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ABSTRACT 

Triple negative breast cancers (TNBCs) are high-grade invasive ductal carcinoma which lack 

expression of hormone receptors and which do not benefit from either endocrine or anti-

human epidermal growth factor receptor 2 therapies leading to poor outcome. This 

heterogeneous group of cancers encompass different molecular subtypes reflecting treatment 

responsiveness. Among others, mesenchymal-like TNBC subtype is characterized by the 

enrichment of proteins involved in cell motility and Epithelial to Mesenchymal transition 

(EMT). High Mobility Group A1 (HMGA1) is a family of oncofetal proteins identified as 

inducers of this phenotypic transition that have been extensively associated to cancer onset 

and progression. Despite their well-described role in chromatin architecture and gene 

expression regulation, their potential role in setting histones post-translational dynamics has 

never been taken into account. In this thesis, we provide evidences of HMGA1 involvement in 

histone post-translational modifications modulation by sustaining the 

RAS/RAF/MEK/ERK/RSK2 pathway in mesenchymal-like TNBC cells. In particular, we 

suggest that HMGA1 proteins make chromatin prone to epigenetic modifiers actions 

sustaining both H3 serine 10 phosphorylation by RSK2 and H2B lysine 5 acetylation by CBP 

and modulating the expression of genes involved in tumor progression and EMT. We suggest 

that aside being considered as drug target, HMGA1 could be used as biomarker predicting 

responsiveness to epigenetic therapies in triple negative breast cancers. 



RIASSUNTO 

Il cancro al seno “Triplo Negativo” è un carcinoma duttale invasivo di grado elevato in cui le 

cellule tumorali non esprimono i recettori ormonali rendendo inefficaci sia la terapia 

convenzionale endocrina che quella anticorpale anti-HER2. Questi tumori sono di solito 

caratterizzati da una prognosi infausta. Questa tipologia di carcinoma della mammella 

comprende un gruppo estremamente eterogeneo di tumori che vengono classificati in sottotipi 

molecolari distinti e che permettono spesso di determinare la risposta ad un trattamento 

farmacologico. Tra questi, il cancro al seno triplo negativo simil-mesenchimale è 

caratterizzato dall’espressione elevata di proteine coinvolte nella motilità cellulare e nella 

transizione epitelio-mesenchimale. Le proteine oncofetali appartenenti alla famiglia delle High 

Mobility Group A1 (HMGA1) sono state identificate come induttori di questa transizione 

fenotipica e la loro espressione è stata ampiamente correlata a trasformazione e progressione 

tumorale. Sebbene il ruolo di queste proteine sia stato ampiamente investigato nel contesto 

della regolazione dell’espressione genica e della strutturazione dell’architettura cromatinica, 

l’influenza che esse possono avere nello scenario dinamico delle modifiche post-traduzionali 

degli istoni non è stato ancora presa in considerazione. 

In questa tesi sono fornite evidenze del coinvolgimento delle proteine HMGA1 nella 

regolazione delle modifiche post-traduzionali degli istoni attraverso la modulazione della via 

di trasduzione del segnale RAS/RAF/MEK/ERK/RSK2 in cellule di cancro al seno triplo 

negativo. In particolare, viene dimostrato come queste proteine possano intervenire 

predisponendo la cromatina all’azione di modificatori epigenetici, quali la chinasi RSK2 e 

l’acetiltransferasi CBP, favorendo rispettivamente la fosforilazione della serina 10 dell’istone 

H3 e l’acetilazione della lisina 5 dell’istone H2B, e come questo sia associato all'’attivazione 

trascrizionale di geni coinvolti nella progressione tumorale e nella transizione epitelio-

mesenchimale. Si suggerisce quindi che le proteine HMGA1 possano essere considerate non 

solo come bersaglio terapeutico ma anche come bio-marcatori in grado di prevedere la 

responsività a terapie epigenetiche per il cancro al seno di triplo negativo. 
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INTRODUCTION 

Breast Cancer 

Breast cancer is the second most common cancer worldwide, accounting for the 12% of the 

new cancer cases estimated in 2012 and ranks second as leading cause of cancer death among 

women in developed countries (Ferlay et al. 2015). Since the 1977, in which tamoxifen has 

been approved as the gold standard method to treat ER+ breast cancer tumors (roughly 75% of 

all tumors), and the 1990’s with trastuzumab treatment for Her2/neu+ tumors, breast cancer 

mortality rate has decreased in many countries according to cultural and economic barriers 

involved in women lifestyles (Servick 2014). Breast cancer is considered a Western women 

disease because it has the higher incidence rates in the higher income countries; Northern 

America, Northern and Western Europe and Australia are indeed at the top of the list even if 

the mortality rate in most cases seems to have the opposite trend. This has been associated 

with different geographical distribution of risk factors along with early detection with regular 

screening and the possibility to afford state-of-the-art treatment (DeSantis et al. 2015). 

However, the increasing breast cancer incidence in developing and low-income countries (i.e. 

Asia, Africa and South America) could mirror westernization process in terms of urbanization 

and economic development that are in strict relationship with life styles changes promoting 

obesity, physical inactivity, alcohol consumption, and delayed childbearing (Torre et al. 2015). 

The spread of bad costumes and the growth and aging of population worldwide will amplify 

the numbers of new cases of breast cancer suggesting that the understanding of molecular 

basis of malignant processes is a pressing need to fight against breast cancer.  

Breast cancer classifications 

Mammary gland consists of two compartments, epithelia and stroma, which responding to 

local and endocrine signals are responsible for milk secretion upon pregnancy. Two different 

lineages of mammary gland epithelial cells exist: luminal cells, outlining the ductal lumen and 

secreting milk in the lobular-alveolar compartment, and the basal/myoepithelial cells placed 

below the former and allowing cells contraction for milk release. Stem cells (SC) localize 

inside the duct and can differentiate in all breast cellular types through asymmetric division 

during normal breast development or to continue to cycle. Stem cells maintain self-renewal 
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capacity and are hypothesized to accumulate genetic changes and become breast cancer stem 

cells (BCSC), which are thought to be able to generate all cancer cell populations (Ellsworth et 

al. 2016). As other solid tumors, breast cancer looks like a heterogeneous population of cells 

with different replicative potential depending on access to oxygen and nutrients in the 

microenvironment. In fact, necrotic regions of tumors are characterized by the presence of 

quiescent cells that can grow slowly or not grow at all. Tumors usually grow in hypoxic 

conditions and the surrounding stroma provides vascularization elements (angiogenesis) that 

provide nutrients for tumor growth (Carels et al. 2016). Moreover, breast cancer owns 

genomic variability within primary tumors, metastases, circulating tumor cells (CTC; the ones 

which migrate from the primary sites to the vascular system), disseminating tumor cells (DTC; 

which migrate from the primary sites to the bone marrow), and cell-free DNA released by 

apoptosis/necrosis/macrophages phagocytosis (Ellsworth et al. 2016).  

Rather than a single disease, breast cancer seems to be a heterogeneous collection of diseases 

reflecting morphological, molecular, and clinical differences. Despite the great heterogeneity, 

histopathological profiles of breast cancer are unique and predict disease courses and 

outcomes. Breast cancer arises generally from cells of the inner epithelial lining of the duct or 

the lobules; indeed 95% of breast malignancies are adenocarcinomas. Terms as lobular or 

ductal generally refer to the site in which cancer originates whereas the denominations 

invasive/infiltrating concern the penetration of cancer cells into the stroma through the 

ductal/lobular wall. Ductal carcinoma in situ (DCIS) is a non-malignant intraductal 

proliferation that can potentially give rise to invasive ductal carcinoma (IDC) (figure 1.1). 

Both types of ductal carcinoma originate from the same terminal duct lobular unit but in situ 

carcinoma presents usually myoepithelial cells of the outer ductal layer preserved. Lobular 

carcinoma in situ (LCIS) is an intralobular proliferation which represents likewise a risk factor 

and non-obligatory precursor of its invasive form, the invasive lobular carcinoma (ILC; figure 

1.1). Some IDCs can be classified accordingly to their distinctive morphological features into 

well-characterized histological subtypes; however, 75% of them exhibit wide range of 

morphological and clinical behaviours and are defined as Not Otherwise Specified (NOS) or 

No Special Type (NST; Makki 2015). Microscopic morphological differences between cancer 

and normal breast cells correlate with the degree of malignancies, and in particular semi-

quantitative evaluations of tubules, nuclear pleomorphism and mitotic counts provide a 

grading system that aid in classifying tumors with respect to differentiation level and in giving 

a certain prognosis (Elston & Ellis 1991).  
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Figure 1.1 Breast cancer is mainly adenocarcinoma arising from epithelia of the lobules and ducts. Both 
lobular and ductal carcinoma in situ are non-invasive abnormal proliferation of the lining epithelium of the 
breast, respectively in lobules and ducts, which can give rise to their invasive forms (PDQ Adult Treatment 
Editorial Board 2016, modified). 

Since 1950’s the International Union against cancer provides a staging system for solid cancer 

classification in order to deal with therapeutic decision, the Tumor Node and Metastasis 

system (TNM). This system describes the extent of the disease at the time of primary 

treatment, with Tumor size, involvement of regional lymph Nodes, and distant Metastasis as 

indicators of prognosis. TNM classification was born to discriminate between operable breast 

cancers from metastatic ones or best candidates for breast conserving therapy, but it suffers of 

its own limitations even if it has improved during these years coming now to its 8th edition. 

Besides misleading terminology (i.e. terms as carcinoma used for non-malignant intraductal 

proliferation), cancers belonging to same categories usually differ from prognostic point of 

view. For instance, tumors that have few millimetres and tumors with 2 centimetres of 

dimeters, fall in the same T1 group even if they can display huge differences in prognosis. 

Categories should be dynamic and flexible and, moreover, they should include more precise 

prognostic indicators, such as gene expression profiles and others molecular information, 

making the way straight for personalized medicine (Veronesi et al. 2006; Arnone et al. 2010).  

The molecular portrait of breast cancer

Among the main hallmarks of breast cancer is the “proliferative sustaining signalling” through 

hormonal and growth receptors with estrogen receptors (ER) representing the most important 

biomarker since 1970s. ERα and ERβ are two isoforms of nuclear transcription factors 

activated by steroids (i.e. estrogen), both expressed in normal mammary gland tissues 

developing breast cancers but with prevalence of ERα isoform in the pathogenesis of cancer 
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(De Abreu et al. 2014). 75% of all breast cancer cases are ER+ and positively respond to 

endocrine therapy with better outcome after surgery.  

Progesterone is a steroid hormone which drives growth and differentiation of breast during 

pubertal expansion and has been associated with the replicative potential of mammary gland. 

Progesterone receptor (PR) is induced upon ER signalling activation and rarely PR+ tumors 

are ER-. On the other hand, 40% of ER+ cancers are PR- indicating less responsiveness to 

endocrine therapy and suggesting the importance of PR expression assessment on breast 

cancer classification (Dai et al. 2016).  

Human Epidermal growth factor receptor 2 (HER2; HER2/neu) or proto-oncogene erb-b2 

receptor tyrosine kinase 2 (ERB-B2) is a membrane receptor belonging to a family of tyrosine 

kinase receptors involved in cell proliferation and survival. Its overexpression in more 

aggressive breast cancers is linked to gene amplification and has been identified in 15-20% of 

all breast cancers. Assessment of HER2 status is performed by validated 

immunohistochemical (IHC) and in situ hybridization (ISH) approaches (Nitta et al. 2016). 

HER2+ is linked to relative endocrine resistance consistent with the inverted correlation 

between ER/PR and HER2 expression (Dai et al. 2016). 

A better stratification of breast cancer patients and therefore better prognostic and/or 

predictive indications could be achieved considering other distinctive characteristics, such as 

the activation of invasion/metastasis programs, evasion from the immune system surveillance, 

deregulation of cellular energetics, genome instability/mutations, and resistance to cell death 

(Carels et al. 2016).  

The development of technologies and genetic knowledge allowed the set-up of the intrinsic 

molecular subtypes classification which helped to shed light on the tumor heterogeneity. Perou 

and colleagues in early 2000 outlined four different breast cancer subtypes based on their gene 

expression profiles (Perou et al. 2000). Among the great diversification of ER+ and ER- 

subgroups, the former seems to account for luminal breast phenotype, while the latter groups 

three different subtypes, the basal like, the Erb-B2 overexpressing, and the normal breast (with 

adipose and basal-like markers expression and low detection of luminal markers). Luminal 

subtype reminds luminal ductal/epithelial cells of the breast concerning low molecular weight 

cytokeratins expression (cytokeratins 8 and 18) whereas basal phenotype expression pattern is 

more similar to basal epithelial cells or myoepithelial cells of the breast (expressing 

cytokeratins 5/6 and 17). In 2001, the same group has divided luminal subtypes in at least two 

more different subgroups, Luminal A and B according to the expression of ER, GATA binding 

protein 3, X-box binding protein 1, trefoil factor 3, hepatocytes nuclear factor 3, and estrogen 
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regulated LIV-1 (Sørlie et al. 2001). Luminal A subtype comprises usually low-grade tumors 

with good prognosis while luminal B cancers express higher levels of proliferative markers, 

such as Ki-67, have higher histological grade and poorer prognosis (Makki 2015). Basal like 

subtype is defined by a gene expression profile similar to the one of basal/myoepithelial cells 

of normal breast even if the debate on its cellular ancestor is still opened. The majority of 

tumors belonging to this heterogeneous subtype is made by cells lacking expression of ER, 

HER2 and PR, the so-called Triple Negative Breast Cancer (TNBC) phenotype, to the point 

that they were thought to be synonymous (Kreike et al. 2007). However, 18-40% of basal-like 

breast cancers analysed by immunohistochemistry are not TNBCs. On the other hand, even if 

80% of TNBCs belongs to basal-like subtype, this category encompasses also other molecular 

subtypes. Together, basal-like and TNBCs account for 15% of all invasive breast cancers and 

present common features, such as high histological grade, prevalence on specific racial/ethnic 

groups, BRCA1 susceptibility and a surface marker profile similar to the one hold by stem 

cells (CD44+CD24-;Foulkes, Smith, and Reis-Filho 2010). 

Triple Negative Breast Cancer (TNBC) 

Hormone-receptors negative breast cancers account for 12-17% of all breast cancers and stand 

for their aggressiveness and poorer outcomes. Triple negative phenotype is often diagnosed in 

young women, spreads among black ethnicities, and is detected between two mammographies 

(interval cancer), with 18% of tumors occult in initial mammography. It has an unfavourable 

histopathological profile (high grade, high tumor size, and lymph node positivity) and tends to 

form metastases at lungs and brain (Kumar & Aggarwal 2016). Survival curves demonstrated 

that patients with TNBC are likely to die within 3-5 years after diagnosis even if after this 

period the risk of distant relapse is lower compared to other subtypes (Foulkes et al. 2010). 60-

80% of breast cancers displaying the germline mutation of the susceptibility gene BRCA1 

possess TNBC phenotype indicating that BRCA1 pathway dysfunction could be involved in 

TNBC biology (Reis-Filho & Tutt 2008). 

TNBC is a heterogeneous group of orphan breast cancers that exhibit different clinical and 

morphological features with dissimilar response to therapy strategies. They have been 

classified in different molecular subtypes according to their molecular profiles: i) the basal-

like 1 and 2, with high levels of cell-cycle and DNA-damage response pathway elements 

activated; ii) the mesenchymal/mesenchymal-like, with epithelial to mesenchymal transition 

(EMT), cell motility, and growth signalling pathway genes highly expressed; iii) the immune 
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enriched, with genes involved in immunological processes triggered; iv) the luminal androgen 

receptor (AR), with high level of androgen signalling (Ahn et al. 2016; figure 1.2). The 

“claudin-low” subtype converges towards the mesenchymal phenotype and it is characterized 

by low expression of genes coding for tight junction or cell-cell adhesion proteins, such as 

Claudin 3, 4, and 7, Occludin, and E-cadherin (Herschkowitz et al. 2007). Related to this 

particular subtype are the Metaplastic Breast Cancers (MBCs), which are triple negative and 

belong to mesenchymal/sarcomatoid/squamous metaplasia of breast carcinoma: these tumors 

are unique for their DNA copy alterations and share with the claudin-low subtype stem cell 

and chemoresistance properties (Hennessy et al. 2009).  

Current treatment 

Surgery is the first line treatment of breast cancer and consists mainly of two approaches: 

breast conserving surgery (BCS), when tumor is localized or regional; mastectomy, in 

presence of larger or multiple tumors. Most of women diagnosed in early stages undergo BCS 

with adjuvant therapy (chemotherapy, radiotherapy, or hormone therapy) whereas same 

percentage (59%) of women with high grade breast cancer face mastectomy (Desantis et al. 

2014). Adjuvant therapy consists of a series of treatments that are given after the main surgery 

in order to prevent distant recurrences or the occurrence of contra-lateral breast cancers 

(Salmon 2016). Radiotherapy and chemotherapy hit actively dividing cells through DNA 

damage or production of oxygen free radicals that activate apoptosis mechanisms. Widely 

used chemotherapic agents are methotrexate, 5-fluoruracil, taxane, cyclophosphamide, and 

anthracycline, i.e. doxorubicin (Davis et al. 2014). Chemotherapy is generally given as a 

combination of drugs that are more effective than monotherapies in certain subtypes of breast 

cancer, i.e. node positive, inflammatory, and advanced cancers. However, the single 

chemotherapic agent has fewer side effects and is preferred for women who no longer respond 

to other treatments (Carels et al. 2016). For both hormone receptor expressing and TNBC 

early tumors, adjuvant cytotoxic chemotherapy is based primarily on anthracyclines and 

taxanes; in particular, BRCA1/2 and TP53 mutated cancers well respond to platinum agents, 

which cause double strand breaks and prevent breast cells proliferation (Miller et al. 2014). 

Nowadays, personalized prognostic and predictive approaches to manage breast cancer are 

available. Immunohistochemical detection of expression of ER, PR, and HER2 currently drive 

adjuvant therapeutical approaches based on endocrine, anti-HER2 or chemotherapy strategies 

(De Abreu et al. 2014). 



Introduction - Breast Cancer 

 7 

 

 

Figure 1.2 TNBC subtypes are enriched for distinct gene ontologies. The public available Lehmann 
classification of triple negative breast cancers emerges from k-means clustering of the most differentially 
expressed genes of a training set of TNBCs and is used to predict the subtypes of a validation set. By gene set 
enrichment analysis results shown on the right, each subtype displays unique gene ontologies specific for top 
canonical pathways (Lehmann et al. 2011). 

ER expression is one of the most important features taken into consideration for the selection 

of an endocrine therapy. Currently, two are the main strategies to fight ER expressing breast 

cancers: the use of selective estrogen receptor modulators (SERMs, such as tamoxifen, 

raloxifene and toremifene) or aromatase inhibitors (AIs, non-steroidal [letrozole and 

anatrozole] and steroidal [exemestane]). SERMs competitively bind to ER interfering with 
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DNA synthesis and cell cycle progression towards G1 from G0. AIs instead block testosterone 

conversion to estradiol (E2) and androstenedione to estrone by aromatase which is the main 

source of estradiol in post-menopausal women (Miller et al. 2014). HER2 overexpression is 

indicative of cancers responsiveness to monoclonal antibodies blocking the receptor 

activation, such as trastuzumab and pertuzumab, or small molecules inhibitors, such as 

lapanatib (De Abreu et al. 2014). 

Neoadjuvant treatments arise as methods that allow breast conservative strategies or surgery 

where it was technically complicated (Salmon 2016). To this end, therapies based on 

endocrine drugs are potentially harmful because of their slow response rate which could delay 

surgery. In fact, most of neoadjuvant treatments consist of chemotherapy both in receptor 

positive or negative cancers even if in TNBC has shown controversial results: TNBCs have a 

better chemo-sensitivity compared to patients affected by other breast cancer subtypes in terms 

of pathological complete response (pCR) but after neo-adjuvant chemotherapy still exhibit 

worse outcomes in terms of disease free survival (DFS-period of time from diagnosis to 

evidence of disease) and/or overall survival (OS-time lapse from diagnosis to death; Miller et 

al. 2014). Historical therapeutical trials for TNBC patients are still lacking.  

Current breast cancer treatment trends address non-toxic potent targeted therapies and the 

advent of the -omic era has provided personalized prognostic and predictive approaches to 

manage tumors, even if with gross limitations: anti-angiogenetic drugs, poly-ADP-ribose 

polymerase (PARP), epidermal growth factor receptors (EFGR), androgen receptor (AR), 

phosphoinositide 3 kinase (PI3K), mitogen-activated protein/extracellular signal regulated 

kinase (MEK), checkpoint-kinase 1 (CHK1), and histone deacetylase (HDAC) signalling 

inhibitors are used in pre-clinical and clinical studies to treat advanced TNBC in place of 

cytotoxic treatment (Palma et al. 2015). Given the high heterogeneity of breast cancer and 

TNBC in particular, the prospective is to deeply understand the biology of these cancers in 

terms of pathways activations in order to define more feasible TNBC subtypes and to develop 

drugs targeting/affecting those specifically altered molecular mechanisms. 



