate	 gene	 association	 study	 was	

performed	 for	 three	different	 traits	 (PTAs)	on	common	variants	only	 (MAF>0.01).	A	 linear	

mixed	 model	 was	 applied	 with	 sex	 and	 age	 as	 covariates	 and	 the	 kinship	 matrix	 as	 the	

random	 effect	 in	 order	 to	 account	 for	 population	 structure	 and	 relatedness.	 Statistically	

significant	 associations	 were	 obtained	 for	 PTAL	 and	 PTAM	 with	 3	 SPATC1L	 coding	 SNPs	

(rs14378,	 rs113710653	and	 rs113146399).	The	most	associated	SNP	was	 rs113710653	 (p=	

0.00564).	People	carrying	the	alternative	allele	have	worse	hearing,	taking	into	account	sex	

and	 age	 differences.	 In	 particular,	 homozygote	 TT	 subjects	 show	 at	 PTAL	 and	 PTAM	 an	

increased	 dB	 threshold	 (+2.3	 dB	 and	 3.27	 on	 average	 respectively)	 compared	 to	 the	wild	

type	(CC)	ones	(OR=1.17,	95%	CI=[1.05-1.31]	for	PTAL	and	OR=1.20,	95%	CI=[1.05-1.38]	for	

PTAM).	

Simultaneously	 TRS	 of	 464	 ARHL	 patients	 revealed	 the	 presence	 in	 SPATC1L	 of	 one	

frameshift	 (c.343_344insTTCA:p.K115fs*12)	and	one	missense	mutation	 (c.A656C:p.Y219S)	

in	two	unrelated	patients.	The	frameshift	variant	was	detected	in	a	patient	(Arhl_1)	coming	

from	 Carlantino	 (an	 isolated	 village	 from	 Southern	 Italy).	 In	 this	 case,	 the	 availability	 of	

extended	pedigrees	and	samples	 from	the	whole	village	population	allowed	us	to	 look	for	

segregation	of	this	allele	in	other	family	members.	Despite	we	are	dealing	with	a	late	onset	

disease	where	frequently	there	are	no	other	alive	family	members,	we	were	able	to	exclude	

the	presence	of	 this	allele	 in	 the	only	alive	and	aged	relative	of	Arhl_1	 (i.e.	a	healthy	 first	

cousin	aged	68	years	old).	The	c.A656C:p.Y219S	variant	was	detected	 in	a	patient	(Arhl_2)	

from	Milan	(Italy).	All	 in	silico	predictor	tools	classified	this	allele	as	damaging.	Both	alleles	



	
	

51	

were	confirmed	by	Sanger	sequencing	and	were	the	only	ultra	rare	(i.e.	not	described	in	any	

public	database)	and	pathogenic	variants	present	in	Arhl_1	and	Arhl_2	cases.		

Unfortunately	 little	 is	 known	 about	 the	 role	 of	 SPATC1L	 gene.	 It	 encodes	 two	 different	

isoforms	 of	 the	 Speriolin-Like	 Protein,	 derived	 from	 alternatively	 spliced	 mRNAs,	 whose	

function	 is	 still	 unknown.	 A	 study	 from	 Lecat	 et	 al.	 2015,	 revealed	 that	 SPATC1L	 protein	

localises	in	the	cytoplasm,	in	the	nucleus	and	in	the	perinuclear	region	in	Hek293	cells,	and	

after	activation	of	the	NK2	receptor	it	moves	to	cellular	junctions,	suggesting	a	possible	role	

of	 this	protein	 in	cell	 junction	 formations	 (125).	One	major	 type	of	cells	 junctions	are	gap	

junctions	which	exist	extensively	in	many	different	part	of	the	cochlea	and	that	have	many	

hypothetical	functions	in	this	organ,	such	as	K+	recycling,	endocochlear	potential	generation,	

intercellular	signalling,	nutrient	and	energy	supply	etc.	(126).	To	date,	apart	from	the	role	of	

Connexins	family	and	few	others	proteins	(i.e.	Pannexins	family)	(127),	little	is	known	about	

functions	 of	 other	 proteins	 in	 cell	 junctions.	 Considering	 the	 importance	 of	 these	 cellular	

components	in	hearing	function,	the	role	of	SPATC1L	and	other	related	proteins	needs	to	be	

further	investigated.	

