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SYNOPSIS 

 

Cathelicidins are a family of innate immunity effectors present in most vertebrates. 

Cathelicidin-derived antimicrobial peptides play an essential role in host defence, with a 

direct antimicrobial action as part of the innate immune responses and the capacity to 

modulate cellular immunity, affecting both innate and adaptive responses. Some can also have 

protective roles connected with wound healing, angiogenesis or sepsis. Cathelicidins are 

characterized by a conserved pro-region, known as 'cathelin-like' domain, carrying a highly 

variable, C-terminal antimicrobial domain. Many mammalian species express only one 

cathelicidin, but artiodactyles are known to express up to a dozen, bearing structurally and 

functionally very diverse AMPs. These including small disulfide-stabilized cyclic peptides, 

extended linear peptides rich in specific residues (e.g. proline, arginine, phenylalanine, 

tryptophan) and helical peptides of different sizes. Cetaceans are phylogenetic with 

artiodactyls, so are also expected to express this wide repertoire of cathelicidin-derived 

AMPs, whose functional characteristics may however have been shaped by the particular 

pathogenic microbiota they face in their aquatic lifestyle. With the known artiodactyl 

peptides, these might provide interesting leads for biomedical application. 

My Ph.D. followed to two parallel lines of research: 

i) the study of cathelicidin AMPs identified in the dolphin Tursiops truncatus (bottlenose 

dolphin), identified by searching genomic databases, to define their antimicrobial activities 

and obtain information on the modes-of-action, using different types of functional assays. 

These studies were carried out in parallel with selected orthologues from other artiodactyls, 

such as cow, sheep or pig, to screen for differences among them, and revealed both 

convergences and some interesting differences, especially relating to a proline-rich (PR-AMP) 

and an D-helical one. These studies established a potent antimicrobial activity for the helical 

peptide, with a remarkable capacity too inhibit bacterial growth also at sub-lethal 

concentrations. The PR-AMP instead showed an increased internalization capacity, due to its 

apparent efficient use of alternative transporters. These data provided interesting insights into 

specific aspects of Cetaceans cathelicidins in relation to those of other mammals, and lay the 

groundwork for the possible development of novel antimicrobial agents. 

ii) the possible application of the bovine cathelicidin-derived PR-AMP Bac7(1-35) as a 

vehicle for delivering antibiotic cargo into susceptible bacterial cells. This peptide acts 

intracellularly, entering cells using specific transport systems. The aim was to conjugate it to 
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the antibiotic tobramycin and expand its capacity to penetrate into Gram-negative pathogens, 

possibly overcoming resistance mechanisms. I began to develop synthetic strategies for 

modifying the antibiotic and then linking it to the peptide vehicle. Functional assays showed 

that one type of construct had a broader spectrum of activity than the individual components, 

and in some cases was active against resistant strains. This new strategy may potentially be 

applied to other types or classes of currently available antibiotics, as long as they can be 

modified for conjugation without affecting activity. 
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LIST of ABBREVIATIONS 

 

AMPD - antimicrobial peptide domain 

AMPs - antimicrobial peptides 

Boc - tert-butyloxycarbonyl 

BODIPY-FL - N-(2-aminoethyl)maleimide 

CFU - colony-forming units 

CLD - cathelin-like domain 

DCM - dichloromethane  

DIPEA-N,N-diisopropylethylamine  

DMAP - 4-dimethylaminopyridine 

DMF - dimethylformamide 

DMSO - dimethyl sulfoxide 

DODT - 3,6-dioxa-1,8-octane-dihiol / 2,2′-(ethylenedioxy)diethanethiol 

EDTA - 2,2',2'',2'''-(ethane-1,2-diyldinitrilo)tetraacetic acid 

ESI-MS - electrospray ionization mass spectrometry 

EST - expressed sequence tag 

FIC - fractional inhibitory concentration 

Fmoc - fluorenylmethyloxycarbonyl 

HDPs - host-defence peptides 

IFN - interferon 

LPS - lipopolysaccharide 

LTA - lipoteichoic acid 

MeOH - methanol 

MDR - multidrug-resistant 

MFI - mean fluorescence intensity 

MH - Mueller-Hinton (microbiological medium) 

MIC - minimal inhibitory concentration 

MRSA - methicillin-resistant Staphylococcus aureus 

MTT - 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

MW - molecular weight 

NMP - N-methyl-2-pyrrolidone 
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OD - optical density 

PAβN - phenylalanine-arginine β-naphthylamide 

PAMPs - pathogen-associated molecular patterns 

PBS – phosphate-buffered saline 

PI - propidium iodide 

PR-AMPs - proline-rich antimicrobial peptides 

PRRs - pattern recognition receptors 

PRSP - penicillin-resistant Streptococcus pneumoniae 

PyBOP - benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate 

RND - resistance nodulation division 

RP-HPLC - reverse phase high-performance liquid chromatography 

SAR - structure–activity relationship 

TB - trypan blue 

TBME - tert-butyl methyl ether 

TFA - trifluoroacetic acid 

TIPS - tri-isopropylsilane 

TLR - toll-like receptor 

TPSCl - 2,4,6-triisopropylbenzenesulfonyl chloride 

TRP - thyptophane 

TSB - tryptic soy broth 

WGS - whole genome sequence 

VREF - vancomycin-resistant Enterococcus faecium 
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1. INTRODUCTION 

 

1.1 Antimicrobial peptides (AMPs) and innate immunity 

Some basic defence mechanisms that evolved in ancient eukaryotes still act today in their 

modern descendants, such as plant and invertebrate animals, including phagocytosis, host 

defence peptides (e.g. defensins) and the complement system. In vertebrates, the immune 

system shows a more complex organization, based on the two different systems of innate (or 

natural) immunity, based on these ancient mechanisms, and adaptive (or acquired) immunity.  

The innate response is usually triggered when microorganisms are identified by ‘pattern 

recognition receptors’ (PRRs) expressed on the surface of immune cells, which are able to 

recognize specific components that are conserved among broad groups of microbes ('pathogen 

related molecular patterns' or PRAMPs) (Medzhitov, 2007), or when damaged, injured or 

stressed cells send out alarm signals (Matzinger, 2002). This type of response, which is the 

dominant host defence system in non-vertebrates, is mediated by both humoral and a cellular 

components. The cellular component of the innate immune system is represented by the so-

called ‘innate leukocytes’ that includes phagocytes (macrophages, neutrophils and dendritic 

cells), mast cells, eosinophils, basophils and natural killer cells. These cells attack and engulf 

microorganism and, by releasing signal molecules, also mediate the activation of adaptive 

immune responses (Rus et al., 2005). 

The humoral component of the innate response represents a first line of defence deployed to 

protect the organism continuously from infection by pathogens, and to keep commensal 

microorganisms under control. Exogenous molecules such as bacterial DNA, 

lipopolysaccharide (LPS) or peptidoglycan and other bacterial cell wall components (i.e. 

PRAMPs) activate PRRs such as the ‘Toll-like’ receptors (TLR). These transmembrane 

proteins are widely expressed in host immune cells like monocytes, macrophages and 

dendritic cells, as well as in epithelial cells, endothelial cells and fibroblasts (Janeway, 2001). 

They trigger two types of responses: i) production of pro-inflammatory cytokines and ii) 

release of antimicrobial (host defence) peptides, from specific cells. Both types of mechanism 

contribute to the overall antimicrobial and inflammatory response by the affected organism 

(Janeway and Medzhitov, 2002).  

Host defence peptides (HDPs), often simply called ‘antimicrobial peptides’ (AMPs), are 

generally small, and are expressed in skin keratinocytes and mucosal epithelial cells, as well 
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as being secreted by circulating phagocytes. They represent an important defensive interface 

between microbes and the host, and their production, whether constitutive or induced by the 

engagement of TLRs, serves to limit the viability or growth of bacteria at the site of infection. 

AMPs are considered to be amongst the most ancient effector molecules of the defence 

system of microorganisms, plants and animals; and were discovered more than 30 years ago, 

in insect haemolymph, on the skin mucosa from frogs and in the granules of mammalian 

neutrophils. Several thousands of different antimicrobial peptides have since been reported in 

many species (effectively all species in which they have been searched for) and they have 

been isolated from numerous different tissues and organs (Mangoni, 2011). 

AMPs have been found to display a broad spectrum of in vitro antimicrobial activity, being 

variously active against bacteria, fungi, parasites and viruses. This cidal capacity is most 

often, one could even say ‘generally’, due to their ability to interact with the microbial cell 

membrane; this includes principally the lipid bilayer but also other cell wall components 

and/or membrane bound protein machinery. The main result is irreparable damage to the 

barrier properties of the membrane, although inactivation of metabolic processes and further 

interaction with internal targets can also contribute to microbial killing. Moreover, many 

AMPs play a further antimicrobial role by modulating other types of immune responses. They 

can act as signal molecules, directly helping to recruit immune cells to the site of infection, or 

inducing the expression of chemokines, cytokines, and IFN-α and indirectly promoting the 

recruitment of effector cells such as neutrophils, monocytes, macrophages, immature dendritic 

cells and T cells (Hancock and Diamond, 2000), (Lai and Gallo, 2009). It is for this reason 

that vertebrate AMPs are referred to also as host defence peptides (HDP), as they serve to link 

innate and adaptive immunity and promote a concerted response. HDPs can therefor 

contribute to the resolution of inflammation and promote healing in different scenarios, as 

schematized in Figure 1.1. They can i) directly inactivate invading microorganisms; ii) they 

are able to sequester bacterial components such as LPS or LTA and thereby inhibit sepsis, and 

iii) they can aid in wound healing and angiogenesis by stimulating epithelial and endothelial 

cell growth (Cederlund et al., 2011). 
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Figure 1.1. Multiple roles of AMPs in host defence.  Host defence peptides can be 
released on the surface of barrier epithelia, helping to prevent infection (A). They are 
released in internal body fluids where they help contain invading pathogens and control 
the microbial biota (B). By interaction with bacterial components such as LPS (C) or 
with proinflammatory cytokines (D) they can inhibit sepsis.  By stimulating the growth 
of different types of cells (E) they can promote wound healing and angiogenesis. By 
interacting with cellular components of innate or adaptive immunity, they can promote 
other defensive processes (F). Taken from (Lai and Gallo, 2009). 

 

 

 

         1.2 AMPs - structure and mode of action 

AMPs from different species, and even within the same organism, can differ markedly in size, 

amino acid sequence, structure and biological functions. Nevertheless they have some 

common features, as they are generally relatively small (usually between 12-50 residues), 

cationic, amphipathic molecules with multiple cationic residues and are often stored in 

cytoplasmic granules of phagocytes as inactive pro-forms. In mammalian species these 

typically consist of an N-terminal signal region, a pro-segment which may serve to inhibit the 

mature peptides’ activity until it is required, and a C-terminal antimicrobial peptide that 

becomes active after proteolytic release from the pro-region (Bals, 2000). The expression of 

functional AMPs can therefore depend on the presence and/or co-release of appropriate 

proteases. AMPs can also be constitutively released, but these are rarer, and their presence is 



14 
 

in any case influenced by age and sexual maturation. The  expression and/or release of AMPs 

increases in case of injury or infection, and this often involves signalling cascades through 

pattern-recognition receptors such as TLRs, as indicated above, or induction by specific 

cytokines (Lai and Gallo, 2009).  

As AMPs are so structurally highly variable (see Figure 1.2), they are rather difficult to 

categorize, but they are generally divided into to four broad classes based on their amino acid 

composition and/or conformational characteristics: 

 

x The most abundant and widespread group is likely the linear, α-helical AMPs. These 

normally do not have a well-defined structure in aqueous solution, before coming into 

contact with microbial membranes, to which they are attracted, as these tend to be 

anionic. They adopt the amphipathic helical conformation only when they interact 

with the membrane, and this allows their insertion into the lipid bilayer. This type of 

AMP is often present in invertebrate animals (Hancock et al., 2006), for example the 

cecropins in Hyalophora cecropia moth (Steiner et al., 2009) or melittin in the 

honeybee (Dufourcq and Faucon, 1977), as well as in vertebrates, like pleurocidin 

from the winter flounder (Cole et al., 1997), magainins from Xenopus frogs (Zasloff, 

1987), and cathelicidins from snakes (Wang et al., 2008), birds (Cheng et al., 2015), 

cetartiodactyla [myeloid antimicrobial peptides such as bovine BMAPs, (Skerlavaj et 

al., 1996), porcine PMAPs, (Storici et al., 1994) and ovine SMAP-29, (Skerlavaj et al., 

1999)], and the CAP18-related peptides found in all placental mammals (Xhindoli et 

al., 2016), such as rabbit CAP-18 (Larrick et al., 1993) and human LL-37 (Agerberth 

et al., 1995). 

 

x The second group of AMPS comprises cationic peptides rich in specific amino acid 

residues, such as proline, arginine, tryptophan or histidine etc. These are usually linear 

peptides with extended, not necessarily helical, conformations. The best known 

examples are a) proline-rich AMPs (PR-AMPs) such as apidaecin and abaecin from 

honeybees (Casteels et al., 1990), drosocin from Drosophila (Bulet et al., 1993), and 

bactenecins from cows, sheep and goats (e.g. Bac7 and Bac5), (Gennaro et al., 1989); 

(Shamova et al., 1999) or PR-39 and prophenins from pigs (Agerberth et al., 1991) 

(Harwig et al., 1995); b) histidine-rich salivary histatins (Kavanagh and Dowd, 2004) 

found in human and other primates, c) the tryptophan-rich indolicidin from cattle 
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(Selsted et al., 1992) and d) serine/glycine-rich cathelicidins in some fish species 

(Scocchi et al., 2009), (D’Este et al., 2016). Interestingly, several of these peptides 

(e.g. vertebrate Pro-rich, Trp-rich and Ser/Gly-rich peptides all belong to the 

cathelicidin family (Tossi et al., 2017). 

 

x The third group of AMPs, which is large and widespread, includes cationic peptides 

that contain cysteine residues and form loops or E-hairpin structures, stabilized by 

one or two disulphide bonds. Examples of the first type are the anuran brevinins 

(Morikawa et al., 1992), while examples of the second are bovid dodecapeptide 

(Romeo et al., 1988a), porcine protegrins (Kokryakov et al., 1993) or tachyplesins 

from horseshoe crab (Nakamura et al., 1988). 

 

x The last group of AMPs is formed by small but well-defined E-sheet structures 

stabilized by three or more disulfide bridges. One very broad class of such peptides 

are the fungal, plant, invertebrate and vertebrate defensins (Lehrer, 2007) (Zhu, 

2008) (Antcheva et al., 2009). 

 

Antimicrobial peptides having such different sequences and structures also tend to have 

different target sites and/or mechanisms of action. Nevertheless, they often show similar 

modes of action in the initial steps leading to microbial inactivation. As they are almost 

always cationic molecules, this includes electrostatic interaction with negatively charged 

components of microbial surfaces, such as for example the anionic phospholipids of 

bacterial cytoplasmic membranes, the phosphate groups on Gram-negative outer 

membrane lipopolysaccharide (LPS) or the teichoic acids of Gram-positive bacterial 

peptidoglycan (Brogden, 2005). During the subsequent steps, the peptides can show a 

multimodal mechanism of action. In most cases, they act to disrupt membrane integrity, 

leading to cellular inactivation. In less common cases, they cross the membrane using 

different mechanisms that do not necessarily require membrane permeabilization, and 

target intracellular components, thus blocking essential metabolic processes 

(Mookherjee and Hancock, 2007). 
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Figure 1.2. Common secondary structures of HDPs. 
Adapted from Tossi & Sandri 2000. 

 

 

With respect to the membranolytic activity, it was early proposed that AMPs could form 

“barrel-stave” pores, but this was not usually the case. The two principal mechanisms that are 

currently proposed, on the basis of the positioning of peptide relative to the membrane surface 

are the “carpet model” and “toroidal-pore model” (Yang et al., 2001), (Qian et al., 2008), 

(Fernandez et al., 2012) 

The toroidal-pore model, which was initially developed to explain the mode of action of 

helical AMPs, proposes that these adsorb onto the membrane with their axes parallel to its 

surface, then forming a bundle that inserts into bilayer and induces the monolayers to 

continuously bend through the pore, meeting each other (Yang et al., 2001). Because of this 

‘cavitation’, phospholipids remain intercalated among the peptides forming the pore, and the 

resulting depolarization and leakage of the cytoplasmic components may be a principal cause 

of cell death (Brogden, 2005).  
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According to the ‘carpet model’, the AMP molecules always remain positioned parallel to the 

membrane surface and cover it in a disordered manner. At a threshold concentration the 

membrane integrity is affected in a detergent-like manner, leading to cell lysis (Oren and 

Shai, 1998). 

The term “barrel-stave” derives from the perpendicular structure that amphipathic peptides 

form when they orient themselves orthogonally to the membrane surface, joining to form a 

barrel-like structure. The hydrophobic side of peptides interacts with the lipid bilayer, while 

the hydrophilic side lines the central aqueous lumen, like in a classical protein pore. This 

requires both a certain flexibility and constraints on the size of the hydrophobic and 

hydrophilic faces of the helical structure (Giangaspero et al., 2001), (Christensen et al., 1988). 

Despite many years of intensive studies, the exact mechanism of membrane perturbation is 

still unclear. In any case, lipid scrambling in the bilayer would alter the membrane stability 

and membrane-protein functions, and formation of pores, channels or less defined lesions 

would cause a leakage of essential cytoplasmic contents and membrane depolarization. 

Furthermore, once AMPs arrive at the membrane surface, or penetrate into the intracellular 

space, they can affect critical targets and for instance induce degradation of the cell wall by 

induction of hydrolases or inhibiting cell-wall synthesis apparatus, or interfere internally with 

nucleic-acid and protein synthesis or metabolic enzymatic activity, ultimately leading to 

microbial cell death (Zasloff, 2002), (Choi et al., 2012), (Brogden, 2005), (Hale and Hancock, 

2007). 

In the following sections I will concentrate on the cathelicidin family of host defence 

peptides, and two specific structural types, the D-helical AMPs and PR-AMPs (proline-rich 

peptides), as these are most pertinent to the peptides described in my thesis.  

 

 

1.3 The cathelicidins family of vertebrate AMPs  

The two main AMP families in mammals, and in many other vertebrates, are the defensins 

and cathelicidins. Defensins are cationic, non-glycosylated peptides with a molecular mass of 

3.5 - 4.5 kDa, containing six conserved cysteine residues that form three defined 

intramolecular disulphide bonds (Lehrer, 2007), (Fellermann and Stange, 2001). On the basis 

of the position of the cysteine residues, their connectivity, and the resulting structure, the 
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defensins are classified into α-, β-defensins (with a further group, the T-defensins being 

present only in primates), (Tang et al., 1999). 

The cathelicidins are instead defined by the structure of the relatively well-conserved N-

terminal pro-region, known as the ‘cathelin-like’ domain, rather than on that of the AMPs 

themselves, which can be structurally quite diverse (Tossi et al., 2017). In mammals, the pro-

region is homologous to cathelin, a protein isolated from pig leukocytes, explaining their 

name cathelicidin (Cathelin-linked microbicidal peptide). The genes encoding cathelicidins 

are ~ 2 kb in size and share a common organization (see Figure 1.3), with four exons and 

three introns encoding the signal sequence and N-terminal cathelin-like domain in the first 

three exons, and the mature peptide in the fourth (Tomasinsig and Zanetti, 2005), (Hancock 

and Diamond, 2000). These peptides are expressed as “pre-pro” forms and in mammals and 

are usually stored as “pro-peptides” in the granules of neutrophils. The granule storage form 

requires further processing to unmask the antibacterial activity. The conserved N-terminal 

segment, corresponding to the cathelin-like domain, is cleaved upon stimulation, releasing the 

C-terminal domain as the mature antimicrobial peptide (Zanetti et al., 1995). The correct term 

for the AMPs is therefore cathelicidin-derived peptides, and the term cathelicidin should be 

reserved for the pro-form, but it has become usual to refer to the AMPs also as cathelicidins. 

It has been proposed that the well conserved pro-sequence may play an important role in 

maintaining the peptide in an inactive form within the cell through the interaction between 

acidic residues and the basic ones of the C-terminal AMP region (Scocchi et al., 1992),  

(Zanetti et al., 1995). However, other possible roles have been proposed, ranging from 

biological functions such as protease inhibitor or antimicrobial protein, or presentation 

platform for the AMP on the leukocyte cellular surface (Xhindoli et al., 2016). 

The most distant examples of cathelicidin peptides were isolated from the hagfish (Myxine 

glutinosa) (Uzzell et al., 2003). But they have been identified also in birds (Cheng et al., 

2015), fish (Scocchi et al., 2009), amphibians (Hao et al., 2012) and reptiles (Wang et al., 

2008)(Zhao et al., 2008), as well as in several mammals such as horse (Skerlavaj et al., 2001), 

rodents, carnivores and pigs and bovids (Zanetti, 2005), (Zarember et al., 2002), (Sang et al., 

2007),confirming their role as ancient components of vertebrate immunity.  
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Figure 1.3. Schematic representation of the biosynthesis and structure of 
cathelicidins and cathelicidin-derived peptides. The cathelicidin genes are in syntenic 
chromosome positions and show a common organization. Many placental mammals (e.g. 
glires, carnivores and primates) express only one cathelicidin, while others express more 
than one  (e.g. perissodactyla) and some express several (e.g. cetartiodactyla). Taken 
from (Xhindoli et al., 2016). 

 
 

1.4 α-helical AMPs 

The α-helical antimicrobial peptides are probably the most abundant and widespread in 

nature, so they represent a particularly successful structural strategy among host defence 

peptides. They generally have relatively short sequences (less than 40 residues – sometimes 

less than 20), which facilitates their chemical synthesis, and a relatively un-complicated 

structure that can be studied using simple spectroscopic techniques such as circular dichroism. 

They are also generally quite active against a broad spectrum of microorganisms, including 

Gram-negative, Gram-positive bacteria and fungi (Tossi et al 2000).  
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The net cationicity of these peptides, and their propensity for adopting an amphipathic, α-

helical conformation in membrane-like environments, respectively promote their interaction 

with the anionic head groups of bacterial membrane phospholipids and insertion into the lipid 

bilayer of the bacterial membranes (Skerlavaj et al., 1996). The subsequent step in their 

mechanism of action typically involves membrane disruption by either (or both) the “carpet” 

or “pore-forming” processes (see above). 

SAR studies have indicated at least seven parameters that can influence the potency and 

spectrum of activity of α-helical AMPs: i) the degree of structuring (% helical content) that is 

determined by the presence of amino acid residues that can stabilize (e.g. leucine, alanine, 

lysine) or destabilize (e.g. proline) the this conformation, ii) their size, iii) the sequence, iv) 

the charge, v) the overall hydrophobicity, vi) the amphipathicity, and vii) the respective widths 

of the hydrophobic and hydrophilic faces of the helix. These parameters are often closely 

interconnected, so the variation of one of them can affect the others (Tossi et al., 2000). 

This structural group includes α-helical cathelicidin-derived peptides, such as the human 

LL37 and bovine BMAP-27 and BMAP-28 (Tomasinsig and Zanetti, 2005), but also 

cathelicidins from non-mammalian species (Zhang et al., 2015) (Yacoub et al., 2016), as well 

as many non-cathelicidin peptides from anurans (Coccia et al., 2011), fish (Cole et al., 2000) 

and insects (Chen et al., 2016) (Mylonakis et al., 2016). α-helical AMPs have also been found 

in very simple organisms, such as the placozoan Trichoplax adhaerens (Simunić et al., 2014) 

The activity of this type of cathelicidin has been assayed against numerous pathogens, also in 

comparison to other types of AMPs, and in contexts such as bovine mastitis and human cystic 

fibrosis (Tomasinsig et al., 2010), (Pompilio et al., 2012) also with a view of developing 

effective antimicrobial therapeutic agent..  

 

 

1.5 PR-AMPs - Proline-rich Antimicrobial Peptides 

Among the cathelicidins, an important subgroup is represented by the proline-rich peptides, 

found in cetartiodactyls (see Figure 1.4). These show some structural similarity to proline-

rich peptides found in invertebrates species, even though these are not phylogenetically 

related to cathelicidins (Scocchi et al., 2011). These linear peptides are characterized by an 

unusually high content of proline residues (often up to 50% of the whole sequence), as well as 

a large number of positive charges carried by arginine or, less commonly, lysine residues 
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(Gennaro et al., 2002). They are also quite unusual amongst AMPs as they act by a non-lytic 

mechanism of action. 

Most AMPs, in fact, interact initially with microbial cell wall components and then insert into 

the bacterial membrane, leading to its disruption, but PR-AMPs translocate through the 

membrane without apparent damage to it. The membranolytic mechanism, for example that 

shown by helical AMPs, is due mostly to non-specific interaction of their amphipathic 

structure with the membrane, so that synthetic all- D enantiomers exert a similar antimicrobial 

activity to the natural all-L counterparts. Conversely, all-D PR-AMP analogues display a 

significant, if not a complete, loss of activity. This suggests a mechanism of action which 

involves, at some stage, a specific interaction of the peptides either with a membrane 

translocation system (as they are non-lytic), or with the internal targets that they interfere 

with. Quite possibly both processes require a stereospecific interaction by the peptides 

(Scocchi et al., 2011). On the other hand, the relative content and arrangement of proline 

residues can be quite varied. 