Introduction - Epithelial to Mesenchymal Transition 

 9 

Epithelial to Mesenchymal Transition (EMT) 

Epithelial cells are apico/basal-polarized units of regular shape which lean on a basal lamina 

keeping contact with other cells by adherens junction, desmosomes and tight junction. E-

cadherin (epithelial calcium dependent adhesion molecule) is a transmembrane glycoprotein 

which composes adherens junction through homophilic interaction in a Ca2+ dependent way. 

Dependent on the tissue type, this cadherin is expressed in the entire circumference of the cells 

(non-polarized) or in peripheral intercellular borders (Eidelman et al. 1989). E-cadherin 

interacts by its cytoplasmic domain with β-catenin which in turn anchor cadherin complex to 

cytoskeletal actin. In contrast, mesenchymal cells are spindle-shaped cells which are loosely 

organized in extracellular matrix arranging connective tissue. Tissues containing these cells 

(i.e. connective tissue, lymphoid organ, cardiovascular system) are devoid of E-cadherin 

expression (Eidelman et al. 1989) with the consequent disappearance of specialized junction. 

Along with changes in surface proteins, mesenchymal cells exhibit a specific organization of 

cytoskeleton components, differential transcriptional factor expression, and organelle 

distribution (Zeisberg & Neilson 2009).  
Epithelial to Mesenchymal transition is of utmost importance during morphogenesis, a process 

in which cells de-differentiate from polarized epithelial cells to mesenchymal phenotype in 

order to migrate and define the complex body plan in multicellular organism. Gastrulation and 

neural crest delamination are two primary EMT events occurring early in embryonal 

development, followed possibly by secondary and tertiary EMTs in specific organ 

development (Thiery et al. 2009). During this functional transition, cells lose polarity and 

epithelial marker expression, switch cadherins, rearrange actin-stress fibers, increase synthesis 

of cytoskeletal proteins, change transcriptional factors expression, relocate on fibrillar 

extracellular matrix (ECM), and acquire spindle shape and migratory capabilities (Zeisberg & 

Neilson 2009). 

The plasticity of phenotypes acquired by this cellular transdifferentiation is underlined by the 

reversibility of the transition. Indeed, cells can undergo mesenchymal to epithelial transition 

(MET) once reached their final destination. The term transition is therefore preferred to 

transdifferentiation since it underlies the transient nature and reversibility of the process 

(Zeisberg & Neilson 2009). 

Three main types of EMT have been defined: i) the first is related to implantation, embryo 

formation and organ development; ii) the second deals with wound closure, tissue regeneration 
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and organ fibrosis and iii) the third type characterizes neoplastic cells which are enabled to 

invade and metastasize during the final stages of cancer progression (Kalluri & Weinberg 

2009). Concerning the latter case, the observation that cells relying on the invasive front of 

primary tumors acquire a mesenchymal phenotype leads authors to consider EMT as part of 

the invasion-metastasis cascade and to be responsible for the escape from the primary tumor 

mass, intravasation, transport in the circulating system, extravasation, micrometastasis 

formation, and colonization (Kalluri & Weinberg 2009). 

The role of EMT in tumor metastasis 

The vast majority of deaths related to solid cancer is due to occult metastasis occurring in 

lung, liver, brain, and bone marrow. However, metastatic process is for its nature very 

ineffective: in one cubic centimeter of solid tumor mass containing one billion of cells only 

<0.1% of tumor cells successfully develop distal metastasis (Mack & Marshall 2010). As 

reviewed by van Zijl F and co-authors, the origin of metastasis is still a debated question. Two 

are the main hypothesis: the “linear progression model”, suggesting that dissemination occurs 

after primary tumor growth, and the “parallel progression model” claiming an early migration 

of disseminating cells from a relative small primary tumor of 1-4 mm size. Cells can invade 

mainly by two different mechanisms: as epithelial sheet, maintaining cell-cell contacts and 

leading/tip cells giving a front-rear polarity and interacting with microenvironmental stimuli, 

or as single mesenchymal/amoeboid cell (Van Zijl et al. 2011). EMT has been though as an 

early process in cancer progression that enables the subsequent colonization of distant sites 

and the formation of micro- and macrometastasis for cells coming from the primary tumor 

through the acquisition of self-renewal capability (Mani et al. 2008). Both EMT and stemness 

represent indeed cornerstones which enable primary carcinoma cells to invade and to form the 

bulk of a second tumor mass (figure 1.3).  

 

Figure 1.3 EMT and MET are mechanisms that trigger cancer evolution toward metastasis. Cancer is 
though as a multistep process in which cells de-differentiate losing cell polarity and cell-cell contacts, detach 
from the basement membrane, acquire plasticity and motility modifying cytoskeletal proteins and acquiring new 
sensory extensions through an epithelial to mesenchymal transition, intravasate in the blood stream (or lymph 
stream) where they disseminate and through emboli or contact with endothelial cells they extravasate. The 
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formation of micro- and subsequent macro-metastasis require that cells undergo a new transition toward epithelial 
phenotype (MET) and proliferate defining a new metaplastic lesion. The tumorigenic and self-renewal properties 
of cells  allow proliferation, resistance to apoptosis and senescence stimuli and suppression of immune system 
reactions in the macrometastasis development (Kalluri & Weinberg 2009). 

Once cells acquire proliferation potential, resistance to apoptosis, and have a triggered 

metabolism, they firstly need to lose polarity and detach from the basement membrane in 

order to proceed in the metastatic process (Mack & Marshall 2010). Evidences that E-cadherin 

expression correlates with invasive breast carcinoma phenotype arise in 1997 along with the 

awareness that in invasive ductal carcinoma its lost might contribute to tumor de-

differentiation and hormone insensitivity (Siitonen et al. 1996). Lombaerts et al. demonstrated 

that inactivation of E-cadherin expression (encoded by CDH1) by promoter methylation is a 

part of the EMT program (Lombaerts et al. 2006). The relationship between cancer cells 

undergoing EMT and Extracellular Matrix components (ECM, i.e. collagen, fibronectin, 

laminin, and elastin) is another important point in the invasion step: cells gradually change 

integrin expression repertoire and up-regulate matrix metalloproteinases (i.e. MMP2 and 

MMP9) enabling ECM degradation and evasion from primary site towards lymphatic and 

blood vessels, in a process called intravasation (Lamouille et al. 2014; Mack & Marshall 

2010). Among the well-known master regulators of EMT are transcriptional factors involved 

in E-cadherin repression during mesenchymal differentiation. Some of these factors bind 

directly E-boxes present in the promoter of CDH1, such as the zinc fingers Snail, Slug, ZEB, 

and the bHLH E47, some others act indirectly, without binding E-cadherin promoter, such as 

the bHLH Twist1, the forkhead FOXC2, and the homeobox Goosecoid (Yang & Weinberg 

2008). The main signalling pathways involved in the expression of these transcriptional 

factors are TGFβ, Notch, and Wnt pathways that can cooperate with other pathways (i.e. 

MAPK and PI3K pathways) and signals coming from tumor microenvironment (i.e. Hypoxia). 

The best studied model is TGFβ-dependent activation of Smad2 and/or Smad3 that form a 

trimeric complex with Smad4. This complex migrates in the nucleus where it activates 

transcription of proteins involved in EMT (Lamouille et al. 2014).  

EMT molecular profile is currently used to try to stratify patients based on predicted outcome. 

Meta-analysis on gene expression signatures shows indeed a correlation between EMT-core 

gene list and pathological complete response (pCR) in breast cancer patients (Gröger et al. 

2012). In 2015 more than 100 clinical trials had EMT as key word and try to define a clear 

EMT expression pattern in different kind of cancers and tumor stages in order to use them as 

prognostic factors to tailor treatments (figure 1.4; Pasquier et al. 2015). 
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Figure 1.4 Molecular biomarkers of EMT used in ongoing cancer clinical trials for prognosis and 
therapeutic intervention. The figure summarizes EMT inducers and effectors marked with red or green asterisk 
if studied respectively in therapeutic or prognostic field (Pasquier et al. 2015). 

However, one of the main problems concerning EMT process in cancer pathogenesis is the 

difficult to distinguish between cell undergoing EMT and stromal cells or tumor associated 

fibroblasts together with the lack of convincing evidences in clinical samples (Thiery et al. 

2009). Often cancer cells do not need a complete EMT process to escape from the primary 

tumors and once they reach the remote site they undergo MET to colonize and proliferate. In 

fact, one of the main reasons of the controversy in EMT-based treatments relies on assumption 

that EMT is a permanent irreversible process whereas it seems not to be the case (Yang & 

Weinberg 2008). Another critical issue for the use of EMT markers in clinical trials is tumor 

heterogeneity: their expression widely varies among tumor sections, increasing mesenchymal 

markers in tumor periphery, and it is very difficult to establish cut offs in order to meet the 

stringent parameters of robustness and reproducibility required for clinical prognostic markers 

to be used as adjuvant therapy. Most of the ongoing clinical trials are trying to target inducing 

signals rather than EMT effectors and regulators (Pasquier et al. 2015) but none of them has 

translated into routine clinical practice yet. However, the understanding of precise 

combination of tumor microenvironmental signals and cellular molecular profiles in each step 

of cancer evolution could lead to the definition of an appropriate therapeutic options for 

patients. 

High Mobility Group Proteins drive EMT in cancer cells 

Among the inducers of pathological EMT is the aberrant activation of signalling pathways 

induced by inflammatory cytokines such as TGFβ, TNFα and IL-6. The inflammatory 
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response appears to elicit the tumor progression associated with High Mobility Group (HMG) 

proteins overexpression. HMGB1 protein could indeed act as extracellular inflammatory 

mediator and therefore enhances tumor development supporting chronic innate immune 

system inflammation. HMGB1 which is passively released from necrotic cells or actively 

secreted by inflammatory cells bind different types of receptor including RAGE, TLR2, 

TLR4, TLR9 and CD24 to promote inflammation (Tang et al. 2010). Recently, it has been 

suggested that in the necrotic and hypoxic breast tumor core, geminin overexpressing 

(GemOE) cells survival is connected to the presence of acetylated HMGB1 in the 

microenvironment. This oncoprotein is able to induce the recruitment of mesenchymal stem 

cells that in turn crosstalk with and enhance tumor initiating cells (TIC), stimulate the 

acquisition of a basal phenotype and induce an EMT on the necrotic GemOE tumor core 

(Ananthula et al. 2016). 

The chromosomal HMGN proteins are involved in a TGFβ-Smad driven EMT that seems to 

be enhanced by the pro-inflammatory cytokine TNFα in lung cancer cell lines. In this model, 

miR-23a is a target of TGFβ pathway and in turn regulates HMGN2 expression (Saito et al. 

2013). From recently published data, also HMGN5 (NSBP1) 3’UTR is targeted by miR-186, 

in a process that culminate with cadherins switch and vimentin down-regulation (Yao et al. 

2015). 

Tumor overexpressing HMGA proteins have been clearly correlated to highly aggressive and 

metastatic phenotype. The expression of these proteins has been demonstrated to be linked 

with both EMT and chemoresistance. In colon-rectal and breast cancer, HMGA2 enhances 

TGFβ signalling and correlates with TGFβRII expression, β-catenin nuclear localization and 

loss of cortical E-cadherin in invasive front of primary tumors and metastatic lesions 

(Morishita et al. 2013). Also in prostate cancer, HMGA2 was highlighted as a driver of TGFβ-

induced EMT, and linked to metalloprotease MMP2 and MMP9 expression (Shi et al. 2016). 

Moreover, in a feed-forward mechanism, Smad enhances HMGA2 expression, which in turn 

controls other key EMT regulators in mammary epithelial NMuMG cells (Thuault et al. 2006), 

such as Snail and Twist (Thuault et al. 2008; Tan et al. 2012). In Snail induction, the AT 

hooks seem to allow HMGA2 biding to Snail promoter and the contact with MH1 and MH2 

domains of Smad3, whereas C-terminal acidic tail appear as the transactivating domain for 

Snail expression (Thuault et al. 2008). Besides TGFβ, HMGA2 support Ras-induced EMT in 

pancreatic cancer cells: HMGA2 is able to restore Snail expression affected by the inhibition 

of MEK1/2 activation of ERK1/2 by U0126 (Watanabe et al. 2009).  
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As previously shown for HMGN proteins, EMT is also affected by cytokines through 

mechanism involving miRNA. let7d miRNA has demonstrated to affect HMGA2 and 

mesenchymal markers expressions induced by TGFβ in lung fibroblasts (Huleihel et al. 2014). 

In breast cancer model, down-regulation of let7 and miR-200 by oncostatin M (OSM, a 

member of IL-6) converge in HMGA2 expression and phenotype transition (Guo et al. 2013). 

In hepatocellular carcinoma another member of the let7 family, let7g seems to affect 

malignancy through the K-Ras/HMGA2A/Snail axis (Chen et al. 2014). Other epigenetic 

mechanisms are also involved in mediating TGFβ-HMGA2 induction of EMT such as post-

translational modification of DNA or histones (methylation of histone H3 in K9 or K27). 

HMGA2 are shown to be able to affect E-cadherin (CDH1) promoter DNA methylation by 

interacting with DNA methyltransferase 3A (DNMT3A) and favouring the detachment of 

CCCTC-binding factor (CTCF) a protein responsible for tumor suppressor genes insulation in 

mammary epithelial cells (Tan et al. 2015) 

Reeves and colleagues early highlighted HMGA1 proteins connection with the EMT process 

in MCF7 in which HMGA1 was overexpressed. Once inoculated directly into the fat pats of 

nude mice, these cells were able to induce secondary tumors. Among genes that have been 

found regulated in epithelial breast cells overexpressing HMGA1, collagens, vimentin, 

cytokeratins, and MMP were up-regulated whereas EGF receptor and TGFβ receptor III were 

down-regulated. Three years later, the same group discovered that HMGA1a protein regulates 

malignant metastatic progression of breast cancer cells triggering the Ras/Raf/MEK/ERK 

mitogenic pathway (Treff et al. 2004). Other evidences arose in poorly differentiated 

metastatic colon cancer cells where upon HMGA1 silencing Twist1 and vimentin were down-

regulated and, on the contrary, E-cadherin was up-regulated (Belton et al. 2012). 

Recently published data coming from our laboratory confirmed HMGA1 proteins role in 

breast cancer cell EMT process and stemness (Pegoraro et al. 2013). In fact, HMGA1 

depletion in MDA-MB-231 cells causes a drastical change in cell morphology with a re-

distribution of F-actin in a cortical pattern and the reduction of stress fibers. The Wnt/β-

catenin and Notch pathways have been suggested as main players of this transition. Moreover, 

in vivo results highlighted HMGA1 active role in metastasis formation rather than in tumor 

growth. Among the most differentially expressed genes between controls and HMGA1-

depleted cells, AURKB turned out to be one of the genes that mostly correlate with clinical 

outcome and cell migration. AURK pan-inhibitor, Danusertib, has recently shown to interferes 

with EMT process in malignant MCF7 and MDA-MB-231 breast cell lines (Li et al. 2015).
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High Mobility Group proteins 

The superfamily of High Mobility Group (HMG) proteins includes chromatin architectural 

factors that exhibit similar physical and chemical features and are able to tune DNA-related 

processes by binding to DNA or other chromatin proteins, first among others histones.  

Three families, namely HMGA, HMGB, and HMGN proteins, which differ for their functional 

motifs and therefore for the specificity of their binding sites, are members of this superfamily.  

HMGA proteins lack secondary or tertiary structures when free in solution and are 

characterized by modular sequence organization with three positively charged “AT-hooks” 

engaging minor groove of AT-rich DNA regions (Sgarra et al. 2004).  

Conversely, HMGB proteins possess two homologues L-shaped domains, called HMG boxes, 

composed by three alpha-helices domains. These proteins mainly localize into the nucleus 

even if they can also be secreted activating immune response or inflammatory reactions 

(Müller et al. 2001).  

The family of HMGN proteins binds nucleosomes by their positively charged domain, the 

nucleosomal binding domain, relaxing higher chromatin structure and enabling processes such 

as replication and transcription (Catez et al. 2002). 

HMG proteins lack binding specificity towards specific genomic sequences although they 

prefer certain DNA conformations. The kinetics of HMG proteins binding to DNA molecules 

have shown dynamicity, with a sort of “stop and go” mechanism ensuring high proteins 

turnover and competition with other family members and histone H1 (Hock et al. 2007). In 

this way, HMG proteins cooperate in maintaining chromatin plasticity with dynamic global 

and local transitions occurring during major cellular events. 

High Mobility Group A proteins (HMGA) 

HMGA proteins were discovered about 30 years ago, by inducing transformation in fully 

differentiated Fischer rat thyroid epithelial cells with oncogenic Kirsten murine sarcoma virus. 

The tumorigenesis associated with this retroviral infection is due to expression of viral v-ras, 

which in turn activates the production of secondary elements, i.e. growth factors, able to 

sustain the transformation. HMGA proteins were induced as a consequence of the v-ras 

induced neoplastic transformation. These proteins were afterward identified in actively diving 

cells but were almost absent in adult non proliferative tissues (Giancotti et al. 1985; Goodwin 

et al. 1985). By sequencing information available in 1991, it became clear that the new family 



Introduction - High Mobility Group proteins 

 16 

of proteins was composed of three closely related but different proteins, HMGA1a (previously 

known as HMGI), HMGA1b (previously known as HMGY) and HMGA2 (previously known 

as HMGI-C; Manfioletti et al. 1991). HMGA1a and HMGA1b are isoforms produced by 

alternative splicing of the same gene located at chromosome 6p21, which generate protein A1a 

of 107 aa and protein A1b of 96 aa (Johnson et al. 1989). For clearness purpose they will be 

referred together as HMGA1 protein throughout the text. The HMGA2 coding gene is longer 

than the one coding for HMGA1, it is located on chromosome 12q13-15 and encodes for a 109 

aa long protein (Chau et al. 1995). 

Besides neoplastic transformation, HMGA1 gene was found to be highly expressed in 

embryonic and fetal tissue with some quantitative differences between tissues and was barely 

detectable if not absent in adult rat and human tissues (Chiappetta et al. 1996). 

Human embryonic stem cells (hESC) hold high levels of HMGA1 while it is turned off during 

differentiation along with OCT4, SOX2 and NANOG, all pluripotency factors. Furthermore, 

HMGA1 drives somatic cells de-differentiation into induced pluripotent stem cells (iPSC). 

Specifically, HMGA1 is shown to bind promoters of cMYC, SOX2 and LYN28 

pluripotency/stem cell associated factors triggering their expression (Shah et al. 2012). Their 

absence or mutation lead to aberrant developmental phenotypes such as cardiac hypertrophy 

and type 2 diabetes in HMGA1 null mice and “pigmy” phenotypes (reduction till 60% of 

weight) in HMGA2 null mice (reviewed by Pallante et al. 2015). The double HMGA1 and 

HMGA2 knock-out synergistically resulted in the “superpigmy” mice phenotype, with about 

80% of weight loss (Federico et al. 2014). Although severe phenotypic alterations caused by 

loss of HMGA proteins, their presence is not critical for vitality being functional redundant 

and acting in compensatory fashion with other HMG proteins (Reeves 2010). 

HMGA1 dynamic interplay with chromatin 

HMGA1 is a prototype of intrinsically disordered proteins (IDs) that adopts stable 

conformations once bound to its DNA target or other substrates (Huth et al. 1997). In this way 

HMGA1 is able to bind to a wide spectrum of factors that are in turn involved in a great 

number of biological processes. Through contacts with DNA and proteins, HMGA1 affects 

cellular growth, proliferation, differentiation, and apoptosis by acting locally or globally on 

the chromatin landscape (Sgarra et al. 2004). 

An extensively studied model of locally regulated event by HMGA1 is the expression of Type 

I interferons (IFN-α and IFN-β), which are proteins secreted by immune system upon viral 
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infection and that interfere with viral replication. In the 65 bp region of DNA involved in IFN 

enhanceosome formation, HMGA1 has found to enhance the binding of several transcription 

factors, i.e. NF-κB, IRFs, ATF-2/c-Jun by inducing conformational changes onto DNA 

stretches and only later promoting assembly by protein-protein interaction (Yie et al. 1999). 

The enhanceosome surface contacts two histone acetyltransferase (HAT) GCN5/PCAF and 

CBP/p300 which in turn acetylates both histone’s tails and HMGA1, respectively on K71 and 

K65. These transcriptional activators work synergistically to recruit basal machinery and 

amplify gene expression (Merika et al. 1998; figure 1.5).  