It	has	also	been	shown	that	SPATC1L	modulates	the	response	of	human	cells	 to	alkylating	

agents,	 having	 a	 protective	 effect.	 As	 a	 matter	 of	 facts,	 a	 decreased	 gene	 expression	

correlates	with	 an	 increased	 sensitivity	 to	 alkylating	 agents,	 such	 as	 N-methyl-N’-nitro-N-

nitrosoguanidine	(MNNG)	(128).	Further	 investigations	on	how	SPATC1L	plays	this	role	will	

help	in	understanding	if	it	is	involved	in	processes	that	guarantee	cell	survival	in	response	to	

damaging	 agents	 or	 oxidative	 stress,	 a	 major	 cause	 of	 ARHL	 and	 hearing	 dysfunction.	

Accordingly,	 some	ARHL	 candidate	 genes	 so	 far	 described	 are	 involved	 in	oxidative	 stress	

response	and	mitochondrial	dysfunction	(129).	

In	 order	 to	 better	 characterise	 the	 role	 of	 this	 gene	 and	 the	 effect	 of	 the	 identified	

mutations,	some	functional	experiments	have	been	performed.	

First	 of	 all,	 the	 impact	 of	 all	 mutations	 was	 analysed	 by	 molecular	 dynamics	 (MD)	

simulations.		

As	 expected,	 the	 wild	 type	 system	 showed	 a	 stable	 behaviour	 by	maintaining	 secondary	

structures	 (Figure	 4.6D-G),	 as	 opposed	 to	 all	 mutants.	 In	 particular,	 MD	 of	 the	 SPATC1L	

systems	demonstrated:	

a)	A	reduced	structural	stability	for	the	p.Y282*	mutant	in	addition	to	the	loss	of	part	of	the	

C-terminal	(283-340)	and	mild	alteration	of	the	secondary	structures	at	the	N-terminal.	
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b)	A	reduced	 structural	 stability	for	 the	p.K115fs*12	mutant	 plus	 the	loss	 of	 ~75%	 of	 the	

protein	(126-340)	including	the	C-terminal	and	a	decreased	stability	leading	to	a	disordered	

protein	isoform.	

c)	An	increased	 structural	 stability	 and	 rigidity	for	 the	p.Y219S	mutant	and	 no	 loss	 of	

secondary	structures.	

It	 is	 interesting	to	 notice	 that	 all	 variants	 affect	 the	 C-terminal	 of	SPATC1L	that	 seems	 to	

contain	important	functional	domains.	In	fact	sequences	alignment	of	human	SPATC1L	and	

mouse	SPATC1	(encoded	by	Spatc1,	the	orthologous	gene	of	the	human	SPATC1,	a	paralog	

of	SPATC1L)	 revealed	 that	most	of	 the	conserved	 regions	of	 mouse	 SPATC1,	 which	

correspond	to	the	N-	and	C-terminals,	are	conserved	also	in	human	SPATC1L.	In	particular,	

the	 C-terminal	 contains	the	 binding	 region	 for	 cell-division	 cycle	 protein	 20	 (Cdc20)	that	

according	 to	 sequence	 similarity	is	most	 likely	 present	 also	 in	 the	 human	SPATC1L	(Figure	

4.6A-B).	