The fact that PR-AMPs tend to display a quite narrow activity spectrum, centred on Gram-

negative bacterial species, is presumably also due to the requirement that susceptible 

microorganism express both appropriate transport systems and internal target/s that can be 

recognized by them. This requirement likely also explains their unusually low toxicity 

towards host cells, which are unlikely to express transporter or target/s similar to the 

prokaryotic ones (Benincasa et al., 2010). 

Several PR-AMPs have been isolated from mammals, to date restricted to cetartiodactyl 

species, and they are always cathelicidins. The first to be identified and isolated from bovine 

neutrophils were named bactenecins, and specifically Bac5 and Bac7 from their respective 

size (Gennaro et al., 1989). Later, a probable pseudogene containing for a third bovine PR-

AMP, Bac4, was identified (Scocchi et al., 1998). Several orthologues of these PR-AMPs 

were later identified in sheep and goat (Shamova et al., 1999) and a porcine PR-AMP, called 

PR-39, is also orthologous to these bovine bactenecins (Agerberth et al., 1991). These 

mammalian PR-AMP sequences are characterized by tandem repeat motifs (see Figure 1.4); 

Bac5 consists of 43 residues and includes 9 tandem repeat of the tetramer XPPY, where X is 

most often an arginine residue and Y a hydrophobic residue (Frank et al., 1990). PR-39 shows 

7 tandem repeats of the tetramer YPPX where again X is often Arg and Y is a hydrophobic 

residue (Agerberth et al., 1991). Bac7 comprises 60 residues containing 3 tandem repeats of a 
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tetradecamer made up of PRP triplets spaced by a hydrophobic residue (Frank et al., 1990), 

(Gennaro et al., 2002).  

Porcine prophenins, quite long porcine PR-AMPs, present another variation on the theme, 

with sequences presenting several FPPPNFPGPR repeats. As indicated by their name, they 

are also quite rich in Phe residues. 

 

 

Figure 1.4. Structure and amino acid sequences of PR-AMPs from artiodactyl species. a) Tandem 
repeats present in some sequences are underlined with alternating full or dashed lines. b) Sequence 
from a putative pseudogene. c) Net charge (His residues are considered neutral). d) Putative peptide 
size (charge and % proline residues are based on this sequence). Modified from (Scocchi et al., 2011). 

 
 

1.5.1 PR-AMPs and intracellular mechanisms of action 

The formation of ion channels and transmembrane pores, or other forms of bacterial 

membrane lysis, are often considered the preponderant mechanisms used by AMPs to kill 

pathogens. There is however increasing evidence that many AMPs, and not only PR-AMPs, 

are internalized into the bacterial cell via mechanisms other than membrane lysis, and then 

exert their antimicrobial action on intracellular targets. An example is the amphibian buforin 

II that is reported to accumulate in the bacterial cytoplasm and carry out its antimicrobial 

action by binding the nucleic acids (Park et al., 2000). AMPs, with quite different structures 

appear to interact with nucleic acids as part of their mechanism of action, including 

tachyplesin (E-hairpin) (Nakamura et al., 1988), pleurocidin (helical), PR-39 (PR-AMP) and 
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indolicidin (Trp-rich),  subsequently inhibiting the synthesis of DNA, RNA and proteins 

(Selsted et al., 1992), (Boman et al., 1993), (Cole et al., 1997).  

The histatins (primate, salivary, helical His-rich peptides) bind a specific receptor of fungal 

cell membranes, enter into the cytoplasm and induce a loss of ATP through a non-lytic 

mechanism of action, then leading to disruption of the cell cycle and formation of toxic ROS 

(Andreu and Rivas, 1998), (Kavanagh and Dowd, 2004).  

The proline-rich apidaecin from honeybees (Casteels et al., 1990) and drosocin from fruit flies 

(Bulet et al., 1993) penetrate into susceptible bacterial cell and specifically bind to the protein 

DnaK (Scocchi et al., 2009) and non-specifically to bacterial chaperonin GroEL. These 

interactions are related with their antimicrobial activity (Otvos et al., 2000) and it was 

demonstrated that their killing action is much slower than the fast killing action of 

membranolytic peptides. The mechanism of inhibition is not yet clear, although it has been 

proposed that the binding of these peptides to DnaK prevents the movement of the lid over its 

peptide-binding pocket, permanently closing the cavity and thus inhibiting chaperone-assisted 

protein folding (Kragol et al., 2001). Alternatively, these peptides interact with the substrate-

binding site of DnaK so that their antimicrobial activity is due to competitive inhibition 

(Chesnokova et al., 2004). A dual-mode of inhibition, based on competitive inhibition and 

interference with the lid-mediated regulation of the chaperone cycle, has also been proposed 

(Liebscher and Roujeinikova, 2009). Studies on mammalian PR-AMPs have shown that they 

also bind to other internal targets apart from DnaK, leading to a multimodal killing 

mechanism. 

 

1.5.2 The bovine Pro-rich peptide Bac7: structural and functional characteristics 

Bac7 is a linear, 60-residue proline-rich peptide of bovine origin, originally isolated from  

neutrophils, and a member of the cathelicidin family (see Figure 1.5) (Scocchi et al., 

1994)(Gennaro et al., 1989). The sequence has a 46% content of proline and 31% of arginine 

residues with a particularly Arg-rich N-terminal region, followed by three 14 -residue tandem 

repeats of somewhat more hydrophobic residues (see Figure 1.4). 

The antimicrobial activity of Bac7, or more particularly of its fully functional truncated form 

Bac7(1-35), has been extensively characterised and it has been shown to present a potent in 

vitro activity against several Gram-negative bacteria including Enterobacteriaceae 

(particularly Salmonella), and the genera  Acinetobacter, and Sinorhizobium (Benincasa et al., 
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2004), and to a lesser extent Pseudomonas (Podda et al., 2006), (Marlow et al., 2009). It is 

instead inactive against most of the Gram-positive bacteria. Bac7(1-35) is active against 

clinical isolates that are multi-resistant to conventional antibiotics (Benincasa et al., 2004) and 

can furthermore neutralize endotoxin in experimental rat models of Gram-negative septic 

shock (Ghiselli et al., 2003). Like other PR-AMPs, the killing mechanism does not involve 

membrane lysis. This peptide is not toxic to mammalian cells at concentrations well above 

those effective against microbes (Tomasinsig et al., 2006), (Benincasa et al., 2010) 

 

 

Figure 1.5. Sequence of Bac7 and schematic representation of active and inactive 
fragments. (1) The sequence comprises a cationic N-terminal stretch (darker grey region) 
followed by three tandem repeats. (2-4) The N-terminal fragments 1-35 and 1-23 are as active 
as the parent sequence, and fragment 1- 16 still maintains an appreciable activity, in the low 
micromolar range. All these peptides act via a non-membranolytic mechanism.  (5) N-terminal 
fragments shorter than 15 residues are inactive. (6) The so-called ‘N-cap’ (RRIR, darkest grey 
cylinder) is required for activity and consequently (7) fragments from the central repeat region 
are inactive. (8) Some activity can however be recovered by grafting the N-cap onto central 
fragments. (9) All-D enantiomers of the active region (hashed cylinders), such as D-BAC7(1-35), 
are inactive at lower concentrations but act by a membranolytic mechanism at higher ones. 

 

 

SAR studies on Bac7 have shown that the antimicrobially active domains correspond to 

specific segments of the peptide. A portion of the N-terminal region is required and sufficient 

for antimicrobial activity,  as shortening from the C-terminus to Bac7(1-35) and Bac7(1-23) 

results in fragments with activities comparable to that of the native peptide (Benincasa et al., 

2004) (Guida et al., 2015). The shortest active fragment includes 16 N-terminal residues, but 

shortening to 15 residues abrogates activity. Furthermore, removal of the first four N-terminal 

residues (sometimes called the N-cap) leads to a drastic decrease in activity irrespective of 
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fragment length, indicating that it exerts an essential role. Another crucial element for activity 

seemed to be the stereochemistry of the active region, as the all-D enantiomer of fully active 

fragment bac7(1-35) showed a significant loss of activity (Podda et al., 2006). 

With respect to the mechanism of action, the minimum length requirements and necessity of 

the ‘N-cap’ for non-lytic activity, and the inactivity of the D-enantiomer, all argued for 

cytoplasmic translocation and inactivation of intracellular targets.  The in vitro sensitivity of 

DnaK-deficient E. coli strains to Bac7(1-35), under growth permissive conditions, was not 

however significantly decreases compared to wild-type strains, so that this does not appear to 

be a principal target; other more vital targets for PR-AMPs are in fact present in susceptible 

bacteria (Scocchi et al., 2011). 

The mechanism underlying the antibacterial activity of Bac7(1-35) was extensively 

investigated against several Gram-negative bacteria. At the MIC, it kills bacteria by a non-

lytic, energy-dependent internalization mechanism into bacterial cells, while the all-D 

fragment is excluded, partly explaining its lack of activity. At significantly higher 

concentrations (>32-64 µM), both L- and D-enantiomers of Bac7(1-35) permeabilized the 

cytoplasmic membrane (Podda et al., 2006), leading to bacterial inactivation. This suggests 

that PR-AMPs such as Bac7 can inactivate bacteria with different modes of action, depending 

on the concentration: a mechanism based on uptake and internal target binding at 

concentrations near the MIC value, for which the stereochemistry is important, and an 

additional membranolytic mechanism acting only at higher concentrations, for which the 

stereochemistry is not important. The shortest active fragment, Bac7(1-16), still seems to act 

by a non-lytic mechanism even at a concentration 20 times its MIC value, so that the more 

hydrophobic tandem repeats may play a significant role in the lytic mechanism (Podda et al., 

2006).  

To better understand the non-lytic mechanism, a genetic approach was set up with the aim of 

identifying the proteins involved in membrane translocation. Bacterial mutants were selected 

by random mutagenesis with reduced susceptibility to the peptide’s action (Scocchi et al., 

2008). This allowed identification of a gene, sbmA that encode an inner membrane protein 

(SbmA), which based on homology could be part of an ABC transport system. Mutation or 

deletion of this protein conferred a partial resistance to Bac7 as well as other PR-AMPs, both 

cathelicidins (PR-39 and Bac5) and unrelated ones of invertebrate origin, such as apidaecin. 

On the other hand, the mutants remained susceptible to α-helical membranolytic AMPs 
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(Mattiuzzo et al., 2007), (Pränting et al., 2008). This suggested that SbmA was generally 

involved in PR-AMP internalization. 

Regarding the internal targets, an attempt to identify these was carried out using affinity 

chromatography with either L- or D-Bac7(1-35) functionalized resin to search for specific 

bacterial cytoplasmic interactors in an E. coli lysate. It was quite striking that the only high 

affinity protein to be specifically retained by the L-Bac7(1-35) column was DnaK, while the 

all-D enantiomer failed to retain it. This confirmed the capacity of Bac7 to interact strongly 

with DnaK, and it was subsequently found to inhibit the protein refolding activity of the 

DnaK/DnaJ/GrpE/ATP molecular chaperone system, in vitro, in a concentration-dependent 

manner (Scocchi et al., 2009). Subsequently, it was shown that both insect-derived and 

cathelicidin-derived PR-AMPs were capable of inhibiting protein synthesis by bacterial 

ribosomes, interacting with the 70S subunit (Krizsan et al., 2014), (Mardirossian et al., 2014). 

Crystal structures have been obtained for these peptides bound to ribosomes, indicating that 

they bind to, and block, the ribosomal exit tunnel and destabilize the initiation complex, thus 

impeding polypeptide elongation in the ribosome (Seefeldt et al., 2015). 

The exact mechanism of action of Bac7 is not yet fully characterized and several questions 

remain to be clarified, especially regarding its interaction with the outer and cytoplasmic 

bacterial membranes, the internalization mechanism and other possible internal targets. 

However, a quite detailed picture of the mode of action is emerging, as summarized 

schematically in Figure 1.6. 

 

1.5.3 The E. coli inner membrane protein SbmA 

SbmA appears to be a principal transporter for PR-AMPs from both mammalian and 

invertebrate animals. From an analysis of its 406 residue sequence it was deduced that it is an 

inner membrane protein with seven transmembrane spanning segments (Glazebrook et al., 

1993), although the exact number of transmembrane helices is uncertain. The C-terminal part 

of the protein is highly hydrophobic and could form an eighth transmembrane segment, while 

cytoplasmic localization for this segment was suggested, on the other hand, by comparative 

analysis with other components of the E. coli inner membrane proteome (Daley et al., 2005). 

SbmA was initially predicted to be the transmembrane domain of an ABC-type peptide 

transporter, since it played a role in the uptake of structurally different such molecules 

(Laviña et al., 1986), (Yorgey et al., 1994), (Mattiuzzo et al., 2007). 
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Figure 1.6. Model for the mode-of-action of PR-AMPs. PR-AMPs like Bac7 can 
penetrate into susceptible bacterial cells at micromolar concentrations, in a stereoselective 
manner, using a transport system involving the membrane protein SbmA (1). Other 
transporters may internalize these peptides at intermediate concentrations. At significantly 
higher concentrations, the peptides can lyse the bacterial membrane (2), irrespective of 
stereochemistry. Once internalized, PR-AMPs can interact with the bacterial chaperone 
DnaK (3), affecting its ATPase activity or its peptide-binding domain (PBD) or both. The 
principal target, however, appears to be the bacterial ribosome, in which they prevent 
initiation polypeptide synthesis and/or elongation (4). Adapted from (Scocchi et al., 2011). 

 

 

 

It is, in fact, not specific for PR-AMPs as knocking out the sbmA gene results in a decreased 

susceptibility also to other types of antimicrobial agents, including microcins and antibiotics 

such as bleomycin (Yorgey et al., 1994),  (Salomón and Farías, 1995). 

Orthologues of SbmA have been identified in several Gram-negative bacterial species, 

including Salmonella thyphimurium, Shigella flexneri and Klebsiella pneumoniae, but it has 

not been found in Gram positive ones. Orthologues have also been identified in intracellular 

species such as Sinorhizobium meliloti, Brucella abortus and Mycobacterium tuberculosis, 

where it is known as BacA. SbmA/BacA has no close homologues in Pseudomonas 

aeruginosa, which consequently is less susceptible (in general) to Bac7 (Benincasa et al., 

2004). While the function of SbmA in E. coli is not known, it can be inferred from its 
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homology with the BacA protein to have some function in assisting internalization of 

unknown substrate(s), triggering specialized functions that may be related to infection, so that 

it is necessary for the establishment of symbiosis or intracellular infection, (Runti et al., 

2013). 

 

1.6  Expression of cathelicidin-related AMPs in the order of Cetartiodactyla 

The order of Cetartiodactyla includes two quite distinctive sub-orders of mammals: i) 

Artiodactyla (ungulates), of which cattle and sheep (Bovidae), pig (Suidae), camels and 

llamas (Camelidae), deer (Cervidae) and giraffes (Giraffidae) all form a part; and ii) Cetacea 

such as whales, dolphins and porpoises (see Figure 1.7). The evolutionary origin of whales, 

and the subsequent remarkable transformation that led to their adaptation to a fully aquatic 

existence, have fascinated biologists. Molecular biology studies had suggested for some time 

that the order Cetacea might be more closely related to cows or pigs in the order Artiodactyla, 

than to other orders of ungulates, such as Perissodactyla (horses, rhinoceros) or related orders 

such as Hyracoidea (hyraxes), Proboscidea (elephants), and Sirenia (sea cows). More recent 

studies indicate that the connecting species is likely that last common ancestor between 

Cetaceans and hippopotamus (Nikaido et al., 1999) (Price et al., 2005).   

 

 

 

Figure 1.7. Phylogenetic relationships among the main subgroups of Cetartiodactyla. From 
(Nikaido et al., 1999). 
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Unlike primates and rodents, which express a single cathelicidin gene, cetartiodactyl species 

express a range of genes that express cathelicidins with quite diverse antimicrobial peptide 

domains (AMPD). This structural diversity likely results from a gene duplication mechanism 

followed by 'exon shuffling', by which a pre-existing and autonomous antimicrobial module 

presumably inserted downstream of the cathelin-like domain (CLD) of the duplicated gene by 

non-homologous recombination. This type of exon recombination cannot, however, be 

considered as a classical type of exon shuffling, as the shuffled AMPDs are not flanked by 

two introns with identical phases (Froy and Gurevitz, 2003), (Arguello et al., 2007). This 

mechanism has however been suggested to explain the remarkable diversity of the AMPD, 

considering the correspondence between these and their coding exons (Tomasinsig and 

Zanetti, 2005), (Yeaman and Yount, 2007). A high level of diversity is observed only at in the 

fourth exon, while the other three are generally well conserved The fact that the CLD in 

paralogous genes within some artiodactyl species are more conserved than in homologous 

genes from different species suggests they are actually subject to purifying selection by 

mechanisms such as gene conversion (Zanetti et al., 2000) . 

Among Cetartiodactyla, cathelicidins from bovine (Bos taurus), pig (Sus scrofa), goat (Capra 

hircus) and sheep (Ovis aries), in that order, have been most extensively characterized. 

Bovine  cathelicidins include PR-AMPs such as Bac5 and Bac7, (Gennaro et al., 1989), α-

helical peptides such as BMAP-27 and -28, (Skerlavaj et al., 1996)], and quite unrelated 

peptides such as the Trp-rich indolicidin (Selsted et al., 1992) and �E-hairpin cyclic 

dodecapeptide Bac1 (Romeo et al., 1988). The BMAPs (Bovine Myeloid Antimicrobial 

Peptide) rapidly permeabilize bacterial membranes in vitro, and kill a broad range of bacteria 

and fungi at micromolar and sub-micromolar concentrations (Skerlavaj et al., 1996), 

(Benincasa et al., 2003), (Benincasa et al., 2006). They are cytotoxic in vitro to host cells at 

concentrations that are not much higher than those necessary for antimicrobial activity, and 

this is linked to an appreciable permeabilising effect on host cell membranes that may also 

lead to mitochondrial damage, thus causing apoptosis (Risso et al., 1998). 

Numerous porcine cathelicidins have also been isolated, including two types of PR-AMPs 

[prophenins and PR-39, (Agerberth et al., 1991), (Zhao et al., 1995)], several α-helical 

peptides [PMAP-23,-36 and -37 (Storici et al., 1994)], and several closely related  β-sheet 

peptides  known as protegrins (but with two disulphide bonds unlike the bovine 

dodecapeptide). PR-39 penetrates into bacterial cells without damaging the membrane, much 

like Bac7. It can also selectively translocate into host cells and bind to cytosolic signal 



30 
 

transduction factors and acts as a chemotactic agent for neutrophils (Huang et al., 1997), 

(Chan and Gallo, 1998). 

A similar repertoire of cathelicidin-related AMPs have been identified in sheep and goat, such 

as the α-helical SMAP-29 and several PR-AMPs homologous to bovine Bac5 and Bac7 

(Huttner et al., 1998), (Skerlavaj et al., 1999), (Shamova et al., 1999). This strongly suggests 

that numerous cathelicidins are expressed also in other cetartiodactyl species, and indeed 

sporadic reports of such peptides have appeared regarding buffalo and deer, so it was logical 

to search for these polypeptides also in cetacean species, exploiting the increasing genomic 

sequence data that is becoming available.  

 

1.6.1 AMPs in the dolphin Tursiops truncatus  

The bottlenose dolphin (Tursiops truncatus) is one of the best-known and most studied 

cetacean species worldwide. As part of the order Cetartiodactyla, being an aquatic animal it 

seemed particularly interesting to determine how its immune system has developed compared 

to that of its terrestrial counterparts, having diverged from these only relatively recently (a50 

MY). In fact, although the immune system has evident similarities, there is evidence that  

dolphins have a somewhat higher resistance to external pathogens, being constantly exposed 

to them in the aquatic environment (Mancia et al., 2007).  

Among bacterial species, those mainly responsible for infections in cetaceans are 

Dermatophilus spp., Erysipelothrix rhusiopathiae, Mycobacterium marinum, Pseudomonas 

spp., Streptococcus iniae and Vibrio spp. Concerning the bottlenose dolphin itself, it is 

subjected to frequent attacks by sharks and other predators, which cause injuries that expose 

internal tissues to infections (Zasloff, 2011). However, injured animals survive in a significant 

number of observed cases (~40%)  and wounds heal without consequences. This is further 

evidence that dolphins have a highly developed and efficient immune system. 

This, and its belonging to the order cetartiodactyla, suggests the presence of several 

antimicrobial peptides in the humoral component of its innate immune system, able to 

efficiently act against different pathogens, and partially explain the efficient wound repair 

system. It would be interesting to characterize these AMPs, on the one hand to gather more 

information on an important aspect of immunity, on the other hand to exploit this information 

for the development of new anti-infective strategies. 
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1.7 Use of AMPs as anti-infective agents 

The rapid spread of the antibiotics resistance phenomenon is a major challenge to modern 

medicine. Soon after the introduction of antimicrobial drugs, bacteria began an accelerated 

evolutionary process towards resistant strains, which combined with the ability to transfer 

resistance mechanisms amongst species, has resulted in most, if not all, antibiotics available 

today being  affected (Fernández et al., 2011). This is underlined by the ever more frequent 

cases of nosocomial infections caused, for example, by vancomycin-resistant Enterococcus 

faecium (VREF) (Top et al., 2008), methicillin-resistant Staphylococcus aureus (MRSA) 

(Purrello et al., 2016), penicillin-resistant Streptococcus pneumoniae (PRSP) (Mamishi et al., 

2014), fluoroquinolone-resistant Pseudomonas aeruginosa (Sawa et al., 2014) and 

Acinetobacter baumannii resistant to other antibiotics (Ageitos et al., 2016). Unfortunately, 

the resistant pathogens can then make their way into the community. 

There are a number of possible mechanisms that lead to antibiotic resistance, including i) a 

reduced permeability to, or uptake of, certain drugs; ii) increased efflux activity so that drugs 

are expelled from the membrane or cytoplasm; iii) enzymatic inactivation of drugs; iv) 

alteration to or over-expression of the drug’s target/s and v) suppression of enzymes involved 

in pro-drug activation (Fernández et al., 2011). The origin of these resistance traits, in a given 

bacterial strain, can be diverse. They can evolve independently due to selective pressure on a 

given strain, especially when it is exposed to sub-optimal concentrations of the drug. Genes 

encoding resistance determinants can also be horizontally transferred between different 

strains, or even different species, via conjugation. This mechanism is common, for example, 

for drug-inactivating enzymes, whose genes are often carried as cassettes on mobile elements. 

Fortunately, mutations in genes leading to resistance usually result in lower fitness, and if 

costly to the bacterial cell can be reversed  (Baquero, 2001). 

A further problem related to drug resistance is the production of biofilms; often mixed 

communities of microorganisms that adhere to bio-surfaces and are encased in a matrix 

composed of polysaccharides, proteins and nucleic acids that protects them from the external 

environment. These communities are shielded from antimicrobial drugs and often have a 

slower metabolism due to nutrient or oxygen depletion, both of which reduce the effects of 

the drugs. Biofilms are linked to the formation of dental plaque (Kanwar et al., 2016), urinary 

tract infections (Delcaru et al., 2016), endocarditis (Elgharably et al., 2016), lung infections 

(Cai et al., 2016) among many other infections.  
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Figure 1.8. Schematic representation of some of the major known adaptive 
resistance mechanisms. RND, PBP and LPS stand for resistance-nodulation-cell 
division type efflux, penicillin binding protein and lipopolysaccharide, respectively. 
Taken from (Fernández et al., 2011). 

 

AMPs are alternative anti-infective agents to antibiotics that could help to overcome these 

resistance mechanisms. SAR studies on AMPs have amply indicated that i) as direct 

antimicrobials the membranolytic AMPs combine a mode of action different to those of most 

conventional antibiotics, and therefore should not be susceptible to cross resistance; ii) this 

type of AMP often display a multi-modal mechanism of action, binding to different 

components of the cell membrane, so that it is more difficult for the bacterium to develop 

resistance, as this would require altering multiple targets; iii) cell penetrating AMPs tend to be 

more similar in their action to conventional antibiotics, but are non-toxic to the host, and 

might be capable of internalising useful molecular cargo into either bacterial or host cells. 

However, AMPs suffer from all the disadvantages of peptide drugs: a) production difficulties 

and high costs; b) therapeutic windows that may be too narrow, c) reduced bioavailability due 

to sequestration or renal clearance; d) susceptibility to proteolytic degradation (by either host 

or bacterial secreted enzymes); e) possible antigenicity. Attempts to improve their potential 

have therefore mostly been aimed at increasing serum stability without affecting their 

antimicrobial or cell-penetrating properties (Scocchi et al., 2011). 

Helical peptides, being membranolytic, generally display a broader and more potent 

antimicrobial activity that is less sensitive to medium conditions than other types of AMPS. A 
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disadvantage is their relatively higher toxicity towards host cells, which makes them more 

suitable for topical rather than systemic uses. PR-AMPs have a significantly narrower activity 

spectrum, due to their non-membranolytic mechanism requiring transmembrane transport (see 

above), but are relatively facile to synthesize and may be more amenable to chemical 

modifications required to improve stability and bioavailability. They also tend to have low 

toxicities. An interesting potential application of PR-AMPs is their use as cell-penetrating 

peptides (CPPs) for the intracellular delivery of normally impermeant drugs into bacteria (e.g. 

conventional antibiotics or resistance-factor inactivating drugs) or even into eukaryotic cells. 