 
Figure 1.5. The stereospecific complex of enhanceosome. The illustration represents the enhanceosome 
formation through co-activators and RNA PolII recruitments and DNA conformational changes on well-studied 
model of IFN-β. HMGA proteins, indicated as HMG1(Y), interact with IRF, ATF2/c-jun and NF-κB subunits 
p50 and p65 and imparts DNA bending (Vo & Goodman 2001). 

HMGA1 seems to play with a “hit and run” mechanism rather than being a stable component 

of the enhanceosome and its modifications, i.e. acetylation, act as molecular switch of its 

function (Reeves 2001).  

Regulatory regions of genes could be studded with occluding nucleosomes that mask the 

binding sites of transcription factors. Sometimes AT-rich regions are exposed on nucleosomal 

DNA or they flank core nucleosomes and could overlap the binding sites of other activators. In 

all these cases, HMGA1 acts mainly enhancing chromatin remodelling complexes displacing 

nucleosome and forming enhanceosome (Reeves 2010). Among other genes, the inducible 

expression of cytokine IL-2 that sustains the T-cell autocrine loop growing, is tuned by 

HMGA1 which triggers the binding of transcription factors to its weak promoter lacking their 

consensus motif (Himes et al. 2000). IL-2 high affinity receptor, IL-2Rα, is likewise regulated 

by HMGA1 with formation of stereospecific complexes (John et al. 1995). 
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Aside from canonical binding to B-form DNA and genomic sequences wrapped around 

nucleosome core particles, HMGA1 is able to recognize unusual structures, such as four-way 

junction (Cleynen & Van de Ven 2008). Four-way junction DNA mimics Holliday-type 

recombination crossover structures and the linker DNA close by the entrance and the exit of 

nucleosomes; HMGA1 has shown the ability to displace histone H1 through the competition 

for the same binding sites in these structures (Hill & Reeves 1997). Similar evidences of 

antagonism with repressive histone H1 has emerged from scaffold-associated region (SAR) 

involved in chromatin loops delimitation. HMGA proteins are though to act similar to 

distamycin, an antibiotic which blocks the interaction of proteins with AT rich sequences of 

SAR by amide-base hydrogen bonds and van der Waals interactions; distamycin, Hoechst 

33258 and netropsin structural motives are very similar to the AT-hooks and compete with H1 

for the binding to SARs. Moreover, HMGA have shown to lead to histone H1 outplacement in 

non SAR-DNA regions (Zhao et al. 1993).  

During interphase HMGA1a distribution overlaps the one of histone H1 preferentially 

localizing on heterochromatin (Harrer M et al., 2004). In contrast to their activating functions, 

HMGA proteins are also structural components of senescence-associated heterochromatic foci 

(SAHS) along with heterochromatin protein 1 (HP1) and its docking site, the histone H3 

trimethylated on lysine 9 (H3K9me3). The senescence program supplies cell cycle arrest with 

the repression of genes related to proliferation. In striking contrast with evidences that link 

HMGA1 to open chromatin configurations sustaining tumorigenic factors expression, these 

studies suggest an anti-proliferative action of HMGA proteins triggering senescence, a process 

that possess clearly tumor-suppressive features (Narita et al. 2006). HMGA are thought to act 

in mechanisms that clearly depend on environmental and intracellular contexts and owing the 

natural plasticity required to adapt to a great number of target it is able to mediate even 

opposite functions. 

Basal and oncogenic factors which converge in HMGA1 expression or 

modulate its function  

Several signalling pathways impair HMGA1 expression in response to extracellular stimuli. 

From the analysis of the 2 kb region upstream the transcription start site of HMGA1, three 

functional regulatory regions have been characterized, one of them being a distal region while 

two of them being proximal to the TSS. Although basal transcription involves the cooperation 

of specificity protein 1 (SP1) and activator protein 1 (AP1) in the proximal regions, the 
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overexpression of HMGA1 stimulated by oncogenic Ras through mitogen activated protein 

kinase (MAPK) cascade involve the distal or enhancer region (Cleynen & Van de Ven 2008).  

Transforming growth factor β (TGF-β) promotes HMGA1 expression in breast cancer cell 

lines by phosphorylation of SP1 affecting its occupancy on HMGA1 promoter. LY294402 and 

wortmannin, two potent inhibitors of phosphoinositide 3 kinases (PI3Ks), suggest that TGF-β 

acts mainly through non-Smad signalling pathway to activate HMGA1 expression (Zu et al. 

2015). 

Likewise, the canonical Wnt/β catenin pathway has shown the ability to regulate HMGA1 

expression through c-myc effector; moreover, HMGA1 positively correlates with nuclear 

localization of β-catenin in gastric cancer tissues (Akaboshi et al. 2009). 

Endogenous microRNA targeting HMGA1 also modulate its translation owing a tumor-

suppressive feature; among others, miR-296 (Wei et al. 2011), miR-26a (Zhao et al. 2015), 

miR-142-3p (Xu et al. 2014), let7a (Liu et al. 2015), miR16 (Kaddar et al. 2009) miR-548c-3p 

and miR-34b (D’Angelo et al. 2012) are found down-regulated in cancer tissues compared to 

normal ones and most of them considerably affect proliferation and motility. HMGA1 action 

is modulated by RNA interaction: the nuclear non coding 7SK RNA is a factor which 

negatively affect Polymerase II elongation and influence HMGA1 biological functions by 

competing for the first AT-hook binding with DNA (Benecke & Eilebrecht 2015).   

Other epigenetics mechanisms affect HMGA1 expression: by bioinformatics studies, eight 

pseudogenes, otherwise called “genomic fossils”, which belong to ancestor genes but lost their 

primitive functions through the accumulation of mutations are found high homologous to 

functional gene. HMGA1Ps (pseudogenes) are still able to affect gene expression in several 

ways: some could originate different proteins/peptides with alterations on post-translational 

modifications patterns and compete with HMGA1 for partners binding; others act as 

competitive endogenous RNA (ceRNA) which sequestrate miRNA regulating their action or 

modulate the binding of RNA stability factors (De Martino et al. 2016).  

Last but not least, in addition to its turnover, localization, and natively-disordered structure, 

also post-translational modifications modulate HMGA1 activities (Sgarra et al. 2010). As 

review by Zhang Q and Wang Y, HMGA1 is the most phosphorylated protein in the nucleus 

and its phosphorylation interfere with DNA binding capabilities and interactions with other 

proteins (Zhang & Wang 2008).  

Different levels of HMGA1 regulation, from transcriptional to post-translation mechanisms, 

let us understand how HMGA1 is a hub of chromatin biological functions, responding to 

extracellular environmental changes and orchestrating a myriad of intracellular events.  
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The causative role of HMGA1 in cancer 

The pivotal role played by HMGA1 in cancer onset emerged since its discovery in early 1985 

and subsequently many experiments confirmed a causative association between HMGA1 and 

different types of cancer rather than a marginal event of transformation. In 2001, Reeves and 

colleagues demonstrated that nude mice injected with human breast epithelial cells 

overexpressing HMGA1 developed primary tumors and metastasis and that HMGA1 

expression in tumor cells is responsible for the induction of factors critical for cell signalling, 

proliferation, tumor initiation, invasion, migration, angiogenesis, and colonization (Reeves et 

al. 2001). Several other in vitro evidences supported this causal role of HMGA1 in cancer: 

HMGA1 antisense construct prevents the transformation of rat thyroid cells by Kirsten murine 

sarcoma virus carrying v-Ras-Ki oncogene (Berlingieri et al. 2002); adenovirus harbouring 

HMGA1 antisense cDNA has cytotoxic effects on lung, breast, colon, and thyroid neoplastic 

cells but no effects were reported on normal cells (Scala et al. 2000); HMGA1 ectopic 

expression in Rat1 fibroblasts enables them to form colonies in soft agar and provides 

tumorigenic potential when fibroblasts are introduced in athymic nude mice (Wood et al. 

2000); in pancreatic cell lines, HMGA1 overexpression made cells unsusceptible for apoptosis 

mediated by cell-matrix interaction also known as anoikis (Liau et al. 2007). Furthermore, the 

advent of transgenic mice as laboratory tools allows to assess the oncogenicity of HMGA1 in 

vivo: HMGA1 knockout mice upon chemically induced skin neoplasia developed fewer 

tumors in respect to wild-type mice (Visone et al. 2008) and overexpression of HMGA1 under 

control of cytomegalovirus promoter led to pituitary adenomas and natural killer (NK)-T/NK 

cell lymphomas (Fedele et al. 2005). 

Among benign tumors, especially of mesenchymal types, chromosomal rearrangements 

involving both genes coding for HMGA1 and HMGA2 have been observed (Fusco & Fedele 

2007). 

Since 1991, by differential hybridization analyses of steady-state mRNA belonging to 

prostatic tumors associated with different grade of malignancy, HMGA1 emerged as 

prognostic marker for advanced solid cancer (Bussemakers et al. 1991). Aside mesenchymal-

originated tumors, HMGA1 is also overexpressed in human leukaemia of diverse origin and 

correlates with transformed state (Pierantoni et al. 2003). 

As in-deep reviewed by Fusco and Fedele, HMGA promotes cell transformation by inferring 

with basic biological processes in cells, mainly through the regulation of the expression of 

tumor suppressor genes or transcriptional complex factors. Indeed, HMGA1 promotes AP-1 
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action, a complex that modulates expression of genes promoting malignant phenotype, by the 

induction of the member Fra1, triggering cyclin A expression and affecting cell-cycle 

progression. HMGA1 fine-tunes the expression of several other proteins involved in cancer 

progression such as HAND1, a transcription factor which play major role during 

differentiation and thyroid carcinogenesis, and STAT3, a key signal transducer. Inflammation 

is also modulated by transcriptional regulation exerted by HMGA1 on inducible nitric oxide 

synthase (iNOS), cyclooxygenase 2 (COX2), E-selectin, Immunoglobulin E, IL2, and IL4 

genes; all these inflammatory players expression in turn results in suppression of apoptosis 

and boost of proliferation, angiogenesis, and invasion. Moreover, HMGA1 decreases 

expression of elements which enable DNA-damage recognition and repair. HMGA1 impacts 

also epigenetic mechanisms controlling gene expression; i.e. HMGA1 regulates miR-181 

which in turn negatively affect expression of critical downstream elements, such as Polycomb 

gene CBX7 (Fedele & Fusco 2010 and references therein). Furthermore, as previously 

reported, HMGA overexpression is associated with up- or down-regulation of key markers of 

epithelial to mesenchymal transition, an event characteristic of advanced epithelial tumor cells 

promoting invasion and metastasis. HMGA2 have shown to sustains EMT though the 

association with DNMT3A and the modulation of DNA methylation at CDH1 promoter which 

result in E-cadherin suppression (Tan et al. 2015).  

Although HMGA1 works mainly through modulation of gene expression by well-known 

mechanism involving both DNA and protein interactions, it is also able to control biological 

events by interacting with crucial factors and modulating their action. The “guilty by 

association principle” led to the discovery of a wide range of functional involvement of 

HMGA1 beyond transcription (Sgarra et al. 2010). One of the most striking examples is the 

ways by which HMGA1 influences p53-mediated apoptosis: HMGA1 interacts with p53 

altering downstream p53 effectors expression and regulates cytoplasmic localization of 

HIPK2, a kinase responsible for p53 activation through its phosphorylation (Fusco & Fedele 

2007).  

HMGA1 is a master regulator of breast cancer 

Among others, also HMGA1 emerges as biomarker for prognosis and diagnosis of breast 

cancer: Chiappetta and colleagues demonstrated by immunohistochemistry that HMGA1 

staining was higher both in lobular and ductal carcinoma compared to normal tissues, and in 

particular 40% of hyperplastic lesions without cellular atypia and 60% of ductal carcinoma 
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display high HMGA1 intensity staining (Chiappetta et al. 2004). Later on, studies confirmed 

that HMGA1 expression is higher both in term of mRNA and protein levels in breast cancer 

tissues compared with normal ones (Huang et al. 2015). Moreover, higher expression of 

HMGA1 was found among ductal carcinoma with respect to lobular breast cancer types (Zu et 

al. 2015). A recent study analysed HMGA1 expression on a tissue microarray with 1338 

resection of breast tumors, mainly ductal carcinoma variants. Results confirmed HMGA1 

absence on normal tissue whereas in breast cancer tissues its expression positively correlated 

with HER2/neu and progesterone expression and negatively correlated with estrogen receptor 

but none association was observed among histotypes, staging, and grading of tumors (Sepe et 

al. 2016). Conversely another study suggested that HMGA1 expression is higher in patients 

with high histological grade, worst clinical stage, larger tumor size, greater lymph node 

involvement, presence of distant metastasis, and having triple-negative status of hormone 

receptor expression and that their presence inversely correlates with overall survival of these 

patients (Huang et al. 2015). In fact, HMGA1 gene expression profile significantly crosses 

over the ones of others critical factors inferring with poor prognosis and high risk of distal 

metastasis (Pegoraro et al. 2013). Overlapping proteomics and gene expression data obtained 

from MDA-MB-231 cell lines transiently silenced for HMGA1 expression and control cells 

evidenced a HMGA1 signature with prognostic value in terms of overall-, relapse free-, and 

distant metastasis free-survival in breast cancer (Maurizio et al. 2016). Moreover, the tumor 

suppressor microRNA Let7a is found to be downregulated in breast cancer tissues and cells 

and is thought to act primarily by targeting HMGA1 expression which in turn results in 

migration and growth impairment (Liu et al. 2015). 

In familial breast cancer, showing autosomal dominant transmission pattern, BRCA1 and 

BRCA2 are often found mutated and BRCA1 patients exhibit particular tumor 

histopathological features. Baldassare and colleagues demonstrated that overexpression of 

HMGA1 protein leads to downregulation of BRCA1 promoter activity in breast cancer, with 

impairment of DNA repair mechanism and additional genomic alteration (Baldassarre et al. 

2003). By modulating BRCA1 expression, HMGA1 is able to affect cisplatin sensitivity and 

increased DNA damage-induced cell death (Baldassarre et al. 2005). 

Other molecular implications have been found for HMGA1 expression in breast cancer. In the 

mammary adenocarcinoma cell line MCF7, HMGA1a overexpression promotes tumor 

progression triggering sensitivity to Ras-extracellular signal related kinase (Ras/ERK) 

mitogenic signalling pathway. In particular, HMGA1a promotes expression of KITLG and its 

receptor c-Kit whereas downregulates both caveolins 1 and 2 and cholesterol biosynthesis 
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genes, all involved in modulating Ras/ERK pathway activation. HMGA1 modulates also the 

expression of downstream elements of this pathway, i.e. Shc, and its targets, i.e. Stat3, ER and 

PPAR-γ (Treff et al. 2004). An emerging role of HMGA1 in breast cancer progression came 

out in TNBC cellular models, in which lentiviral mediated delivery of shRNA targeting 

HMGA1 mRNA led to impairment of invasion and migration along with changes in 

morphology and depletion of tumor initiators or cancer stem-like cells (Shah et al. 2012). In 

this light, it becomes clear the importance of understanding the metastatic molecular 

mechanisms driven by HMGA1 in order to design drugs able to target these oncoproteins and 

also their downstream effectors. 

Targeting HMGA1: the challenge of specificity 

It is clear that HMGA1 could be a promising target for the treatment of highly aggressive 

cancers and efforts have been addressed towards the design of drugs targeting directly or 

indirectly HMGA1.  

Such treatment strategies could be efficiently grouped into four categories: i) compounds that 

competitively bind to AT-rich regions in the minor groove of DNA inferring with HMGA1 

action, i.e. antibiotics (distamycin and netropsin); ii) oligonucleotides decoy/sponges which 

prevent HMGA1 binding to DNA, i.e. spiegelmers and aptamers; iii) molecules which among 

others antitumor effects are also able to repress HMGA1 expression, i.e. doxorubicin and 

flavopiridol; and iv) inhibitors of HMGA1 downstream oncogenic factors, i.e. COX2, STAT3 

and MMP2/MMP9. Last but not least, higher HMGA1 expression is indicative of 

responsiveness to DNA-damaging agents; in fact, it downregulates expression of factors 

critical for DNA repair mechanism (BRCA1; Baldassarre et al. 2003). On the other hand, we 

recently demonstrated HMGA1 involvement in Non Homologous End Joining DNA repair 

mechanism by enhancing Ligase IV activity and resulting in faster recovery upon induction of 

dsDNA breaks; we therefore suggest an opposite oncogenic mechanism by which HMGA1 

could promote progressive accumulation of DNA lesions that could provide selective 

advantages to cancer cells compared to normal ones (Pellarin et al. 2016) .  

Most of the above mentioned HMGA1-interfering strategies often lack the specificity required 

to avoid undesirable effects (Huso & Resar 2014). Specificity could be gained by delivering 

specific shRNA/siRNA by nanoparticles or by therapeutical approaches which address 

downstream molecular mechanisms altered by HMGA1 expression. 
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Breast Cancer Epigenetics 

In breast cancer onset and progression, the misregulation of epigenetic mechanisms is a 

critical early event that affects chromatin dynamics resulting in gene expression and 

phenotype alterations. These mechanisms consist of hereditary molecular alterations that do 

not directly affect DNA sequences but covalently modify chromatin components: DNA 

methylation, histone’s post translational modifications, small non coding and antisense RNAs, 

and alterations in chromatin protein complexes are all involved in gene transcription 

regulation. Although cancer has been essentially defined as a genetically disease with major 

focus on transcriptional factors (TFs) dysregulation, TFs targeting is challenging because they 

are not enzymes and addressing protein-protein interactions remains tricky. On the other hand, 

enzymes responsible for chromatin modifications represent ideal targets for drug design: 

writers, readers and erasers of modifications are often mutated with the consequence of a 

disrupted epigenetic homeostasis (Jones et al. 2016).  

 

Figure 1.6 Functional classification of genes mutated in cancer development. In induced pluripotent stem 
cells, developmental potential is ruled by pluripotency factors, i.e. OCT4 and NANOG, genes which are 
frequently dysregulated in cancer. These factors are collectively referred to as epigenetic mediators and are prone 
to epigenetic regulation played by modifiers, another class of genes which could be mutated or fine-tuned by 
cellular signalling pathways elements (epigenetic modulators). In parallel to mediators’ expression, phenotypic 
plasticity is gained by large organized chromatin K9 modification (LOCK; block of repressive DNA and histone 
methylation) and lamina associated domains (LADs) which contribute to differentiation prevention and 
dedifferentiation promotion. To stabilize transformation, increasing transcriptional noise at differentiation-
promoting gens and re-localization of super-enhancer on oncogenes occur. Tumor heterogeneity is accomplished 
by fluctuations in environmental pressure and stochastic changes into unstable chromatin states and result in 
increased cellular entropy (Feinberg et al. 2016). 
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Besides mutations on genes coding for these epigenetic modifiers, which are directly 

responsible for chromatin modifications, epigenetic mediators and epigenetic modulators are 

two other functional cancer gene classes dysregulated in cancer: the former are genes whose 

expression is affected by chromatin modifications made by modifiers and which are generally 

associated to stem cell programming; the latter are genes whose products act before modifiers 

and mediators and that mediate crosstalk between environmental stimuli and cellular 

neoplastic propensity (Feinberg et al. 2016; figure 1.6).  

Cancer is therefore depicted as the result of an interplay between intracellular and extracellular 

tumorigenic stimuli which alter the epigenetic state of vulnerable epigenetic mediators through 

the action of signalling modulators and mediators. 

Chromatin landscape of breast cancer cells  

Epigenetic marks have been extensively queried to assess their relationship with histological 

types, clinical parameters and molecular profile of breast cancers. This suggest their potential 

role as both biomarkers for prognosis or outcome prediction upon specific treatment and 

therapeutical targets. The genetic information is housed in the nucleus of eukaryotic cells by 

DNA-histones complexes that are regulated by epigenetics modifiers. In particular, epigenetic 

modifications addressed in breast cancer war have been alteration in DNA methylation pattern 

and changes on PTMs which stud nucleosome surfaces and hence influence gene expression.   

DNA methylation is a post replicative modification present in the 5th position of pyrimidine 

ring of cytosine of dinucleotide CpG and is indicative of heterochromatic regions with more 

than 90% of methyl cytosines found in chromatin silent repetitive elements or transposones. 