Figure	 4.6	 Sequence	 analysis	 and	 molecular	 modelling	 of	 the	 proteins.	(A)	 Sequence	 alignment	 of	 human	

Speriolin-like	protein	(Q9H0A9)	with	mouse	Speriolin	(Q148B6).	(B)	Molecular	model	of	the	human	SPATC1L	

with	 potential	 functional	 regions.	 (C)	 Average	 radius	 of	 gyration	 of	 the	 four	 systems.	 (D-G)	 Representative	
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structures	 of	 the	 WT,	 Y282*,	p.K115fs*12	and	p.Y219S,	 from	 molecular	 dynamics	 simulations.	 Here,	 the	

locations	of	the	mutations	are	represented	as	red	sticks.	

	

Overall	these	findings	suggest	that	all	mutations	lead	to	new	isoforms	with	reduced	or/and	

increased	 structural	 stability,	 which	 may	generate	partial	 or	 non-functional	 proteins,	 or	to	

proteins	with	inadequate	flexibility	(that	is	normally	required	for	the	correct	functionality).	

Afterwards	the	effect	on	mRNA	and	protein	levels	of	all	the	SPATC1L	mutations	identified	in	

this	 study	 was	 tested	in	 vitro,	using	 expression	vectors	 containing	 either	 the	 Wt	 or	 the	

mutant	cDNAs.		

In	particular,	qRT-PCR	didn’t	reveal	any	significant	difference	in	the	expression	levels	of	all	

mutants	compared	to	the	Wt	(Figure	4.7A).		

WB	analysis	confirmed	 the	 presence	 of	 all	 mutated	 protein	 isoforms	 (Figure	4.7B).	In	 the	

case	 of	 the	 missense	 mutation	 of	 Arhl_2	 patient	(p.Y219S),	 a	 full-length	 protein	 was	

detected.	 On	 the	 contrary,	 in	 the	 case	 of	 the	 two	 truncating	 variants	 carried	 by	 Arhl_1	

patient	 and	 by	 the	 Italian	 family	(p.K115fs*12	and	 p.Y282*	 respectively),	 shorter	protein	

isoforms	 were	 observed.	Interestingly,	 in	 the	 case	 of	 the	 frameshift	 insertion	 (patient	

Arhl_1),	 two	 different	 bands	 were	 detected:	 a	 higher	 one,	 with	 the	 expected	 molecular	

weight,	 and	 a	 smaller	 one.	 Considering	 the	huge	 impact	of	 this	mutation	 on	 protein	

structure,	it	is	highly	probable	that	the	truncated	isoform	will	be	rapidly	degraded,	thus	the	

shorter	band	in	the	WB	may	represent	a	pattern	of	protein	degradation.		

	

Figure	4.7	SPATC1L	mRNA	 and	 protein	 levels	 in	 Hek293	 transfected	 cells.	(A)	qRT-PCR	 analysis	 of	 relative	

mRNA	 expression	 of	SPATC1L	Wt	 and	 mutants	 after	 48	 hours	 of	 transfection	 in	 Hek	 293	 cells.	 Results	 are	
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expressed	 as	 a	 fold-change	 of	 expression	 levels,	and	 are	 normalized	 to	 the	 relative	 amount	 of	 the	 internal	

standard	 Neo.	 Error	 barrs	 indicate	 95%	 confidence	 intervals.	(B)	 Western	 Blot	 analysis	of	SPATC1L	 wt	 and	

mutants	protein	expression.	Hsp90	was	applied	to	determine	equal	loading.	

	

In	order	to	check	the	possible	role	of	SPATC1L	in	the	hearing	system,	gene	expression	was	

investigated	in	CD1	mice.	These	studies	revealed	the	expression	of	Spatc1l	(MGI:	1923823)	

in	 mouse	 whole	 cochlea.	Expression	 level	 increases	with	age	 from	 P3	 through	 P12,	 which	

corresponds	to	the	development	of	the	auditory	perception,	and	then	it	remains	stable	until	

adult	 age	(Figure	4.8A),	 suggesting	 its	 possible	 role	 in	 the	 development	 of	 the	 auditory	

system.	Moreover,	expression	analysis	on	different	tissues	at	2	months	of	age	highlighted	a	

remarkable	expression	in	both	brain	and	testis	(Figure	4.6B)	suggesting	a	possible	role	also	

in	these	tissues,	despite	all	cases	here	described	do	not	present	any	clinical	phenotype	or	

laboratory	finding	related	to	this	two	tissues.	