In this thesis, I describe some studies that I have carried out to explore the potential of 

cathelicidin-derived peptides as possible anti-infective agents. These studies are conceptually 

quite different, so I have written separate Materials and Methods and Results sections for 

each. In chapter 2, I describe the characterisation of some novel cathelicidins that were 

identified in the bottlenose dolphin, Tursiops truncatus. These are structurally related to 

orthologous peptides from artiodactyl species, some of which have already been extensively 

characterized and display significant therapeutic potential. It was interesting to determine if 

and how the aquatic life-style of the dolphin could have modulated the activity of these 

peptides. In chapter 3, I instead explore the possibility of using the very well characterized 

PR-AMP fragment Bac7(1-35) to internalize antibiotic cargo into bacterial cells. This 

involved finding strategies for modifying the antibiotic, without impairing its activity, so that 

it could be covalently linked to the peptide and allow its transport, but also allow its release so 

that it could explicate its activity. 
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Chapter 2: Bottlenose dolphin cathelicidins 
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2.1 AIMS OF THE STUDY 

 

The World Health Organization has identified bacterial resistance to antibiotics as one of the 

three greatest threats for human health. Multi-drug resistant bacterial strains are currently one 

of the leading causes of infections in hospitals. In this respect, the most problematic 

pathogens are gathered in the so-called "ESKAPE" group (Enterococcus faecium, 

Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas 

aeruginosa, and Enterobacteria spp.). New drugs, acting via alternative mechanisms are 

therefore urgently needed. 

Unfortunately, the discovery process for new antibiotics does not keep up with the 

development of new resistant bacterial strains/species. From this point of view, cathelicidin-

derived AMPs could be suitable candidates as new potential anti-infective agents. These 

molecules are i) very widespread in vertebrate animals, ranging from basal ones such as 

hagfish and lampreys, to reptiles, birds, fish, amphibians and mammals, indicating they are 

ancient and successful antimicrobial agents; ii) they are a structurally very diverse family of 

AMPs, with at least 5 different conformational classes, each with its own mode of action 

(Tossi et al., 2017), iii) they are both ‘multimodal’ and ‘multifunctional’, in the first case 

because they have a direct antimicrobial action based on interaction with multiple targets, and 

in the second case, because they have the capacity to modulate the activities of host defence 

cells. This means that apart from acting as antibiotics, they can also modulate the host’s innate 

and adaptive responses, as well as having other protective roles connected with protecting 

from sepsis and promoting wound healing (Cederlund et al., 2011). Moreover, their structures 

are normally relatively simple (either linear, or if cyclic quite short and with few disulfide 

bonds), allowing for relatively facile chemical synthesis. They naturally, however, present the 

disadvantages of peptides already mentioned previously, relating production costs, reduced 

bioavailability and imperfect therapeutic windows. To this, one could add a very significant 

possible disadvantage that makes their detailed study quite important; should resistance 

develop against a therapeutic agent based on their structures, it could result in cross-resistance 

to endogenous immune factors, with all the consequences that entails. 

The first part of my PhD thesis work aimed to study novel cathelicidins identified in the 

dolphin Tursiops truncatus, and probe the antimicrobial characteristics of these peptides, also 

in view of potential exploitation for biomedical applications.  
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The main purposes were to: 

i) Synthesise and characterise peptides from cathelicidin genes identified in the dolphin after 

exploring different types of nucleic acid databases.  

ii) To test the antimicrobial activity, in terms of MIC and other parameters reflecting 

inhibition of bacterial growth", comparing these to data from the orthologous peptides present 

in other Cetartiodactyla.  

iii) To begin to investigate their mechanism of action by monitoring their effects on bacterial 

membranes, and/or their capacity to internalize into susceptible bacterial cells, and cytotoxic 

activities against selected host cells. 
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2.2 MATERIALS and METHODS 

 

2.2.1 Identification of Tursiops truncatus cathelicidin-derived AMPs  

Tursiops truncatus is one of 29 mammals that have been selected for the Mammalian Genome 

Project, for the sequencing of the entire genome (Lindblad-Toh et al., 2011). Consequently, 

genomic data has been available for some time. The initial identification of Tursiops 

cathelicidin genes was carried out by prof. G. Manzini in the Dept. of Life Sciences, 

University of Trieste, who searched in the nucleotide, EST (expressed sequence tag), WGS 

(whole genome sequence) and traces (crude sequence data) archives in Genebank. More 

recently, it has been possible to confirm these sequences, and partly determine the gene 

organization, by blasting the Ensemble dolphin assembly (turTru1) provided by the Genome 

Project. 

The sequences of seven different putative bottlenose dolphin cathelicidins, called Tur1 - Tur7 

(see Table 2.2.1, top), were identified from the genomic databases by using the known 

sequences of artiodactyl cathelicidins (cow or pig) as query, in a standard nucleotide BLAST 

search of the abovementioned NCBI databases (https://blast.ncbi.nlm.nih.gov). For some of 

the sequences, less frequent variants differing in one or a few residues were also found. The 

same sequences were then identified in scaffolds from the ENSEMBL truTUR1 dolphin 

partial genome assembly using its BLAST tool (http://www.ensembl.org/Multi/Tools/Blast). 

The scaffold and contig entries for the sequences in Ensemble or the NCBI Nucleotide 

database are TUR1D + TUR4D + TUR5: Ensemble Genescaffold 2343; TUR1V (variant): 

Genebank locus JH490241; TUR2D: Genebank locus JH521985; TUR2D + TUR3D: 

Ensemble Scaffold 362; TUR3V: Genebank locus JH475206; TUR5V: Genebank locus 

JH481255; TUR6: Ensemble Scaffold17717; Ensemble Genescaffold 3424. 

The bottlenose dolphin genome was sequenced using first generation methods (Sanger) at a 

relatively low coverage (2.6�u, see http://www.ensembl.org/Tursiops_truncatus) so that there 

could be imprecision. This suggested the need to use primers based on the sequences of 

TUR1-7 to selectively amplify the cathelicidin genes from genomic DNA obtained from 

samples of dolphin tissue. This work was carried out M. Del Ben in the laboratory of prof. 

Alberto Pallavicini, starting from frozen tissue samples obtained from the Mediterranean 

marine mammal tissue bank, Dept. Veterinary Experimental Sciences, Univ. of Padova. 

Sequencing confirmed the correctness of TUR5 and 7, failed to find TUR1D while revealing a 
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new paralogue, and indicated slight differences in one or more positions of TUR2, 3, 4 and 6. 

For this reason, peptides mined from the database are indicated as TURnD, and those from 

direct sequencing as TURnS. These latter sequences are also shown in Table 2.2.1. 

 

 

Table 2.2.1. Amino acid sequences of cathelicidins (TUR) found in the Tursiops truncatus genome 

  

Peptide Sequence Residues Charge 

 from database searching   

TUR1D RRIRFRPPYLPRPGRRPRFPPPFPIPRIPRIP-OH 32 +10 

TUR2D GRFRRLRHRIGRVLSKVGRIVGPLIRIL-NH2 28 +9 

TUR3D GIFRWLRHIGRVLPKVGRIVGPLIGIW-NH2 27 +5 

TUR4D QRCRIIVIRMCR-OH 12 +4 

TUR5 GLFRWLGDFLQRGGRR-OH 16 +3 

TUR6D RGLRSLGRNILRGWKKYGPIIVPIIRLI-NH2 28 +8 

TUR7 GLFRRLGDFLRRGGEKTGKKIERIGQRIKDFFGIFQPSKQS-OH 41 +7 

    

 from direct sequencing   

TUR1S RRIPFWPPNWPGPWLPPWSPPDFRIPRILRKR-OH 32 +6 

TUR3S GRFRRLRHRIGRVLPKVGRIVGPLIGIW-NH2 28 +8 

TUR4S QGCRIVVIRMCR-OH 12 +3 

TUR6S RGLRSLGRKILRGWKKYGPIIVPIIRLI-NH2 28 +8 

TUR5 & 7 confirmed   
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With respect to the expression of the dolphin cathelicidin-derived peptides, a search of the 

EST archive in Genebank found only TUR1. Very recently, however, it has been possible to 

identify expressed RNA from the SRA database (Sequence Read Archive). In particular, 

bioproject PRJNA313464 provided an RNA-Seq analysis of seasonal and individual variation 

in dolphin blood transcriptomes (Morey et al., 2016) while bioproject PRJNA20367 provided 

RNA-Seq data from different tissues (kidney, spleen, muscle and liver) (Foote et al., 2015).  

The sequences of TUR1-7 were used as query in a BLAST search against entries from these 

bioprojects, and the number of hits was considered roughly proportional to the expression 

levels. 

Having obtained the sequences of Tursiops cathelicidins, it was possible to use these to search 

for orthologous peptides with sequences present in GeneBank, such as the river dolphin 

(Lipotes vexillifer), the killer whale (Orcinus orca), the sperm whale (Physeter 

macrocephalus), and the minke whale (Balaenoptera acutorastrata). 

 

 

2.2.2 Peptide synthesis and purification 

Based on their different conformations and likely mechanisms of action, I concentrated my 

work on three dolphin cathelicidins, which I chemically synthesized: 

1) both versions of the pro-rich peptide TUR1 (TUR1D and S), as well as a version of 

TUR1D modified with a C-terminal cysteine;  

2) the sequenced version of the cyclic dodecapeptide TUR4S  

3) both versions of the helical peptide TUR6 (D and S).  

 

Syntheses were performed in the solid phase, using Fmoc chemistry and global protection of 

aminoacid side chain (Atherton, and Sheppard, 1989). They were carried out on a Biotage 

Initiator+ automated microwave peptide synthesizer, with a synthesis scale of 0.1 mmol for 

each peptide. For peptides containing proline or cysteine as C-terminal residue (TUR1 and 

TUR1[Cys33]), the 2-chlorotrityl chloride resin (Novabiochem, substitution ≤ 0.2 mmol/g) 

was chosen, to respectively prevent diketopiperazine formation and cysteine racemisation. 

The resin was manually preloaded with 4 fold molar excess of either Fmoc-Pro-OH or Fmoc-

Cys(Trt)-OH dissolved in DCM with added DIPEA (diisopropylethylamine). For the 
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dodecapeptide TUR4, a commercially available TGA resin preloaded with Fmoc-Arg(Pbf) 

was used (Novabiochem, substitution 0.23 mmol/g). For the TUR6 the NovaPEG Rink Amide 

Resin LL (Novabiochem, substitution 0.16 mmol/g) was used. A five-fold excess of Fmoc-

amino acid/PyBOP/DIPEA (1:1:1.7 v/v) was normally used for each coupling step with NMP 

as solvent. In the case of 2-chlorotrityl chloride resin, the coupling temperature used was kept 

to 45°C to prevent premature detachment; otherwise, it was 75°C.  

Before setting up the synthesis, potentially difficult points in the sequence were predicted 

using the Peptide Companion software (Coshi Soft, AZ, U.S.A) (see Figure 2.2.1). Based on 

these profiles, for couplings predicted to be difficult, and for the bulky and sterically hindered, 

Pbf-protected Arg residues, double coupling cycles were performed at appropriate points. For 

the TUR1 peptides, the presence of a number of proline residues in any case reduces the 

aggregation potential during the peptide chain elongation, so that synthesis was in general not 

problematic. Deprotection of the Fmoc group was carried out using a solution of 20% 

piperidine in NMP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.1. Prediction of difficult sequence. A) TUR1_DB; B) TUR1_SEQ; C) TUR4; D) 
TUR6_DB; E) TUR6_SEQ. The synthesis points with predicted high difficulty are in red, 
intermediate difficulty in yellow, while easy ones are in green. A stretch of Gly residues was 
added to the C-terminus as the program ignores residues close to the C-terminus. 
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The peptides were cleaved from the resin using a cocktail of trifluoroacetic acid (TFA), 

thioanisole, water, 3,6-dioxa-1,8-octane-dithiol (DODT), tri-isopropylsilane (TIPS) 

(85%,3%,2%,8%, 2% v/v) and then precipitated and washed several times with cold tert-butyl 

methyl ether (TBME) and dried under nitrogen. The crude peptides were analysed by ESI-MS 

[Brucker Daltonics Esquire 4000] (see Figure 2.2.2 for an example). All peptides were 

purified by reverse-phase HPLC on a Phenomenex preparative column (Jupiter™, C18,10 

µm, 90 Å, 250x21,20 mm) using a 5-35% CH3CN in 50 min gradient with a 8 ml/min flow. 

The peptides, lyophilized several times from HCl to remove TFA as a counterion, were then 

accurately weighed and dissolved in Milli-Q water. Quality control was carried out by 

analytical RP-HPLC (Waters Symmetry 4.6 x 75 mm C18 column) followed by ESI-MS. The 

concentration of stock solutions was determined from the weight and by spectrophotometric 

determination of peptide bonds using ε214 calculated as described by (Kuipers and Gruppen, 

2007), or by the method of Waddell, measuring the differential absorbance at 215nm and 

225nm (Waddell, 1956). For those peptides with aromatic side-chains, absorbance at 280 nm 

was also used. 

 

 

 

Figure 2.2.2. Mass spectrum of TUR1_DB. Top: ESI-MS spectrum of at Compound stability = 100; 
below: reconstructed spectrum based on m/z peaks. 
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2.2.3 Folding of TUR4 

On completion of the synthesis, and after cleavage using protocols as described above, the 

quality of TUR4 crude reduced linear peptide (MW = 1433.8) (see Figure 2.2.3A) was found 

to be sufficiently high to undergo the folding procedure directly, without previous 

purification. Folding was carried out in oxidizing conditions by dissolving crude peptide in 

aqueous buffer consisting of 0.1M ammonium acetate, 2 mM EDTA and 0.5M guanidinium 

chloride, at a final pH 7.5-8, under nitrogen. Cysteine (100 fold excess) and cystine (10 fold 

excess) were also added immediately prior to use, to catalyse disulfide exchange and facilitate 

obtaining the correct connectivities. The folding reaction was conducted at room temperature 

for 48h and was monitored by analytical RP-HPLC (Kinetex C18, 3µm, 100 Å, 50 x 4.6 mm 

column from Phenomenex, USA) until complete oxidation of the peptide, exploiting the fact 

that unfolded and folded peptides have different and characteristic elution times. The folding 

solution was then acidified at pH = 2-3 and subjected directly to preparative RP-HPLC, and 

the peptide then lyophilized. ESI-MS showed that the peptide was both correctly folded and 

of high purity (Figure 2.2.3B), with a yield of about 50%. Quality control was carried out by 

analytical RP-HPLC (Waters Symmetry 4.6 x 75 mm C18 column) followed by ESI-MS. 

 

 

 

Figure 2.2.3. Mass spectrum of TUR4S.  A) reduced crude peptide; B) oxidized and purified 
analogue. Spectra were deconvoluted from the ESI-MS spectra using the Esquire software. 
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2.2.4 BODIPY labelling of peptides  

TUR1D and its bovine orthologue Bac7(1-35) were synthesized in the solid phase, as 

described above, but introducing a cysteine residue at the C-terminal. After cleavage, crude 

peptides were reacted with the fluorescent dye BODIPY-FL [N-(2-aminoethyl)maleimide] (1 

eq. peptide/10 eq. dye) in 30% CH3CN, 10 mM sodium phosphate buffer at pH 7.4. The 

reaction (see Figure 2.2.4) was performed under nitrogen bubbling with stirring for 3 h at 

room temperature and subsequently overnight at 4°C. The SH group on the Cys residue reacts 

with maleimide group of BODIPY. The reaction was monitored periodically by analytical 

RP-HPLC (Kinetex C18, 3µm, 100 Å, 50 x 4.6 mm column from Phenomenex, USA) and 

ESI-MS. Upon completion (about 24h), a 10-fold excess of cysteine was added to the reaction 

mixture to quench unreacted dye. After 60 min quenching, the reaction mixture was diluted 

with 0.05% trifluoroacetic acid in water to a final concentration of 10% CH3CN and pH 2.5. 

This was necessary, as the crude peptide was relatively insoluble in water alone. The labelled 

peptide was purified by RP-HPLC on a Phenomenex semi-preparative column (Jupiter™, 

C18, 5 µm, 300 Å, 100x10 mm) with a linear gradient from 10% to 30% of CH3CN in 40 min 

and 2ml/min flow. The labelled peptides purity was confirmed by ESI-MS. After 

lyophilisation from 10 mM HCl, quality control was carried out by analytical RP-HPLC 

(Waters Symmetry 4.6 x 75 mm C18 column) followed by ESI-MS, and the concentration of 

labelled peptide stock solution was determined by spectrophotometric determination of 

BODIPY (ε504 = 79000 M-1 cm-1 in MeOH) (Invitrogen Molecular Probes Handbook, section 

2.2).  

 

Figure 2.2.4. Schematic representation of peptide-BY reaction. 

 

2.2.5 Antimicrobial activity assays 

The antimicrobial activity of all synthesized peptides and their orthologues was tested in 

terms of Minimum Inhibitory Concentrations (MIC), as well as the more sensitive IC50 value 



44 
 

determined from inhibition of bacterial growth in the presence of peptides, for several bacteria 

strains. The MIC value was defined as the lowest peptide concentration that prevented visible 

bacterial growth after incubation for 20 hours at 37°.  In the serial dilution method, bacterial 

loads were typically 5 x 105 cfu/ml, with 100 Pl of medium per well, as described in section 

2.2.7. 

Bacterial growth curves were obtained using 106 cfu/ml bacteria in MH broth, with 200 Pl of 

medium per well, in the presence of increasing peptide concentrations, monitoring the optical 

density at 600 nm at 37°C for 4 h, as described in section 2.2.8. IC50 values were determined 

from the degree of growth inhibition calculated as the relation between the absorbance of 

bacteria in presence and in absence of peptide, at 210 min. according to the formula   %I = 1-

(AP /A0) x 100, where A0 is the absorption intensity in the absence of peptide at 210 min and 

AP the absorption intensity in the presence of a given peptide concentration. By plotting the % 

inhibition at increasing [peptide] it is then possible to extrapolate the IC50 (see Figure 2.2.5). 

 

 

Figure 2.2.5. IC50 determination. Schematic representation of bacterial growth curve (left) and 
bacterial growth inhibition curve (right), from which the IC50 is determined as indicated by the dashed 
line. 

 

2.2.6 Bacterial strains 

The tested bacterial strains were chosen to reveal aspects of the different peptide’s modes of 

action. In particular, previous studies have shown that the Pro-rich peptides penetrate into 

Gram negative bacteria principally using SbmA, an inner membrane transport protein 

(Mattiuzzo et al., 2007,) (Runti et al., 2013). Furthermore, recent work by our group has 

suggested that there may be a second transporter for proline-rich peptides (Guida et al., 2015) 
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and this was confirmed by Hoffmann’s group, that has found a possible component of this 

transport system, the YjiL ATPase (Krizsan et al., 2015). For this reason, TUR1 and its 

orthologues peptides were tested against four different variants of E. coli strain: a) E. coli BW 

25113, derived from the ATCC 25922 strain but lacking the O-antigen on its outer membrane 

LPS; b) E. coli BW 25311 ΔsbmA, a knock-out mutant that does not express the SbmA 

transporter; c) E. coli BW 25311 ΔyjiL, a knock-out mutant for YjiL transport system, both 

obtained from the Keio collection of E. coli single knockout mutants; d) E. coli BW 25311 

ΔyjiL / ΔsbmA double knock-out mutant (kindly donated by the Hoffmann group). 

The antimicrobial activity of TUR6 orthologues and TUR4 was instead determined, against 

the reference laboratory E. coli ATCC 25922 and S. aureus ATCC 25923 strains, in order to 

have a comparison between a Gram-negative and a Gram-positive strain, and with 

experiments previously carried out on other artiodactyl orthologues.  

Furthermore, to probe for the effect of environment on the evolution of TUR peptides, the 

antimicrobial activity of TUR1, TUR4 and TUR6 was tested in terms of MIC against several 

aquatic and terrestrial bacteria, both Gram positive and Gram negative. The characteristics of 

each strain are indicated in Table 2.2.2. 

 

Table 2.2.2. Bacterial strains used in antimicrobial activity assays.  

(a) Kmr, kanamycin resistant; Tetr, tetracycline resistant; (b) Keio Collection of GenoBase 
(http://ecoli.aistnara.ac.jp/index.html) 
 

Strain  Characteristics or genotype(a) Reference or source 

E. coli   

- BW 25113 wild type  Genobase 

- ∆sbmA (JW0368) BW25113 sbmA::Kmr mutant Keio Collection(b) 

- ΔyjiL (JW5785) BW25113 yjiL::Kmr mutant Keio Collection(b) 

- ΔyjiL / ∆sbmA (BS-L) BW25113 yjiL/sbmA::KmrTetr mutant (Krizsan et al., 2015) 

- ATCC 25922 wild type ATCC® 

S. aureus ATCC 25923 wild type ATCC® 

A. hydrophila ATCC 7966 wild type ATCC® 

A. salmonicida NCIMB 1102 wild type NCIMB® 

V. anguillarum ATCC 43305 wild type ATCC® 

Y. ruckeri NCIMB 1315 wild type NCIMB® 

L. garviae ATCC 49156 wild type ATCC® 

P. aeruginosa ATCC 27853 wild type ATCC® 

A. baumannii ATCC 10606 wild type ATCC® 

K. pneumoniae ATCC 700603 wild type ATCC® 
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2.2.7 Minimum inhibitory concentration (MIC) 

The bacterial suspensions for MIC assays were prepared by inoculating a single bacterial 

colony into 5 ml of Muller-Hinton (MH) broth, then incubating at 37 °C with shaking 

overnight. The next morning, 300 μL of bacterial suspension were inoculated into 10 ml of 

fresh MH broth and incubated at 37 °C with shaking for 2 hours, to favour logarithmic growth 

of the bacteria. The optical density (OD) of the bacterial suspension at 600 nm 

(ULTROSPEC-2100 Pro Amersham Biosciences) was then measured using MH broth as 

reference, and the absorbance value compared with standard values previously measured for 

known cfu/ml suspensions of each strain of bacteria, to extrapolate the bacterial load.  

The MIC assay was then based on serial dilutions in 96-well micro plates (Sarstedt), starting 

from a peptide concentration of 32 µM. The plates were prepared by putting 64 µM of peptide 

in 100 µl of MH broth in the first well, taking care not exceed 7% of the final volume with the 

added peptide stock solution. 50 µl of MH broth were placed in the following wells, to carry 

out serial 50% dilutions. To the resulting 50 µl of medium with precise dilutions of peptide 50 

µl of fresh bacterial suspension in MH broth was added, with a concentration of 5*105 

CFU/ml; leading to final concentrations of peptide from 32 µM to 0.5 µM, and 2.5*105 

CFU/ml for bacteria, in a final volume of 100 µl medium. The last wells contained only 

untreated bacterial suspension in MH broth and were used as positive control. The plates were 

then incubated for ~18-20 hours at 37 °C and the next day the lowest peptide concentration 

able to completely inhibit bacterial growth was visually determined. The MIC value of the 

peptide corresponded to the last well in which there is a clear solution. Assays were typically 

carried out in duplicate in each plate, and repeated at least three times on different days. 

 

2.2.8 Inhibition of bacterial growth 

To determine the growth inhibition of the bacteria exposed to various peptide concentrations, 

an OD-based approach was used for measuring the cell density changes over a 4-hour 

incubation time in a microtiter plate. Mid-log phase bacterial cultures were diluted in MH 

broth to 2*106 CFU/ml and 100 µl of each dilution were added to 100 µl of peptide solutions, 

previously prepared on a microtiter plate, or to 100 µl of medium with no peptide, as control. 

Thus, 200 µl suspensions with the peptide at half of the original concentration were placed 

inside a plate reader (Tecan Sunrise, Switzerland) and incubated at 37°C with intermittent 

shaking. The OD was measured at 620 nm at 10-min intervals for 25 cycles. The data, 



47 
 

performed in triplicate, were collected by Magellan 4 software (Tecan), transferred to an 

Excel sheet, where subtracted of the control, and then averaged and processed.  These assays 

were carried out at least twice and usually 3 to 4 times, on separate days with freshly prepared 

bacterial suspensions. 

 

2.2.9 Peptide internalization into bacterial cells 

The uptake of BODIPY-labelled TUR1[Cys33] in E. coli strains was determined and 

compared to that of the bovine ortholog Bac7(1-35)[Cys36], prepared previously and well 

characterized (Benincasa et al., 2009), used as a positive control. A Cytomics FC 5000 

instrument (Beckman-Coulter, Inc., Fullerton, CA) was used, equipped with an argon laser 

(488 nm, 5 mW) and a photomultiplier tube fluorescence detector for green (525 nm) filtered 

light. All detectors were set to logarithmic amplification. Optical and electronic noise were 

eliminated by setting the electronic gating threshold on the forward-scattering detector, while 

the data flow rate was kept below 300 events per second to avoid cell coincidence. At least 

10,000 events were acquired for each sample. A standard bacterial culture was prepared in 

MH broth and then inoculated into 10 ml of fresh MH broth and left to grow two hours at 

37°C into the logarithmic phase with shaking. After two hours the OD600 was measured, 

bacterial suspensions were diluted to 106 CFU/ml and 1 ml of the suspension was incubated 

with 0.1 µM TUR1-Cys-BY or Bac7(1-35)-Cys-BY for 10 or 60 minutes at 37°C. Note that 

the peptide concentrations used are below the MIC value, so that they should penetrate but not 

inactivate the bacteria. Bacteria were then collected by centrifuging at 10,000 rpm (RCF 

16800g) for 5 minutes and the pellet was washed three times with Phosphate-Buffered-Saline, 

High Salt (PBS-HS, 400 mM NaCl; 10 mM MgCl2 in 10 mM sodium phosphate buffer), to 

remove surface-bound peptide. Finally bacteria were resuspended in 1 ml of PBS-HS and 

assayed by flow cytometry according to the protocol established in (Benincasa et al., 2009). 