DNA methyltransferases (DNMT) drive context dependent DNA methylation: DNMT3 family 

imparts de novo methylation while DNMT1 carries out methylation upon replication (Cheng 

& Blumenthal 2008). In normal cells, CpG methylation is associated with development long 

range silencing of imprinted genes, germ cells genes and those of inactive X chromosome 

(Stefansson & Esteller 2013). In cancer development, in context dependent ways, DNA could 

be globally hypomethylated, leading to up-regulation and overexpression of proto-oncogenes, 

or locally hypermethylated, repressing tumor suppressor, DNA repair, hormone receptors, and 

angiogenesis genes (Jovanovic J et al., 2010). DNA of estrogen receptor ERα promoter has 

found to be hypermethylated in 40% of breast cancer patients, with correlation to tumor size 

and histological grade (Hervouet et al. 2013). Treatment of ER- breast cancer cells with 

demethylation agents induces a partial demethylation of CpG islands present in the ER 5’ 
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region, and a production of ER mRNA and functional protein (Ferguson et al. 1995). Among 

genes that are hypermethylated in breast tumors and cell lines are cyclin D2 (CCND2), 

p16ink4a/CDKN2A, RAR-β, RASSF1A, HIN1, CDH3, and BRCA1 (Jovanovic et al. 2010). 

Characteristic DNA methylation profiles are displayed by luminal A, luminal B and basal-like 

breast cancers with higher levels of methylation gained by luminal B and the lower by basal-

like while normal breast and HER2+ intrinsic subtypes spread over above mentioned three 

methylation patterns groups (Holm et al. 2010). Different models have been proposed for gene 

expression repression by epigenetic machinery: one suggest that DNA methylation specify 

further histone’s modifications positions in order to maintain the silencing; on the other hand, 

histone PTMs have been proposed to primarily drive transient repression (Dworkin et al. 

2009). 

Nucleosomes are composed by protein chromatin pillars around which 147 bp of DNA are 

wrapped around and they organize genome in regulatory regions by their positioning. These 

units are composed of eight basic proteins called histones, H2A, H2B, H3 and H4 with two 

copies for each histone type, whose tails protrude in the nucleoplasm and could be extensively 

covalently modified. Single or combinations of post translational modifications (PTMs) 

destabilize histones contacts with DNA, nucleosome contacts, and form/disrupt docking sites 

for protein complexes able to drive biological responses. Some modifications are predictive of 

gene expression and in particular their specific localization is fundamental for the progression 

of gene transcription, i.e. the pre-initiation complex formation, PolII recruitment, initiation and 

elongation, and transcription termination (Karlić et al. 2010). One of the main effects of 

histone acetylation and phosphorylation is to disturb the electrostatic interactions between 

histones and DNA by altering the positive charge of N-terminal tails. This is usually 

associated with the opening of the chromatin fiber that allows transcriptional factors to bind 

gene regulatory sequences. In addition to this effect, phosphorylation and acetylations can also 

create/disturb docking sites at chromatin levels, directly participating in the transcription 

factor recruitment process.   

Differently, methylation does not cause overall chromatin structure perturbation via charge 

effects. Indeed, its action towards transcription appears dependent on the specific residue 

modified (Bannister & Kouzarides 2011). H3K4, H3K36, H3K79 methylations distinguish 

actively transcribed genes whereas H3K9, H3K27, H4K20 methylations are associated with 

repressed chromatin regions. Trithorax group of methyltransferases is responsible for 

H3K4me; Polycomb group proteins (4 different complexes PRC1-PRC4) formed by highly 

conserved enhancer of zeste homolog 2 (EZH2), suppressor of zeste (SUZ12), and Nurf-55 are 
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linked to H3K27 methylation. EZH2 has found to be overexpressed in breast cancer and is 

associated with aggressiveness, proliferation, invasion and tumor progression (Yoo & 

Hennighausen 2011). Lysine specific demethylase 1 (LSD1), which is responsible for 

demetylation of mono- and di- methyl lysine 4 of histone H3, was also found to be expressed 

at high levels on ER- tumors (Huang et al. 2011). HP1 recognizes and binds di- and tri-

methylated H3K9, hallmarks of silent chromatin, and it is further responsible for the formation 

of higher order chromatin structures. HP1 displays tumor suppressive functions in breast 

cancer and is found to be differentially expressed between cancer and normal tissues (Vad-

Nielsen & Nielsen 2015). From immunohistochemistry analysis of 880 breast cancer tissues 

which address histone marks known to be involved in transcriptional activation and 

maintenance of euchromatin state, H4K16 acetylation appears to be low or absent in 79% of 

breast cancer samples whereas levels of H3K18ac and H4K20me3 were high in the majority 

of cases. Correlation with clinic-pathological data such as tumor size and lymph node and 

vascular invasion was observed for most of the modification observed in this study. Moreover, 

high levels of post translational modifications were associated to steroid hormone receptor, 

luminal cytokeratins, E-cadherin and BRCA1 expression and better patient outcomes. In 

particular, high levels of acetylation and methylation are linked to favourable prognosis and 

luminal breast cancer subtypes, moderate levels of acetylation (H3K9, H3K18 and H4K12), 

methylation (H3K4me2, H4K20me3), and arginine methylation (H4R3me2) were indicative 

of poorest prognosis, basal carcinoma and HER2+ subtypes (Elsheikh et al. 2009). 

Epigenetic marks have been also causatively associated with tumorigenesis and cancer 

progression.  An in vitro breast epithelial cells model of cancer progression was obtained by 

the introduction of three genes (large T antigen, telomerase reverse transcriptase and Harvey 

rat sarcoma viral oncogene homolog v12 mutant RAS V12) to human primary mammary cells 

(HMC). Authors described a decrement of di- and tri- methylated histone H3K9 along with the 

inversely matching increasing activities of KDM3A/JMJD1a demethylase (Zhao et al. 2016) 

In line with epigenetics role in cancer progression, histone H3 acetylation of Slug promoter 

through the activation of PKC with phorbol ester (TPA), was indicated as a mechanism 

driving EMT in breast cancer (Kamiya et al. 2016). In addition, epigenome has been 

demonstrated to either assist or mainly direct SMAD3 differential binding specificity, 

mediating context dependent pro-oncogenic or tumor suppressive responses. In particular, in 

breast tumor initiating cells SMAD3 binding pattern is affected by open configuration state 

marked by promoter H3K4me3, promoter and enhancer H3K27ac and RNA PolII binding 

(Tufegdzic Vidakovic et al. 2015). In spite of opposite roles played by acetylation and 
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methylation in H3K27 and H3K9, those of H3K4 are both associated with gene expression 

activation with acetylation playing a major role in early step of cancer progression and 

methylation being associated with metastatic potential. H3K4ac mediate expression of targets 

genes of ESR signaling pathway while H3K4ac and H3K4me3 have been associated with 

EMT response in MDA MB 231 (Messier et al. 2016). Cell invasion, another important step in 

tumor metastasis, has been inversely correlated with H3K20me3 in breast cancer cells and its 

loss is indicative of poor prognosis in patients (Yokoyama et al. 2014). 

Aside well studied local epigenetic modification at single gene locus, breast cancer 

heterogeneity is characterized by other long range epigenetics events which results in higher 

order chromatin organization. Gene which cluster into regions of regional epigenetic 

regulation (RER) exhibit coordinate expression without evidences of genetic alterations of 

their copy numbers. Analysing patterns of gene expression, DNA methylation and histone 

PTMs, large chromosomal domains are found coordinatively regulated and these RERs 

segregate with breast cancer intrinsic subtypes. In this study, one region of long-range 

epigenetic activation (LREA) is shared by both ER+ breast tumors and breast cancer cell lines 

and estrogen-dependent chromatin relaxation was suggested as underpinning mechanism 

leading to unfolding of high order chromatin structures and chromosomal radial nuclear re-

localization (Rafique et al. 2015). 

Another study investigated cis interaction between breast-epithelial enhancers and up to 750 

kb away target genes expression in normal breast epithelial cells (HMEC) and breast cancer 

cells (MDA MB 231). The presence of enhancers was connected to the histone mark 

H3K4me1 (Choe et al. 2012) and nucleosome-depleted regions were chosen. Results 

suggested a cell specific enhancer control of nearby gene expression which enrich for genes 

involved in proteolysis, epidermis development, and cell adhesion processes in normal breast 

cells and, on the contrary, mitosis, cell cycle, DNA replication, chromatin modification, and 

cell division processes in invasive breast cancer cell line (Rhie et al. 2014). 

Brest cancer epigenetics marks in clinical managements of disease 

Two strategies in targeting chromatin modifications are the most widely exploited: targeted 

therapy in a specific subset of patients (precision medicine) and broad reprogrammers, which 

affect large scale pattern of modifications leading to gene expression regulation (Jones et al. 

2016). 
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Among broad reprogrammers are drugs which reverse aberrant DNA methylation or histone 

acetylation patterns on tumor suppressors or genes mediating drug resistance. These 

therapeutical strategies rely on inhibitors of DNA methyltransferases and histone deacetylases 

which drive back cancer genes expression. In breast cancer, the analogues 5-azacytine and 5-

aza-deoxycytine (decitabine) are the most commonly studied inhibitor of DNTMs which 

covalently trap the enzyme and stop up methylation of genomic DNA. Another nucleoside 

analogue is zebularine, which after being phosphorylated and converted to deoxynucleotide is 

incorporated in DNA where it blocks DNMTs and methylated-CpG binding proteins. RG108, 

Psammaplins, MG98, hydralazine and (-)-epigallocatechin-3-gallate (EGCG; polyphenol 

compound of the green tea) are additional compounds which have shown demethylating 

effects on breast cancer cells without being incorporated to DNA, with promising effects in 

breast cancer treatment (Cai et al. 2011). 

Histones deacetylase inhibitors (HDACi) act mainly promoting selectively apoptosis of tumor 

cells by affecting DNA-histones complexes interactions and other proteins acetylation status. 

These inhibitors can be classified according to their substrates or by their chemical structures 

which define 4 types of drugs: hydroxamates, benzamides, cyclic peptides and aliphatic acids. 

Vorinostat (SAHA) is one of the most studied HDACi which inhibits cellular growth by cell 

cycle arrest and apoptosis in several breast cancer cell models. SAHA has been also connected 

to EMT in TNBC (Damaskos et al. 2017). In fact, HDACi could exhibit opposite effects 

depending on molecular profile of breast cancer: it has been demonstrated that in ER+ breast 

tumors it leads to transcriptional downregulation, while in ER- cancer it restores gene 

expression (Jovanovic et al. 2010). Besides direct effects of HDAC inhibition on histone 

PTMs profile, the use of compound which provide chromatin relaxation could also improve 

access of topoisomerase inhibitors on cancer cells. More often than not, the combinational use 

of drugs elicits better responses than those of monotherapies and even epigenetics drugs can 

be used in combination with other epigenetics therapies or with other treatments, such as 

immunotherapic or chemotherapic agents (Jones et al. 2016). The combinational use of 

inhibitors of HDAC and DNMT synergistically affect disease progress with increased re-

expression of ER and tamoxifen responsiveness in breast preclinical studies (Connolly & 

Stearns 2012). LAQ824, inhibitor of deacetylase, and decitabine, inhibitor of DNA 

methyltransferase, have shown synergic activities on restoration of tumor suppressor gene 

expression; vorinostat in combination with chemotherapic paclitaxel and anti-angiogenic 

bevacizumab have shown effects on 50% of metastatic breast cancer treated (Jovanovic et al. 

2010). 
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On the other hand, precision medicine aims to address epigenetic mechanisms which affect (i) 

genes critical for cancer development that are not mutated or (ii) mutations of genes involved 

in epigenetic pathways. For instance, the design of drugs targeting iperactivation of PI3K-

AKT signalling should account for epigenetic mechanisms which drive PTEN inactivation in 

breast cancer PTEN defective cells or CpG methylation of PPP2R2B, a phosphatase and 

negative regulator of AKT (Muggerud et al. 2010). Moreover, epigenetic modifications could 

be used to predict cancer risk, onset of disease and therapeutical responsiveness. BRCA1 

methylation, present in half of triple negative breast cancer, predict responsiveness to PARP 

inhibitors and cisplatin (Stefansson OA and Esteller M, 2013); likewise, the development of 

Tamoxifen resistance (roughly 40% of cases) has been connected to ERα and ERß methylation 

(Dworkin et al. 2009).  

Although considerable progresses have been achieved in the field of epigenetics in breast 

cancer, in the era of personalized targeted therapy, robust biomarkers that accurately predict 

responsiveness to drug targeting epigenetic modifiers are still lacking. This thesis has been 

developed accounting for the pressing need for clearness of chromatin dynamics and their 

causative roles in breast cancer onset and progression. 



Aim of the study 

 31 

AIM OF THE STUDY 

HMGA1 is a well-known determinant of breast cancer onset and progression and it occupies a 

pivotal position in the chromatin landscape by organizing genetic information and regulating 

DNA accessibility to a myriad of factors; furthermore, HMGA1 has been shown to influence 

nucleosome positioning at specific promoters or enhancers through direct contacts with core 

histones. Despite this, efforts have not yet been addressed towards understanding whether 

HMGA1/nucleosome contacts could be linked to a modulation of covalent modifications of 

histones tails. Therefore, the primary purpose of this study has been to unravel HMGA1 

function on chromatin modifications in triple negative breast cancer where HMGA1 is 

naturally high expressed. 
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MATERIALS AND METHODS 

Breast cancer cell lines 

Breast cancer cell lines used in this study are: adenocarcinoma MDA MB 231 (TNBC, 

mesenchymal like/claudin low-KRAS mutation); medullary carcinoma MDA MB 157 (TNBC, 

mesenchymal like/claudin low); adenocarcinoma MDA MB 468 (TNBC, basal like - 

amplification of EGFR); metastatic carcinoma MDA MB 453 (ER-, PR-, HER2+; LAR); and 

adenocarcinoma MCF7 (ER+, PR+, HER2-; Luminal A). Classification is reported according 

to the one proposed by Holliday DL and Speirs V (Holliday & Speirs 2011) and American 

Type Culture Collection (ATCC). 

Cellular cultures and treatments 

Cells were cultured in 10 % Fetal Bovine Serum (Euroclone), 2 mM L-glutamine (Euroclone), 

100 U/ml penicillin, 100 µg/ml streptomycin in Dulbecco’s modified Essential Medium High 

Glucose (DMEM, Euroclone) at 37 °C in humidified 5% CO2 incubator. To MCF7 cell line 

1X MEM non-essential amino acids (Sigma) were added to the medium. Cells were expanded 

every 48 hours when sub-confluent according to ATCC recommendations. Adherent cells 

were detached by trypsin-EDTA, (Euroclone) incubated 5 minutes at 37 °C and trypsin was 

neutralized by medium addition. Thereafter, cells were seeded according to cell counting. For 

long term storage, cells were resuspended in 10% DMSO in FBS and conserved in cryovials in 

liquid nitrogen. 

Cell counting 

In order to define cell concentration, a Neubauer chamber was used. Briefly, 10 µL of 

desirable cell dilutions (about 250.000 cells/mL) are pipetted in the two chamber rooms 

composed of a grid subdividing 9 big squares. Cells present in four external squares (4x4) are 

counted excluding cells lying on lower and right margins of the smaller squares. Same 

procedures are used for the second chamber. Minimal and maximal values are excluded for 

mean calculation. Since distance between glass cover and the bottom of the chamber is 0.1 

mm, the volume of one square is 0,1 µL and the cell concentration is obtained by multiplying 

mean value to factor 10.000. If prior dilutions have been applied to the sample, they must be 

considered to undiluted sample concentration determination. 



Materials and methods 

 33 

Small interfering RNA (siRNA) 

Cells were plated 21⋅103/cm2 in medium without antibiotics. After 24 hours, siRNA and 

lipofectamineTM RNAiMAX (Invitrogen) were diluted in medium without antibiotics and 

FBS, incubated together for 15 minutes and the dropped over cell Petri dishes. Lipofectamine 

was used 5 µL in a 35-mm plate containing 3 mL of medium.  

siRNA  

Target mRNA siRNA sequences Final concentration 

None in mammalian cells ACAGTCGCGTTTGCGACTG 10 nM 

HMGA1 (A1_1) GACAAGGCUAACAUCCCACTT 10 nM 

HMGA1 (A1_3) ACTGGAGAAGGAGGAAGAG 10 nM 

RSK2 GCAUUCCACCUAGUGCUAATT 10 nM 

CBP (ORF) CCTTCTAGCACCGGTGTAA 10 nM 

EP300 (ORF) GCAAACAATCGAGCGGAAT 10 nM 

Table 1. List of siRNA sequences and their concentration used to target specified mRNA. 

Metabolic activity assay: MTS assay 

In order to evaluate the cytotoxicity of a particular treatment, we performed MTS assay that 

allows the colorimetric determination of actively proliferating cells in the cellular population. 

In fact, the compound 3 - (4,5 - dimethylthiazol - 2 - yl)- 5 - (3 - carboxymethoxyphenyl) - 2 - 

(4 -sulfophenyl) - 2H - tetrazolium is bioreduced to formazan which is soluble and absorbs at 

490 nm. The reaction is proportional to viable cells because the reaction is accomplished by 

dehydrogenase enzymes acting in metabolic active cells. 5000 cells were plated in a 96-

multiwell plate and grown for 72 h before treatment, thereafter every 24 hours medium was 

replaced with 200 µL of MTS diluted 1:6 in 4.5 g/L glucose in PBS (Huang KT et al., 2004). 

After an incubation of 2 h and 30 minutes at 37°C 5% CO2, the absorbance was read at 

TECAN microplate reader. Plotting values of absorbance versus time points, curves of 

metabolic activity were obtained upon treatment over a period of time. 
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Lysates pre-fractionation: Histone Extraction Methods 

Strong acid histone extraction (modified Schechter D et al., 2007) 

Upon silencing, a 150-mm plate of cells was rinsed twice in PBS, gently scraped in PBS and 

collected in tubes. Intact cells were precipitated by mild centrifugal force (4°C, 450 g, 5 

minutes) and resuspended in 1 mL of cold hypotonic lysis buffer (10 mM Tris/HCl pH 8.0, 

1mM KCl, 1.5 mM MgCl2, 1 mM dithiothreitol DTT) complemented with 1 mM NaVO3, a 

grain of sodium butyrate and 1/100 (v/v) protease inhibitor cocktail (PIC, Sigma). Otherwise, 

after centrifugation cells could be stored at -80°C up to 3 months. Cells were shanking 

incubated in lysis buffer at 4°C for 30 minutes and nuclei precipitated by centrifuge (4°C, 

10000 g, 10 minutes). Supernatant was discarded and nuclei resuspended in 0.5 M HCl; strong 

acid incubation is performed O/N. The day after, samples are centrifuged at 4°C 16000 g for 

10 minutes. Proteins soluble in strong acid medium (i.e. histones) are present in the 

supernatant; therefore, supernatant was incubated O/N at -20°C with 8 volumes of acetone so 

as proteins cold be precipitated by centrifuge at 4°C 3345g for ten minutes. Samples were 

decanted and pellet resuspended with 200 µL of MS-water (Sigma). 

Histone purification kit (Active Motif) 

Histones were extracted from two 150-mm plate cells according to manufacturer instruction. 

Briefly, cells were washed twice in serum-free medium and scraped with 800 µL of Extraction 

buffer wherewith cells are shaking incubated O/N at 4°C. Then, cells were centrifuged at 4°C 

16000 g and supernatant conserved over weekend (O/W) at -80°C. 200 µL of neutralization 

buffer was added and pH measured (8). Column was filled with resin, washed, equilibrated 

and samples loaded. Resin was washed and finally core histones eluted in different fractions.  

Total proteins extraction for Western Blot analysis 

Upon above-mentioned treatments, cells were rinsed twice in PBS (Phosphate Buffered 

Saline: 2.68 mM KCl, 1.76 mM KH2PO4, 137 mM NaCl, 9.93 mM Na2HPO4 pH 7.4 

sterilized), and lysed by gently scraper in SDS sample buffer (125 mM Tris/HCl pH 6.8, 4% 

w/v SDS, 20% glycerol, traces of bromophenol blue and 0.2 M DTT). The stoichiometry of 

anionic detergent SDS binding to protein is around 1 molecule of SDS per two aminoacids, or 

1.4 g SDS per 1 g of proteins. To a confluent 50-mm Petri dish, 100 µL of SDS sample buffer 

were generally used with large excess of SDS. DNA was mechanically destroyed by ten 
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sample passages into insulin syringe (29 G needle) and lysates were then boiled for 5 minutes 

at 96 °C to favor reducing agent action (DTT) and denature proteins. Samples were then stored 

at -20°C.  