	

Figure	4.8.	Spatc1l	gene	expression	in	mouse	whole	cochlea	and	other	tissues	at	different	time	points.	(A)	

The	graph	shows	the	expression	of	Spatc1l	in	mouse	whole	cochlea	at	P3,	P8,	P12	and	2	months.	Results	are	

reported	as	fold	change	in	gene	expression	over	β-actin,	used	as	an	internal	control.	The	gene	shows	an	age-

related	expression.	(B)	The	graph	shows	Spatc1l	gene	expression	at	2	months	of	age	in	different	mouse	tissues,	

including	 liver,	 cochlea,	 spleen,	 lung,	 kidney,	 brain,	 testis	 and	 heart.	 Results	 are	 reported	 as	 fold	 change	 in	

gene	expression	over	β-actin,	used	as	an	internal	control.	

	

It	remains	to	elucidate	how	exactly	different	mutations	can	lead	to	different	phenotypes.	In	

the	case	of	HHL,	a	new	nonsense	mutation	has	been	identified.	Considering	the	preliminary	

results	of	our	in	vitro	experiments,	the	mechanism	of	nonsense	mRNA	mediated	decay	is	an	

unlikely	event,	however	the	generation	of	truncated	protein	isoforms	may	highly	affect	its	
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structure	and	localization,	leading	to	an	abnormal	protein	function.	Moreover,	the	mutation	

involves	 both	 isoforms	 of	 the	 gene	 most	 likely	 leading	 to	 deleterious	 consequences.	

Accordingly,	a	similar	severe	phenotype	was	present	in	the	ARHL	patient	carrying	another	

disruptive	allele	(i.e.	the	frameshift	insertion)	despite	affecting	the	coding	region	of	only	one	

of	the	two	isoforms.	As	expected	a	milder	phenotype	is	due	to	the	presence	of	a	missense	

mutation	in	the	second	ARHL	patient.	

Altogether	these	results	suggest	a	role	of	SPATC1L	gene	in	both	hearing	function	and	loss.	

	

4.3.1	PLS1	

A	second	Italian	ADNSHL	family	(Figure	4.9A)	showing	a	moderately	severe	to	profound	high	

frequencies	hearing	impairment	(Figure	4.9B)	was	analysed	by	WES.		

In	particular,	subjects	II:2,	II:3,	II:4,	II:5	and	III:1	were	selected	for	sequencing.	

	

	

Figure	4.9	Pedigree	and	clinical	features	of	the	family.	(A)	Pedigree	of	the	Italian	family	carrying	the	mutation	

in	PLS1	gene.	Filled	symbols	represent	affected.	(B)	Audiometric	features	of	the	individuals	II:4,	II:5	and	III:1	

displayed	as	audiograms	(air	conduction)	and	showing	the	thresholds	of	the	right	and	left	ears.		
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The	 overall	 mean-depth	 base	 coverage	 for	 WES	 was	 99X,	 while	 on	 average	 92%	 of	 the	

targeted	region	was	covered	at	least	20-fold.	A	total	of	83.412	genetic	variants	were	called	

among	 the	 five	 subjects	 included	 in	WES	 study.	After	data	 filtering,	 6	 candidate	missense	

variants	remained.	These	have	been	prioritized	according	to	the	role	of	the	gene	based	on	

literature	 research.	 Three	 missense	 variants	 affecting	 genes	 associated	 to	 specific	

phenotypes	 not	 present	 in	 any	 of	 our	 patients	 were	 excluded	 (i.e.	MC1R	 associated	 to	