Data analysis was performed with the FCS express V3 software (De Novo Software, CA).  

 

2.2.10 Permeabilization of bacterial membranes  

Inner membrane permeabilization was determined by flow cytometry, measuring the uptake 

of propidium iodide (PI) by bacterial cells (Podda et al., 2006). Analyses were performed with 

the Cytomics FC 5000 instrument described in the previous section, but using a fluorescence 

detector for orange filtered light (620 nm). All detectors were set on logarithmic 
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amplification. Optical and electronic noise were eliminated by appropriately setting the 

electronic gating threshold and the flow rate kept to below 300 events/second and at least 

10,000 events were acquired and stored as list mode files. For the analyses, samples of 106 

CFU/ml were incubated in MH broth with the peptides at 37 °C for different times (5-60 

min). PI (Sigma Aldrich) was then added to the peptide-treated bacteria to a final 

concentration of 10 μg/ml, and the cells were analysed in the flow cytometer after 4 min 

incubation at 37 °C. All experiments were conducted in triplicate. Data analysis was 

performed with the WinMDI software (Dr. J. Trotter, Scripps Research Institute, La Jolla, 

CA). 

 

2.2.11 Cytotoxicity assays 

The cytotoxic activity of TUR peptides against three different eukaryotic cell lines was 

determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

(Sigma-Aldrich) assay. This exploits the ability of metabolically active cells to reduce MTT, a 

yellow lipophilic molecule able to cross the cell membrane and reach the mitochondria, where 

it is reduced to formazan, a blue compound. This step allows discriminating viable and 

metabolically active cells, since the formazan crystals are observable by microscopy. These 

crystals are solubilised with Igepal-HCl and the absorption of the obtained solution can be 

quantified with a spectrophotometer, in order to correlate the optical density value with the 

amount of viable cells.  

Toxicity of TUR6 and TUR1S were determined against U937 monocytic cells, deriving from 

a histiocytic lymphoma, growing in suspension. Toxicity of TUR1D was evaluated against 

A549 cells, deriving from basal alveolar epithelium of human lung cancer (growing in 

adhesion) and MEC-1, a lymphocyte cell line deriving from peripheral blood of a patient with 

chronic lymphocytic leukaemia (growing in suspension).  

For MTT assays, U937 or MEC-1 cells were seeded in 90 μL complete medium in a 96-well 

plate, in the presence of different TUR concentrations (10 Pl in PBS), and allowed to incubate 

for 24, 48 or 72 h. For A549 cells, after seeding in a 96-well plate in complete medium and 

allowing to adhere overnight, medium was replaced with TUR1D solutions at different 

concentrations in PBS (final volume 100 Pl) and incubated for 1 hour. PBS was then replaced 

by complete medium and incubation allowed to proceed for 24 h. Alternatively, they were 

allowed to incubate for 24 h in the presence of different concentration of TUR1D in complete 
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medium. To perform the assay, 20 μl of 1:10-diluted MTT stock solution (5 mg/ml) was then 

added to each well, mixed, and incubated at 37°C in a humidified incubator (5% CO2) for 4 

hours. Igepal-HCl (100 μl) was added to each well to dissolve the purple formazan crystals, 

and absorbance was measured after overnight incubation with a Tecan plate reader at 550 nm. 

The viability index of treated cells was compared to that of untreated control (cells in medium 

without peptide). Experiments were performed at least in triplicate and repeated at least twice.  

For the PI permeabilization assays, cells were twice washed with sterile PBS and centrifuged  

at 4°C for 5 min at 400g, and then 1x106 cells/ml PBS were exposed to 10 Pg/ml PI and 0-50 

PM peptide. The cells were then analysed in the flow cytometer after 5-30 min incubation at 

37 °C. For cell surface adhesion studies, 1x106 cells/ml PBS were exposed to 0.25-10 PM  

BODIPYlated peptide and incubated for up to 60 min at 37°C. Samples were run on the flow 

cytometer at 5, 15, 30 and 60 min, and % positive cells and MFI recorded. In parallel, at 30 

and 60 min, cells were thoroughly washed to remove surface-bound peptide, and the MFI 

measured. The same sample was then treated with trypan blue quencher and a second MFI 

measurement obtained. This allowed determining fluorescence from only internalized peptide. 

Flow cytometry was carried out with a FC500 Beckman Coulter instrument. Data analysis 

was performed with the FCS express V3 software (De Novo Software, CA). Statistical 

analysis was carried out using Graphpad software (Anova Student Newman Keuls post test) 
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2.3 RESULTS and DISCUSSION 

 

2.3.1 Identification of Tursiops truncatus cathelicidins  

The sequences of seven different bottlenose dolphin cathelicidins, named Tur1 - Tur7, were 

identified by prof. G. Manzini (Dept. Life Sciences, Univ. Trieste, private communication) 

from different genomic databases; mainly in the NCBI Nucleotide Collection, WGS and EST 

archives. More recently, it has been possible to identify the sequences also in the Ensemble 

partial assembly (turTru1) of the Tursiops genome. As direct amplification and sequencing 

(see below) in some cases resulted in residue differences, the database sequences are indicated 

with a “D” suffix (for database derived) (see Table 2.3.1). 

TUR1D is a proline-rich sequence of 32 residues with a charge of +10. It is homologous to 

the bovine Bac7 N-terminal region and to porcine PR-39. TUR2D (28 residues) is a 

putatively amidated, D-helical peptide and shows a significant identity with TUR3D (27 

residues). They appear to be orthologous to bovine BMAP-27 and porcine PMAP-36. 

TUR4D has 12 residues and is orthologous to bovine dodecapeptide, so is likely an S-S 

bridged loop. TUR5 has a significant homology to the N-terminal part of bovine BMAP-34 

and porcine PMAP-37, so is likely orthologous to the ubiquitous CAMP cathelicidin gene 

product (LL-37 in human). However, it seems to be truncated half way (see Table 2.3.1), due 

to a frame-shift deletion. Curiously, another highly homologous sequence was identified 

(TUR7D), that has the full CAMP peptide sequence, but seemed to consist of an isolated 

exon 4, which includes the proteolytic cleavage site (see Figure 1.3) but is not connected in 

any way to exons 1-3 corresponding to the CLD (pro-region).  Finally, TUR6D (28-residues) 

is a putatively amidated, D-helical peptide with charge +8 and appears orthologous to bovine 

BMAP-28 and ovine SMAP-29. 

Further searching of the databases revealed a variant of TUR1D with a three residue 

difference, which was named TUR1V (see Table 2.3.1). A 28-residue variant of TUR3D was 

also found that more closely resembled TUR2D (named TUR3V), suggesting multiple helical 

cathelicidin peptides.  

The putative cathelicidin-derived peptide sequences showed some worrying anomalies.  

i) There seemed to be multiple paralogues of the helical peptide corresponding to BMAP-27 

(TUR2D, 3D and 3V).  
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 Table 2.3.1.  Tursiops cathelicidin-related peptides and their physico-chemical properties. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

1 In the peptide name, D indicates it is the main sequence found in the nucleotide databases, V indicates it is a less frequent variant, S indicates that the 
sequence was obtained by DNA sequencing. 
2Sequence identity (grey shading) is relative to the first sequence in each series.  
3 n = N° of residues; 4q =  charge;  
5 MW calculated from sequence using Peptide Companion or measured for synthesized peptides on a Bruker Daltonics Esquire 4000 instrument;  
6<H> =  mean hydrophobicity; 7 µHrel, mean relative hydrophobic moment, calculated using the HydroMCalc software. 

Peptide1 Sequence2 n3 q4 MW5(Da)  

Predicted 

MW (Da)  

Measured 
<H>6 µHrel

7 

TUR1D RRIRFRPPYLPRPGRRPRFPPPFPIPRIPRIP-OH 32 +11 3972.9 3973.0 -0.86 n.a 

TUR1V RRIRFRPPYLPRPGLRPRFPPDFPIPRILRKR-OH 32 +11 4038.0 n.d. -1.09  n.a. 

TUR1S RRIPFWPPNWPGPWLPPWSPPDFRIPRILRKR-OH 32 +7 4034.2 4033.2 0.32 n.a 
        

TUR2D GRFRRLRHRIGRVLSKVGRIVGPLIRIL-NH2  28 +9 3294.2 3294.1 -0.42 0.66 

TUR3D GIFRWLRH-IGRVLPKVGRIVGPLIGIW-NH2 27 +5 3108.9 3109.0 1.78 0.64 

TUR3V GIFRWLRHRIGRVLPKVGRIVGPLIGIW-NH2 28 +7 3265.08 n.d. 1.36 0.56 

TUR3S GRFRRLRHRIGRVLPKVGRIVGPLIGIW-NH2 28 +8 3278.08 n.d. -0.01 0.60 

TUR4D QRCRIIVIRMCR-OH 12 +4 1545.0 n.d. -1.31 0.24 

TUR4S QGCRIVVIRMCR-OH 12 +3 1433.8 1432.6 -1.06  n.a. 
        

TUR6D RGLRSLGRNILRGWKKYGPIIVPIIRLI-NH2 28 +8 3258.1 3258.6 0.57 0.66 

TUR6S RGLRSLGRKILRGWKKYGPIIVPIIRLI-NH2 28 +9 3272.1 3272.7 0.47 0.66 
        

TUR5 GLFRWLGDFLQRGGRR-OH 16 +3 1934.2 1933.9 -0.31 0.67 

TUR7 GLFRRLGDFLRRGGEKTGKKIERIGQRIKDFFGIFQPSKQS-OH 41 +7 4768.6 n.d. -1.79 0.57 



52 
 

ii) The ubiquitous CAMP gene, present in all placental mammals, carried a severely truncated 

peptide due to a frameshift deletion in the 4th exon, and furthermore, a +C frame-shift 

insertion in exon 3 of the CLD also leads to a premature stop codon. This suggested the 

sequence coding for TUR5D is a pseudogene.  

iii) A sequence corresponding to complete CAMP-like peptide was in fact also present 

(TUR7), but completely devoid of the CLD (i.e. only an isolated sequence corresponding to 

exon 4 was present).  

Given the relatively low coverage of the Tursiops sequence, these apparent anomalies could 

be due to sequencing errors, so this encouraged the isolation and direct sequencing of 

cathelicidin genes from genomic DNA obtained from a dolphin muscle tissue samples. The 

genes were in fact sequenced in the Pallavicini laboratory (Dept. Life Sciences, Univ. Trieste, 

private communication) using primers derived from the identified sequences for both selective 

amplification and sequencing via the Sanger method. The derived AMP sequences are shown 

in Table 2.3.1 and are defined by the suffix ‘S’ (for sequenced). 

Comparison with the database sequences confirmed the anomalies of the CAMP gene 

orthologues (TUR5 pseudogene with 2 premature stop codons, and isolated TUR7 sequence 

corresponding only to exon 4 of cathelicidins). On the other hand, it revealed unexpected 

structural difference in the other peptide sequences, which could lead to functional 

differences. TUR1D was not confirmed by sequencing, but a Pro-rich paralogue, curiously 

rich in Trp residues, was found (see TUR1S in Table 2.3.1). A sequence intermediate to 

TUR2D and TUR3V was found, similar but not identical to TUR3V. A version of TUR4D 

was found with an RÆG variation reducing charge to +3 (TUR4S). Finally, the sequence of 

TUR6 showed an NÆK variation, increasing charge increased to +9.  

Confirmation of sequences would also derive from expression studies, but unfortunately, 

fresh dolphin blood or tissue were not available to extract RNA. Consequently, the peptides I 

selected to analyse in this thesis were based on informed guesses as to which could be most 

interesting. Only in 2016, data became available in the SRA archives that allowed checking 

which sequences were actually expressed. Morey et al. (2016) provided RNA-seq data from 

the blood of four individuals, taken over a period of a year. Foote et al. (2015) analysed RNA 

from multiple individuals and different tissues (kidney, spleen, muscle and liver). We carried 

out a preliminary evaluation of expression by BLASTing the sequence of exon 4 for each 

TUR peptide against the appropriate entries in the SRA database. The number of hits was 

considered to be roughly correlated to the expression level; high expression for >100 hits 
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(saturation of the BLAST search), intermediate expression for < 100 hits, and week 

expression for less than 10. Results are summarized in Table 2.3.2. 

Preliminary results indicate that both TUR1D and S are differentially expressed at good 

levels, in blood and spleen, but not continuously. TUR2D, 3D and 3V were all also expressed 

differentially and not continuously. They have the widest tissue distribution, being found in 

blood, spleen and muscle. TUR4D was present in all individuals at all times at high levels, 

while TUR4S was sometimes found at quite low levels.  TUR5 was apparently not present 

(which may confirm it is a pseudogene) and neither was TUR7. TUR6D was expressed at low 

levels and only in defined periods, while TUR6S was not found. Taken together, these results 

suggest that TUR4D is constitutively expressed and may be accompanied by a minor variant 

TUR4S. TUR1D and S are both strongly inducible. All of TUR2D, TUR3D and TUR3V are 

inducibly expressed at moderate levels, while TUR6D is inducibly expressed at low levels. 

 

Table 2.3.2. Expression levels for dolphin cathelicidins based on BLAST hits in the SRA archives 
of T. truncatus RNA. 

 

 

                        

 

 

 

 

 

 

 

 

 

 

 

Finally, the TUR1-7 sequences were BLASTed against the Genebank databases selecting 

other cetacean species, and hits were collected for the river dolphin (Lipotes vexillifer), the 

TISSUE 

peptide Blood Liver Kidney Spleen Muscle Skin 
TUR1D ++++ - - + - - 
TUR2D ++ - - + - - 
TUR3D ++ - - - - - 
TUR3V +++ - - + + - 
TUR4D +++++ - - - - - 
TUR5 - - - - - - 
TUR6D + - - - - - 
TUR7 - - - - - - 
TUR1S +++ - - - - - 
TUR3S - - - - - - 
TUR4S + - - - - - 
TUR6S - - - - - - 
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killer whale (Orcinus orca), the sperm whale (Physeter macrocephalus), and the minke whale 

(Balaenoptera acutorastrata). Orthologues corresponding most closely to each peptide are 

shown in Table 2.3.3. The genomes of these organisms are not complete or fully assembled, 

so some orthologues may be missing. Peptides corresponding to the complete TUR1 - TUR7 

range were variously found in the other species, suggesting that this cathelicidin gene 

repertoire predates the differentiation of cetaceans from the land-based common ancestor. 

TUR5 is confirmed as a pseudogene in all species, and TUR7 is always present as an isolated 

exon. Otherwise, the pattern of ortologies is quite diverse, and curiously, TUR1D, 3D and 6D 

are not represented, as orthologues seem closer to V or S variants (based only on the mature 

peptide region). Furthermore, for all the other cetaceans only one representative of each 

cathelicidin was found. This may have two explanations; i) the repertoires for the other 

analysed cetacean species are incomplete or ii) the bottlenose dolphin has embarked on an 

evolutionary trajectory that has resulted in multiple gene duplications followed by 

diversification. 

 

Table 2.3.3. Orthologues to Tursiops truncatus cathelicidins in other cetacean speciesa. 

 

 

 

 

 

 

 

 

 

 

 

a) L.v. river dolphin (Lipotes vexillifer); O.o the killer whale (Orcinus orca); 
P.m. the sperm whale (Physeter macrocephalus); B.a. minke whale 
(Balaenoptera acutorastrata). 

 

 

T.t L.v O.o P.m B.a 
TUR1D     
TUR1V 9   9 
TUR1S � 9   
TUR2D 9   9 
TUR3D     
TUR3V   9  
TUR3S  9   
TUR4D 9 9   
TUR4S   9  
TUR5   (pseudogene) 9 9 9 9 
TUR6D     
TUR6S 9 9 9 9 
TUR7 (only exon 4) 9 9 9 9 
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2.3.2 Tursiops truncatus cathelicidins selected for further characterization 

Faced with 7 cathelicidins to characterize, some present in multiple variants, I had to select a 

limited workable number. Based on their different conformations, I concentrated my work on 

three distinct structural types, one PR-AMP, one cyclic peptide, and one helical peptide. 

Within these three types, I selected particular peptides based on specific characteristics. Some 

of the other peptides have in any case been subject to preliminary characterization as part of 

student internships. 

a) PR-AMP. I selected the TUR1D sequence for synthesis, which is structurally and 

functionally related to the bovine Bac7 and porcine PR-39, as shown in the alignment below, 

the genes likely being orthologous. The dolphin peptide is however significantly shorter, 

showing 53% identity to the equivalent stretch of Bac7 and 56% with PR-39. 

 

TUR1D RRIRFRPPYLPRPGRRPRFPPPFPIPRIPRIP     32 

TUR1S RRIPFWPPNWPGPWLPPWSPPDFRIPRILRKR    32 

PR39  RR-RPRPPYLPRPRPPPFFPPRLPPRIPPGFPPRFPPRFP   39 

Bac7 RRIRPRPPRLPRPRPRPLPFPRPGPRPIPRPLPFPRPGPRPIPRPLPFPRPGPRP  55                                    
Identity, in grey shading, assigned relative to the sequence of TUR1D 

 

As PR-AMPs are known to have a potent activity against Gram-negative strains, but not 

against Gram-positives (Scocchi et al., 2011), and act internally, a peptide variant with a 

cysteine residue at the C-terminus, TUR1D[Cys33], was also synthesized separately for 

conjugation with the fluorescent probe BODIPY. This allowed evaluation of its 

internalization capacity into bacterial cells by using flow cytometry. 

TUR1S has only 53% homology with TUR1D, so is an apparent paralogue, and has a lower 

identity with the pig and cow orthologues. It has a significantly lower charge and is 

particularly rich in Trp residues, so is likely have a somewhat different mode of action. The 

peptide was synthesised in a student internship and was available for characterization.  The 

further presence of TUR1V (not synthesised) suggests that PRAMPs are present in multiple 

copies in cetaceans, like in other artiodactyls, although only one such gene was confirmed in 

the other cetacean species. 
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b) Dodecapeptide. TUR4 has a high sequence homology with the cyclic dodecapeptides 

(also known as Bac1 or Bct1) of sheep and bovine, particularly concerning the position and 

spacing of the two cysteines that are essential for the formation of the intramolecular disulfide 

bond (see alignment below). The close homology to the bovine dodecapeptide, rather than to 

porcine protegrins, suggests a closer relationship to bovids than pig, in agreement with the 

accepted phylogenetic relationship (see Figure 1.7 in Chapter 1) 

 

 

TUR4D QRCRIIVIRMCR 
TUR4S QGCRIVVIRMCR 
Bac1 (sheep) RICRIIFLRVCR 
Bac1 (cow) RLCRIVVIRVCR 
Identity, in grey shading, assigned relative to the sequence of TUR4D 

 

 

Synthesis of cyclic peptides is not facile, and even more so for dodecapeptide (see prediction 

in section 2.2.2, Figure 2.2.1) so it was decided to synthesise only one ortholog, TUR4S, as 

the most different from the other dodecapeptides, with a charge of only +3. This was before 

determining that TUR4D was constitutively expressed at high levels. 

 

c) Helical peptides. TUR6 variants are linear, helical peptides that appear to be orthologous 

to ovine SMAP-29 and bovine BMAP-28 (see alignment below). This orthologue is not 

present in pig, again confirming a closer relationship of dolphins to ruminants. The rather 

high level of identity (85% with BMAP-28) suggests that these peptides are quite conserved 

in cetartiodactyls and may be subject to purifying selection, further suggesting they may have 

an important defensive role. 

  

TUR6D   RGLRSLGRNILRGWKKYGPIIVPIIRLI-(am) 
TUR6S   RGLRSLGRKILRGWKKYGPIIVPIIRLI-(am) 
SMAP-29(Ovis aries)   RGLRRLGRKIAHGVKKYGPTVLRIIRIA-(am) 
BMAP-28(Bos taurus)   GGLRSLGRKILRAWKKYGPIIVPIIRI-(am) 

Identity, in grey shading, assigned relative to the sequence of TUR6D 
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TUR6D and TUR6S differ by only an NÆK substitution in position 9. Lysine in this position 

seems to be the more common, as it is conserved in cow, pig and all other analysed cetacean 

species. Indeed the orca sequence is identical to TUR6S. For this reason, it was deemed 

interesting to synthesize both TUR6 peptides. The variation results in a charge increased to 

+9, an important parameter for antimicrobial activity  (Tossi et al., 2000). 

 

2.3.3 Peptide synthesis and preparation 

All peptides were synthesized in solid phase (SPPS) using the Fmoc chemistry. Before the 

synthesis, the peptide sequences were analysed with the program Peptide Companion in order 

to develop an appropriate synthesis protocol and obtain the maximum yield possible, by using 

double coupling cycles as requested. Curiously, it was the shortest peptide (TUR4S) that was 

predicted to be the most difficult to synthesize, followed by TUR6. The presence of multiple 

prolines instead facilitated the synthesis of TUR1 peptides. It was therefore decided to apply 

double-couplings at all positions for TUR4S and TUR6D while for TUR1 it was only applied 

for the C-terminal stretch, especially for the analogue with Cys33 

In this manner, the correct peptides were synthesized in good yields on a Biotage Alstra 

microwave machine (see Table 2.3.4) with temperature set to 75°C (see section 2.2.2). All 

peptides were then purified by reverse-phase HPLC on a Phenomenex preparative column 

(for an example see Figure 2.3.2), and high levels of purity (> 95%) were confirmed using a 

Waters Symmetry analytical column, followed by ESI-MS column. The elution profiles for 

the peptides (%CH3CN at peak maximum) correlated well with the estimated peptide 

hydrophobicity shown in Table 2.3.1 (see Figure 2.3.1). After purification, the correct 

structure and the purity of all peptides was also confirmed using ESI mass spectrometry (see 

Figure 2.3.3). All peptides were then lyophilized from HCL to remove TFA. 

TUR4S was synthesized as the reduced linear peptide and then oxidised at low concentration 

in an ammonium acetate/EDTA/guanidinium HCl solution, in the presence of cystine and 

cysteine in order to catalyse the formation of the intramolecular disulfide bond (see section 

2.2.2). The reaction was monitored by analytical RP-HPLC and ESI-MS (Figure 2.3.4), and 

after completion, the cyclic peptide was purified by exploiting the distinctly different elution 

times of folded and not-folded peptide.  
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Conjugation of the fluorescent dye BODIPY-FL [N-(2-aminoethyl)-maleimide] to 

TUR1D[Cys33] was similarly monitored and observed to go to completion overnight. The 

product was then separated by semi-preparative RP-HPLC in good purity (see Figure 2.3.5). 

 

 

Table 2.3.4.  TUR peptide yields at different stages of preparation 

 
 

 

 

 

 

 

(a)Yield percentages of crude peptides; (b) Theoretical molecular weights calculated 
with Peptide Companion; (c) Molecular weights obtained by ESI-MS. 

 

 

 

Figure 2.3.1. Correlation between elution and hydrophobicity for TUR peptides. (a) % 
acetonitrile at the elution peak maximum; (b) mean per residue hydrophobicity (HydroMcalc 
programme). 
  

Peptide Yield (a) MW (calculated) (b) MW (ESI-MS) (d) 

TUR1D 80 % 3972,9 3972,3 

TUR1S 45 % 4032,8 4033,2 

TUR1D[Cys33]-BY 30 % 4489,8 4489,9 

TUR4S  45 % 1429,8 1430,7 

TUR6D 70 % 3259,1 3258,4 

TUR6S 50 % 3273,1 3272,7 
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                                                                           Elution volume (ml)                  

 
Figure 2.3.2. Example of preparative RP-HPLC chromatogram. TUR1D crude peptide. The 
peak corresponding to the correct peptide is indicated by the arrow (flow rate 8 ml/min, 5-35% 
CH3CN in 60min). 

 

 

 

 

Figure 2.3.3. Mass spectral peaks for purified TUR peptides. Reconstructed spectra based on the 
m/z base spectra deconvoluted by the Bruker Daltonics DataAnalysis 3.3 software. Mr is the 
reconstructed average molecular weight. 

 

A214                  
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Figure 2.3.4. Folding reaction of TUR4S. A) analytical RP-HPLC spectra at 214 nm of crude, 
linear peptide and corresponding ESI-MS of the main peak; B) RP-HPLC after 4 hours folding 
reaction and corresponding ESI-MS of the reduced peptide. (flow rate 0.8 ml/min, 5-45% 
CH3CN in 60min). 