SDS- PolyAcrylamide Gel Electrophoresis (SDS-PAGE) 

The electrophoretic migration of protein lysates was performed in Laemmli discontinuous and 

denaturing system in which proteins, conditioned with SDS which impairs negative charges to 

molecules, migrate primarily based on their size towards the positive electrode and 

determination of molecular weight is allowed with opportune standards loaded next to 

samples. The upper phase of discontinuous gel, Stacking gel (T=5%; C=3.3%; in 1.15 M 

Tris/HCl pH 8.45, 0.11% w/v SDS and 1 mg/mL of ammonium persulfate APS), is 

characterized by larger pores in which proteins migrate faster an accumulate in more resolving 

Running gel (T=15%; C=3.3%; in 1.6 M Tris/HCl pH 8.45, 0.16% w/v SDS and 1 mg/mL of 

ammonium persulfate APS), with smaller pores and slow migration. Polymerization occurs by 

the addition of catalyst N-N-N-N Tetramethylethylenediamine or TEMED (2 µL for 1 mL of 

stacking; 4 µL for 10 mL of running). Gel thickness: 0.75 mm; length stacking: 0.5 cm; length 

running: 8 cm; gel width: 8 cm. In contrast with original Laemmli gel, ours do not contain 

SDS which is present in SDS sample buffer and cathode buffer enough to sustain denaturation 

during electrophoresis separation. Cathode buffer: 0.1 M Tris, 0.1 M Tricine, 0.1% w/v SDS 

pH 8.25. Anode buffer: 0.1 M Tris/HCl pH 8.9. The accumulation was performed at 20 mA 

whereas separation at 40 mA. 

Blue Coomassie staining - Total Protein samples quantification and 

normalization  

Lysates separated by SDS-PAGE were stained by a shaking incubation with 

methanol/water/acetic acid in a 5/4/1 volume ratio with 0.05% (w/v) of Coomassie Brilliant 

Blue R 250 which can be protracted overnight (O/N). Dye excess was eliminated by 10% (v/v) 

acetic acid washes. Optical densities were obtained using Image Scanner and Image Master 

2D Software (Amersham Pharmacia Biotech). In order to quantify and normalize samples, a 

curve of HL60 lysate quantified by Bradford (Sigma) was loaded next to samples in the SDS-

PAGE. The densitometry values performed with 600 dpi (dots per inch) resolution, were then 

plotted in a calibration curve versus the amount of lysate (µg). By densitometry values 

interpolation, the sample concentrations were obtained and samples were normalized. 
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Bicinchoninic Acid (BCA) method for protein quantification  

The BCA protein assay reagent kit (Pierce) is a detergent compatible method based on biuret 

method. Briefly, in alkaline medium Cu+2 is reduced at Cu+1 which in turns is able to chelate 

molecules such as BCA forming purple products, soluble in water and absorbing at 562 nm. 

The intensity is proportional to number of peptides bonds, the macromolecular structure of 

proteins and presence of cysteine, cysteine, tryptophan and tyrosine. According to datasheet, 

reactions are performed in a 96-multiwell plates and absorbance was read at TECAN 

microplate reader. The concentration of samples derived from a calibration curve with bovine 

serum albumin (BSA) as standard. 

Semi-quantitative Western Blot (WB) 

Once cell lysates have been separated accordingly to protein molecular weight through SDS-

PAGE, total proteins could be transferred to a nitrocellulose membrane ∅ 0.2 µm (GE 

Healthcare) using a wet transfer system (Biorad) in 20% methanol, 25 mM Tris, 200 mM 

Glycine (blotting solution), for 16 hours at 4°C with liming current (75 mA). The quality of 

transfer was valued by incubation with ponceau red solution (0.2% red ponceau, 3% 

trichloroacetic acid, 3% sulfosalicylic acid) for 10 minutes at RT.  Images were acquired by 

Image Scanner and densitometry of lysates obtained by Image Master 2D Software 

(Amersham Pharmacia Biotech) were used to normalized western blot results. Membrane was 

then saturated 1 h at RT with 5% (w/v) non-fat dry milk 0.1% (v/v) Tween 20 in PBS 

(blocking solution). The amount of total lysate necessary for antibody detection of target 

protein was estimated by a curve of lysate and the entire membrane was recognised in order to 

assess antibody specificity. Membrane was then shaking incubated with indicated dilutions of 

primary antibody in blocking solution 1 h at RT and then washed three times with blocking 

solution. Afterword membranes were then incubated with horseradish peroxidase-conjugated 

secondary antibodies diluted in blocking solution and washed three times in blocking solution 

and twice in PBS. Peroxidase substrate Enhanced Chemiluminescence (ECL, Thermo 

Scientific) kit was used to detect bands with autoradiography films (GE Healthcare). 
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Antibodies  

Primary Antibody Dilution used in 
WB 

α-HMGA1 1/500 

α-H2B (Abcam, #ab52985) 1/2000 

α-H2BK5ac (Abcam, #ab40886) 1/500-1/1000 

α-H2BK16ac (Abcam, #ab177427) 1/10000 

α-H2BK20ac (Abcam, #ab177430) 1/2000 

α-H3 (Abcam, #ab1791) 1/4000 

α-H3S10ph (Abcam, #ab5176) 1/1000 

α-ERK 1/2 (Sigma, #M5670) 1/1000 

α-pERK 1/2 (Sigma, #M8159) 1/1000 

α-RSK2 (Millipore, #06-918) 1/500 

α-RSK2S227ph (Abcam, ab75820) 1/500 

α-CREB (Genetex, #GTX112846) 1/500 

α-CREBS133ph (Sigma, SAB4504375) 1/1000 

α-AURKB (Novus, #NB100-294) 1/1000 

Secondary antibody  

α-IgG rabbit (Whole molecule) Peroxidase conjugate 
(Sigma, #A0545) 1/5000 

α- IgG mouse (Whole molecule) Peroxidase conjugate  
(Sigma, #A9044) 1/5000 

Table 2. List of primary and secondary antibodies used with their dilution factors in western blot analysis. 

Multiple enzymes digestion Filter Aided Sample Purification (MED-FASP) 

and Stage Tips purification 

Centrifugal Filter Units Microcon 30k (Millipore) were used in order to perform solvent 

exchange and in solution digestion. 50 µg of core histones were mixed with 200 µL of buffer 

UA (8 M Urea in 100 mM Tris/HCl pH 8.5) and loaded onto filter units placed in a centrifuge 

tube. Centrifugation was performed at 20°C 10.000 g for 20 minutes. Once discarded the flow-

through, filter was washed with 200 µL of buffer UA and alkylated whit 100 µL of 

IodoAcetAmide buffer (55 mM IAA in UA) was added and centrifuged at 20°C 10.000g for 
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15 minutes. This step was followed by two washes with UA buffer and two conditioning 

washes with Arg-C digestion buffer (DB; 100 mM Tris/HCl pH 7.4,10 mM CaCl2). Then, 

samples were digested with 0.5 µg of Arg-C in DB (100 µL) O/N at 37 °C in activating 

solution and DB (according to manufacturer instruction; Roche). Samples digested were 

collected in tubes by centrifuge at 20°C 10.000g for 15 minutes; filters were washed twice 

with 100 µL of digestion buffer. Thereafter, remaining undigested polypeptides were 

incubated O/N hours with 1 µg Trypsin in DB (50 µL) at 37°C. Elution and washes were 

performed as for Arg-C digestion. Eluates were then de-salted by stage tips device made by 

three plugs of Solid Phase extraction disk (Bioanalytical technologies 3M Company Empore 

2215 - C18 Octadecyl 47 mm 20 each) previously washed with ethanol, Acetonitrile 60% in 

1% acetic acid and finally with 1% acetic acid. Samples were loaded in 1% acetic acid, 

washed with 1% acetic acid and eluted by Acetonitrile 60% in 1% acetic acid with a mild 

centrifuge at 24 °C 500 g 10 minutes and collected into 0.2 mL 24 well PCR plates 

(Thermoscientific). Samples were finally subjected to a vacuum centrifuge 45°C 30 minutes. 

We established 6% of the Arg-C samples and 12% of Strong Acid Arg-C samples as the right 

amount of FASP eluted sample to inject so as to do not overload the column. Trypsin samples 

for both extraction methods are injected as 12% of the total eluted after the FASP 

purification/digestion. 

Orbitrap Q exactive 

Peptides were loaded onto a reversed phase C18 column (20 cm × i.d. 75 µm; Dr. Maisch 

Reprosil-Pur AQ 1.9 µm) (75 µm inner diameter, in-house packed with ReproSil-Pur C18-AQ 

1.8-µm resin - Dr. Maisch GmbH, Ammerbuch-Entringen, Germany) with buffer A (0.5% 

acetic acid). A 180 minutes gradient of acetonitrile in 0.1% formic acid (5 minutes 2-5% B; 80 

minutes 5-30% B; 13 minutes 30-65% B; 10 minutes 65-95% B; 3 minutes at 95% B; 5 

minutes 95-2% B; 8 minutes at 2%B) was performed at a flow rate of 250 µL. The analyser Q 

Exactive was coupled to the LC through a Proxeon nano- electrospray source. A full scan over 

m/z 300-1650 with resolution 60.000 was followed by the fragmentation of the 10 most 

intense peaks with charge state ≥ +2 (Top10). Dynamic exclusion was 20 s and 12 ppm. 

Data were analysed by Max Quant software version 1.2.6.20, and MS and MS/MS information 

were matched with UniProt human proteome sequences. Analysis was performed with the 

option match between runs (matches identifications across samples within a window of 2 

minutes). Carbamidomethylation of cysteines was set as a fixed modification whereas N-
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terminal acetylation, oxidation of methionines, acetylation of lysines, phosphorylation of 

threonines, tyrosines and serines, methylation of lysines and tri-methylation of arginines sand 

lysines were set as variable modifications. Up to 2 missed cleavage were allowed. FDR for 

peptides, proteins and sites was set at 0.01. 

RNA extraction - DNase I digestion -  Clean Up 

Upon desirable treatments, cells cultured in a 35-mm plate at sub-confluence were rinsed once 

with room temperature PBS and lysed in 1 mL TRIzol Reagent (Invitrogen) incubating two 

minutes at RT; lysates could be stored at -80°C. Chloroform was added as 1/5 volume of 

Trizol, samples were mixed by inversion and incubated at RT for 2 minutes. Afterwards, 

lysates were centrifuged at 4°C 17005 g 10 minutes, the upper aqueous phase containing 

nucleic acid was recovered and transferred to a new tube. For further precipitation, 

isopropanol as 1/2 of Trizol volume was added to samples, incubated 10 minutes at RT and 

centrifuged at 4°C 17005 g 10 minutes. Supernatants were discarded and pellets were washed 

with 75% (v/v) ethanol and centrifuged at 4°C 17005 g 10 minutes. Supernatants were again 

discarded and air-dried pellets were resuspended in adequate volume of RNase-free water 

depending on the amount of precipitated (generally 30 µL). Depending on the amount of 

volume used, DNase I reaction buffer 10X (200mM Tris/HCl pH 8.4, 20 mM MgCl2, 500 mM 

KCl) and 1U/µL DNase I (Invitrogen) were added to each sample to digest genomic DNA 

(generally to 30 µL of samples, 4 µL of reaction buffer and 1 µL of DNase I were added). The 

digestion was performed for 15 minutes at RT and blocked with EDTA 2 mM at 65°C 10 

minutes. The sample was diluted to a final volume of 300 µL with RNase-free water and made 

300 mM sodium acetate pH 5.2. An equal volume of acid phenol 5:1 chloroform pH 4.5 

(Ambion) was added to each sample, mixed by vortex and centrifuged at RT 17005 g 2 

minutes. Supernatant was recovered and an equal volume of chloroform was added to each 

sample, mixed by vortex and centrifuge at RT 17005 g 2 minutes. Once recovered the upper 

aqueous phase, 2.5 volumes of cold ethanol 100% were added in order to precipitate DNA at -

20°C O/N. The day after, DNA were pelleted by centrifuge at 4°C 17005 g 30 minutes, 

washed with 70% (v/v) ethanol and centrifuged at 4°C 17005 g 20 minutes. Supernatants were 

discarded, pellets air-dried and resuspended with nuclease free water depending on the amount 

of precipitated (generally 50 µL). 



Materials and methods 

 40 

RNA analysis on denaturing agarose gel electrophoresis and quantification 

of extracted RNA 

In order to check the integrity of extracted RNA and the absence of genomic DNA, 2 µL of 

samples were conditioned with 1 µL of loading buffer (30% v/v glycerol,1.2% w/v SDS, trace 

of bromophenol blue and GelRed Biotium used as 1000X in MOPS) and loaded into 1% (w/v) 

agarose, 6.67% (v/v) formaldehyde in MOPS (20 mM MOPS, 5 mM sodium acetate, 1 mM 

EDTA pH 7) gel. All equipment required was pre-treated with 0.1M NaOH for 30 minutes in 

order to create a RNase-free environment. Conditioned lysates were denatured by heating at 

68°C for 5 minutes and kept at 4°C. Then, the electrophoretic separation was done for 40 

minutes at 50V. The quantification of the samples was done on Nanodrop 2000 

Thermoscientific spectrophotometer.  

Reverse Transcriptase PCR (RT-PCR) 

1 µg of RNA was retrotranscribed into complementary DNA (cDNA) by adding 150 ng of 

random primers (Invitrogen), 0.834 mM DNTPs (Sigma) in nuclease-free water. Samples were 

denatured at 65°C for 5 minutes, kept on ice 5 minutes and incubated with First Strand buffer 

5X (Invitrogen; 50 mM Tris/HCl pH 8.3, 75 mM KCl, 3 mM MgCl2), 10 mM DTT and 40 U 

RNase OUT (Invitrogen). Samples were then incubated at RT for 2 minutes and 200 U of 

SuperScript III Reverse Transcriptase (Invitrogen) were added to each sample. The reaction 

was performed one hour at 50°C, the inactivation was done at 70°C for 15 minutes and 

samples were left at 4°C. 

Real-time quantitative PCR (qPCR) 

The Real Time PCR system (Biorad, CFX) was used to perform quantitative Polymerase 

Chain Reaction (qPCR) on samples diluted accordingly to gene products abundances. 

Experiments were performed in biological triplicates and technical duplicates. Each gene was 

normalized on housekeeping genes expression as internal standard (i.e. GAPDH and CYP33). 

The reaction mix was made with IQ SYBR Green Supermix 2X (Biorad; containing Taq DNA 

polymerase, dNTPs, MgCl2, SYBR Green dye, enhancers, stabilizers, fluorescein), 150 mM of 

forward and 150mM reverse primers, cDNA (generally 1 µL of a dilution 1/50) up to volume 

with RNase free water. The thermal cycling protocol provides an initial polymerase activation 

and DNA denaturation 5 minutes at 95°C, followed by 40 cycles of amplification which 
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consist of 5 seconds of denaturation at 95°C, 45 seconds of annealing/elongation and 

fluorescence reading at 60°C; a final step to define melting curves with the increasing of 1 °C 

ever 10 seconds from 60 to 95°C. Primers were designed using Primer3 Plus with mRNA 

sequences derived from NCBI and they were validated through Integrated DNA technologies 

(IDT) and Blast alignments. Data were analysed by Biorad CFX Manager software and 

relative gene expression was calculated by Pfaffl method which take into account 

amplification efficiencies of target genes and internal standards, calculated by the slopes of 

standard curves performed with the reaction mix on sequential diluted samples. Statistical 

analysis performed on differences in expression between samples were done assuming a 

normal distribution of our target gene expressions among cell population. Therefore, two-

tailed Student’s t test was done and p values were considered significant when <0.05 

accordingly to literature. 

Primers 

TARGET 
GENES FORWARD PRIMER (5’-3’) REVERSE PRIMER (5’-3’) 

GAPDH 
 TCTCTGCTCCTCCTGTTC GCCCAATACGACCAAATCC 

CYP33 CTTCATGCTGCGTTCATTCC CCTCGGTGCTTTTCTGTTTC 

HMGA1 ACCAGCGCCAAATGTTCATCCTCA AGCCCCTCTTCCCCACAAAGAGT 

AURKB TGAGGAGGAAGACAATGTGTGGCA AGGTCTCGTTGTGTGTGATGCACTCT 

CENPF TCAGGCAAGAGGCAAAGATCCAGT TGGCTCAAACTCAGTACCTTCCGT 

KIF23 CCTGAGGGCTACAGACTCAACCGA TCTGGGTGGTGTGAGTGCCAA 

KIF4A AAGCCAAACGCCATCTGAATGACC TTGACCACGCACTTCAGTAAGGGA 

CBP GGTTTTGTGTGCGACAACTG TTCCAAGTGGTTTCCCAGTC 

EP300 CAAACGCCGAGTCTTCTTTC TTGAGCTGCTGTTGGCATAG 

RSK2 GAGAGCGGAAAATGGTCTTC CAAGCAGCATCATAGCCTTG 

AURKB -800bp CAAACAACACGGCAGCTAAC TCTGACATTCCTGGGAGGAG 

AURKB TSS TTGGGTTCCCATGACTTACG CCCGCAAACAACTGAATCTG 

AURKB intrag CCAAACTGCTCAGGCATAAC ATCAGGCGACAGATTGAAGG 

Table 3. List of primer sequences (forward and reverse) used for RT-qPCR. 
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Co-ImmunoPrecipitation (Co-IP) 

A 150-mm plate of cells at sub-confluence, was rinsed twice in cold PBS and collected with 

scrapers. Cells were pelleted by mild relative centrifugal force (4°C, 450 g, 5 minutes) and 

washed again in PBS. After centrifugation, supernatant was discarded and cells resuspended in 

lysis buffer (25 mM Tris/HCl pH 8, 0.5% v/v NP40, 125 mM NaCl, 10% v/v glycerol) 

supplemented with 1/1000 (v/v) Phenylmetylsulfonyl fluoride (PMSF, satured solution in 

isopropanol), 1 mM NaVO3, 5 mM NaF, 10 mM sodium butyrate and 1/100 (v/v) protease 

inhibitor cocktail (PIC, Sigma) and incubated 15 minutes on ice. Samples were then sonicated 

at 30% of potency for 60 seconds (10 seconds ON, 30 seconds OFF) by Branson Digital 

Sonifier 250, centrifuged at 4°C, 8385 g for 10 minutes, and supernatant collected and stored 

at -80°C.  30 µL of Protein G Sepharose (GE Healthcare) were used for each co-

immunoprecipitation. Beads were washed three times with Tris/HCl 50 mM pH 7 (4°C, 

1027g, 1 minute) and incubated for one hour at 4°C with 4 µg of antibody or IgG (Abcam 

#ab37415 used as negative control) adjusted with Tris/HCl 50 mM pH 7 up to 500 µL. After a 

mild centrifugation (4°C, 1027g, 1 minute) supernatant was discarded and BSA 1 mg/mL in 

lysis buffer was added at 4°C for 1 hour in order to saturate unspecific binding sites of our 

antibodies. Beads were then washed three times in lysis buffer (4°C, 1027g, 1 minute). 500 µg 

of lysates, quantified by BCA, were adjusted to 1 mL with lysis buffer and shaking incubated 

with beads for 3 hours. If required, to verify that the interaction between interested proteins 

was not mediated by DNA, a 500 µg of lysate was digested with 1000 U of DNase I (Sigma) 

adjusted to 500 µL with lysate buffer and DNase digestion buffer 10X (Invitrogen) and 

shaking incubated for 20 minutes at 37°C. An aliquot of 50 µL of lysate either digested or not 

(control without DNase) was kept and made 1% sarcosile and 25 mM EDTA. The aliquot was 

digested with 10 µg of RNase A (Sigma) for 1 hour at 55°C and later with 23 µg of Proteinase 

K (Sigma) for 1 hour at 55°C (shaking incubation). 10 µL were conditioned with an equal 

volume of Blue/Orange DNA loading dye (Promega) and loaded to 1.5 % (w/v) agarose in 

TAE buffer (1/25000 GelRed Biotium). Samples were subjected to electrophoretic separation 

for 40 minutes at 50 V. The visualization was done with Gel Doc (Biorad). After the 

incubation with lysates, beads were centrifuged at 4°C, 1027 g, 1 minute, supernatants were 

discarded and beads washed three times in lysis buffer. 20 µL of SDS sample buffer were 

added to each sample, boiled for 5 minutes at 96°C and analysed by WB. 
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Immunofluorescence (IF) 

Cells were cultured on glass coverslips (16 mm) placed into 35-mm plate. Cells were rinsed 

twice in PBS and fixed for 20 minutes at RT with 4% paraformaldehyde (PFA) in PBS pH 7.2. 

Cells were washed three times in PBS and 0.1 M glycine was added 5 minutes at RT in order 

to decrease auto fluorescence given by PFA. After three washes in PBS, cells were 

permeabilised with 0.3% Triton X for 5 minutes at RT. Cells were washed three times and 

unspecific sites were blocked with 0.5% (w/v) BSA in PBS (blocking solution) for 30 minutes 

at RT. Each coverslip was incubated for 90 minutes in a wet room with desirable 

concentration of antibody diluted in blocking solution (samples were placed over 20 µL of 

antibody dilutions). After being washed three times on PBS, samples were incubated with 

secondary antibody diluted in blocking solution for 60 minutes in a wet room. Coverslips were 

washed three times in PBS and incubated 5 minutes with 0.2 µg/mL Hoechst in PBS (Sigma). 