Analgesia	 from	 kappa-opioid	 receptor	 agonist,	 female-specific	 (OMIM	 613098),	

Skin/hair/eye	 pigmentation	 2,	 blond/red	 hair/fair	 skin,	 UV-induced	 skin	 damage	 (OMIM	

266300),	Albinism,	oculocutaneous,	type	II,	modifier	(OMIM	203200),	Melanoma,	cutaneous	

malignant,	 5	 (OMIM	 613099);	 ALOXE3	 associated	 to	 Ichthyosis,	 congenital,	 autosomal	

recessive	 3	 (OMIM	 606545);	 PGAM2	 associated	 to	 Glycogen	 storage	 disease	 X	 (OMIM	

261670)).	Among	the	remaining	SNVs,	one	involves	a	gene	of	unknown	function,	C14orf132,	

which	has	been	recently	proposed	as	a	candidate	for	pre	and	early	postnatal	developmental	

delay	 (130),	another	one	 involved	AVL9	 gene	 that	 is	a	 cancer	driver	 candidate	gene	 (131)	

and	 the	 last	one	affects	PLS1	 gene	 that	has	 recently	been	described	as	causative	of	HL	 in	

mouse	(132).	Taking	into	account	these	data,	the	PLS1	mutation	identified	through	WES	was	

considered	as	causative.		

The	c.G805A	(NM_001145319,	ENST00000457734.6)	variant,	never	described	in	any	public	

database	and	predicted	as	causative	by	all	 in	silico	predictor	tools,	causes	the	amino	acidic	

substitution	p.E269K,	which	interests	a	highly	conserved	residue,	according	to	PhyloP	score	

(Figure	4.10A).		
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Figure	4.10	DNA	 sequence	 chromatograms	 and	 protein	 sequence	alignment.	(A)	The	 figure	 displays	 DNA	

sequence	 chromatograms	 showing	 the	 nucleotide	 variant	 identified	 in	PLS1.	(B)	 Protein	 alignment	 showing	

conservation	of	the	mutated	residue	across	species.		

	

The	mutant	allele	affects	all	three	isoforms	of	PLS1,	which	encodes	the	plastin-1	protein,	an	

actin	bundling	protein,	abundant	in	sterocilia	of	cochlear	hair	cells.	

In	particular,	the	variant	affects	the	second	calponin	homology	(CH)	domain	of	the	plastin-1	

protein,	which	is	thought	to	be	involved	in	actin	binding	(133).	

Taylor	 et	 al.	 described	that	Pls1	(MGI:	104809)	knock-out	 mice	 have	 a	 moderate	 and	

progressive	 form	 of	 hearing	 loss	 associated	 with	 defects	 in	 stereocilia	 morphology	 and	

speculated	 that	 mutations	 in	 the	 human	PLS1	gene	 could	 be	 associated	 with	 mild	 and	

progressive	forms	of	hearing	loss	(132).		

Considering	all	the	information	about	the	role	of	this	gene	coming	from	the	literature,	we	

will	directly	generate	a	knock-in	Zebrafish	model	in	order	to	prove	the	pathogenic	effect	of	

the	p.E269K	mutation.	As	 a	 preliminary	 data,	the	 otic	 gene	 expression	 pattern	 of	 the	

zebrafish	orthologous	genes	Pls1	in	5	dpf	zebrafish	larvae	was	tested.	

Whole	 mount	 ISH	 revealed	Pls1	mRNA	 is	 detected	 broadly	 across	 the	 larvae,	 but	 its	

expression	 is	 enriched	 at	 inner	ear	 (yellow	 circle;	Figure	 4.11B),	 swim	 bladder	 and	
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pronephros	(Figure	4.11B).	Images	on	transverse	sections	focus	on	different	anteroposterior	

regions	of	the	inner	ear	(outlined	with	White	dotted	line;	Figure	4.11C-E”).	Pls1	is	detected	

at	hair	cells	(Figure	4.11C,D,E),	as	seen	by	its	colocalization	with	GFP	(Figure	4.11C”,D”,E”),	

which	 is	 activated	 specifically	on	 that	 cell	population	 through	 the	brn3c	promoter	 (Figure	

4.11C’,D’,E’).		