 

 

 

 

Figure 2.3.5. BODIPY labelling reaction of TUR1D[Cys33]. Preparative RP-HPLC spectra 
(left) and ESI-MS of the main peak (right). The chromatogram shows the absorption at 214 nm 
(pink) and at 280 nm (blue) (flow rate 2 ml/min, 5-35% CH3CN in 50 min). 
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2.3.4 Peptide quantification 

Accurate quantification is necessary to perform rubust functional assays. However, is not easy 

to determining the correct peptide concentration by using spectrophotometric methods. It was 

therefore decided to compare the weight concentration of peptides with that obtained by 

measuring the absorbance at 214 nm and 280 nm, where the peptide bond and sidechains 

(especially tryptophan) respectively absorb. Since TUR4 peptide has no aromatic residues, the 

Waddell method was used for quantification instead. TUR1[Cys33]-BY was quantified by 

measuring the absorbance at 504 nm, the absorption wavelenght of BODIPY. Table 2.3.5 

lists the calculated molar extinction coefficients for the peptides [according to (Kuipers and 

Gruppen, 2007)]. These measurements provided a final averaged concentration with an 

accetable error. 

 

 

Table 2.3.5. Tables of concentration values obtained after the quantification. Concentrations 
were estimated using using several methodsa. 

 

 

 

 

 

 

 

 

 

 
 

Concentration by:  [Wt] = by weight;  [214] = by absorption at 214nm; [280] = by absorption at 
280 nm (mainly Trp);  [Wad] = by the Waddle 214nm/220nm absorption method; [214] = by 
absorption at 504nm (BODIPY); [Final] = average concentration with error. 

 

 

 

 Concentrations (mM) 

Peptide [Wt]   H214 

(M-1 cm-1) 
[214] H280 

(M-1 cm-1) 
[280]  [Wad]  [504] 

[Final] 
  

TUR1D 1.46 83850 ± 1160 1.38 1250 ± 150 1.04 - - 1.3± 0.2 

TUR1S 3.42 183450 ± 8050 3.39 22000 ± 300 3.32 - - 3.4± 0.05 

TUR1D-BY 1.16 84800 ± 1162 1.28 1250 ± 150 - - 1.34 1.25± 0.1 

TUR4S  3.49  12600 ± 180 3.28 125 ± 50 - 3.15 - 3,3± 0.15 

TUR6D 2.10 65500 ± 4045 2.01 6750 ± 212 1.95 - - 2.0± 0.05 

TUR6S 3.89 65500 ± 4045 3.30 6750 ± 212 3.19 - - 3.5± 0.4 



62 
 

2.3.5 Antimicrobial activity: the bacteriostatic activity  

The bacteriostatic activity (MIC) of both TUR1 peptides was determined against E.coli 

ATCC 25922 and S. aureus ATCC 25923, representative respectively of a Gram-negative 

species susceptible to PR-AMPs and an unsusceptible Gram-positive one. The activity was 

also determined for the well-characterized characterized bovine Bac7(1-35), of comparable 

length, and an available fragment of porcine PR-39.  TUR1D has a comparable activity to 

Bac7(1-35) against E. coli and is similarly inactive against S. aureus. TUR1S has a reduced 

but still appreciable activity which might, in part, result from the lower charge (see Table 
2.3.6). However, this is likely not be the only significant parameter, considering that Bac7(1-

15) and PR-39(1-18) fragments of comparable charge have significantly lower activities.  The 

peptide did not show activity against S. aureus, despite being significantly more hydrophobic 

than the other PR-AMPS (see Table 2.3.1) due to several Trp residues. This suggests that it 

does not switch to a membranolytic mode (Podda et al., 2006). 

Overall, the activity of TUR1D is consistent with that previously reported for the bovine and 

pig cathelicidin PR-AMPs, i.e. a spectrum of action limited to bacteria, which express the 

SbmA transport system, present in Gram-negative enterobacteria but not in Gram-positive 

species. It suggested that the TUR1 peptides might by a similar mechanism. 

 

Table 2.3.6. MIC values for TUR peptides compared to Bac7 and PR-39 fragments. 

 

 

 

 

 

 

 

 

(a) Results reflect three separate experiments, carried out in duplicate, using the micro-dilution 
method, inoculating 2.5 * 105 cfu/ml in full Mueller-Hinton broth and incubating plates at 37 ° C for 
20 hours. MIC values were evaluated visually by identifying the first well with no turbidity. (b) From 
(Benincasa et al., 2004) 

 

MIC (µM) (a) 

Peptide                      
(charge) E.coli ATCC 25922 S. aureus ATCC 25923 

TUR1D                        +11 1 >32 

TUR1S                        +7 8 >32 

Bac7 (1-35)                  +11 1 >32 

PR-39 (1-18)                +6 >32 >32 

Bac7(1-16) (b)               +8 2 >32 

Bac7(1-15) (b)               +7 >32 >32 
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To confirm this, the activity of the TUR peptides was determined against an E. coli deletion 

mutant lacking the SbmA transporter. This homodimeric inner membrane transporter is 

related to ABC transporters but powered by the membrane potential (Runti et al., 2013). The 

deletion mutant was obtained from the Keio Collection (see Table 2.2.2) and is derived from 

the BW25113 strain (see Figure 2.3.6). Besides SbmA, the wild type strain also expresses 

another possible transporter of PR-AMPS, the YjiL inner membrane protein. This is a 

putative ATPase associated with the multidrug transporter MtdM to form part of an efflux 

pump (Krizsan et al., 2015). It was also possible to obtain the ΔyjiL deletion mutant from the 

Keio collection, while the ΔyjiL / ΔsbmA double deletion mutant was kindly donated to us by 

the Hoffmann group. A differential activity of the TUR1 peptides against these strains should 

provide useful information on the mechanism of action, and reveal which transporter(s) are 

important for internalization, not forgetting that at higher concentrations PR-AMPs are known 

to switch to a membranolytic mode of action (Podda et al., 2006).  

 

 

 

               a) E.coli BW25113                 b) ΔsbmA                          c) ΔyjiL                          d) ΔyjiL /ΔsbmA   

 

Figure 2.3.6. Schematic representation of E.coli strains used to test TUR1 orthologues. BW25113 
is derived from the ATCC 25922 reference strain but is lacking the O-antigen in its outer membrane 
LPS. The blue cylinder represents YiJL/MdtM efflux transporter, while the brown channel represents 
the homodimeric SbmA transporter. The ΔyjiL and ΔsbmA knockout mutants were obtained from the 
Keio collection while the ΔyjiL / ΔsbmA double mutant was kindly provided by Hoffmann’s group 
(see Table 2.2.2) 
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As summarized in Table 2.3.7, TUR1D and Bac7 (1-35) have a comparable activity, in the 

low micromolar range, against either the ATCC 25923 or the BW 25113 strain, so that the 

presence of the O-antigen is not an impediment to their action. However, while Bac7 lost 

activity against the SbmA KO mutant, TUR1D remained almost equally active. Both peptides 

were active against the YjiL KO mutant, but significantly less active against the double 

mutant. TUR1S maintained a comparable activity, with MIC of about 8 PM, against all tested 

strains.  This generally lower activity is again conducible to the decreased cationicity, which 

could cause a) a less efficient passage through the bacterial outer membrane; b) decreased 

electrostatic interaction with the anionic surface of the bacterium, necessary to attract the 

peptide towards the transport system; c) decreased interaction with the transport systems  

and/or its internal target. 

Overall, this data indicate: i) that both SbmA and YjiL are transport systems for PR-AMPs, 

but SbmA seems to be the principle one. ii) YjiL is an efficient accessory transport system for 

TUR1, that can use it in the absence of SbmA at comparable concentrations, but is less 

efficient in transporting Bac7; iii) TUR1S is either  intrinsically less efficiently transported by 

either system, or has a different, and less efficient mechanism of action against this bacterium.  

 

 

Table 2.3.7. MIC values for TUR1 peptides, Bac7 and a PR-39 fragments against selected 
knockout mutants of E. coli BW 25113. 
 
 

 

 

(
a
)
 
R
e
 
(
a) Reflects three separate experiments carried out in duplicate, using the micro-dilution method, 
inoculating 2.5 * 105 cfu/ml in full Mueller-Hinton broth and incubating plates at 37 ° C for 20 hours. 
MIC values were evaluated visually by identifying the first well with no turbidity. 
 

 

MIC (µM) (a) 

 
E.coli 

ATCC 25922 

E.coli 

BW 25113 

E.coli 

BW 25113 ΔsbmA 

E.coli 

BW 25113 ΔyjiL 

E.coli 

BW 25113 ΔyjiL/ΔsbmA 

TUR1D 1 1 2 2 8 

PR-39 (1-18) >32 >32 >32 >32 >32 

Bac7 (1-35) 1 2 8 2 16 

TUR1S 8 8 4 8 8 
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The antimicrobial activity of the helical TUR6 orthologues was determined against E. coli 

ATCC 25922 and S. aureus ATCC 25923 and is shown in Table 2.3.8. In this case, these 

activities were compared with those of with the bovine orthologue BMAP-28 and ovine 

SMAP-29. Both TUR6 peptides show a good antimicrobial activity towards both bacteria, 

which compared well with the bovid peptides. SMAP-29, with an average MIC value of 0.5 

μM against E.coli, is the most potent, this value being one of the lowest found in a 

comparative analysis of a number of natural antimicrobial peptides. Comparing its activity to 

that of the other orthologues suggests this is likely due to its high positive charge (+10, over  
1/3 of residues are cationic), which may also explain the slightly better activity of TUR6S (+9) 

with respect to TUR6D and BMAP-28 (+8).  

 

 

Table 2.3.8. MIC values for TUR6 peptides compared to bovine and ovine orthologues. 

 

MIC (µM) (a) 

 charge E.coli ATCC 25922 S. aureus ATCC 25923 

TUR6D +8 2 2 

TUR6S +9 1 2 

BMAP-28 +8 2 2 

SMAP-29 +10 0.5-1 1 

(a) Experiments were repeated three times in duplicate and the values were obtained using micro-
dilution, inoculating 2.5 * 105 CFU / ml in 100% Mueller-Hinton broth and maintaining the plates at 
37 ° C for 20 hours. The MIC values were then evaluated by observing the turbidity of the lowest 
concentration at which bacterial growth was inhibited. 

 

 

Finally, the cyclic dodecapeptide orthologue, TUR4S,  was tested, against both E. coli ATCC 

25922 and S. aureus ATCC 25923 (see Table 2.3.9), as the bovine dodecapeptide is reported 

to be active against these species (Romeo et al., 1988), (Lee et al., 2008). As preliminary 

assays indicated a lack of activity, it was tested also under more permissive conditions, to take 

possible medium and salt effects into account (e.g. switching from 100% MH broth to 20% 

MH broth in 10 mM phosphate buffer), and using the helical TUR6D as positive control. 
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Nonetheless, the peptide showed no activity up to 64 μM against either strains irrespective of 

conditions, and this was confirmed by growth kinetics assays (data not shown).                                                                 

This cast some doubt as to a direct antimicrobial function for this peptide. The fact that it is 

less active than reported for the bovine orthologue on these reference laboratory bacterial 

strains may again be the lower charge (+3), which could affect this type of activity. However, 

it might remain active against specific pathogens faced by the dolphin. To try to answer the 

first question, it was tested against a number of aquatic pathogens. 

 

             Table 2.3.9. MIC values for TUR4S. 

 

 

 

 

 

 

(a) Experiments were repeated three times in duplicate and the values were 
obtained using micro-dilution, inoculating 2.5 * 105 CFU / ml in 20% or 100% 
Mueller-Hinton broth and maintaining the plates at 37 ° C for 20 hours. The MIC 
values were then evaluated by observing the turbidity of the lowest concentration at 
which bacterial growth was inhibited. (b) Measured against S. aureus KCTC 
1621and E. coli KCTC 1682 in LB broth (Lee et al., 2008). (c) Measured against S. 
aureus ATCC25923 and E. coli ML-35 in full MH broth (Skrbec D, Degree Thesis 
2002, Faculty of Pharmacy, University of Trieste). 

 

 

2.3.6 Antimicrobial activity of TUR peptides against aquatic and terrestrial bacteria. 

To evaluate if TUR peptides may have a selective activity against other bacterial strains than 

the standard laboratory ones, their bacteriostatic activity was determined against a wide range 

of aquatic and terrestrial bacteria.  Some of these are reported to infect the bottlenose dolphin. 

(e.g. Pseudomonas fluorescens, Aeromonas hydrophila), while other species known to infect 

other aquatic organisms (Aeromonas Salmonicida, Vibrio anguillarum, Yersinia ruckeri, 

MIC (µM) (a) 

 E. coli  ATCC 25922 S. aureus  ATCC 25923 

TUR4S (in 100 %MH) >32 >32 

TUR4S (in 20 %MH) >32 >32 

Bac1(LB broth)(b) 1-2 4-8 

Bac1(MH broth)(c) 4 4 

TUR6D (in 100 %MH) 2 2 
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Lactococcus garviae). All five TUR AMPs were used in order to test the activity with widely 

different conformations, and results are summarized in Table 2.3.10. 

 

Table 2.3.10. MIC values for TUR peptides against bacterial species known to infect aquatic 
organisms. 
 

  

 

 

 

 

 

 

 

 

 

(a) Experiments were repeated three times in duplicate and the values were obtained using micro-
dilution, inoculating 2.5 * 105 CFU / ml in 100% Mueller-Hinton broth and maintaining the plates at 37 
° C for 20 hours. The MIC values were then evaluated by observing the turbidity of the lowest 
concentration at which bacterial growth was inhibited. 

 

 

These assays were not always straightforward, as the growth conditions vary significantly for 

different bacterial species, with respect to the required medium, incubation temperatures etc. 

Overall, it could be observed that the proline-rich TUR1 peptides and cyclic TUR4 did not 

have an appreciable antimicrobial activity against the tested aquatic bacteria, in the assay. The 

TUR6 peptides were both instead broadly active and particularly potent against the Gram-

positive L. garviae and Gram-negative Y. ruckeri species. Only A. hydrophyla was quite 

resistant to all tested peptides. 

Interesting results were obtained using the TUR peptides against typically terrestrial bacteria, 

some of which are emerging pathogens. The species used were all Gram negative 

(Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae) and are all 

implicated in several human diseases (Kharami et al., 1989), (Gasink et al., 2009), 

(McConnell et al., 2013) (see Table 2.3.11). The PR-AMPs have an appreciable antimicrobial 

activity, in particular towards Acinetobacter baumannii and Klebsiella pneumoniae, both of 

MIC (µM) (a) 

Gram negative Gram positive 

 
P.fluorescens 

LMG 1794 

A.hydrophila 
ATCC 7966 

A.salmonicida 
NCIMB 1102 

V.anguillarum 
ATCC 43305 

Y.ruckeri 
NCIMB 1315 

L.garviae 
ATCC 49156 

TUR1D >32 >32 >32 >32 >32 >32 

TUR1S >32 >32 >32 >32 >32 >32 

TUR6D 4 >32 2 2 0.5 0.5 

TUR6S 4 >32 2 1 0.5 0.5 

TUR4S >32 >32 >32 >32 >32 >32 
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which are known to be susceptible to PR-AMPs. In this case, TUR1S is almost as effective as 

TUR1D, so it could be an adaptation to target other Gram-negative species bearing the PR-

AMP transporter(s), against which the presence of multiple Trp residues is useful. Again, the 

TUR6 peptides display a most potent activity, with TUR6S having the lowest MIC.  

Unfortunately, TUR4S continued to be inactive. 

Overall, the TUR peptides display activities that are in line with those of their orthologues 

from terrestrial animals, but with some interesting peculiarities; a) the fact that TUR1D has the 

capacity to use either the principal SbmA and YjiL transporters; b) the presence of a Trp-rich PR-

AMP paralogue with a somewhat diverse activity; c) the presence of a dodecapeptide 

paralogues that does not seem to be an AMP with direct antimicrobial activity. In this respect, 

MIC measurements of bacteriostatic activity are not particularly sensitive, so it was decided to 

also study the effect of the peptides on bacterial growth kinetics. These assays can sometimes 

reveal effects on bacteria at concentrations that are significantly below the MIC, and are 

therefore more sensitive.  

 

Table 2.3.11. MIC values for TUR peptides against bacterial species known to infect 
humans. 

 
(a) Experiments were repeated three times in duplicate and the values were obtained using micro-
dilution, inoculating 2.5 * 105 CFU / ml in 100% Mueller-Hinton broth and maintaining the plates 
at 37 ° C for 20 hours. The MIC values were then evaluated by observing the turbidity of the 
lowest concentration at which bacterial growth was inhibited. 

 

 

 

MIC (µM) (a) 

 
P. aeruginosa 

ATCC 27853 

A. baumannii 

ATCC 10606 

K. pneumoniae 

ATCC 700603 

TUR1D 8-16 1 2 

TUR1S 16 1 16 

TUR6D 2 1-2 2 

TUR6S 1 1 1-2 

TUR4S >32 >32 >32 
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2.3.7 Effect of TUR6 peptides on bacterial growth kinetics 

The effect of TUR6 peptides on bacterial growth kinetics was determined at concentrations 

ranging from sub-toxic (significantly below the MIC), to toxic (in the range of the MIC), 

comparing to the effect of the bovine orthologue BMAP-28 and ovine SMAP-29. Note that it 

is difficult to directly compare results from growth kinetics assays to MIC as the bacterial 

loads are different (2.5u105 CFU/ml vs 2u106 CFU/ml, respectively). The effect of growth 

kinetics was determined against both the Gram positive and Gram-negative reference 

laboratory strains, and results are shown in Figure 2.3.7. 

 

 

 

 

Figure 2.3.7. Growth curves for E. coli and S. aureus treated with increasing concentrations of 
peptide. The growth was monitored over a four-hour period. The black curves correspond to untreated 
bacteria (positive control). Experiments were repeated at last three times in duplicate, for each strain. 
Results were averaged and displayed using Excel.  
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These experiments were repeated several times, so obtaining the averaged growth curves with 

deviation. To better quantify the effect, the % inhibition was determined at an arbitrarily 

chosen time of 210 min. and plotted against peptide concentration, allowing determining IC50 

values for each peptide (see section 2.2.5). Results are shown in Figure 2.3.8 and IC50 values 

are listed in Table 2.3.12. Considering inhibition of E. coli ATCC 25922, it is possible to 

assert that growth is significantly slowed for all peptides at sub-MIC concentrations, and this 

is particularly evident for the dolphin orthologues, so that their IC50 values are in the 0.2 μM 

range. Curiously, the cow and sheep orthologues have a somewhat lower capacity to inhibit 

growth at lower concentrations, with IC50 values at 2-4 fold higher. It is interesting to note 

that the behaviour is similar towards the Gram-positive and negative bacteria. 

 

 

Figure 2.3.8. % inhibition of E. coli or S. aureus at increasing concentrations of TUR6 
peptides and their orthologues. Values were determined in experiments repeated three times in 
duplicate, and the error bars reflect the calculated standard deviation. IC50 were determined as the 
concentration causing 50% inhibition and are shown in Table 2.3.12. 
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Table 2.3.12. IC50 values for TUR6 peptides and their orthologues with 
respect to the inhibition of bacterial growth for E. coli and S. aureus 

 

 

 

 

 

 

 

 

 

An explanation for the peptide’s capacity to significantly inhibit growth at sub-toxic 

concentrations could be that these membranolytic AMPs interact very efficiently with the 

bacterial cytoplasmic membranes, and interfere with membrane-located processes important 

for growth already at quite low concentrations. However, the bacteria can somehow 

eventually detoxify the membrane [for example by the use of efflux pumps, (Nikaido and 

Takatsuka, 2009)] thus allowing recovery of normal growth. When the MIC concentration is 

reached, this capacity is overcome and the peptides lyse the cytoplasmic membrane, so that 

the bacterium is permanently incapacitated. With respect to S. aureus the trend seems to be 

quite similar, as both TUR6 peptides completely inhibit bacterial growth over 4 h, at a 

concentration of half the MIC, and with an IC50 at or below 0.2 μM. This suggests that 

interference with membrane bound functions is relevant also to Gram-positive bacteria.  

Regarding the bovid orthologues, while BMAP-28 behaves similarly to the dolphin peptides, 

SMAP-29 seems to have more an all-or-nothing mechanism of inactivation, especially 

towards S. aureus, so that it significantly inhibits growth only at concentrations closer to the 

MIC. Taken together, these data indicate a) that all the peptides act via a similar (likely 

membranolytic) mechanism of action at higher concentration, that may be analogous for the 

Gram-positive and Gram-negative bacteria, b) they may interfere in a peptide-specific manner 

with membrane-bound machinery, slowing growth, with efficacy in the order TUR6S t 

TUR6D > SMAP-29 ~BMAP-28. 

 

IC50 (µM) 

 E.coli ATCC 25922 S. aureus ATCC 25923 

TUR6D 0.15r0.05 0.15r0.05 

TUR6S 0.2r0.05 0.2r0.05 

BMAP-28 0.7r0.15 0.65r0.15 

SMAP-29 0.45r0.1 0.65r0.15 
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To better understand if E.coli might be able to recover long-term growth by removing the 

peptide using an efflux pump, bacterial growth kinetics were carried out in the presence of 

TUR6D in association with an efflux pump inhibitor. The dipeptide, Phenylalanine-Arginine 

β-naphthylamide (PAβN) (MP Biomedicals) is able to inhibit the family of efflux pumps 

named Resistance nodulation-cell division (RND-type), involved in drug-resistance especially 

in Gram-negative strains. This was somewhat of a long shot, as it is not clear whether these 

types of pumps clear membrane-located AMPs, and in fact are reported not to be relevant to 

the human cathelicidin LL-37 (Rieg et al., 2009). However, the inhibitor was available so I 

felt it would be interesting to try. PAβN was therefore added at a concentration of 60 μM 

(Lomovskaya and Watkins, 2001) in bacterial growth assays with either TUR6D or BMAP-

28. The PR-AMP TUR1D was used as control, as these peptides have a completely different, 

and non-membranolytic mechanism of action.  

 

Figure 2.3.9. Percentages of inhibition of E. coli treated with increasing 
concentrations of peptide in presence of PAβN. The considered time is at 210 
minutes. Experiments were repeated three times in duplicate. 

 

 

Figure 2.3.9 shows the percentages of bacterial growth inhibition for E. coli ATCC 25922 

after 210 minutes of treatment with different peptides in the presence of the inhibitor. An 

increased inhibition of the bacterial growth (i.e. inhibition at lower peptide concentration) was 

clearly observed when using TUR6D in association with PAβN, but not for the bovine 
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orthologue BMAP-28, or the PR-AMP TUR1D. It has been demonstrated that PAβN has a 

certain ability to permeabilize the outer membrane of E. coli at physiological pH at a 

concentration, 50 μg/ml, analogous to the one I used (Lamers et al., 2013). The increased 

growth inhibition by TUR6D in the presence of PAβN might therefore be ascribed to a 

loosening of the outer membrane, allowing more peptide to penetrate and therefore to have an 

increased effect. However, the same should apply to TUR1D, even though it acts by a 

different mechanism, and even more so for BMAP-28, acting by a similar mechanism. Results 

are consistent with a significant but reversible inhibitory effect of TUR6D on the Gram-

negative bacterium, likely at the level of the bacterial membrane, at concentrations 

significantly lower than the MIC at which it lyses the membrane, and suggests that that the 

bacterium might have a certain detoxifying ability by using RND-type efflux pumps. These 

suppositions however have to be confirmed with more extensive testing. 

 

2.3.8 Bacterial Growth kinetics of TUR1 orthologues 

The TUR1 orthologues were also evaluated for their capacity to inhibit bacterial growth at 

sub-inhibitory concentrations. In this case, as they are selective for Gram-negative bacteria, 

assays were limited to E. coli, and the effect on bacterial growth kinetics was tested against 

the E.coli BW 25113 strain and its transport-deficient mutants. The growth curves are shown 

in Figure 2.3.10, while the respective % inhibition curves and calculated IC50 values are 

respectively shown in Figure 2.3.11 and Table 2.3.13. 

For the wild-type BW25311 strain, the TUR1D concentration at which growth is completely 

inhibited corresponds to the MIC value (1 μM), and slowed at 0.5 μM, but not significantly at 

lower concentrations. TUR1S shows a significantly lower inhibiting capacity than TUR1D, in 

line with its higher MIC values (8 μM). These data indicate that the bacterial inactivation 

mechanism requires a threshold peptide concentration, which may depend on the transport 

system, or interaction with the internal target(s), or both. In this respect, it is interesting that 

even PR39(1-18), which is not capable of long-term growth inhibition (MIC >32 μM), under 

these conditions shows some inhibiting capacity at 2 μM, confirming that growth kinetics 

assays are more sensitive than serial dilution ones. 

TUR1D completely inhibits the growth of the ΔsbmA knock-out mutant at a somewhat higher 

concentrations (2 μM), but is still quite efficient at 1 μM, while the inhibiting capacity of 

Bac7 (1-35) seems significantly more influenced by the absence of SbmA. This is consistent 
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with the hypothesis that TUR1D uses SbmA but also the secondary transporter YjiL, and that 

both have a comparable KM for the peptide at around 1-2 μM, while that of YjiL may be 

somewhat higher for Bac5(1-35).  TUR1S curiously inhibits the ΔsbmA strain even more than 

the wild-type one, in line with MIC results. Both peptides seem less dependent on YjiL, as 

knocking it out has less effect on activity, confirming that SbmA is the primary transporter. 