Images were acquired by Eclipse Ti inverted research microscope (Nikon) equipped with a 

NIS elements software. 

Antibodies 

Primary Antibody Dilution used in 
WB 

α-H2BK5ac (Abcam, #ab40886) 1/100 

α-RSK2 (Millipore, #06-918) 1/25 

Secondary antibody  

α-IgG rabbit Alexa Fluor 488 (Invitrogen, #A11008) 1/750 

Table 4. List of primary and secondary antibodies used with their dilution factors IF analyses. 

Statistical analysis 

Western blot and RT-qPCR analysis were conducted in triplicates and the significance was 

conferred by two-tailed Student T test, with p value indicative of a significant difference 

between two means when lower than 0.05. Data are represented as mean and standard 

deviation (±SD). WB histograms represent densitometry values of bands normalized versus 

densitometry of total lysates of ponceau-stained membrane. For both WB and real- time data 

values were shown normalized to levels of control samples. Immunofluorescence data were 

analysed by Shapiro-Wilk test to check their probability distribution: when p values are less 
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than 0.05 they were considered as not-normally distributed and non-parametric statistics were 

used, such as Mann-Whitney test which investigate if probability distributions of two 

populations are different. Data are presented as box-plot, with median and whiskers from 5th to 

95th percentile. 
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RESULTS 

HMGA1 expression level affects epigenetic modifications 

Data published by our laboratory underlined HMGA1 involvement in stemness and metastatic 

progression of breast cancer by chairing epithelial to mesenchymal transition tuning the 

expression of genes which are predictors of poor clinical outcomes (Pegoraro et al. 2013, 

Maurizio et al. 2016). In the last few years we collected a series of data demonstrating that 

HMGA1 binds histones and that its presence influences a set of histones post-translational 

modifications (see preliminary data section at the end of this thesis obtained before my PhD 

studies). To have a bird’s eye view of histone modifications affected by HMGA1 expression, 

we knocked down HMGA1 in triple negative breast cancer model, MDA-MB-231. These cells 

are peculiar since they exhibit mesenchymal phenotype and their molecular profile indicates 

alterations of the expression of genes involved in cell-cell contacts, denoting that they 

underwent a phenotype transition (EMT); in fact, they belong to the claudin-low molecular 

subtype. They were collected 72 hours after HMGA-targeting siRNA (siA1_3) or control 

siRNA (siCTRL) treatment, because at this time point HMGA1 expression was completely 

switched off; as shown by figure 3.1A, upon HMGA1 silencing cells exhibit a reversion of 

phenotype, reminiscent of mesenchymal to epithelial transition (MET). In order to assess all 

possible histone PTMs and their combinations, we extracted histones from both conditions, 

treated the extracts by proteases, and analysed the peptides by state-of-the-art of mass 

spectrometry technologies. We decided to extract histones with two different methods (see 

materials and methods) in order to obtain data from two different histone preparations. We 

used a histone purification kit provided by Active Motif and the gold standard strong acid 

extraction method (Shechter et al. 2007). Blue Coomassie stained SDS-PAGE reported in 

figure 3.1B are indicative of core histones column elution by kit extraction protocol (left 

panel) and histones extracted by nuclear proteins treatment with hydrochloric acid (right panel 

- lanes 7 to 12). The two elutions obtained with the kit were pooled together prior to MS 

analyses. Normalized amount of proteins was digested by multiple enzymes digestion - filter 

aided sample purification (MED-FASP) method combining Arg-C and trypsin digestions and 

peptides were further purified by stage tip devices. We opted for Arg-C proteolytic digestion 

because of the optimal length of peptides for the retention on the chromatography and the 

ionization process (Soldi et al. 2013); MED-FASP was chosen for the opportunity to analyse 
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both histone H1 (less rich in arginine) and other proteins that have been co-purified with 

histones during the pre-fractionation process. Samples were vacuum centrifuged and we 

injected 12% of the strong acid samples (Arg-C) and 6% of the kit samples (Arg-C) to 

optimize the TIC signal of the chromatogram so as the column was not saturated. For trypsin, 

12% of the samples was used for both strong acid and kit samples. Proteins intensities have 

been normalized by the sum of all intensities of the sample. We have considered proteins and 

modifications that are present at least in duplicate in our analysis, and we took into 

consideration as down/up-regulated the ones in which the ratio between the mean of samples 

treated with siCTRL and the mean of samples treated with siHMGA1 (and vive-versa) was > 2 

and < 0,5 respectively. The percentage of MS/MS spectra identified by MaxQuant software 

have been 10-15% for Arg-C peptides and 30-45% for trypsin peptides leading to 3700 

proteins identified in strong acid samples and 2700 in the kit samples with an overlapping of 

2000 proteins between the two extraction methods. We confirmed the down-regulation of 

HMGA1 proteins that are knocked-down for 70% (data not shown). A global quality control 

of our data arose assessing downregulation of proteins, i.e. LRRC59, or modifications, i.e. 

phosphorylation of YAP, that are well-described events following HMGA1 silencing 

(Maurizio et al. 2016; Pegoraro et al. 2015). Figure 3.1C reports volcano plot of the fold 

change (log2) plotted versus p values (-log 10) of different intensities among peptides 

belonging to kit histone extraction (left panel) or histones strong acid extraction (right panel). 

In red are reported peptides up-regulated upon HMGA1 silencing (epithelial phenotype) 

whereas blue spots indicated peptides downregulated (abundant in mesenchymal breast cancer 

control cells). Black dots are informative of other peptides co-purified with histones. 

However, looking at histone PTMs, only two modifications were shared between the two 

different pre-fractionation methodologies. These were the acetylation of lysines 17 and 21 of 

histone H2B (further indicated as K16 and K20 without counting the first methionine). 

Data concerning these histone H2B modifications were recently published by Abell AN et al. 

and have been linked to the maintenance of epithelial phenotype in EMT process during both 

development and breast cancer evolution (Abell et al. 2011).  
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Figure 3.1 HMGA1 interacts with core histones and influences their PTMs in MDA-MB-231. A) Optical 
images of representative cells silenced either with control siRNA (siCTRL) or HMGA1-targeting siRNA 
(siA1_3) after 72 hours of treatment. B) Blue Coomassie stained SDS-PAGE loaded with samples silenced for 
HMGA1 expression and controls both pre-fractionated by histone extraction performed with Active Motif kit (left 
panel) or by strong acid extraction (right panel). In the left gel are represented the first two column elutions of 
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core histones with kit extraction; these elutions have been pooled together for MS analyses. In the right gel, first 
6 lanes are protein nuclear extracts depleted of histones proteins, whereas samples from lane 7 to lane 12 are 
correspondent core histones belonging to same nuclei. C) Volcano plot of peptides belonging to Arg-C and 
trypsin digestion of histones fractionated by kit (left panel) or strong acid method (right panel). Normalized 
peptides intensities obtained by MaxQuant software version 1.2.6.20 have been plotted accordingly to their fold 
change (log2) and p value (-log10) obtained by student t test. Red dots are indicative of peptides significantly up-
regulated (>2 folds) upon HMGA1 silencing whereas blue dots are indicative of peptides down-regulated. Black 
dots are peptides belonging to other non-histone proteins. Text boxes refer to histone peptides and modifications 
found statistically different between control cells (mesenchymal phenotype) and siA1_3 cells (epithelial 
phenotype). D) HIST1H2BC protein sequence with red letters underling modified peptides over-expressed upon 
HMGA1 silencing. White flags are indicative of acetylation residues. E) Co-immunoprecipitation analysis 
performed in MDA-MB-231. Two different lysate amounts (X and 2X) were loaded in lane 1 and lane 2 while 
lanes 3 and 4 display IgG immunoprecipitates (controls) and lanes 5 and 6 HMGA1 immunoprecipitates. DNA 
digestion was performed in order to verify if histones interaction with HMGA1 is mediated by nucleic acids 
(lanes 4 and 6). Reported are ponceau-stained membrane and western blot analyses of of HMGA1 (panel α-
HMGA1), histone H3 (panel α-H3) and histone H2B (panel α-H2B). E1) DNase digestion control; DNA of input 
(2%) either digested or not was loaded into 1.5% agarose gel (1/25000 gel red). 

Along with these residues, also H2BK5ac was found determinant in phenotypic transition, and 

data collected by kit extraction figured out an up-regulation of this acetylated peptide upon 

HMGA1 knocking down. Figure 3.1D shows H2B (HIST1H2BC variant) protein sequence 

with peptides found up-regulated highlighted in red and white flags on hypothetical 

differentially acetylated lysines. Unfortunately, information regarding histone H3 tail were 

lacking, and this could not give a support to previously found alteration on phosphorylation 

events affected by HMGA1 and discovered by our laboratory (see preliminary data).  

HMGA1 was previously shown to be able to interact with histone tails (Reeves & Nissen 

1993). We confirmed these data demonstrating HMGA1 interaction with core histones (Li et 

al. 2006) by co-immunoprecipitation assay. As shown in figure 3.1E, upon HMGA1 

immunoprecipitation (lanes 5 and 6 panel α-HMGA1), both histones H3 and H2B (the ones 

that we are interested on) are detected by western blot (WB) analyses of immunoprecipitates 

(lane 5 panels α-H3 and α-H2B) compared to controls (IgG lanes 3 and 4). Moreover, histone 

H3 and H2B interactions seem to persist after DNA digestion in HMGA1 immunoprecipitate 

(lane 6 compared to control lane 4). Figure 3.1E1 is indicative of DNase digestion efficiency. 

Collectively these data suggest that HMGA1 could influence histones post translational 

modifications and that this effect could be due to the direct positioning of HMGA1 onto 

chromatin. 

HMGA1 silencing induces downregulation of histone H2B acetylation 

In order to confirm HMGA1 role in modulating the acetylation level of histone H2B, western 

blot (WB) analyses were conducted in MDA-MB-231 lysates transiently silenced for HMGA1 

expression. In particular, cells were subjected to treatment with two different siRNA, siA1_3 
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targeting ORF and siA1_1 targeting transcript 3’UTR; this system was designed to avoid 

undesirable off-target effects. Once having checked HMGA1 protein levels (panel α-

HMGA1), levels of H2BK5ac, H2BK16ac, and H2BK20ac were checked along with total 

histone H2B (figure 3.2A). Figure 3.2A1 reports densitometry values of bands normalized to 

ponceau densitometry of whole lysate’s lanes. All modifications decrease upon HMGA1 

knock down, even though a major down-regulation was observed in acetylation of lysine 5 and 

16 with both siRNA strategies. Total histone H2B displays a slight reduction with siA1_1 

which, however, we suppose could not account for the downfall of acetylation levels alone. 

Immunofluorescence assays performed on MDA-MB-231 confirmed a significant down-

regulation of H2BK5ac that in control cells is homogeneously distributed throughout the cell 

population (figure 3.2B and relative quantification of fluorescence in figure 3.2B1).  These 

data clearly disagree with MS data obtained with histones analyses. We suppose that this fact 

could be due to MS intrinsic limitations: in histone H2B sequence (shown in figure 3.1C) the 

first arginine is located at the 30th position producing an Arg-C digested peptide that could be 

too long to be analysed and sequenced or this digestion could be inefficient producing a 

peptide even longer; indeed, the peptides identified (red sequences) are both products of 

trypsin digestion. Moreover, the lysines that theoretically could be digested by trypsin could 

be acetylated becoming resistant to digestion. Therefore, we hypothesized that several K 

residues within the H2B N-terminal tail are differentially modified in control and knocked 

down breast cancer cells leading to the formation of different sets of peptides that make 

difficult and possibly misleading the interpretation of MS data.  

Acetylation of histone H2B have been linked to epithelial to mesenchymal transition during 

mammalian development with similar evidences in breast cancer (Abell et al. 2011). We 

queried whether cell-cell contacts affect levels of H2BK5ac in MDA-MB-231 and whether 

HMGA1 could preside this mechanism independently to cellular confluence. We silenced 

MDA-MB-231 seeded at two different confluences, nearby confluent (400.000 cells plated 24 

hours before treatment) and the half (200.000 cells plated 24 hours before treatment). Lysates 

were analysed by western blot and densitometry of bands normalized to total lysate (as 

previously described) were performed (figure 3.2C and 3.2C1). Although identical quantities 

of total proteins were loaded as shown by membrane ponceau-staining, levels of acetylated 

H2BK5 were almost double in cells reaching confluence compared to half-seeded control 

cells. However, the presence of HMGA1 significantly influences the H2B acetylation level in 

both conditions. These experimental evidences suggest H2B acetylation could be tuned by 

multiple independent phenomena and actually HMGA1 expression is one of them. 
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Figure 3.2 HMGA1 levels influence acetylation of histone H2B in MDA-MB-231. A) Western blot analyses of 
MDA MB 231 cell lysate collected at 72 hours upon HMGA1 silencing with siA1_3 (targeting ORF; lane 3), 
siA1_1 (targeting 3’UTR; lane 2) or control cells (siRNA lacking mammalian targets; lane 1). Panels reported are 
representative of biological triplicate (at least) and display, in order, the ponceau-stained membrane (illustrative 
of sample normalization) and western blot analyses of HMGA1, H2BK5ac, H2BK16ac, H2BK20ac and total 
H2B. Molecular references are reported in kDa on the left of each panel. A1) Histograms report band 
densitometry values normalized to ponceau-stained lysate’s lane relative to controls. Mean and standard 
deviations are illustrated and samples are subjected to student t test; * p<0.05; ** p<0.01; ***p<0.001. B) 
Immunofluorescences assay of MDA MB 231 cells treated with siCTRL (left) or siA1_3 (right). Images are 
indicative of two fields of cells seeded on three different cover slips; cells were subjected to immunological 
detection of H2BK5ac (cyan-green emission of Alexa 488 fluorescent dye; green), nuclei staining with Hoechst 
(emission in cyan region of visible spectrum; blue) and merged differential interference contrast and H2BK5ac 
signals; scale bar 100 µm. B1) Box plot illustrative of median and quantiles distribution of nuclear mean grey 
values of H2BK5ac signals; whiskers extend to 5-95 percentiles and outliers are represented as dots. Data were 
analysed with Shapiro-Wilk normality test and Mann Whitney test; ***p<0.001. C) WB analysis of MDA MB 
231 cells silenced for HMGA1 expression at two different confluence states (200.000 cells - lane 1 and 2 - versus 
400.000 cells - lane 3 and 4). Panels reported are representative of biological triplicate and illustrate ponceau-
stained membrane and bands corresponding to HMGA1 and H2BK5ac antibody recognition. Molecular 
references are reported in kDa on the left of each panel. C1) Histogram displays band densitometry values 
normalized to ponceau-stained lysate’s lane relative to controls. Mean and standard deviations are reported and 
samples are subjected to student t test; * p<0.05; ** p<0.01; ***p<0.001. 

CBP/p300 acetyltransferases are responsible for H2B acetylation in MDA-

MB-231 

Core histones acetylation has been extensively linked to the activity of two distinct histone 

acetyltransferases (HATs), the paralog CBP (CREB Binding Protein) and p300 (E1A binding 

protein p300), which display strong sequence similarity and functional homology and could 

either play overlapping or unique functions (Chan & La Thangue 2001; Ogryzko et al. 1996). 

In particular, acetylation of histone H2BK5 has been primary associated with CBP 

acetyltransferase during cell differentiation (Abell et al. 2011). With this in mind, we 

investigated if acetylation status of H2B in MDA-MB-231 was affected by CBP/p300 activity 

and we used a pyrazolone-containing small molecule inhibitor (C646) at sufficient 
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concentrations known to compete with acetyl-CoA for CBP/p300 active site binding (Bowers 

et al. 2010). Acetyl-CoA concentration has shown to influence HAT activity and selectivity 

(Henry et al. 2015); therefore, cells have been serum-starved for 24 h prior to C646 treatment 

so as to increase acetyltransferase inhibition. Cells have been either treated for 24 h with 20 

µM C646 or DMSO (0.2%) as control. As depicted by figure 3.3A, cells slow down when 

subjected to serum starvation; at the same time, treatment with small molecule inhibitor 

strongly impairs cell metabolism at 24 h only in starved cells whereas no difference could be 

observed among cells grown with complete medium (figure 3.3B). Differences are reduced at 

48 h and 72 h between control and C646 treated cells even if a gap persists between serum 

starved and complete medium grown cells. Western blot analyses performed on cell lysates 

harvested 24 hours after treatment highlight a notable decrease in acetylation levels of both 

lysines 5 and 16 of histone H2B leaving total H2B level almost unchanged (figure 3.3C). 

Taken together, these data suggest that CBP/p300 are the acetyltransferases that target histone 

H2B in MDA-MB-231.  

Thereafter, we hypothesised that if these modifications are involved in transcriptional 

activation in breast cancer cells, by affecting histone H2B acetylation we should obtain 

overlapping results in terms of gene expression alteration to the signature produced by 

HMGA1 knock down. After having checked by RT-qPCR that C646 mediated inhibition does 

not down-regulate CBP and p300 transcripts levels, we looked at some genes whose 

expression we recently demonstrated to be influenced by HMGA (Pegoraro et al. 2013): 

AURKB (Aurora kinase B), KIF23 (kinesin-like protein 23), KIF4A (kinesin family member 

4A) and CENPF (centromere protein F) all correlating with clinical outcome data. As reported 

in figure 3.3D, inhibition of CBP/p300 resulted in a significant HMGA1 signature down-

regulation suggesting a cooperation between these coactivators. 
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Figure 3.3 CBP/p300 acetyltransferases acetylate histone H2B in MDA-MB-231 cells producing 
transcriptional alterations overlapping to HMGA1-signature. A) Optical microscopy images of MDA-MB-
231 grown with complete medium or serum starved. Cell were untreated (UT), treated with 20 µM C646, or 
incubated with 0.2% DMSO as control. B) MTS assay performed on six replicates (minimum and maximum 
values discarded) after blank subtraction; mean and standard deviation values are reported relative to UT values 
at time 0. “C” is indicative of complete medium (blue lines) while “SS” indicates serum starvation (red lines). C) 
WB analysis on MDA-MB-231 lysate grown with complete medium (lane 1) or serum starved (SS - lanes 2, 3 
and 4) for 24 hours before treatment with 20 µM C646 or equivalent 0.2% DMSO as control (UT are untreated 
cells). Panels are representative of a biological triplicate. Red ponceau-stained membrane (illustrative of sample 
normalization) and western blot analyses of H2BK5ac, H2BK16ac, and total H2B are reported. C1) Histogram 
displays band densitometry values normalized to red ponceau-stained lysate’s lane relative to controls. Mean and 
standard deviations are reported. D) Relative gene expression values were obtained by RT-qPCR of MDA-MB-
231 cells treated for 24 hours with 20 µM C646 versus control. GAPDH was used as internal reference gene. 
Mean and standard deviations (±SD) are reported and values are shown with respect to control sample. 
Experiment was done in biological triplicate and significance assigned by student t test; *p<0.05, **p<0.01, 
***p<0.001.  

CBP is the acetyltransferase responsible for transcriptional regulation of 

genes belonging to HMGA1-signature in MDA-MB-231 

To dissect the roles played by acetyltransferases in conferring metastatic potential in breast 

cancer, we silenced the expression of CBP and p300 independently and we examined effects 

produced in both histone H2B acetylation and gene expression. The knock down of CBP 

caused high mortality in cell population (figure 3.4A) and evaluation of mesenchymal to 

epithelial transition (MET) was tricky. Anyway, from WB analyses performed in MDA-MB-

231 lysates harvested 72 hours after siRNA administration, cells silenced for CBP expression 

(lane 2) displayed a significant downregulation of H2BK5ac levels compared to control cells 

(lane 1; figure 3.4B and normalized densitometry figure 3.4B1). A slight decrease was 

observed also in total H2B levels even if the entity of acetylation drop appears to be far 

greater. Exploring gene expression alterations, AURKB seems to be regulated at both mRNA 

and protein levels (figure 3.4B, figure 3.4B1 and figure 3.4C). Moreover, all genes belonging 

to HMGA1 signature were found significantly down-regulated upon CBP silencing whereas, 

in a mechanism that suggest feedback looping, p300 mRNA expression increased. 
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Figure 3.4 Silencing of CBP mirrors HMGA1 silencing effects on histone H2B acetylation and gene 
expression alteration in MDA-MB-231 cells. A) Optical microscopy images of MDA-MB-231 silenced with 
siCBP and controls. B) WB analysis on MDA-MB-231 lysates treated with control siRNA (lane 1) or CBP 
targeting siRNA (lane 2) for 72 hours. Panels are representative of a biological triplicate. Red ponceau-stained 
membrane (illustrative of sample normalization) and western blot analyses of H2BK5ac, total H2B, and AURKB 
are reported. B1) Histogram displays band densitometry values normalized to ponceau-stained lysate’s lane 
relative to controls. Mean and standard deviations are reported. Significance was assigned by student t test; 
*p<0.05, **p<0.01, ***p<0.001. C) Gene expression results obtained by RT-qPCR of MDA-MB-231 samples 
treated with siCTRL or siCBP and harvested after 72 hours. Mean and standard deviation (±SD) are reported 
relative to control sample. GAPDH was used as internal reference gene. Experiment was done in biological 
triplicate and significance assigned by student t test; *p<0.05, **p<0.01, ***p<0.001. 