	

Figure	4.11	Pls1	expression	in	Zebrafish	larvae.	(A)	Schematic	of	5	dpf	inner	ear	cellular	organization.	Position	

of	transversal	views	(C,D,E)	are	outlined	by	dotted	lines.	(B)	Lateral	view	of	anterior	region	of	the	5	dpf	larvae.	

Yellow	circle	delimit	the	inner	ear	location.	C,C’,C’’)	Transversal	view	of	anterior	region	of	inner	ear.	Inner	ear	

is	outlined	by	a	white	dotted	line.	Arrows	point	to	hair	cell	patches	location.	(C)	Pls1	ISH.	(C’)	brain3c:GFP.	(C”)	

Pls1	 and	 brain3c:GFP	 merge	 image.	 (D,D’,D’’)	 Transversal	 view	 of	 medial	 region	 of	 inner	 ear.	 Inner	 ear	 is	

outlined	by	a	white	dotted	line.	Arrows	point	to	hair	cell	patches	location.	(D)	Pls1	ISH.	(D’)	brain3c:GFP.	(D”)	

Pls1	 and	 brain3c:GFP	 merge	 image.	 (E,E’,E’’)	 Transversal	 view	 of	 medial	 region	 of	 inner	 ear.	 Inner	 ear	 is	

outlined	by	a	white	dotted	line.	Arrows	point	to	hair	cell	patches	 location.	(E)	Pls1	 ISH.	(E’)	brain3c:GFP.	(E”)	

Pls1	and	brain3c:GFP	merge	image.	

These	 findings	 (i.e.	 the	 identification	 of	 a	 pathogenic	 PLS1	 variant	 as	 the	 only	 probable	

cause	of	NSHL	in	an	Italian	family,	the	involvement	of	this	gene	in	the	etiopathogenesis	of	

hearing	 loss	 in	 mouse,	 and	 the	 characteristic	 expression	 pattern	 in	 Zebrafish	 inner	 ear)	
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highly	support	the	possible	causative	role	PLS1	in	NSHL	in	humans.	The	Zebrafish	knock-in	

model	is	now	in	progress	and	will	help	in	elucidating	the	role	of	the	p.E269K	mutation.	
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5.	CONCLUSIONS	
	

The	development	and	application	of	a	multi-step	strategy	based	on	TRS	and	WES	has	proved	

to	be	an	extremely	powerful	tool	for	the	molecular	diagnosis	of	NSHL.	

As	 regards	 TRS,	 a	 custom	 sequencing	 panel	 of	 96	 deafness-genes	 has	 been	 applied	 to	 32	

Italian	and	18	Qatari	families,	and	allowed	us	to	reach	an	overall	detection	rate	of	50%.		

An	effective	molecular	diagnosis	is	a	real	benefit	for	genetic	counselling,	for	the	definition	of	

the	recurrence	risk,	prognosis	and	eventually	therapeutic	options.		

Interestingly	thanks	to	the	use	of	our	TRS	panel,	in	some	cases	it	has	been	possible	to	define	

a	proper	diagnosis,	even	before	the	appearance	of	clinical	symptoms.	This	is	what	happened	

with	a	family	diagnosed	with	NSHL,	that	however	carried	two	missense	mutations	in	MYO7A	

associated	to	Usher	syndrome	type	1b,	or	with	a	family	carrying	a	STRC-CATSPER2	deletion,	

associated	to	deafness-infertility	syndrome	(DIS)	 in	males.	 It	 is	worthless	to	say	that	these	

findings	effectively	impacted	on	the	clinical	management	of	patients.	