Curiously the absence of SbmA or YjiL seem to have opposite effects on the less active PR-

AMPs, as TUR1S seems to work better if SbmA is absent while PR-39(1-18) if YjiL is 

absent. The double knockout mutant, not surprisingly, is less subject to inhibition by all 

peptides. It is interesting, however, that inhibiting activity is not completely removed. Both 

TUR1D and Bac7(1-35) seem to be able to slow its short-term growth at 4 μM. This suggests 

that other mechanisms to inhibit growth may kick in at higher concentrations. 

The respective role of transporters is evident also when observing growth inhibition against 

concentration (Figure 2.3.11), where TUR1D and Bac7(1-35) are seen to behave quite 

similarly. Considering the IC50 values (see also Table 2.3.13), it is apparent that TUR1D and 

Bac7 use both transporters, TUR1S may preferentially use YjiL, while PR39(1-18) 

preferentially uses SbmA. 
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Figure 2.3.10. Growth curves of E. coli strains treated with increasing concentrations of peptide. The growth was monitored over four hours. The 
black curves correspond to untreated bacteria (positive control). Experiments were repeated three times in duplicate, for each strain. 
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Figure 2.3.11. % growth inhibition for E. coli for BW 25113 and its knock-out 
mutants treated with increasing concentrations of PR-AMPs.  Experiments 
were repeated three times in duplicate and the curves represent the averaged 
results, with SD shown as error bars.   

 

 
Table 2.3.13. IC50 values for TUR1 peptides and their orthologues with respect to E. Coli 
BW25113 and its transporter knockout mutants. 

 

IC50 (µM) 

 
E.coli 

BW 25113 

E.coli 

BW 25113 
ΔsbmA 

E.coli 

BW 25113 ΔyjiL 
E.coli 

BW 25113 ΔyjiL/ΔsbmA  

TUR1D 0.4 r 0.05 0.8 r 0.05 0.4 r 0.05 1.5r 0.5 

TUR1S 3.5 r 0.25 3.4  r 0.15 6.3r 0.05   6.3r 0.05 

PR-39 (1-18) 2 r 0.25 >8 1.5r 0.05 >>8 

Bac7 (1-35) 0.35 r 0.05  0.8 r 0.05 0.3 r 0.05 1.7r 0.25 
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2.3.9 Bacterial uptake of fluorescently labelled PR-AMPs 

TUR1D is a proline-rich AMP which, as shown above, has quite similar characteristics to the 

bovine orthologous fragment Bac7(1-35), and seems to internalize into susceptible Gram-

negative bacteria through the same specific transporters. However, I felt it was necessary to 

confirm this by using biochemical methods. The internalization capacity of TUR1D into 

appropriate bacterial cells was evaluated using flow cytometry, after chemical ligation with a 

fluorescent probe, as described in section 2.2.4.  The similarly BODIPY labeled-Bac7(1-35), 

well known to efficiently internalize Gram-negative bacteria (Benincasa et al., 2009), was 

used as positive control. The labelled peptides were added at a concentration of 0.1 µM, a 

concentration that is well below the lethal one, but at which Bac7 efficiently internalizes. The 

suspension of 106 CFU/ml E.coli BW 25113 or of its deletion mutant strains were exposed to 

the peptides in MH broth, for either 10 min or 30 min at 37 °C and then spun down, washed 

with physiological salt solution to remove extracellular and loosely surface bound peptide. To 

completely eliminate the signal due to residual surface-attached peptide, impermeant Trypan 

blue (TB) was also added to selectively quench the extracellular fluorescence, exploiting the 

fact that PR-AMPs cause no membrane damage at such low concentrations. This process 

allows a quantification of effectively internalized peptide, and results are summarized in 

Figure 2.3.12.  

The mean fluorescence intensity (MFI) of wild-type cells after treatment with TUR1D[Cys33]-

BY for 10 min are comparable, but after TB quenching was somewhat less for TUR1D than 

that of Bac7(1-35), and reaches a comparable value at 30 min, suggesting internalization is 

somewhat slower for TUR1D. A more prolonged incubation time (60 min) and an increased 

peptide concentration did not alter these results (data not shown).  

In general, it is possible to observe efficient internalization of both peptides into the wild-type 

strain, even at a concentration as low as 0.1 μM. Knocking out SbmA significantly decreases 

internalization of both peptides, while knocking out YjiL has a smaller effect at this very low 

peptide concentration, and this is in agreement with the MIC values (see section 2.3.5). 

Overall, these results demonstrate that the function of SbmA in E. coli as the primary 

transporter for the uptake of Pro-rich peptides at low concentrations, and indicate that in the 

SbmA-deleted strains, the internalization is strongly impaired, thus leading to a lower peptide 

concentration inside the cells and thereby a lower effect on bacterial viability.  
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Figure 2.3.12. Flow cytometric analysis of peptide internalization. Uptake of fluorescently 
labelled TUR1D[Cys33]-BY and Bac7(1-35)[Cys36]-BY (0.1 PM) into E. coli BW 25113 
strains (106 cfu/ml) after 10 min or 30 min incubation at 37°C. Green bars are total 
fluorescence intensity (membrane bound and internalized peptide), blue bands are 
fluorescence from internalized peptide after the adding of Trypan blue (TB) quencher. Data 
are expressed as the average of MFI (Mean Fluorescence Intensity) with standard deviation for 
three independent experiments. *p ≤ 0.02 vs TB-treated BW25113 bacteria;  **p ≤ 0.006 vs 
TB-treated BW25113 bacteria (Student-Newman-Keuls Multiple Comparisons Test, 
ANOVA). 

 

 

 

2.3.10 Flow cytometric studies of bacterial membrane permeabilization 

MIC and growth inhibition assays carried out with TUR1D against E. coli indicated that it 

might use both the primary and secondary transporters YjiL the SbmA, but when both 

transporter component were missing antimicrobial activity was still observed, although 

significantly higher concentrations of peptide were required (8 μM). This raises the question 

as to what the killing mechanism is when both the transport systems are absent. It has been 

suggested that PR-AMPs, which do not permeabilize bacteria at low concentration, can switch 

to a membranolytic mechanism of action at significantly higher ones (Podda et al., 2006). To 

test if this is the case also with TUR1D, cytofluorimetric experiments were carried out with 

propidium iodide, which cannot enter intact bacterial cells. An E. coli BW 25113 suspension 

of 106 CFU /ml was incubated at 37°C with peptide for different times, in the presence of 10 

µg/ml PI. Peptide concentrations corresponded to the MIC value for the wild-type strain (1 
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μM) and for the ΔyjiL/ΔsbmA double KO strain (8 μM), using the membranolytic TUR6D as 

positive control. 

 

 

Figure 2.3.13. Effect of TUR1D on E. coli BW 25113 membrane integrity. Curves correspond to 
cells incubated for 15 min with TUR1D at 1 µM (green), 8 µM (red) and TUR6D at 0.25 µM (blue). 
The grey curve represents untreated cells. Each point was the mean of at least three independent 
evaluations. 
 

The histograms for PI uptake are shown in Figure 2.3.13. As expected, TUR6D is by far the 

most efficient in permeabilising the E. coli membrane to PI, with three-fold greater number of 

PI positive cells already at a very low concentration (0.25 PM). TUR1D does not cause 

lesions to the bacterial membrane at 1 µM, even though this is sufficient to inactivate bacteria. 

This is consistent with a mechanism involving internalization and inactivation of an 

intracellular target. At 8 µM, however, it does show a shift to higher fluorescence indicating 

some permeabilization. It is interesting to note that two populations of cells seem to be 

present, the minor one shifted more closely to the completely permeabilized condition. It is 

difficult to say if this is due to the presence of some cells that are intrinsically more 

susceptible to membrane damage (e.g. at a particular stage of the cell cycle), or if this is a 

secondary effect deriving from dead cells losing membrane integrity. 

A dual mode of action, internally acting/membranolytic, has been proposed for Bac7(1-35), 

depending on the peptide’s concentration. At near-MIC concentrations, Bac7(1-35) rapidly 

killed bacteria by a non-lytic and energy dependent mechanism of action, while at higher 
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concentrations (�t32 µM) it showed a lytic mechanism of action (Castle et al., 1999), (Podda 

et al., 2006). It would appear that the dolphin ortholog also shows this behaviour, and that the 

switch to a lytic mechanism may become relevant at somewhat lower concentrations than 

Bac7. This would be in line with what I observed in the uptake assays, as TUR1D seems to 

have a lower internalization efficiency than Bac7(1-35), which results in a longer permanence 

of the peptide on the bacterial membrane outer surface, which may in turn increase its lytic 

activity. 

 

2.3.11 Preliminary evaluation of cytotoxic activity on host cells. 

A preliminary evaluation of the cytotoxicity of selected peptides on host cells was carried out 

by using the propidium iodide permeabilization assay in flow cytometry with TUR1S, 1D and 

6S, and given the relatively lower toxicity of TUR1D by the MTT viability assay. These 

experiments were carried out in the laboratory of prof. Sabrina Pacor, at the Dept. of Life 

Sciences, University of Trieste.  

PI permeabilization was assayed by exposing different cell lines to increasing concentrations 

of the peptides, in the presence of PI, and results are shown in Table 2.3.14. It can be seen 

that TUR6S and TUR1S have a significant toxicity, so that the % permeabilized cells is 

expected to be ~50% at the MIC values. On the other hand, TUR1D was significantly less 

cytotoxic against the tested cells. It was decided to test it also using the MTT assay, and given 

that bovine bactenecins are known to penetrate into host cells, to test if it also internalizes, 

using the BODIPYlated peptide. In these assays, both adhered cells and cells in suspension 

were used (see materials and methods section 2.2.11). 

 

 Table 2.3.14. Cytotoxicity of TUR peptides assayed by the PI permeabilization assaya 

a) Assays were carried out at least three times per peptide, in PBS medium exposing for 30 min to 
the indicated concentrations of peptide and 10 μg/ml PI.  

TUR1S 
(μM) 

U937 cells 
% PI+ 

TUR6S 
(μM) 

U937 cells 
% PI+ 

TUR1D 
(μM) 

% PI+ cells 
MEC-1 

 
% PI+ cells 

A549 

0 0 0 0 0 0 0 

0,4 <10 0,5 20 2.5, 5, 10 <5,n.d,n.d <5 
4 30 1 50 25,50 30,75 70,75 

40 95 5 95 100 >95 >95 
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Figure 2.3.14. Effect of TUR1D on host cells. (A) Fluorescence of MEC-1 (z) and 
A549 ( ) cells treated with TUR1D[Cys33]BY for 30 min. The curves show the overall 
fluorescence. The inset shows the whole fluorescence of MEC-1 cells (light grey bars), 
the effect of washing extensively with PBS (white bars) and treating with the quencher 
Trypan blue (dark grey bars) at the indicated peptide concentrations. (B) MTT assay 
carried out on the same cells exposing to increasing peptide concentration for 24h. The 
inset shows the effect of significantly higher peptide concentrations on A549 cells, under 
the same full medium conditions (dark grey bars) or in the presence of only PBS (white 
bars), exposing for 1 h. 

 

It can be seen that the BODIPYlated peptide interacts strongly with both types of cells, but in 

particular with MEC-1 lymphoid cells in suspension (Figure 2.3.14A). Washing the cells 

extensively with PBS more than halves the fluorescence (see inset) indicating that they adhere 

strongly also to the surface. However, subsequent treatment with Trypan blue does not 

decrease the fluorescence to any further extent, indicating it is due to internalized peptide. It is 

interesting that unlabelled TUR1D is more toxic to MEC-1 cells than to the adhered A459 

epithelial cell line, that seem to be unaffected by peptide even at very high concentrations, as 

indicated by the MTT assay (Figure 2.3.14B). Furthermore, this is true only in the presence 

of medium, as in PBS alone some toxicity was observed (see inset). An explanation could be 

that medium has a protective effect, or that the cells are more susceptible when in stressed 

conditions, such as in the absence of medium. Taken together, these results indicate that a 

higher toxicity could correlate with a) a stronger surface interaction; b) increased 

internalization, and c) the metabolically more active nature of the lymphoid cells.  
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2.4 CONCLUSIONS 

 

Searching in genomic databases using the sequences of known artiodactyl cathelicidins as 

probes revealed the presence of seven putative cathelicidins in dolphin Tursiops truncatus. 

The alignment of these sequences with the cow and pig homologues indicated that these 

might be more closely related to bovine ones, in accordance with the currently accepted 

phylogeny of Cetaceans in the super-order of Cetartiodactyla.  

In this respect, TUR1 peptides are PR-AMPs orthologous to the bovine Bac7 and porcine PR-

39, TUR2 and 3 peptides are amidated, helical peptides orthologous to bovine BMAP-27 and 

porcine PMAP-36, TUR4 peptides are S-S bridged and highly homologous to bovid 

dodecapeptides (not present in pig), and TUR6 peptides are amidated, helical orthologues of 

bovine BMAP-28 and ovine SMAP-29 (also not present in pig). No orthologues were found 

of bovine indolicidin, although one of the TUR1 peptides (TUR1S) is unusually rich in 

tryptophan. The most notable deviation from the artiodactyls related to the CAMP gene 

products (BMAP-34 and PMAP-37 in cow and pig, LL-37 in human). TUR5 is clearly 

orthologous, but reduced to a truncated pseudogene. A sequence corresponding closely to the 

canonical full peptide sequence (TUR7) is present, but seems to consist of the isolated exon 4 

that is not connected to a cathelin-like domain, and it is not clear if it is expressed. If it were 

not, then the dolphin would be a first example of an animal without an active CAMP-related 

peptide. As the genomic sequences were determined at relatively low coverage, transcripts of 

genomic DNA were obtained and sequenced from samples of dolphin tissue, and this 

confirmed the correctness of the TUR5, and 7 attributed sequence. The other peptides were 

also essentially confirmed with some slight sequence variations. 

It was possible confirm the expression of peptides using recent transcriptomics studies, that 

also furnished some indications as to whether expression was inducible or constitutive. TUR4 

seems constitutively expressed at high levels, TUR1 seem strongly inducible, while the α-

helical peptides TUR2, 3 and 6 are inducible but at lower level and only in defined periods. 

This could be in line with their more potent antimicrobial activity but also greater cytotoxic 

effects against the host cells. TUR5 and 7 were not apparently expressed, which supports the 

pseudogene hypothesis. An unusual aspect of the dolphin cathelicidins is the presence of one 

or more variants for each cathelicidin peptide, suggesting that they could have been subject to 

recent duplication. All the TUR1-7 peptides were also variously found in four other cetaceans, 

by searching the DNA databases. This confirms that the entire repertoire, including the 
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anomalous CAMP situation, must have been in place before divergence from land-based 

artiodactyls, or soon after.  

I selected three sequences, showing the most molecular diversity, for chemical synthesis, and 

functional characterization for antimicrobial activity against a range of bacteria. In essence, I 

made the following observations: 

ii) Pro-rich TUR1D, is selective only for susceptible Gram-negative bacteria, is not 

membranolytic and acts internally, in line with its bovine orthologue Bac7. Activity is 

however less dependent on the PR-AMP transporter SbmA (in E. coli), and it seems to also 

use the secondary YjiL transport system efficiently for internalization. This was confirmed by 

cytofluorimetric studies with labelled peptide that however indicated it had a slower 

internalization mechanism. The longer permanence on the bacterial surface may explain a 

somewhat greater capacity to permeabilize the bacterial membrane than Bac7, consistent with 

a concentration-dependent dual internalization/permeabilization mode of action with the 

second kicking in at relatively low concentrations (t8 µM under these conditions). 

ii) Helical TUR6S has an efficient and broad-spectrum activity, in vitro, covering several G-

positive and -negative strains, and is capable of inhibiting short-term bacterial growth at 

concentrations, well under the MIC, possibly interfering with membrane-located processes. 

Preliminary studies indicate the bacterium somehow detoxifies the membrane until a critical 

concentration for lysis is reached, and I obtained intriguing indications it does this by using an 

efflux pump. The peptide has significant toxicity to host cells, at values comparable to the 

MIC, which may be correlated to the fact that it is expressed rarely and at quite low levels. 

One could speculate it is something like a ‘last resort’ cathelicidin for the dolphin, to be used 

only under particular infection conditions.  

iii) Cyclic TUR4S showed no activity, in vitro, against either G+ and G- laboratory strains, or 

numerous other aquatic and terrestrial bacteria, even under permissive medium conditions. 

This was confirmed also by the more sensitive growth kinetics assays. It is possible that this is 

due to the lower charge (+3), which could affect the activity in vitro. It may have some 

activity against specific pathogens faced by the dolphin, in vivo, or more likely it may have an 

indirect defensive role related to immune modulation. Unfortunately, the variant I have 

studied does not seem to be expressed at high levels, whereas TUR4D seems to be 

constitutively expressed at consistently high levels. For this reason, TUR4D is now in the 

process of being prepared for characterization. It will be interesting to see if this peptide, with 

charge +4, has direct antimicrobial activity, or whether like TUR4S may have another role, 

such as immunomodulator. 
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The 1st part of my PhD thesis has contributed to the characterization of new antimicrobial 

peptides from the dolphin Tursiops truncatus, confirming in some cases an interesting 

antimicrobial activity with some different characteristics respect to known orthologues. This 

study could, therefore, lay the groundwork for research aimed to developing novel 

antimicrobial agents, and provides some intriguing insights into the study of the cathelicidin 

antimicrobial peptides in Cetaceans, in relation to those of other mammals. 
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3.1 AIMS OF THE STUDY 

 

Reduced antibiotic uptake due to low permeability is an important and often observed 

resistance mechanism in Gram-negative bacteria. Their cell wall architecture, and in particular 

the presence of an outer membrane, makes them intrinsically resistant to several classes of 

antibiotics. For those drugs that are active against them, they can acquire modifications of cell 

envelope components that reduce their permeability to them, or they can remove them by 

expulsion through efflux pumps. Aminoglycoside antibiotics, for example, are used in the 

treatment of a variety of Gram-negative infections, and resistant clinical isolates become 

impermeable to them (Ratjen et al., 2009). Tobramycin is a bactericidal aminoglycoside 

active against several Gram-negative bacteria, where it disrupts protein synthesis by 

irreversibly binding to the 70S bacterial ribosome (Vázquez-Espinosa et al., 2015). Resistant 

strains have developed due to alterations in membrane permeability and/or transport through 

the membrane and/or the presence of drug modifying enzymes (Poole, 2005). 

One strategy to overcome these problems could be to conjugate tobramycin with another 

molecule known to be efficiently internalized in a different manner, and in this respect, Pro-

rich AMPs are ideal candidates. These peptides, as seen previously, are an important 

subgroup of cetartiodactyl cathelicidins and have two useful characteristics in this respect: a) 

they are selective for some important Gram-negative pathogens, while non-toxic to the host 

(Benincasa et al., 2010), and b) they are efficiently internalized into the bacterial cytoplasm 

by known protein transporter(s). Here they can apparently inactivate different targets involved 

in protein synthesis and folding, including the chaperone DnaK and the bacterial ribosome 

(Scocchi et al., 2016).  

The second part of my PhD work aimed to link tobramycin to the active and well characterized 

bovine PR-AMP fragment Bac7(1-35), via formation of a disulphide bond, as briefly 

illustrated in Scheme I in order to convey the antibiotic into the bacterium and then allow the 

release of the antibiotic in the reducing environment of the bacterial cytoplasm. This 

conjugate might show a mutually potentiating antimicrobial action, since the Bac7(1-35) 

carrier and tobramycin cargo both target the 70 S ribosome subunit. 
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Scheme I. Assembly of an antibiotic cargo/AMP carrier system based on a modified 
tobramycin and an appropriately modified PR-AMP. 

 
 

This part of my project was carried out in two stages: 

I) Chemical modification of tobramycin, to introduce a reactive moiety that would allow 

linking the carrier peptide.  I considered two different strategies to allow the formation of the 

disulphide bond:   

a) acylation of the primary hydroxyl in position 6’’ of the antibiotic (see Scheme II for its 

structure), using succinic anhydride to allow formation of a peptide bond to a cysteine 

residue. This would then allow disulfide bond formation with a Cys-modified carrier peptide. 

The advantage of this strategy is that it introduces two types of labile bonds, an ester (to 

succinamide) and a disulfide. 

 b) introduction of a sulfhydryl group in position 6’’, allowing direct disulfide bond formation 

with the Cys-modified peptide. The advantage of this strategy is that the antibiotic is bound 

directly to the peptide carrier without previous addition of a bulky cysteine residue.  

II) Study the efficacy of the Bac7-antibiotic conjugate(s) in vitro against a range of bacterial 

species, using standard microbiology techniques to obtain more information about the mode 

of action. 

The approach of linking drug cargo to PR AMPs is potentially applicable to several different 

classes of currently available antibiotics. It would allow the use of approved molecules that 

are already tested for target inactivation efficacy and toxicity, which may significantly 
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facilitate subsequent use of the conjugate system. The only prerequisite is that the antibiotic 

has a functional group that is modifiable to allow linking to the carrier, but at the same time 

not essential for it activity. 
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3.2 MATERIALS and METHODS 

 

3.2.1 Synthesis of (Boc)5Tobramycin (Boc-T-OH) 

First of all, in order to direct the reaction of conjugation to the position 6’’ of the antibiotic 

and avoid undesirable side-reactions, I needed to protected the numerous reactive amine 

groups with di-tert-butyl dicarbonate (Boc2O) (Michael et al., 1999). The Boc protecting 

group can then be removed by treatment with trifluoroacetic acid in the presence of 

appropriate scavengers. The reaction is shown in Scheme II. 

 

 

Scheme II. Boc protection of tobramycin amine groups using Boc2O 

 

 

A solution of tobramycin (0.240 g, 0.500 mmol) in 10 ml aqueous DMSO (DMSO/water, v/v  

6:1) was treated with di-tert-butyl dicarbonate (1.1 g, 5.0 mmol, 10 equiv.). The solution was 

heated at 60°C for 5 hours, and then cooled to 23°C. 5 ml 30% aqueous ammonia was then 

added to the mixture to stop the reaction. The precipitated was filtered, washed several times 

with water and dried in a desiccator. The reaction progression to the final product was 

m0nitored by analytical RP-HPLC (Kinetex C18, 3µm, 100 Å, 50 x 4.6 mm column from 

Phenomenex, USA) and ESI-MS.  

 

3.2.2 Synthesis of (Boc)5Tobramycin-Hemisuccinate (Boc-T-hS) 

The first strategy to link the antibiotic to the peptide carrier required acylation of the primary 

hydroxyl in position 6’’ of tobramycin (see Scheme II) by using succinic anhydride, to obtain 

(Boc)5-tobramycin-hemisuccinate (Scheme III). This would allow subsequent linking to a 
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cysteine residue by formation of a peptide bond. The reaction was carried out according to 

(Rice et al., 2005), and exploits the greater reactivity of the primary hydroxyl in position 6’’ 

with respect to the four secondary hydroxyls present on the tobramycin rings.  

 

Scheme III.  Introduction of an acid moiety onto the primary hydroxyl of tobramycin using 

succinic anhydride 

 

(Boc)5Tobramycin (0.37 g, 0.38 mmol) was dissolved in 20 ml anhydrous toluene and treated 

with succinic anhydride (0.058 g, 0.58 mmol, 1.5 eq.) and 4-dimethylaminopyridine (DMAP) 

(0.23 g, 1.9 mmol, 5 eq.) . The solution was heated at 85°C for 20 h in a paraffin oil bath, 

under argon flux, until the completion of the reaction (monitored by analytical RP-HPLC and 

ESI-MS). After cooling to room temperature, 20 ml of dichloromethane and then 40 ml of 

aqueous HCl (pH = 2.5) were used to separate organic and aqueous phases.  A few drops of 6 

M HCl was added to the aqueous phase to ensure that the all product pass to the organic layer. 

The combined organic layer was washed with brine, dried over Na2SO4 and the solvent 

removed on a rotary evaporator. Note that even mildly basic conditions must be avoided when 

storing or using the hemisuccinate or any of its products, as the ester bond is labile under 

those conditions. 

 

3.2.3 Synthesis of Tobramycin(Hemisuccinate)-Cys conjugate (T-hS-Cys) 

Linking of (Boc)5-T-hS to cysteine was carried out as shown in Scheme IV. The first part of 

the procedure was carried out on a Biotage Initiator+ automated microwave peptide 

synthesizer, by coupling Fmoc-Cys(Trt)-OH (6 eq.) to Rink amide resin (0.266 g, 0.35 

mmol/g. 0.1 mmol scale). After Fmoc deprotection of the resin with 20% piperidine in NMP, 

Fmoc-Cys(Trt)-OH/PyBop/DIPEA (1:0.98:2) in NMP were added and the reaction allowed to 

proceed as per the Biotage protocol. The Fmoc group was then removed by washing 3 times 

for 10 min with 20% piperidine solution (total 9 ml). Aliquots of the deprotection solution 

(100, 10 and 5 μL) were diluted with 20% piperidine and the concentration of the Fmoc group 
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determined spectrophotometrically at 301 nm (absorption maximum for the fulvene-

piperidine adduct, H = 7800 M-1cm-1).   

The resin substitution was calculated as 0.4 mmol/g using the equation:    Rs =                
             

    

(Abs = absorbance, dil = dilution, l = optical path in cm, g = resin grams, vol = total volume 

in ml, HFMOC = Fmoc molar extinction coefficient). 