Same experiments were performed on MDA-MB-231 silenced for p300 expression that, 

analysed by optical microscopy, seemed to acquire organized arrangement and flat 

morphology, characteristic of epithelial reversion (figure 3.5A). WB analyses performed in 

cell lysates upon silencing demonstrated p300 involvement on acetylation of histone H2B 

(figure 3.5B and 3.5B1) and analogously to cells silenced for CBP, a parallel mild decrement 

of total histone H2B. However, both protein and mRNA levels of AURKB appeared 
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unchanged upon p300 silencing as well as KIF23 mRNA levels (figure 3.5C). KIF4A was the 

only gene belonging to HMGA1-signature significantly down-regulated in MDA-MB-231. 

 

 

Figure 3.5 Silencing of p300 affect histone H2B acetylation in MDA-MB-231 cells but leaves unchanged the 
expression of the majority of HMGA1-signature genes. A) Optical microscopy images of MDA-MB-231 
silenced with siP300 and controls. B) WB analysis on MDA-MB-231 lysates treated with control siRNA (lane 1) 
or siP300 (lane 2) for 72 hours. Panels are representative of a biological triplicate, and reported are ponceau-
stained membrane (illustrative of sample normalization) and western blot analyses of H2BK5ac, total H2B and 
AURKB. B1) Histogram displays band densitometry values normalized to ponceau-stained lysate’s lane relative 
to controls. Mean and standard deviations are reported. Significance was assigned by student t test; *p<0.05, 
**p<0.01, ***p<0.001. C) Relative gene expression results obtained by RT-qPCR of MDA-MB-231 samples 
treated with siCTRL or siP300 and harvested after 72 hours. Mean, standard deviation (±SD) are reported relative 
to control sample. CYP33 was used as internal reference gene. Experiment was done in biological triplicate and 
significance assigned by student t test; *p<0.05, **p<0.01, ***p<0.001. 

Collectively these results suggest that CBP is the acetyltransferase responsible for 

transcriptional regulation of the majority of HMGA1-signature genes and confirmed that 

besides redundant functions hold by CBP/p300 they could acetylate same residues with 

different specificity and selectivity driving unique functions (Kalkhoven 2004; Henry et al. 

2013). 
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CBP histone acetylation is functional coupled with RSK2 phosphorylation 

of H3S10 in MDA-MB-231 

Histone acetylation and phosphorylation have been coupled to transcriptional activation also at 

signalling level: CBP has been shown to interact with un-phosphorylated RSK2 forming a 

complex where both CBP and RSK2 are kept inactivated. Upon mitogenic stimuli and 

phosphorylation of RSK2S227, they dissociate and act respectively as histone kinase or HAT 

driving gene expression activation (Merienne et al. 2001). Data collected in our laboratory 

provide a solid and robust evidences of HMGA1 involvement in regulating gene expression by 

modulation of RSK2 (ribosomal protein S6 kinase, 90kDa, polypeptide 3) and 

phosphorylation of serine 10 of histone H3 (see preliminary data section at the end of this 

thesis). Indeed, by inhibition of RSK2 with BI-D1870 we obtained striking conformational 

changes attributable to MET, reduced cell migration and down regulation of HMGA1-

signature gene expression in MDA-MB-231. Here we confirmed that H3S10ph decrease upon 

RSK2 silencing which impairs both kinase mRNA and its activity (RSK2S227ph; Figure 3.6B 

and relative normalized densitometry figure 3.6B1). Moreover, the knock down of RSK2 

expression produces a gene signature overlapping the one produced by HMGA1 (figure 

3.6C). Therefore, we investigated if modulating RSK2 activity by use of selective inhibitor 

BI-D1870, we could regulate CBP acetyltransferase activity. We analysed by WB lysates of 

MDA-MB-231 cells treated with either BI-1870 10 µM or DMSO alone as a control. As 

shown in panel D of figure 3.6, H2BK5ac levels were affected by RSK2 inhibition (lane 2 

with respect to lane 1 as control). Slight down-regulation was observed also in total H2B 

protein. Figure 3.6D1 reported normalized densitometry of bands and student t test results.  

On the other hand, we decided to check if phosphorylation level of H3S10 was influenced by 

histone acetyltransferase activity. We analysed by WB lysates of MDA-MB-231 cells silenced 

for CBP expression and we observed a strong and significant downregulation of H3S10ph 

(figure 3.6E and relative normalized densitometry figure 3.6E1). Overall these results suggest 

that cell lacking HMGA1 expression maintain inactivate both RSK2 and CBP while oncogenic 

overexpression of HMGA1 could lead to gene expression of factors critical for cell migration 

and malignancy by aberrant reactivation of kinase and HAT (figure 3.6F). Moreover, these 

data suggest a functional interplay between RSK2 and CBP. 
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Figure 3.6 Kinase and HAT activities of CBP and RSK2 are functional coupled in modulating gene 
expression of HMGA1-signature in MDA-MB-231. A) Optical images of MDA-MB-231 treated either with 
siCTRL or siRSK2 for 72 hours. B) WB analysis of MDA-MB-231 lysates upon RSK2 silencing (lane 2) or 
controls (lane 1). Panels are representative of biological triplicate, and reported are ponceau-stained membrane 
(illustrative of sample normalization) and western blot analyses of RSK2, RSK2S227ph, H3S10ph and AURKB. 
B1) Histogram displays band densitometry values normalized to ponceau-stained lysate’s lane relative to 
controls. Mean and standard deviations are reported. Significance was assigned by student t test; *p<0.05, 
**p<0.01, ***p<0.001. C) Relative gene expression results obtained by RT-qPCR of MDA-MB-231 samples 
treated with siCTRL or siRSK2 and harvested after 72 hours. Mean and standard deviation (±SD) are reported 
relative to control sample. CYP33 was used as internal reference gene. Experiment was done in biological 
triplicate and significance assigned by student t test; *p<0.05, **p<0.01, ***p<0.001. D) WB analysis of MDA-
MB-231 lysates upon RSK2 inhibition with 10 µM BI-1870 (lane 2) or DMSO (lane 1). Panels are representative 
of a biological triplicate, and reported are ponceau-stained membrane (illustrative of sample normalization) and 
western blot analyses of H3S10ph, total H3, H2BK5ac and total H2B. D1) Histogram displays band densitometry 
values normalized to ponceau-stained lysate’s lane relative to controls. E) WB analysis of MDA-MB-231 lysates 
upon CBP silencing (lane 2) or control cells (lane 1). Panels are representative of a biological triplicate, and 
reported is western blot analysis of H3S10ph. For sample normalization refer to figure 3.3B ponceau-stained 
membrane. E1) Histogram displays band densitometry values normalized to ponceau-stained lysate’s lane 
relative to controls. F) Speculative model HMGA1-linked alteration of breast cancer cell epigenetic marks related 
to RSK2 and CBP. 

HMGA1 modulate RSK2 and CBP activities without inferring with CREB 

phosphorylation 

The transcription factor CREB (cAMP response element binding protein) is a downstream 

effector of different signalling pathways and regulates transcriptional inducibility of several 

genes. Among other kinases, phosphorylation of CREB serine 133 is mediated by RSK2 and is 

associated to an increase of CBP acetyltransferase activity (De Cesare et al. 1998; Merienne et 

al. 2001). Hence, we hypothesised that HMGA1 overexpression could lead to aberrant 

phosphorylation of CREB which in turn could result in triggered HAT activity of CBP 

(Figure 3.7A). However, by WB analyses performed on MDA-MB-231 cells silenced for 

HMGA1 expression (for lysates normalization and levels of HMGA1 expression refer to lane 

1 - siCTRL - and lane 3 - siA1_3 - of figure 3.2A), we observed that levels of total CREB and 

CREBS133ph are independent from HMGA1 levels (figure 3.7B and relative normalized 
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bands densitometry, figure 3.7B1). Therefore, in our model, RSK2 and CBP activities are not 

linked to CREB.

 

Figure 3.7 HMGA1 interplay with CBP and RSK2 does not involve CREB phosphorylation. A) 
Hypothesised model of effects of HMGA1 overexpression in RSK2 phosphorylation of CREB and recruitment of 
CBP for aberrant gene expression in breast cancer cells (panel a). Panel a is indicative of knock down cells (or 
normal breast cells) where low levels of HMGA1 keep CBP and RSK2 inactive in nuclei. B) WB analysis 
performed on MDA-MB-231 harvested 72 hours after HMGA1 silencing (lane 2) compared to control cells (lane 
1). For normalization and HMGA1 intensity levels refer to figure 3.1A. Panels are representative of a biological 
triplicate and western blot analyses of total CREB and CREBS133ph levels. B1) Histogram representative of 
mean and standard deviations (±SD) of bands densitometry normalized to intensity of ponceau-stained lysate 
membrane. 

HMGA1 regulates epigenetic modifications acting downstream RSK2 

activation  

We considered that HMGA1 could influences histone post-translational modifications by 

different mechanisms: it could be involved in transcriptional regulation of modifiers 

expression, in the mechanism of their activation (i.e. interfering with modulators expression or 

activities) or at chromatin level modulating enzymes accessibility to mediators. Therefore, we 

silenced HMGA1 expression and we glanced at kinase and HATs expression responsible for 

the modification observed by RT-qPCR assay. As shown in figure 3.8A, MDA-MB-231 cells 
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treated with siA1_3 displayed a slight downregulation of RSK2 expression compared to 

controls, whereas CBP and p300 appeared even up-regulated upon HMGA1 silencing.  

The downregulation of total RSK2 was confirmed by WB analyses performed on cell lysates 

treated either with siA1_3 or siCTRL for 72 hours even if means of normalized bands 

densitometries of the biological triplicates were not significantly different (figure 3.8B). 

Hence, we tried to demonstrate that RSK2 expression could be not indicative of differentially 

activated kinase levels in the two conditions analysed. RSK2 is composed by two kinases 

domains (N-terminal and C-terminal, respectively NTK and CTK) connected by a linker 

region of 100 aa. Mechanism of RSK2 activation is complex and includes many 

phosphorylation events: extracellular signal-regulated kinase (ERK) is responsible for S369 

phosphorylation in the linker region and T577 phosphorylation in the activating loop of CTK; 

last phosphorylation activates the C-terminal domain for the cis phosphorylation of S386 

which, once phosphorylated, functions as a docking site for 3-phosphoinositide-dependent 

protein kinase-1 (PDK1). This kinase is responsible for S227 phosphorylation in NTK 

activation loop which is the one finally responsible for RSK2 substrates phosphorylation 

(Jensen et al. 1999). Therefore, as a measure of RSK2 activation we decided to query levels of 

RSK2S227ph in samples silenced for HMGA1 expression. WB analyses performed on MDA-

MB-231 highlight that S227 phosphorylation levels are not significantly changed upon 

HMGA1 depletion despite total protein downregulation (figure 3.8B and relative normalized 

bands densitometry in figure 3.8B1). Once activated, RSK2 migrates in the nucleus where it 

phosphorylates its substrates in a poor described mechanism (Arul & Cho 2013). Hence, we 

performed immunofluorescence analysis on MDA-MB-231 cell treated with siCTRL, siA1_3 

or untreated cells (UT) after 72 hours. As shown by figure 3.8C and quantification reported in 

figure 3.8C1, RSK2 seems to be more nuclear after HMGA1 knocking-down, supporting 

previous results which state that HMGA1 is not responsible for its upstream activation. In 

particular, obtaining nuclear masks by Hoechst nuclear delimitation and cytoplasmic region by 

subtracting nuclei area to a region of interest created by a secondary antibody emission 

(recognizing α-RSK2 primary antibody), we analysed the trend of the curves made by plotting 

number of pixels (normalized to the sum) with their respective grey values and results suggest 

a mild increase of RSK2 nuclear translocation upon HMGA1 silencing. These results agree 

with WB data suggesting a slight boost on RSK2S227ph levels in HMGA1-depleted cells and 

suggest that HMGA1 could exert its function downstream RSK2 activation, whose action is in 

turn related to histone acetylation levels. Figure 3.8C2 is a WB indicative of HMGA1 

silencing and is performed on a population of cell lysate used for immunofluorescence 
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analysis. Finally, we investigated if HMGA1 and RSK2 interact in MDA-MB-231 and a co-

immunoprecipitation experiment was done in presence or absence of DNase I in order to 

discriminate whether their interaction was mediated by DNA. As reported in Figure 3.8D, 

WB analysis was performed after immunoprecipitation with α-HMGA1 antibody (lanes 4 and 

5) or IgG as controls (lanes 2 and 3). DNase digestion was performed on lysates 3 and 5 and 

the input was loaded in lane 1. As shown in the panel relative to RSK2 recognition, this kinase 

was immunodetected in HMGA1 immunoprecipitate without DNase (lane 4) whereas it is 

absent when DNA was digested in cell lysate (lane 5). Figure 3.8D1 shows the control of 

DNase digestion. As it is possible to observe, the protocol for immunoprecipitation leads to 

the formation of DNA fragments of about 600 bp. Taken together these results suggest that 

HMGA1 and RSK2 are found in complex in chromatin, within regions of about 600 bp but 

their interaction could be mediated by other proteins and/or DNA. 
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Figure 3.8 HMGA1 modulate histones PTMs acting downstream RSK2 phosphorylation. A) Relative gene 
expression results obtained by RT-qPCR of MDA-MB-231 samples treated with siCTRL or siA1_3 and 
harvested after 72 hours. Mean, standard deviation (±SD) are reported relative to control sample. GAPDH was 
used as internal reference gene. Experiment was done in biological triplicate and significance assigned by student 
t test; *p<0.05, **p<0.01, ***p<0.001. B) WB analysis of MDA-MB-231 lysates upon HMGA1 silencing (lane 
2) or controls (lane 1). Panels are representative of biological triplicate, and reported are ponceau-stained 
membrane (illustrative of sample normalization) and western blot analyses of RSK2 and RSK2S227ph. For 
HMGA1 levels please refer to image 3.1A lane 1 (CTRL) versus lane 3 (A1_3) panel α-HMGA1. B1) Histogram 
displays band densitometry values normalized to ponceau-stained lysate’s lane relative to controls. Mean and 
standard deviations are reported. C) Immunofluorescence analysis performed in untreated MDA-MB-231, same 
cells treated with siCTRL or siA1_3 placed in a cover slip. Images are indicative of four fields of cells; cells were 
subjected to immunological detection of RSK2 (cyan-green emission of Alexa 488 fluorescent dye; green), nuclei 
staining with Hoechst (emission in cyan region of visible spectrum; blue) and merged differential interference 
contrast and RSK2 and Hoechst signals; scale bar 50 µm. C1) Scatterplot of number of pixels versus their 
fluorescence intensity (in term of grayscale); blue curve is representative of nuclear fluorescence whereas red 
curve is representative of cytoplasmic fluorescence. Subcellular regions are defined by Hoechst emission (nuclei) 
and cyan-green emission of Alexa 488 fluorescent dye (cytoplasmic). Number of pixels are normalized to the 
sum of pixels measured in in the region of interest of each field. C2) WB analysis of a population of cells 
belonging to immunofluorescence analysis to verify HMGA1 knock down. Untreated (UT - lane 1), controls 
(siCTRL - lane 2) and HMGA1-silenced (siA1_3 - lane 3) are compared and ponceau-stained membrane is 
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reported indicative of normalization. Second panel shown bands detected in autoradiography films after antibody 
recognition of HMGA1. D) Co-immunoprecipitation analysis performed in MDA-MB-231. The 38% of input 
lysate was loaded in lane 1 while lanes 2 and 3 display IgG immunoprecipitates (controls) and lanes 4 and 5 
HMGA1 immunoprecipitates. DNA digestion was performed in order to verify if RSK2 interaction with HMGA1 
is mediated by nucleic acids (lanes 3 and 5). Reported are ponceau-stained membrane and western blot analyses 
of HMGA1 (panel α-HMGA1) and RSK2 (panel α-RSK2). D1) DNase digestion control; DNA of input (2%) 
either digested or not was loaded into 1.5% agarose gel (1/25000 gel red). 

Different HMGA1 abundances reflect different signalling regulation of 

histone H2B acetylation pattern 

Once demonstrate HMGA1 interference with RSK2 and CBP activities in MDA-MB-231 cell 

line, we decided to investigate if this phenomenon was shared with other breast cancer cell 

lines and if modification patterns are equivalent in cells with different levels of HMGA1. To 

this purpose we focused onto HMGA1 connection to histone H2B acetylation and therefore 

we investigated levels of HMGA1, acetylated H2BK5 and total histone H2B in different breast 

cancer models: MDA-MB-231 and MDA-MB-157 triple negative breast cancer cell lines 

classified as mesenchymal-like/claudin-low; MDA-MB-468 triple negative breast cancer cell 

lines classified as basal-like and displaying amplification of EGFR; MDA-MB-453 negative 

for ER and PR but HER2 positive; MCF7 positive for both ER and PR negative for HER2 and 

classified as luminal A.  We harvested sub-confluent cells and we performed western blot on 

their lysates. As shown in figure 3.9A, comparing differentially classified breast cancer cells, 

unexpectedly levels of histone H2BK5ac where higher in breast cancer cells with lower levels 

of HMGA1 (lanes 3 - 4 - 5, respectively MDA-MB-468, MDA-MB-453 and MCF7 bands in 

panel α-H2BK5ac) while total H2B levels were comparable in all cell lines used (panel α-

H2B).  Thus, we questioned if signalling pathway modulators which influence histone 

modifiers activities where equally abundant in different cell lines used and were associated to 

HMGA1 levels.  First of all, we confirmed that RSK2 activation in MDA-MB-231 was 

primarily modulated by Ras-RAF-MEK-ERK pathway (Sassone-Corsi et al. 1999) which is 

responsible for phosphorylation of at least two different residues in RSK2 protein, as told 

before. We performed WB analysis on cells treated for 24 hours with 10 µM U0126, a non-

competitive inhibitor of MEK (Favata 1998) and results suggest that inhibition of ERK 

activation (verified in panel α-pERK) significantly affect acetylation of H2BK5 (panel α-

H2BK5ac) in U0126-treated cells compared to controls (DMSO) in MDA-MB-231 (figure 

3.9B and relative normalized densitometry in figure 3.9B1). Therefore, we questioned if 

different cell lines exhibit differential activation of the Ras pathway. In fact, both TNBC 

mesenchymal-like cell models used displayed greater levels of pERK compared to other cell 
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lines while they own equal ERK expression levels (lanes 1 and 2 in figure 3.9A, panels α-

ERK and α-pERK). We observed that HMGA1 levels were higher in cells with a greater ERK 

activation, observation confirming literature data that link HMGA1 expression to the 

activation of Ras pathway (Treff NR et al., 2004). We demonstrated that HMGA1 silencing in 

MDA-MB-231 does not affect neither phosphorylated nor total ERK levels (see preliminary 

data section at the end of this thesis). In MDA-MB-231 higher level of pERK is associated 

with oncogenic KRAS mutation; the other cell lines used have different activating/inactivating 

mutations in members of other pathways. In particular, MDA-MB-468 and MDA-MB-453 cell 

lines possess inactivating mutations in tumor suppressor PTEN (phosphatidylinositol-3,4,5-

trisphosphate 3-phosphatase), while MCF7 manifest PIK3CA activating mutation, both 

regulating PI3K (Phosphoinositide 3-kinase) signalling cascade (Hollestelle et al. 2007). Then, 

we hypothesised that cells lacking HMGA1 expression could have different signalling 

mechanisms driving regulation of histone acetylation (and phosphorylation) and that these 

modulators belong to the PI3K pathway. Moreover, PDK1 (3-phosphoinositide-dependent 

kinase-1), the kinase responsible for RSK2S227ph, is connected to PI3K-AKT pathway 

activation (Vanhaesebroeck & Alessi 2000). Therefore, we decided to use both MEK inhibitor 

(U0126) and PI3K inhibitor (LY294002; Vlahos et al. 1994) to address which transduction 

signal pathway was the one involved in modifying acetylation of histone H2B. We used 10 