As	expected,	TRS	results	highlighted	a	higher	genetic	heterogeneity	in	the	Italian	population	

compared	 to	 the	Qatari	 one,	where	 a	 single	CDH23	 allele	 has	 been	 identified	 as	 a	major	

player.	The	identification	of	mutations/genes	affecting	more	families	is	really	important	for	

the	 definition	 of	 correct	 genotype/phenotype	 correlations	 that	 may	 help	 clinicians	 in	

foreseeing	 the	molecular	 diagnosis.	Moreover,	 considering	 all	 the	 recent	 advances	 in	 the	

field	of	genome	editing	and	gene	therapy,	the	detection	of	a	common	major	player	may	be	

the	base	for	the	development	of	a	population-specific	gene	therapy.		

Interestingly	in	both	Italian	and	Qatari	populations	two	large	CNVs	involving	STRC/CATSPER2	

and	OTOA	were	detected,	highlighting	the	importance	of	CNV	analysis	in	HL	patients.	

After	TRS	it	was	not	possible	to	define	a	clear	molecular	cause	in	half	of	patients.	This	result	

may	be	explained	in	different	ways:	

1)	The	causative	gene	is	not	included	in	the	TRS	panel,	

2)	The	mutation	lies	in	exons	that	are	missing	from	the	used	reference	assembly	(GRCh37),	

3)	 The	 mutation	 lies	 in	 regions	 not	 covered	 by	 the	 TRS	 panel,	 or	 in	 regions	 with	 low	

coverage,	

4)	The	mutation	is	located	in	intronic	regions.	
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Some	 of	 these	 issues	 may	 be	 overcome	 with	 whole	 exome	 sequencing,	 thus	 families	

negative	to	TRS	were	selected	for	WES.	

As	a	first	step,	only	families	with	well-defined	phenotypes	were	sequenced.	

So	far,	WES	 led	to	the	discovery	of	 two	strong	candidate	genes:	SPATC1L	and	PLS1	 in	two	

Italian	ADNSHL	families,	while	data	analysis	of	11	other	families	is	now	in	progress.		

In	order	to	definitely	prove	the	pathogenic	role	of	these	genes	several	functional	studies	are	

needed.	 Some	 of	 them	 have	 already	 been	 performed	 via	 both	 in	 vitro	 and	 in	 vivo	

approaches	that	strengthened	the	hypothesis	of	their	involvement	in	the	onset	of	NSHL.		

The	identification	of	new	NSHL-genes	is	essential	for	understanding	the	molecular	biology	of	

the	 hearing	 system	 and	 for	 guaranteeing	 a	 proper	 diagnosis	 in	 a	 bigger	 percentage	 of	

patients.	Moreover,	the	identification	of	new	genes	will	definitely	help	in	the	development	

of	new	therapeutic	approaches,	moving	forward	to	a	personalised	medicine.	

As	 in	 the	 case	 of	 TRS,	 any	 negative	 result	 after	 WES	 analysis	 could	 be	 explained	 by	

mutations	affecting	 regions	missing	 from	 the	used	 reference	assembly,	or	not	 covered	by	

the	exome	enrichment	kit,	or	poorly	covered.	Moreover	the	phenotype	may	be	caused	by	

deep	 intronic	 variants	 or	 structural	 variants,	 not	 detectable	 neither	 with	 TRS	 or	WES.	 In	

order	to	overcome	these	limits,	whole	genome	sequencing	(WGS)	may	represent	the	most	

suitable	alternative.	

Despite	the	 limits	of	both	TRS	and	WES,	our	results	proved	that	the	combination	of	 these	

technologies,	 together	 with	 functional	 experiments,	 could	 effectively	 enhance,	 in	 a	 cost	

effective	way,	the	genetic	characterization	of	NSHI/NSHL	affected	families.	
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