 

Scheme IV. Preparation of T-HS-Cys 

 

 

Formation of the peptide bond to tobramycin was carried out manually by dissolving 0.17 g of 

(Boc)5Tobramycin-Hemisuccinate (0.16 mmol) in 1.5 ml of DMF and adding 0.082 g of 

PyBop (0.157 mmol, 0.98 eq.) and 56 μL of DIPEA (0.314 mmol, 2 eq.). This solution was 

added to 0.2 g of the Cys-Rink-Amide resin (0.4 mmol/g, 0.08 mmol scale) so that T-hS was in two-

fold excess.  The Kaiser test carried out at the beginning of the reaction on a few grains of resin 

gave a dark blue colour, indicating free amino groups present on the resin. After 3 hours, the 

Kaiser test gave a yellow colour, indicating reaction completion. The resin was then washed 
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with DCM, 2-propanol and diethyl ether, and dried under an N2 flux. The resin weight at the end 

of the reaction was 0.24 g, against an expected theoretical weight of 0.25 g, indicated a yield of >90%, 

which is good considering the steric hindrance of the tobramycin entering group.  

The product was then cleaved from the resin by using a cocktail of trifluoroacetic acid (TFA), 

tri-isopropylsilane (TIPS), H2O and 3,6-dioxa-1,8-octane-dithiol (DODT), (82%,5%,5%,8% 

v/v), also removing the Boc protecting groups. The crude material was precipitated with 20 

ml cold tert-butyl methyl ether, washed, dried under N2 flux and analysed using analytical 

RP-HPLC and ESI-MS. 

 

3.2.4 Synthesis of Tobramycin-Cys-Thiopyridine (T-hS-Cys-TPy) 

Tobramycin(Hemisuccinate)-Cys was pre-activated on the cysteine sulfhydryl to direct the 

subsequent conjugation reaction with the free sulfhydryl on the peptide carrier by formation 

of a heterodimeric disulfide bridge (see Scheme V). 0,049 g of T-hS-Cys (0.073 mmole) were 

suspended in 3 ml of methanol and treated with 2,2'-dithiodipyridine (0.016 g, 0.073 mmol, 1 

equiv.) The solution was left for 5 hours at room temperature under agitation, until 

completion of the reaction (as monitored by ESI-MS). The crude product was precipitated 

with 20 ml cold tert-butyl methyl ether, washed, dried under N2 flux and analysed with 

analytical RP-HPLC and ESI-MS. 

 

Scheme V. Preparation of T-hS-Cys -TPy 

 

3.2.5 Synthesis of Bac7(1-35)[Cys36] and Bac7(1-15)[Cys16] 

Carrier PR-AMPs were modified at the C-terminus, as it is reported that modification of the 

N-terminus affects internalization and activity (Guida et al., 2015). Both an active and an 

inactive fragment of the Bac7 PR-AMP were prepared. Syntheses were performed in the solid 

phase, using a Biotage Initiator+ automated microwave synthesizer, as previously described 

(see section 2.2.2). 
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x For preparing Bac7(1-35)[Cys36] a 2-chlorotrityl chloride resin (Novabiochem, substitution 

≤ 0.2 mmol/g, scale 0.1 mmol),  manually preloaded with Fmoc-Cys(Trt)-OH, was used.  

x For Bac7(1-15)[Cys16] NovaPEG Rink Amide Resin LL (Novabiochem, substitution 0.35 

mmol/g, scale 0.1 mmol) was used to produce a C-terminal amidated peptide. In this case, the 

C-terminal cysteine residue was introduced directly to the resin during the synthesis. 

The peptides were cleaved from their resins using a cocktail of trifluoroacetic acid (TFA), 

thioanisole, water, 3,6-dioxa-1,8-octane-dihiol (DODT), tri-isopropylsilane (TIPS) 

(85%,3%,2%,8%, 2% v/v) and then precipitated and washed several times with cold tert-butyl 

methyl ether (TBME) and dried under nitrogen. The crude peptides were analysed by 

analytical RP-HPLC (Waters Symmetry 4.6 x 75 mm C18 column) and purified by 

preparative reverse-phase HPLC (Phenomenex Jupiter™, C18,10 µm, 90 Å, 250x21,20 mm). 

 

3.2.6 Bac7(1-35)[Cys36] alkylation with iodoacetamide 

As unlabelled control peptides were required for the subsequent biological assays, the SH 

group on the side chain of the C-terminal cysteine residue was alkylated using 2-

iodoacetamide for a small aliquot of the peptides (see Scheme VI). This sulfhydryl-reactive 

alkylating reagent prevents intermolecular dimerization of peptides during assays by 

disulphide bond formation. The reaction was conducted in Tris buffer 0.5 M and 2mM EDTA 

at pH 8.0. Iodoacetamide is unstable and light sensitive, so a 2.2 M solution was prepared 

immediately before use and the reaction was performed in the dark and under nitrogen, adding 

1 mM peptide and 0.5 M ascorbic acid to scavenge traces of iodine. After 2 minutes, 0.5 M 

citric acid was added as a reaction quencher. 

 

 

Scheme VI.  Schematic representation of alkylation reaction. 
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The reaction mixture was then diluted with 0.05% Trifluoroacetic acid in water to a final pH 

of 2.5 and the peptides purified by semi-preparative RP-HPLC (Jupiter™, C18, 5 µm, 300 Å, 

100x10 mm) with a linear gradient of 1Æ40% CH3CN in 40 min. and 2 ml/min flowrate. 

Purity was confirmed by analytical RP-HPLC (Kinetex C18, 3µm, 100 Å, 50 x 4.6 mm 

column from Phenomenex, USA) and ESI-MS. 

 

3.2.7 Synthesis of Tobramycin-Bac7(1-35) and Tobramycin-Bac7(1-15)  

For the heterodimerization reaction (see Scheme VII), 2 mg of Tobramycin-Cys-Thiopyridine 
(0.0025 mmole) were suspended in 4 ml of 20% dimethyl sulfoxide (DMSO) in H2O (pH = 

5), and 1 eq. of Bac7(1-35)[Cys36] (10.7 mg in 1 ml of H2O) was added drop wise to the 

solution. The reaction mixture was then left for 24 hours at room temperature under agitation, 

until the completion of the reaction (monitored by RP-HPLC and ESI-MS). The heterodimer 

was purified by RP-HPLC on a Phenomenex semi-preparative column (Jupiter™, C18, 5 µm, 

300 Å, 100x10 mm) using a 5-35% CH3CN gradient in 50 min. with a 2 ml/min flow rate. 

The lyophilized heterodimer was accurately weighed and then dissolved in slightly acidic 

water (pH = 4.8). This was to prevent the risk of the solution becoming even slightly basic, as 

the hemisuccinate is unstable under those conditions. The concentration of stock solutions 

was determined weight, and by spectrophotometric determination of peptide bonds using ε214, 

as well as the method of Waddle.  

The same procedure was used for the synthesis of the second heterodimer Tobramycin-

Bac7(1-15), using 3 mg of Tobramycin-Cys-Thiopyridine (0.004 mmole) and 1 eq. of 

Bac7(1-15)[Cys16] (7.7 mg). 

 

 

 

Scheme VII.  Preparation of T-HS-Cys/Bac7(1-35)[Cys36] heterodimer via disulphide bond formation. 
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3.2.8 Synthesis of (Boc)5Tobramycin-OTibs (Boc-T-OTibs) 

The second strategy I used to allow the formation of a disulphide bond with a modified Bac7 

was to first introduce the trispropylsulfonate group (OTibs) onto position 6’’ of tobramycin 

by reacting with trysil chloride (2,4,6-Triisopropylbenzenesulfonyl chloride, TPSCl). This 

would then allow linking a group bearing a thiol in this position, and then directly forming a 

disulfide bonds with the carrier peptide. To this end, Boc-T-OH was modified according to 

the method of (Michael et al., 1999). The first step was the introduction of the Tibs group as 

shown in Scheme VIII. 

 

 

 

Scheme VIII.  Preparation of Boc-T-OTibs 

 

 

(Boc)5Tobramycin (0.15 g, 0.16 mmol) was dissolved in 7 ml anhydrous pyridine in a three-

necked round bottom flask and 2,4,6-Triisopropylbenzenesulfonyl chloride (TPSCl) was 

added (0.23 g, 1.1 mmol, 5 eq.). The solution was heated at 60°C for 72 h over a heating 

plate, under constant argon flux to prevent hydration, until the completion of the reaction 

(monitored by analytical RP-HPLC and ESI-MS). After cooling to room temperature, 250 ml 

of ethyl acetate and then 60 ml of water were used added and the organic and aqueous phases 

separated. The combined organic layer was washed with brine, dried over Na2SO4 and 

brought to dryness with a rotary evaporator.  

 

3.2.9 Synthesis of (Boc)5Tobramycin-dioxaoctanethiol (Boc-T-DOT) 

The aim of this reaction was to introduce the thiol group onto position 6’’ by replacing the 

OTibs group with dioxaoctanedithiol to form a thioether bond leaving a free sulfhydryl, as 

shown in Scheme IX 
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Scheme IX. Preparation of Boc-T-DOT with 2,2′-(Ethylenedioxy) diethanethiol 

 

 

(Boc)5Tobramycin-OTibs (0.165 g, 0.13 mmol) was dissolved in 7 ml anhydrous DMF in a 

three-necked round bottom flask and treated with 2,2′-(Ethylenedioxy)diethanethiol (DODT) 

(0.189 g, 1.04 mmol, 8 eq.) and cesium carbonate (0.075 g, 0.234 mmol, 1.8 eq.). The 

solution was placed at room temperature, under constant argon flux and the reaction 

monitored by analytical RP-HPLC and ESI-MS. After 26 hours, as it had not reached 

completeness another 8 eq. of thiol were added (total 16 eq.). After 36 hours, 100 ml of ethyl 

acetate and then 30 ml of water were added and the aqueous and organic phases separated. 

The combined organic layer was washed with brine, dried over Na2SO4 and brought to 

dryness with a rotary evaporator.  

 

3.2.10 Synthesis of (Boc)5Tobramycin-dioxaoctanethiol-thiopyridine (Boc-T-DOTTPy) 

In order to pre-activate the (Boc)5Tobramycin-dioxaoctanethiol sulfhydryl to favour 

heterodimerization with Bac7, it was reacted with dithiopyridine as already discussed 

previously.  0.100 g (0.092 mmol) of Boc-T-DOT was reacted with 2,2'-dithiodipyridine 

(0.008 g, 0.036 mmol, 4 eq.) and was carried out as described in section 3.3.4. The reaction is 

shown in Scheme X 

 

 

Scheme X. Preparation of Boc-T-DOTTPy 
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3.2.11 Antimicrobial activity assays 

MIC determination and effect on bacterial growth were carried out as described in section 

2.2.7. For the Tobramycin-Bac7 conjugates, as both the antibiotic and AMP carrier are 

antibacterial, it was necessary to consider the possibility that their activities could be neutral 

to each other, additive, synergic or even antagonistic. For this reason, synergy assays had to 

be carried out. 

Synergy assays (MIC checkerboard). To assess synergistic or antagonistic effects between 

tobramycin and Bac7(1-35), checkerboard assays were carried out using the same sterile 96-

well plates as for normal MIC assays. The set-up procedure is slightly different to the normal 

MIC essay (see section 2.2.7), as the plates were prepared by placing 50 μL of MH broth with 

the first antibacterial (32 PM of Bac7 1-35) in all the wells of the top row. To all the other 

wells were added 25 PL of untreated MH broth. 25 μL was then transferred to from the first to 

the second row and six more serial dilutions were then carried out down the rows, leaving the 

eighth row with 50 PL untreated MH broth. Serially diluted stock solutions were then 

prepared from 32 to 0.5 PM tobramycin in MH broth and 25 ml of these were added as 

appropriate to wells so as to have a serial dilution of the antibiotic along the columns. 25 Pl of 

MH broth inoculated with 1*106 cfu/ml bacteria were then added, and then all wells were 

brought to 100 Pl by adding untreated medium as necessary. In this manner, wells had a 

bacterial load of 2.5*105 cfu/ml and concentrations of antibacterials as shown in Figure 3.2.1. 

 

Figure 3.2.1. Scheme for the checkerboard assay. The concentration of 
antibacterials is given by reading the row value for Bac7(1-35) and column value 
for tobramycin, so that well 5E, for example, contains1 PM tobramycin and 0.5 
PM Bac7(1-35) and 2.5*105 cfu/ml, in a final volume of 100 Pl MH broth. 
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Data were also analysed in terms of FIC index (Fractional Inhibitory Concentration), which is 

calculated with the formula:  

FICA + FICB = (CA/MICA) + (CB/MICB) 

where MICA and MICB are the MICs of component A and B alone, respectively, and CA and 

CB are respectively the concentrations of the drugs when in combination, in wells 

corresponding to an MIC (isoeffective combinations). A FIC value below 0.5 indicates a 

synergistic effect (Meletiadis et al., 2010). 

 

3.2.12 Bacterial strains 

To begin with, the antimicrobial activity of the conjugate molecules were tested in terms of  

minimum inhibitory concentrations (MIC) (see section 2.2.7) against several E. coli strains 

(Table 3.3.0), in order to get more information about the mechanism of action. When 

possible, it was also tested using bacterial growth kinetics assays (see section 2.2.8). 

Subsequently, the bacteriostatic activity was tested on a wider range of bacteria, including 

Gram-positive species, with particular attention to typical human pathogens and multidrug-

resistant clinical isolates. 

 

Table 3.3.0 Bacterial strains used to test tobramycin-Bac7 conjugates 

Strain  Characteristics or genotype(a) Reference or source 

E. coli   
- BW 25113 wild type Genobase 
- ∆sbmA (JW0368) BW25113 sbmA::Kmr mutant Keio Collection(b) 
- ΔrpoS  (JW5437) BW25113 rpoS::Kmr mutant Keio Collection(b) 
- Δhfq    (JW4130) BW25113 hfq::Kmr mutant Keio Collection(b) 
- [pMAU1(sbmA)] BW25113 (pUC18 sbmA)::Ampr  (Mattiuzzo et al., 2007) 
P. aeruginosa   
- ATCC 27853 wild type  ATCC® 
- PA01 clinical isolate Univ. Chieti(b) 
- PA05 clinical isolate “ 
- PA10 clinical isolate “ 
- PA21 clinical isolate ” 
- PA22 clinical isolate “ 
- PA35 clinical isolate “ 
A. baumannii   
- ATCC 10606 wild type  ATCC® 
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- 420(c) clinical isolate Univ. Trieste(c) 
K. pneumoniae   
- ATCC 700603 wild type  ATCC® 
- #4 clinical isolate Univ. Trieste(c) 
S. aureus ATCC 25923 wild type ATCC® 
S. epidermidis ATCC 12228 wild type ATCC® 
S. enterica ATCC 14028 wild type ATCC® 

(a) Kmr, kanamycin resistant; Ampr, ampicillin resistant. (b) Keio Collection - Keio Collection of 
GenoBase (http://ecoli.aistnara.ac.jp/index.html); (c) tobramycin-resistant C.I. 
(b) Kindly donated by G. Di Bonaventura, Dip I Scienze Mediche, Orali e Biotecnologiche 
(c) L. Dolzani, Microbiology laboratory, Dip. Scienze della Vita 
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3.3 RESULTS and DISCUSSION 

 

3.3.1 Purity check of the starting tobramycin compound 

Before starting the synthetic process, the starting compound (Tobramycin, SIGMA-

ALDRICH,  MW = 467 g/mol) was analysed by ESI-MS and analytical RP-HPLC, in order to 

verify the purity. The mass spectrum is shown in Figure 3.3.1, and in addition to the peak 

corresponding to the correct structure [m/z = (m + H+)/1 = 468.5), a second peak at 324.4 can 

be observed (abundance ~ 30%), that is -144 compared to that of tobramycin. This is likely 

due to the loss of glycosidic ring III (see Figure 3.3.2). This impurity varied from batch to 

batch, and certainly had an impact on the subsequent reaction yields. 

 

                           

Figure 3.3.1. ESI-MS spectrum of pure tobramycin (Compound stability = 100) 

 

 

 

Figure 3.3.2. Molecular structure of Tobramycin (A) and likely impurity (B)  
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The purity was checked also by RP-HPLC, using a wavelength of 200 nm (tobramycin, unlike 

peptides, does not absorb at 214nm) and a gradient from 0% → 100% Solvent B (CH3CN + 

0,05 % TFA) in 40 minutes. From the chromatogram only a single peak can be observed, 

eluting at 30%B. Unfortunately, tobramycin and the fragment seem to elute together, so it was 

decided not to purify the molecule before the first reaction, as addition of Boc groups should 

aid separation. 

 

 

Figure 3.3.3. Analytical RP-HPLC chromatogram of pure tobramycin. Wavelength 
200 nm. 

 

 

3.3.2 Synthesis of (Boc)5-tobramycin (Boc-T) 

After performing the protection of amine groups with di-tert-butyl dicarbonate (Boc2O), the 

purity of the product (Figure 3.3.4) was analysed by RP-HPLC and ESI-MS. The 

chromatogram showed a single peak with shoulder, and from the ESI-MS analysis (Figure 
4A), two main peaks could be observed at m/z = 968.4, which corresponds to the correct 

product, and at m/z = 868.6, corresponding to loss of a t-Boc group (-100). It is well known 

that during electrospray ionization, the ion impact with the buffer gas can cause the 

detachment of the relatively labile protecting groups such as t-Boc, due to the collisional 

energy. This behaviour is, in fact, diagnostic for the presence of such groups. A low intensity 

peak (m/z = 912.4) between the two main ones is due to the initial detachment of an isobutene 
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fragment (MW = 56 g/mol), which is followed by removal of a CO2 molecule (MW = 56 

g/mol) to give the – 100 signal. As a confirmation of this process, increasing the compound 

stability parameter from 20 to 100 (i.e. increasing the acceleration voltage and therefore the 

impact energy) increased the fragmentation process, and it was possible to observe the 

subsequent removal of a further isobutene and t-Boc groups (Figure 3.3.4B).  

 

 

 

Figure 3.3.4. Structure, analytical RP-HPLC chromatogram (top) and ESI-
MS spectrum (bottom) of Boc-T (MW = 967). Elution was with a 0-100 % 
gradient of CH3CN + 0,05 % TFA, monitoring at 200 nm. Mass spectra were 
measured from aliquots of the elution peak with at compound stability of  20 A) 
and 100 B)  

 

As expected, the presence of the impurity in the starting material is confirmed by the presence 

of a peak at m/z = 624.2 due the Boc-protected fragment lacking of the glycosidic ring III and 

consequent having only three Boc  protecting groups.  The final yield of dried product of 

%CH3CN 
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0.37g against a theoretical yield of 0.49g (75%), possibly reflects the presence of this 

impurity, but is in any case sufficiently high to continue the synthetic process. 

 

 

3.3.3 Synthesis of (Boc)5Tobramycin-Hemisuccinate (Boc-T-HS) 

After the reaction of (Boc)5Tobramycin with succinic anhydride, the purity of the product was 

again tested by analytical RP-HPLC and ESI-MS (see Figure 3.3.5). In this case it was 

possible to use monitoring wavelengths at both 200 and 214 nm and the chromatogram 

showed three main peaks, where the circled elution peak corresponds to (Boc)5Tobramycin-

hemisuccinate, which elutes at 58%B. The first peak (54% B) corresponds to the unreacted 

succinic anhydride, present in excess, as also indicated by the absorbance at 214 nm; the third 

peak (60% B) corresponds to a secondary reaction. This step had two significantly 

complicating factors; a) the unreacted succinic anhydride elutes at the same %B as the 

starting compound (Boc)5Tobramycin, and b) succinic anhydride has the same MW as tBOC, 

which together with mass fragmentation made it difficult to evaluate the presence of 

unreacted material. 

 

Figure 3.3.5. Structure, analytical RP-HPLC chromatogram (left) and ESI-MS spectrum of  
(A) Boc-T-hS (MW = 1066) and (B) T-hS (MW = 566). Elution was with a 0-100 % gradient of 
CH3CN + 0,05 % TFA (0.8 ml/min), monitoring at 200 (blue) and 214 nm (magenta). Mass spectra 
were measured from aliquots of the elution peak at compound stability of 100. 

A B 
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The ESI-MS analysis of the crude material showed a high intensity peak at m/z = 1066.3 

(Figure 3.3.5A), corresponding to the desired product (Boc)5Tobramycin-hemisuccinate, and 

a lower peak at m/z = 1166.6, likely corresponding to a second hemisuccinate linked to a 

secondary hydroxyl group (+100). This unfortunately means that these hydroxyl groups are 

not completely unreactive under the reaction conditions used. Another intense peak at m/z = 

966.8 could correspond to the starting material, or to the Boc-T-HS product lacking a t-Boc 

group due to the ESI-MS fragmentation (-100), or both possibilities. For this reason, a small 

amount of crude material was deprotected with 95% aqueous TFA to remove all t-Boc groups, 

and analysed by ESI-MS. As can be seen in Figure 3.3.5B the main peak at m/z = 566.2 

corresponds to the correct Tobramycin-hemisuccinate product, while a medium intensity peak 

at m/z = 466.5 corresponds to not reacted starting compound. The peak at m/z = 665.9 again 

confirms a significant presence of the secondary product with two hemisuccinate groups. It is 

also important to note that the three main peaks be coupled with satellite peaks corresponding 

to (+23), as the acid groups carry Na+ ions with them. 

The final yield of dried crude product of 0.30 g against a theoretical yield of 0.40 g (75%), 

reflects the presence of unreacted material (tobramycin fragment and double hemisuccinate), 

but again was considered sufficiently high to continue the synthetic process. For the 

subsequent reaction with the cysteine residue, it was decided to proceed using the crude 

product in order to reduce excessive loss of material in a purification step. In this respect, the 

starting material should not react, and the secondary product with double-hemisuccinate 

should be readily purified subsequently by RP-HPLC.  

 

3.3.4 Synthesis of Tobramycin(Hemisuccinate)-Cys (T-HS-Cys) 

To conjugate the modified tobramycin to the antimicrobial peptide by a disulfide bridge, it 

was necessary first to introduce a cysteine residue by formation of an amide bond, to obtain 
Tobramycin(Hemisuccinate)-Cys. This would allow disulfide bond formation with the C-

terminal cysteine residue on the peptide. The reaction was carried out in the solid phase, with 

microwave assistance, then removing the product from the resin and simultaneously 

deprotecting the t-Boc groups. The correct structure of the crude product verified via ESI-MS 

(Figure 3.3.6). 

The ESI-MS spectrum shows a high intensity peak with m/z = 670.4 corresponding to 

Tobramycin(hemisuccinate)-Cys. The presence of the fragment impurity is confirmed by a 
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peak at m/z = 526.2 corresponding to the lack of the glycosidic ring III  (-144). The product 

otherwise appears relatively pure. The yield of dried crude product of 49 mg against a 

theoretical yield of 53 mg (>90%), indicates efficient coupling of the antibiotic to the Cys residue. 

 

Figure 3.3.6. Structure of T-HS-Cys (MW = 670) and ESI-MS spectrum of crude 
product. Compound stability = 100. 

 

 

 

3.3.5 Synthesis of Tobramycin-Cys-Thiopyridine (T-hS-Cys-TPy) 

To direct coupling of the antibiotic to the peptide carrier, and avoid homo-dimer formation (or 

dimerization of the peptide carrier), the sulfhydryl group of Tobramycin-hS-Cys was pre-

activated with 2,2'-dithiodipyridine. This reaction was relatively straightforward, and the ESI-

MS spectrum with main peak at m/z = 779.4 confirmed the presence of tobramycin-hS-Cys-

thiopyridine, as well as the related product lacking the glycosidic ring III (m/z = 635.3) (see 

Figure 3.3.7).  The yield of dried crude product of 40 mg against an expected theoretical yield 

of 57 mg (~70%), indicates some loss of material in this step, but it is in any case acceptable, 

considering that a significantly higher loss could occur through homodimer formation, which 

would also complicate purification. 
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Figure 3.3.7. Structure of T-hS-Cys-TPy (MW = 779) and ESI-MS spectrum. Compound stability 
= 100. 

 

 

 

3.3.6 Synthesis of Bac7(1-35)[Cys36] and Bac7(1-15)[Cys16] 

The SPPS of Bac7(1-35)[Cys36] was straightforward and produced high quality peptide, as 

confirmed by ESI-MS analysis (Figure 3.3.8), with a single peak at m/z = 4310.7 

corresponding to the correct structure. The yield was significantly lower than expected (~ 

30%), but given the high quality of the peptide was likely due to overestimation of resin 

substitution (it was more like 0.1 mmol/g than 0.35 mmol/g). The high quality of the crude 

final product is important, as it allows proceeding with the dimerization reaction without a 

prior RP-HPLC purification step, which can cause losses of up to 50%. This more than made 

up for the relatively low yield. 

For the shorter Bac7(1-15)[Cys16], it was decided to produce a C-terminal amidated peptide, 

remove the C-terminal negative charge. In this case the synthesis proceeded with a yield of 

crude material >90%. The ESI-MS spectrum (Figure 3.3.9A) shows a main peak with m/z = 

2022.3 corresponding to the correct Bac7(1-15)[Cys16] structure and the purity was also 

confirmed by analytical RP-HPLC.  

A small amount of the Bac7 crude peptides were alkylated using 2-iodoacetamide, in order to 

block the reactive SH groups the C-terminal cysteine residue, for use as controls, preventing 

intermolecular dimerization during assays. The reaction was confirmed by ESI-MS (see 
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Figures 3.3.10 and 3.3.11) and alkylated peptides purified by preparative RP-HPLC in good 

yields.  