µM of each inhibitor for 24 hours in MDA-MB-157 and MDA-MB-453. As shown in figure 

3.9C, by comparing control cells (lane 1) with cells treated with U0126 (lane 2) and 

LY294002 (lane 3), levels of H2BK5 acetylation (panel α-H2BK5ac) looked down-regulated 

upon inhibition of ERK phosphorylation (panel α-pERK) in MDA-MB-157. Both MDA-MB-

231 and MDA-MB-157 belong to molecular mesenchymal-like/claudin low TNBC subtype 

and their pERK levels are comparable (lanes 1 and 2 figure 3.9A panel α-pERK). Moreover, 

inhibition of PI3K does not affect levels of H2BK5ac in both cellular models (MDA-MB-157 

lane 3 figure 3.9C panel α-H2BK5ac; MDA-MB-231 data not shown). MDA-MB-453 cells 

belong to a different breast cancer molecular subtype, the HER2 overexpressing one, and 

display PTEN inactivating mutation. 
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Figure 3.9 Different molecular subtypes of breast cancer display distinct signalling mechanism of histone 
H2B acetylation which mirror HMGA1 abundances. A) WB analysis of MDA-MB-231, MDA-MB-157, 
MDA-MB-468, MDA-MB-453 and MCF7 lysates. Panels are representative of biological quadruplicate, and 
reported are ponceau-stained membrane (illustrative of sample normalization) and western blot analyses of 
HMGA1 (low and high exposures, respectively left and right panels), ERK, pERK (low and high exposures, 
respectively left and right panels), H2BK5ac and total H2B levels. B) WB analysis of MDA-MB-231 lysates 
upon 24 hours treatment with 10µM of U0126 inhibitor (lane 2) compared to controls (lane 1; DMSO). Panels are 
representative of biological triplicate, and reported are ponceau-stained membrane (illustrative of sample 
normalization) and western blot analyses of ERK, pERK, H2BK5ac, total H2B and HMGA1 levels. B1)
Histogram displays band densitometry values normalized to ponceau-stained lysate’s lane relative to controls. 
Mean and standard deviations (±SD) are reported. Significance assigned by student t test; *p<0.05, **p<0.01, 
***p<0.001. C) WB analysis of MDA-MB-157 lysates upon 24 hours treatment with 10µM of U0126 inhibitor 
(lane 2), 10µM of LY294002 inhibitor (lane 3) and controls (lane 1; DMSO). Panels are representative of 
biological triplicate, and reported are ponceau-stained membrane (illustrative of sample normalization) and 
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western blot analyses of ERK, pERK, H2BK5ac, total H2B and HMGA1 levels. C1) Histogram displays band 
densitometry values normalized to ponceau-stained lysate’s lane relative to controls. Mean and standard 
deviations (±SD) are reported. significance assigned by student t test; *p<0.05, **p<0.01, ***p<0.001. D) WB 
analysis of MDA-MB-453 lysates upon 24 hours treatment with 10µM of U0126 inhibitor (lane 2), 10µM of 
LY294002 inhibitor (lane 3) and controls (lane 1; DMSO). Panels are representative of biological triplicate, and 
reported are ponceau-stained membrane (illustrative of sample normalization) and western blot analyses of ERK, 
pERK, H2BK5ac and total H2B levels. D1) Histogram displays band densitometry values normalized to 
ponceau-stained lysate’s lane relative to controls. Mean and standard deviations (±SD) are reported. Significance 
assigned by student t test; *p<0.05, **p<0.01, ***p<0.001. 

Querying the acetylation status of histone H2B we observed that in this cell line the PI3K-

AKT pathway inhibition results in decreasing H2B acetylation levels (lane 3 compared to line 

1, figure 3.9D panel α-H2BK5ac) whereas MEK inhibition does not lead to any effects on this 

modification (lane 2). Taken together, these data suggest that distinct molecular subtypes show 

different signalling modulations of histone modifiers and in TNBC cells overexpressing 

HMGA1 and having the Ras pathway active, HMGA1 could be a specific key modulator of 

their epigenetic signature. 
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DISCUSSION  

The analysis of histone marks distribution among different breast cancer molecular subtypes 

provides a specific chromatin signatures defined by the binding pattern of activating or 

repressing modifications. Genomic distribution of these modifications are indicative of distinct 

biological pathway activations and give insights into clinical parameters of relapse free 

survival and outcomes when applied to breast cancer patients (Chen et al. 2016).  

Since HMGA proteins bind nucleosome core particles (Reeves & Nissen 1993, Li et al. 2006) 

and HMGA1 expression inversely correlates with the overall survival in breast cancer (Huang 

et al. 2015), our study aims to evaluate possible epigenetic mechanisms by which this 

oncoprotein could promote tumor evolution in triple negative breast cancer, a particularly 

aggressive and heterogeneous intrinsic molecular subtype of breast cancer with poor 

prognosis.  

HMGA proteins have already been linked to epigenetic alterations, i.e. anomalous histone 

acetylation pattern in cancer cells. In detail, HMGA2 has been linked to histone 

acetyltransferase expression regulation in pancreatic ductal adenocarcinoma and is responsible 

for increased acetylation levels of H3K9 and H3K27 in fibrotic region. Downregulation of 

HMGA2 expression results in reduction of acetylated histone H3 and sensitizes cells to 

gemcitabine (Dangi-Garimella et al. 2013). Here, our main finding is that HMGA1-driven 

transcriptional activation of genes involved in epithelial to mesenchymal transition could 

happen, at least in part, by the modulation of RSK2/CBP histone modifiers activities.  

Among HMGA1 signature taken into consideration are several factors implied in cell division 

dynamics: the mitotic kinase Aurora Kinase B (AURKB), which is a chromosomal passenger 

protein; the Kinesin family member 23 (KIF23) and 4A (KIF4A), which are microtubule-

dependent motor proteins; and the centromere protein-F (CENPF), which is a cell-cycle 

regulated protein that is associated with kinetochores. All these proteins are involved in large 

nuclear rearrangements occurring during mitosis, such as chromosome condensation and 

segregation, cytokinesis, and spindle dynamics and all have been associated with cancer onset 

and progression (Portella et al. 2011; Yu & Feng 2010; O’Brien et al. 2007). Moreover, the 

nucleation of radial microtubules belonging to centrosome has been connected to leading edge 

protrusion, microenvironment crosstalk and organelle polarization, which are events involved 

in directional migration and invasion (Ogden et al. 2013). We found these genes considerably 

down-regulated in HMGA1-depleted MDA-MB-231 cells and their own silencing 
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significantly impairs cell motility, as detected by wound healing assays (Pegoraro et al. 2013). 

Therefore, we considered epigenetic mechanisms by which HMGA1 could drive 

transcriptional regulation affecting epithelial to mesenchymal transition. 

In particular, we provided experimental evidences suggesting that HMGA1, perhaps by 

binding to core histones, promotes histone H3S10 phosphorylation and H2BK5 acetylation. 

This phenomenon happens leaving unchanged the expression and the activation of the Ras-

signalling pathway that is an upstream modulator of both RSK2 and CBP activities.  

Contrary to literature data concerning HMGA1 overexpression in luminal MCF7, HMGA1 

knocking-down is ineffective towards ERK expression and activation (preliminary data) in 

MDA-MB-231 TNBC cell model. Furthermore, upon HMGA1 silencing RSK2 levels are 

slightly downregulated but overall active RSK2 (S227ph) and CBP levels remain the same. If 

HMGA1 action is carried out at downstream chromatin global level by (i) competing with 

histone H1, (ii) influencing entry-exit angle of nucleosomal DNA, (iii) by steric changes of 

core particles or (iv) N-terminal histone tails, or by (v) simply binding to chromatin and 

recruiting RSK2 and/or CBP, this need to be further elucidated. However, our co-IP data 

suggest that, at least HMGA1 and RSK2 co-localize within 600 bp DNA fragments. 

Moreover, we propose a molecular subtype-dependent mechanism of HMGA1 regulation of 

RSK2 and CBP activities: in detail, we speculate on HMGA1 regulation of 

RAS/RAF/MEK/ERK dependent histone writers’ activities in triple negative breast cancers 

with mesenchymal-like phenotype, while we hypothesise a different mechanism in other triple 

negative subtypes and hormone receptor positive cell lines, whose transformed phenotype 

relies on the activation of other specific pathways, i.e. PI3K/AKT pathway activation. In fact, 

very high percentage of TNBC show biologically important somatic alterations of 

RAS/RAF/MEK/ERK and PI3K/AKT pathways which support targeted therapeutical 

intervention in clinical trials (Craig et al. 2013).We point out that these molecular alterations 

could affect modulators activities which in turn influence modifiers activities. 

In our analysis, levels of histone H2B acetylation seem to inversely correlate with HMGA1 

expression among cell lines used (figure 3.9 A). This supports literature data in which authors 

outlined reduced H2BK5ac on specific genes in claudin-low breast cancer lines compared to 

normal human mammary epithelial cells (HMEC; Abell et al. 2011). However, our results 

suggest that HMGA1 expression in MDA-MB-231 could drive HAT specificity towards 

regulatory regions of genes involved in conferring cells metastatic capabilities. In effect, we 

erroneously tend to interpret triple negative breast cancers as a phenotype acquired by a 
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progressive loss of hormone receptor expression from an ancestral benign transformation 

through all hormone receptor positive intermediates but this is not actually the case.  

In this perspective, functions of HATs in cancer onset and progression are still under debate: 

many studies suggest their role as tumor suppressors, whereas others underlie their tumor 

promoter nature. In particular, heterozygous germline mutations in CBP gene lead to 

Rubinstein-Taybi syndrome (RTS) which can result in childhood malignancies of neural crest 

origin. Moreover, in haematological tumors chromosome translocations frequently produce 

fused proteins involving N-terminus domain of CBP while mutations on its gene are less 

commonly found in solid cancers (Iyer et al. 2004). Although these evidences suggest a tumor 

suppressive features of CBP, melanocytes re-activation of senescence checkpoint upon 

CBP/p300 inactivation underline their oncogenic driver potential. More deeply, p300 

depletion results in cyclin E transcriptional repression by downregulation of histone 

acetylation on its promoter (Bandyopadhyay et al. 2002). Evidently, CBP/p300 are versatile 

acetyltransferases with context dependent functions; large multiprotein complexes which they 

belong to, address for their specificity. In fact, CBP/p300 mediate tumor suppressor 

transactivation function of their partner p53, FOXO3a, BRCA1 and, on the other hand, as c-

Myc, c-Myb and AR coactivators they can promote cancer progression (Wang et al. 2013). In 

this light, we hypothesise that HMGA1 overexpression can lead to aberrant CBP histone 

acetyltransferase activity turning out in transcriptional activation of a specific set of onco-

promoting factors.  

Although both CBP/p300 HATs are able to modulate H2BKac, we determined CBP as the one 

responsible for HMGA1 signature regulation by small interfering RNA assay and these results 

underline different specificity gained by different HATs. HMGA1 is indeed a well-known 

molecular partner of CBP during IFNβ gene expression upon viral infection. In particular, 

HMGA1-driven enhanceosome assembly gives rise to activating surface which in turn recruits 

CBP/p300 acetyltransferases through multiple protein-protein interactions and this result in 

synergic activation of transcription (Merika et al. 1998). Moreover, CBP acetylates HMGA1 

causing a destabilization and disassembly of IFNβ gene enhanceosome (Munshi et al. 1998). 

HAT inhibition has been pursued as therapeutical tool in cancer fight: bi-substrate inhibitors 

(mimicking the two HAT substrates, the acetyl CoA and the lysine containing peptide 

connected by a linker), natural compounds (anacardic acid, curcumin, garcinol), small 

molecules inhibitors (C646) and protein-protein interaction inhibitors are currently 

investigated in different tumor types despite their limitation of instability, low cell 

permeability, selectivity, and low potency (Wapenaar & Dekker 2016). In vivo, CBP/p300 
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inhibitor (L002) suppress tumor growth and recurrence after treatment in MDA-MB-468 

xenograft mice models (Yang et al. 2013). 

In addition, our results underline a cooperation between RSK2 and CBP in histone 

modifications regulation. In particular, levels of H3S10ph and H2BK5ac are reciprocally 

modulated by HAT and kinase activities and both dropped down upon HMGA1 silencing. 

Moreover, inhibition of CBP or RSK2 mirrors the effects obtained by HMGA1 silencing, i.e. 

the regulation of a common set of genes and gross morphological cellular changes.  

Similarly, loss of HMGN1, a close relative of HMGA proteins, decrease steady state levels of 

phosphoacetylated histone H3 (H3S10phK14ac) by approximately 35% (Lim JH et al., 2005). 

Mirroring H2B acetylation trends upon HMGA1 silencing, acetylations of H3K14 and H4K8 

have been found both down-regulated in MDA-MB-231 cells treated with siA1_3 (preliminary 

data and data not shown, respectively). These residues could even be modified by CBP/p300 

but also by other HATs and the entity of acetylation reduction appears moderate compared to 

the one observed in histone H2B. 

As for CBP, also RSK2 has emerged as therapeutical target in particular for TNBC metastasis 

and the use of RSK2 inhibitor has shown reduction in proliferation, survival in a non-adherent 

environment, and migration (Ludwik et al. 2016). In particular, inhibition of RSK2 suppresses 

tumor initiating cells growth and promotes cell death (Stratford et al. 2012). Same authors 

displayed that 85% of TNBC patients exhibit activation of RSK2 (S227ph) in a panel of high 

grade breast cancer samples. Moreover, RSK2 inhibitor treatment could overcome MEK/ERK 

inhibitors side effects in clinical trials: in fact, efficiency of inhibition is often lowered by a 

feedback loop activation of PI3K/AKT pathway.  

Translational implications of our work consist on shedding light on downstream molecular 

events to kinase and HATs activation which could highlight novel therapeutical strategies 

overriding adverse unspecific actions of upstream proteins inhibitors. In particular, we suggest 

that in TNBC mesenchymal-like subtypes which hold high levels of HMGA1 expression, 

iperactivation of Ras pathway result in increased activities of RSK2 and CBP whose 

chromatin target specificity is driven by HMGA1. In a model created in our laboratory 

(Pegoraro et al. 2013), the transient silencing of HMGA1 reverts the mesenchymal phenotype 

to a well-organized, flattened morphology through gene expression alterations of proteins 

critical for metastatic migratory abilities. Unravelling the underpinning epigenetic molecular 

events, we suggest that by knocking down HMGA1 expression, these particular genomic 

regions are closed off to activating epigenetic modifiers. Our data support a direct chromatin-

linked role of HMGA1 in the modulation of the epigenetic status of cancer cells: both the 
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binding of HMGA1 to core histones and the fact that the Ras pathway and its downstream 

effectors are still kept activated upon HMGA1 silencing, confirm the downstream role played 

by HMGA1 in ruling accessibility to writer’s targets at chromatin level. 

Comprehensively these data underscore how different transduction signal pathways could 

impinge on histone PTMs among triple negative breast cancer subtypes and other hormone 

receptor positive breast cancer subtypes. Targeted therapies should account for these 

differences. Architectural factors such as HMGA1 could play essential roles in specific signal 

transduction pathways and could therefore constitute a good molecular co-target in combined 

therapeutical approaches. 
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CONCLUSIONS AND FUTURE PERSPECTIVES 

In conclusion, we propose an unconventional method by which HMGA1 could orchestrate 

aberrant gene expression in TNBC. In particular, we suggest that HMGA1 could play its 

action downstream RSK2 and CBP activation driving their specificity towards malignancy-

promoting oncogenes in which they modulate both H3S10ph and H2BK5ac levels.  

Once uncovered functional meaning of these PTMs profile alterations, we focus on alteration 

of these modifications upon HMGA silencing at specific genes loci. Preliminary data obtained 

with RSK2 inhibitor (BI-1870) in MDA-MB-231, suggested a reduction of H3S10ph in 

intragenic region (last exon) of AURKB gene. A slight modulation was observed also in a 5’ 

distal region approximately at -800 bp, a region known to be bound by Forkhead Box M1 

transcription factor (FoxM1), which regulate AURKB expression (Wang et al. 2005). 

However, the positive regulatory region of AURKB promoter phosphorylation levels appeared 

unchanged upon RSK2 inhibition. Thus, we are currently performing chromatin 

immunoprecipitation (ChIP) analyses on MDA-MB-231 cell line upon HMGA1 silencing to 

confirm its involvements in RSK2 (and H3S10ph) and CBP (and H2BK5ac) dynamics 

regulation; we aim to analyse these genomic areas even through re-ChIP analysis 

(H3S10ph/H2BK5ac) in order to assess HMGA1 role in both kinase and HAT activities 

regulation.  

At the same time, we would like to confirm epigenetic alterations promoted by HMGA1 

knocking down by mass spectrometry tools; we aim to analyse histone H2B and others core 

histones by propionic anhydride derivatization of primary amines of lysines and digest with 

trypsin that produce an Arg-C like digestion profile with higher efficiency and specificity. The 

propionylation contributes to a parallel increase of the hydrophobicity of peptides produced 

upon digestion and thereby improve their retention and resolution in RP-HPLC systems 

(Molden et al. 2015). Moreover, we are aware that our results rely on the use of single 

antibodies. We will validate these data by other antibodies. 

Finally, several questions arose from our work: 

a) HMGA1 is expressed in all TNBC sub-types? 

b) Is the epigenetic role of HMGA1 exclusively linked to the RAS pathway dysregulation? 

c) Have these epigenetic markers (H3S10ph and H2BK5ac) some prognostic and/or 

predictive value in TNBC? 
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d) Could HMGA1 be used as robust biomarker predictor of epigenetic-modifiers targeted 

therapies responsiveness in TNBC? 
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Preliminary data 
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Figure P1 Preliminary data. A) Western blot analyses of MDA MB 231 cell lysate collected at 72 hours upon 
HMGA1 silencing with siA1_3 or controls. Panels reported are representative of biological triplicate and display, 
in order, the ponceau-stained membrane (illustrative of sample normalization) and western blot analyses of 
HMGA1, H3S10ph, H3K14ac, H3K27me3, H3S28ph and total H3. Molecular references are reported in kDa on 
the left of each panel. B) Relative gene expression values were obtained by RT-qPCR of MDA-MB-231 cells 
treated for 72 hours with siA1_3 (or siA1_1 below) and controls. GAPDH was used as internal reference gene. 
Mean and standard deviations (±SD) are reported and values are shown with respect to control sample. 
Experiment was done in biological triplicate and significance assigned by student t test; *p<0.05, **p<0.01, 
***p<0.001. C) Optical images of representative cells treated with 0.1 - 1 - 10 µM of BI-D1870 (RSK2 inhibitor) 
or controls (equal amount of DMSO) for 24 hours. C1) Representative optimal images of wound healing assay of 
MDA-MB-231 treated with 0.1 - 1 - 10 µM of BI-D1870 or controls (equal amount of DMSO) for 24 hours and 
results are analysed at 4 and 8 hours upon scratch. Experiment was performed in technical duplicate and 
biological triplicate. C2) Histograms of wound healing data representing mean and standard deviations (±SD) of 
the percentage of wound closure relative to time point 0. C3) Western blot analyses of MDA MB 231 cell lysate 
collected at 24 hours upon treatment with 0.1 - 1 - 10 µM of BI-D1870 or controls. Panels reported are 
representative of biological triplicate and display, in order, the ponceau-stained membrane (illustrative of sample 
normalization) and western blot analyses of H3S10ph and H3S28ph. Molecular references are reported in kDa on 
the left of each panel. D) Relative gene expression values were obtained by RT-qPCR of MDA-MB-231 cells 
treated for 24 hours with 10 µM of BI-D1870 (RSK2 inhibitor) or controls (equal amount of DMSO). CYP33 
was used as internal reference gene. Mean and standard deviations (±SD) are reported and values are shown with 
respect to control sample. Experiment was done in biological triplicate and significance assigned by student t test; 
*p<0.05, **p<0.01, ***p<0.001. E)  WB analysis of MDA MB 231 upon HMGA1 silencing Panels reported are 
representative of biological triplicate and illustrate ponceau-stained membrane and bands corresponding to ERK 
and pERK antibody recognition (refer to A for HMGA1 level). Molecular references are reported in kDa on the 
left of each panel. F) ChIP-qPCR experiment performed in cells treated for 24 hours with 10 µM of BI-D1870 or 
controls (equal amount of DMSO). Antibody α-H3S10ph was used for the immunoprecipitation and non-specific 
IgG as negative control. Genomic DNA was amplified with primers targeting 5’ distal region (-800 bp), 
transcription start site (TSS) and 3’ distal region (intragenic) of AURKB gene and results are reported as percent 
of input DNA. Mean and standard deviations (±SD) are reported. Experiment was done in biological triplicate 
and significance assigned by student t test; *p<0.05. 
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