 

Figure 3.3.8. Mass spectrum of Bac7(1-35)[Cys36]. Top:  ESI-
MS spectrum of crude material at Compound stability = 100.  
Below: reconstructed spectrum based on m/z peaks. 

 

 

Figure 3.3.9. Analysis of Bac7(1-15)[Cys16]: A)  ESI-MS spectrum of crude material 
at Compound stability = 100. The reconstructed spectrum based on m/z peaks is shown 
below. B) analytical RP-HPLC chromatogram of crude material (wavelength at 214 nm, 
flow 0.8 ml/min, 10-40% CH3CN in 40 min). 
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Figure 3.3.10. Mass spectra and preparative RP-HPLC of (Bac7(1-35)[Cys36]-
ALK (MW = 4368). A) ESI-MS spectrum at Compound stability = 100); below: 
spectrum reconstructed based on m/z peaks. B) preparative RP-HPLC chromatogram 
(wavelength at 214 nm, flow 8 ml/min, 10-40% CH3CN in 40 min). 

 

 

 

 

Figure 3.3.11. Mass spectra and preparative RP-HPLC of Bac7(1-15)[Cys16]-
ALK (MW=2079):  A) ESI-MS spectrum at Compound stability = 100; below: 
spectrum reconstructed based on m/z peaks. B) preparative RP-HPLC 
chromatogram (wavelength at 214 nm, flow 8 ml/min, 0-35% CH3CN in 50 min). 
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3.3.7 Synthesis of Tobramycin-Bac7(1-35) and Tobramycin-Bac7(1-15) 

The last step in the synthetic process was to conjugate Tobramycin-Cys-Thiopyridine with the 

antimicrobial peptides modified with cysteine. The reaction was carried out with small 

quantities of antibiotic and peptide, at relatively high dilution and was monitored by analytical 

RP-HPLC, by taking small aliquots of the reaction solution, and determining the molecular 

weight of collected peaks with ESI-MS (see Figure 3.3.12). After two hours two main 

chromatographic peaks could be observed, circled in black and red on the chromatograms, 

corresponding respectively to the desired hetero-dimer Tobramycin-Bac7(1-35), and the 

unreacted Bac7(1-35)[Cys36]. The second peak significantly decreased after 4 hours but the 

reaction reached completion only after 24 hours, indicating it is rather slow. This is likely 

because a 1:1 ratio of antibiotic and peptide were used to avoid peptide dimerization. The 

chromatograms showed some secondary peaks, so that the product was purified by 

preparative RP-HPLC (Figure 3.3.13). The collected peak (highlighted in black) was 

confirmed by ESI-MS to correspond to the correct heterodimer (m/z = 4977.3), which was 

collected with good purity, although the yield of pure product was relatively low, due to both 

the dimerization and purification steps (~20%). 

 

 

Figure 3.3.12. Analytical RP-HPLC chromatograms of Tobramycin-Bac7(1-35) ligation 
time course (wavelength at 200 nm, flow 0.8 ml/min, 0-35% CH3CN in 40 min). 
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Figure 3.3.13. Tobramycin-Bac7(1-35) heterodimerization: A) preparative RP-
HPLC chromatogram (wavelength at 200 nm, flow 8 ml/min, 0-35% CH3CN in 50 
min); B) ESI-MS spectrum at Compound stability = 100. 

 

 

The same procedure was performed for Tobramycin-Bac7(1-15). In this case, however, after 

two hours three main peaks were present, highlighted in black, red and green in Figure 
3.3.14, corresponding respectively to the complete heterodimer, the unreacted Bac7(1-

15)[Cys16] and [Bac7(1-15)Cys16]2 homo-dimer. This peak progressively decreases in 

intensity compared to the heterodimer, indicating a relatively quick process of 

homodimerization over which heterodimerization with Tobramycin-hS-Cys-TPy then 

prevails. After 24h, purification by preparative RP-HPLC followed by mass spectrometric 

analysis of collected fractions (Figure 3.3.15) confirmed a main peak (black circle) 

corresponding to the correct heterodimer, and significant other peaks corresponding to 

unreacted peptide (red circle), and Bac7 homodimer (green). In retrospect, the introduction of 

C-terminal amidation, by removing charge reduced electrostatic repulsion between peptide C-

termini, and may have favoured homodimeric disulfide formation. It may be better to avoid it 

in future. It likely contributed to the low yield of ~12%. 
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Figure 3.3.14. Analytical RP-HPLC chromatograms of Tobramycin-Bac7(1-15) ligation 
time course (wavelength at 200 nm, flow 0.8 ml/min, 0-40% CH3CN in 30 min). 

 
 
 
 
 
 
 
 
 
 

Figure 3.3.15. Tobramycin-Bac7(1-15) heterodimerization: A) preparative RP-
HPLC chromatogram (wavelength at 200 nm, flow 8 ml/min, 0-100% CH3CN in 50 
min). B) Tobramycin-Bac7(1-15) ESI-MS spectrum; C) [Bac7(1-15)Cys16]2 ESI-MS 
spectrum. Compound stability = 100 

 

 

3.3.8 Overall reaction analysis 

The synthesis of the tobramycin-peptide conjugate by disulfide formation through Cys 

residues requires several steps, some of which with low synthetic yields (see Table 3.3.1), so 

the overall yield was also low. However, it was possible to collect several milligrams of pure 

conjugates, sufficient for preliminary functional assays and proof of principle. It is likely that 

the process can be significantly improved. In particular, it is necessary to improve the 
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antibiotic-to-peptide conjugation step. Possibly a better activator than thiopyridine can be 

found that can be used to prepared pre-activated antibiotic in greater yield, and allow a faster 

and more complete heterodimerization, reducing the amount of unreacted peptide and peptide 

homodimer. In this respect, avoiding peptide amidation at the C-terminal may also possibly 

help. 

 

Table 3.3.1. Synthesis of Tobramycin-peptide conjugates by the hemisuccinate-Cys strategy 

 

 

 

 

 

 

 

 

 

 

3.3.9 Synthesis of (Boc)5Tobramycin-OTibs (Boc-T-OTibs) 

The second strategy I attempted to synthesize the heterodimer was to introduce a sulphide 

group in place of the primary hydroxyl of tobramycin, to allow direct S-S bond formation 

Bac7(1-35)[Cys36]. For this reason, a trisyl chloride (Tibs) group was first used to pre-activate 

position 6'' of (Boc)5Tobramycin (see Figure 3.3.16 and section 3.3.1). The considerable 

steric hindrance of the activator has the advantage of avoiding its addition to less reactive 

hydroxyl secondary hydroxyl groups. 

The reaction solution was monitored by ESI-MS over three days but an m/z peak 

corresponding to the desired molecule (MW = 1230) was not observed (see Figure 3.3.17A). 

However, signals corresponding to loss of 1 to 5 Boc protecting groups could be observed. 

Furthermore, after extraction and drying, a signal with reduced intensity at m/z = 1253.4 

could correspond to the desired with the addition of a Na+ ion (+23) (Figure 3.3.17B). Taken 

Product MW 
(g/mol) 

Expected weight 
(g) 

Actual weight 
(g) %Yield 

Boc-T 967 0.488 0.367 75 % 

Boc-T-hS 1067 0.405 0.303 75 % 

T-hS-Cys 670 0.053 0.049 92 % 

T-hS-Cys-TPy 779 0.057 0.040 70 % 
T-hS-Cys 

| 
Bac7(1-35) -Cys 

4978 0.0124 0.0026 21 % 

T-hS-Cys 
| 

Bac7(1-15) -Cys 
2689 0.012 0.0015 12.5 % 
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together with the low intensity of the signal corresponding to unreacted Boc-T these m/z 

signals are a good indication that the reaction went substantially to completion, and a yield of 

>90% was estimated from the weight of crude product 

 

 

 

 

 

Figure 3.3.16. Molecular structure of Boc-T-OTibs and its reactive and unreactive 
hydroxyl groups. 

 
 

 
Figure 3.3.17. ESI-MS spectrum reaction solution (A) and extracted, dried crude 
product (B) solution. Compound stability = 100. 

 

 

3.3.10 Synthesis of (Boc) 5Tobramycin-dioxaoctanethiol (Boc-T-DOT) 

The subsequent reaction with DODT was difficult to monitor with ESI-MS due to an apparently 

low molecular ionization of the product. Despite the reduced intensity, it was possible to 

perform analysis only for the crude material. As the reaction did not proceed to completion, the 

excess of DODT was increased. After 36 hours, The ESI-MS spectra (Figure 3.3.18) showed 

mainly a signal m/z = 1130.7, which corresponds to the correct Boc-T-DOT product (MW = 

A B 
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1131).  Unfortunately, the DOT adduct has the same molecular weight as the unreacted starting 

material with one Boc group missing through fragmentation (as part of the series seen in Figure 
3.3.18A), and the weak signal at m/z = 1253.7, corresponding to the sodium adduct of the 

starting compound; indicated starting material was indeed still present.  For this reason, a small 

amount of crude material was deprotected and analysed by ESI-MS revealing a signal at m/z = 

731.0 (Figure 3.3.18B), which corresponded to tobramycin-OTibs, indicating that the reaction 

was not successful. It was repeated under several different conditions, but in all cases has 

proved to be a critical step in this synthetic strategy. Subsequent studies have indicated a likely 

reason for the lack of correct product is the strong tendency of DODT to form a linear and 

cyclic multimers that make the ESI-MS spectra rather dirty. A DODT multimer  may also form 

on the DOT group of Boc-T-DOT, making it difficult to isolate the product. The reaction is now 

being reconsidered in this light to improve the yield.  

 
 
 

 
Figure 3.3.18. ESI-MS spectrum of the reaction mixture for the Boc-T-OTibs + 
DODT reaction, after extraction and drying before (A) and after (B) 
deprotection from Boc groups. The correct structure of the reaction product (see 
inset) has MW = 1131, the starting material Boc-T-OTibs has MW = 1230. Their 
respective deprotected MW are 731 and 631. The ESI-MS spectra were taken with 
CS = 100. 

 

 

 

A B 
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3.3.11 Antibiotic/peptide Heterodimer and Peptide carrier quantification 

Before starting the functional assays, all synthesized molecules were quantificated comparing 

the theoretical concentration obtained by weighing, with that obtained by measuring the 

absorbance at 214 nm and for peptides by the Waddel method. In table are indicated the molar 

extinction coefficients for the peptides, calculated according to those reported in literature 

(Kuipers and Gruppen, 2007). The measurments provided a final concentration as the 

arithmetic mean, with a relatively low error. 

 

Table 3.3.2. Table of concentration values (mM) obtained after quantification.  

a) C
o
n
c
e
n
t
r
a
o
n
(a) Quantification by:  [Wt] = by weight;  [214] = by absorption at 214nm;  [Wad] = by the Waddle 
214nm/220nm absorption method; [Final] = average concentration with error. 
(b)Tobramycin does not absorb at 214nm, only the peptide bond to Cys and S-S bond were considered. 
(c) For the alkylated Cys (indicated by @) the absorption was considered to be similar to that of Met.  

 

 

3.3.12 Synergy assays (MIC checkerboard) 

Since both tobramycin and Bac7(1-35) peptide target the 70S ribosome subunit (Vázquez-

Espinosa et al., 2015), (Mardirossian et al., 2014), the single components of the T-Bac7(1-35) 

conjugate were tested together in order to evaluate any synergistic, additive or antagonist 

effect of the molecules. This was evaluated in terms of a checkerboard MIC assay, by treating 

E. coli BW 25113 simultaneously with Bac7(1-35) and tobramycin in different combinations, 

as shown schematically in Figure 3.3.19. 

The checkerboard experiment clearly indicated that the two components did not affect each 

other’s efficacy, as confirmed by the calculated Fractional Inhibitory Concentration (FIC) 

value = 1. A synergic effect would have required FIC ≤ 0.5, and an additive effect 1 > FIC > 

0.5. Therefore the Bac7(1-35) and tobramycin seem to be indifferent to each other’s action, as 

individual molecules, if co-administered to susceptible bacteria. 

Molecule [Wt] (a) H214 
(M-1cm-1) 

[214] [Wad] [Final] 

T-Bac7(1-35)  2.6 90500 2.8(b) 2.6 2.7± 0.1 

T-Bac(1-15)  3.2 33000 3.5(b) 3.6 3.4± 0.2 

Bac7(1-35)[Cys36 @] 3.15 89500 3.1(c) 3.2 3.15± 0.05 

Bac7(1-15)[Cys16@]  3.5 33000 3.0(c) 2.9 3.1± 0.3 
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Figure 3.3.19. Schematic representation of the checkerboard MIC 
assay using Bac7(1-35) and tobramycin against E. coli BW 25113: 
Black boxes indicate bacterial growth; white boxes indicate complete 
growth inhibition. Grey boxes indicate some turbidity but no deposit on the 
bottom of wells 

 

 

 

3.3.13 Activity of T-Bac7(n) against E.coli strains 

The bacteriostatic activity (MIC) of the T-Bac7(1-35) conjugate was determined against 

E.coli BW25311 and its ΔsbmA mutant devoid of the SbmA transporter, in order to gain 

information about the possible internalization of the conjugate (Table 3.3.3). T-Bac7(1-15) 

was assayed in parallel, since free Bac7(1-15) is a fragment that is thought to penetrate into 

susceptible bacteria but has a lower intrinsic antimicrobial activity (Guida et al., 2015). It was 

hoped this would allow isolating the antibacterial contribution of tobramycin from that of the 

peptide carrier. 

Results were somewhat surprising. MIC values confirm that the alkylated Bac7(1-15)[Cys16] 

PR-AMP was inactive against E.coli BW 25113 and consequently also against the deletion 

mutant. Alkylated Bac7(1-35)[Cys36] instead has the same activity as Bac7(1-35).  When the 

SbmA transporter was missing, activity was reduced for the peptide carrier, Bac7(1-

35)[Cys36@] (MIC 2Æ8 PM), but surprisingly also for the antibiotic cargo Tobramycin, 

which showed a fourfold decrease in activity (MIC 4Æ16PM). On the other hand, the 

conjugate not only improved its activity against the wt E.coli BW25311, but substantially 
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maintained it in the absence of SbmA. Furthermore, the conjugate with the inactive Bac7(1-

15), also showed a significant activity.  

 

 

Table 3.3.3. MIC values for antibiotic/PR-AMP conjugates against E. coli and its 
SbmA deletion mutant, compared to those of the free antibiotic and PR-AMPs. 

 

 

 

 

 

 

 

 

 

(a) Experiments were repeated three times in triplicate, inoculating 2.5x105 CFU/ml 
bacteria in 100% MH broth at 37 ° C for 20 hours. MIC values were visually 
evaluated as the lowest concentration at which bacterial growth was inhibited (no 
turbidity/deposit on bottom of well); (b) @ indicates that the Cys side-chain on the 
peptide was acetylated; (c) C-terminal Cys residue on the peptide was both side-chain 
acetylated and amidated. 

 

 

This raises some interesting questions. The significant increase in MIC for tobramycin on its 

own, in absence of transporter could have two different explanations: i) SbmA is not only 

capable of PR-AMP internalization, but also of internalizing the antibiotic, a very different 

molecule. This would be consistent with reports showing that SbmA transports molecules as 

different as PR-AMPs, bleomycin and microcins (Yorgey et al., 1994), (Salomón and Farías, 

1995), (LeVier et al., 2000). ii) Production of the ΔsbmA deletion mutant for the Keio library 

requires introduction of an antibiotic-resistance-determining cassette (KmR) for kanamycin, 

aminoglycoside, so this could make the strain resistant also to tobramycin. Somehow, 

conjugation of the antibiotic to the PR-AMP would allow it to evade this resistance 

mechanism, and the conjugate could enter in sufficient quantity by the other transporter to 

allow a good activity.  

MIC (µM) (a) 

 
E.coli BW 25113 

(w.t.) 
E.coli BW 25113  

 ΔsbmA 

Tobramycin (T) 4 16 

T-Cys – Cys36-Bac7(1-35) 1 2 

Bac7(1-35)[Cys36@](b) 2 8 

T-Cys – Cys16-Bac(1-15) 4 4 

Bac7(1-15)[Cys16@](c) >32 >32 
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The second question concerns the appreciable activity of the tobramycin conjugate with 

inactive Bac7(1-15)[Cys16]. For the w.t. strain, a simple explanation would be that the peptide 

is internalizing with its antibiotic cargo, and as the conjugate’s activity is the same as that of 

the free antibiotic, the carrier has no effect on its own but also no effect on the antibiotic’s 

activity. It is more difficult to explain the activity on the transporter deletion mutant, unless it 

is the same as for point ii) above. 

To test a possible role of the mutant’s antibiotics resistant cassette on the activity of 

Tobramycin, the MIC was evaluated against the E.coli BW 25113 ΔrpoS and E.coli BW 
25113 Δhfq Keio collection strains, chosen at random. Like ΔsbmA, these mutants have the 

antibiotic-resistance for kanamycin (Kmr) but they are knocked-out for genes that are not 

involved in PR-AMP internalization. To test for a possible role of the SbmA transporter in 

tobramycin internalization, activity was tested against BW25113[pMAU1(sbmA)], a 

particular E. coli ΔsbmA clone that was transformed with an exogenous plasmid (pUC18) 

carrying a copy of the wild-type sbmA gene (pMAU1). This complementation should restore 

the normal internalization mechanism (Mattiuzzo et al., 2007). 

As shown in Table 3.3.4, MIC values for all three mutants are the same as for the wild-type 

strain, indicating that the decreased activity of tobramycin in E. coli ΔsbmA is not given by its 

resistance to kanamycin and strengthening the hypothesis that SbmA plays a role in antibiotic 

transport. Without it, internalization of tobramycin is significantly decreased, reducing its 

activity. A higher level of internalization would be restored by re-introducing the SbmA gene 

on a plasmid, as is in fact observed. These results confirm that a functional SbmA is relevant 

for not only internalization of PR-AMPs, but also for tobramycin, and possibly other 

antibiotics. This is an unexpected and quite interesting result. 

Taken together, these data provide another important item of information concerning the 

conjugate’s stability in the extracellular medium; the heterodimer was stable in bulk solution, 

as on separating the single components would be expected to show a lower antimicrobial 

activity against the E. coli ΔsbmA deletion mutant. This is indirect evidence of extracellular 

stability and supports the hypothesis that tobramycin is internalised into the bacterial 

cytoplasm by the conjugate.  
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Table 3.3.4. MIC values for Tobramycin against selected E.coli BW 25113 deletion mutant strains 
 

MIC (µM) (a) 

 BW 25113 ΔrpoS BW 25113 Δhfq BW 25113 ΔsbmA 
[pMAU1(sbmA)] 

Tobramycin 4 4 4 
 
(a) Experiments were repeated three times in triplicate and the values were obtained using micro-dilution, 
inoculating 2.5 * 105 CFU / ml in 100% MH broth and maintaining the plates at 37 ° C for 20 hours. The MIC 
values were evaluated by visually determining the lowest concentration at which bacterial growth was inhibited. 

 

 

3.3.14 Bacterial Growth kinetics 

The antimicrobial activity of T-Bac7(1-35) was evaluated also by monitoring its effect on 

bacterial growth kinetics, at sub-MIC concentrations, using E.coli BW25311 and its ΔsbmA 

mutant. For the wild-type strain, the concentration at which growth is completely inhibited 

over a 4 hour period, 1 PM, corresponds to the MIC value, whereas growth is not significantly 

slowed at sub-MIC concentrations. For T-Bac7(1-15), growth is inhibited at 2 μM, which is 

half of the MIC value, and tobramycin on its own also shows inhibiting activity, over this 

period, at sub-MIC concentrations. Unconjugated Bac7(1-35)[Cys36@] also inhibits growth 

only at its MIC value against the w.t. strain, but is quite active at only 2 PM against the 

transporter-deficient mutant, inhibiting growth over a four hour period. This short-term 

inhibiting capacity is even more marked for the Bac7(1-15)[Cys16@] fragment, that bocks 

growth of both w.t and mutant strains at 4 μM, which is well below the MIC of >32 PM. It 

may be an indication that the peptide enters the bacterium and interacts with its target 

sufficiently to temporarily inhibit its growth, but is cleared on the longer term.  

The deletion of the SbmA transporter resulted in a decreased capacity of the peptides, 

antibiotic and antibiotic-peptide conjugates to inhibit growth, confirming its role in the 

internalization of all three types of molecules. However, activity was not abrogated, but 

shifted to a 2-fold higher concentration, consistent with an alternative, less efficient, means of 

internalization. 
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Figure 3.3.20. Growth curves for E. coli strains treated with 
increasing concentrations of antibiotic, PR-AMP and antibiotic-
peptide conjugate. Growth was monitored over four hours. The black 
curves correspond to untreated bacteria (positive control). Experiments 
were repeated three times in duplicate, for each strain.  

 

 

 

3.3.15 Investigating the potential of the Tobramycin/PR-AMP conjugate against other 
bacterial strains 

After investigating the mechanism of action of the conjugate with respect to the susceptible 

bacterium E. coli, it was decided extend testing to a wider range of bacterial strains, with 

particular attention to Gram-negative P. aeruginosa, K. pneumoniae and A. baumannii. These 

are responsible for severe infections due to the increasing incidence of drug-resistance. For 

each of the pathogens the activity of T-Bac conjugates was evaluated in terms of MIC, using 

both a reference strain and clinical isolates collected in various hospitals in Italy from patients 

with epidemiologically unrelated infections. The aim was to assess whether T-Bac7(1-35) 
could indicate a promising strategy for novel antimicrobial therapies, and understand how the 

molecule’s efficacy varied according to the intrinsic characteristics of each strain. In this 
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respect, while K. pneumoniae and A. baumannii express homologues of the SbmA PR-AMP 

transporter, P. aeruginosa does not. Consequently, the susceptibility of this bacterium to PR-

AMPs is quite variable among different strains (Runti et al., 2013). Furthermore, two Gram-

positive strains were also tested, S. aureus and S. epidermidis, that are intrinsically resistant to 

PR-AMPs.  

The activity of the conjugates, carrier peptides and antibiotic against a Pseudomonas 

aeruginosa ATCC reference strains and several isolates collected from cystic fibrosis patients 

with lung disease, are shown in Table 3.3.5. Bac7(1-35) was not active against the reference 

strain, but showed an appreciable activity against some of the clinical isolates. Conversely, 

tobramycin was active against the reference strain and a subset of clinical isolates that only 

partly overlaps with those susceptible to the peptide. T -Bac7(1-35) conjugate is quite active 

against all strains, as indicated by the MIC values of 1-4 μM. It is apparent that conjugation 

intrinsically favours activity, as the T-Bac7(1-15) conjugate also has an appreciable activity 

against all strains, even though the carrier peptide is by itself inactive. While the structural or 

functional factors in Pseudomonas that makes the different strains more or less susceptible to 

the antibiotic are not known, it appears that the carrier peptides efficiently convey the 

antibiotic cargo to the bacterial cell surface, where it can then somehow penetrate to the 

cytoplasm to exert its antibacterial activity, escaping resistance mechanisms. 

Only three of the P. aeruginosa isolates tested in this study were resistant to tobramycin, so it 

is necessary continue testing T-Bac7(1-35) against other clinical isolates, and try to 

understand the acquired mechanisms of resistance in these strains to understand how the 

conjugate evades them. Several possible mechanisms have been proposed, including reduced 

permeability, inactivating enzymes and efflux pumps (Poole, 2005). It is important to gain 

this insight, as it has been demonstrated that tobramycin therapy is often associated with a 

trend towards higher MICs and resistance among P. aeruginosa isolates and that long term 

tobramycin therapy could be a risk factor for the development of multi-drug 

resistant strains (Merlo et al., 2007). Moreover, the increased prevalence of aminoglycoside 

resistance in cystic fibrosis and the speed at which resistance to tobramycin is developed may 

be due to the fact that sub-lethal concentrations of tobramycin induce mutagenesis in P. 

aeruginosa in vitro (Nair et al., 2013). The strategy of conjugating tobramycin to PR-AMPS 

may possibly reverse this trend in some cases. 

The conjugated molecules were then used for a further characterization of their in vitro 

antimicrobial activity against a panel of Gram-negative and Gram-positive bacteria, including 
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a tobramycin-resistant Acinetobacter baumannii clinical isolate (AB 420). Looking the table, 

T-Bac7(1-35) have a broad-spectrum activity against both Gram-negative and Gram-positive 

microorganisms. Gram-positive species are significantly more sensitive to tobramycin respect 

to Gram-negative but, as expected, they are quite resistant to Bac7.  

 

Table 3.3.5. MIC values for antibiotic/PR-AMP conjugates against P. aeruginosa strains, 
compared to those of the free antibiotic and PR-AMPs. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3.6. MIC values for antibiotic/PR-AMP conjugates against Gram-negative and Gram-
positive bacterial strains, compared to those of the free antibiotic and PR-AMPs. 

(a) Experiments were repeated three times in triplicate and the values were obtained using micro-
dilution, inoculating 2.5 * 105 CFU / ml in 100% Mueller-Hinton broth and maintaining the plates at 37 
° C for 20 hours. The MIC values were then evaluated by observing the turbidity of the lowest 
concentration at which bacterial growth was inhibited. 

                                 MIC (µM) (a)  

  P. a ATCC 27853 PA01 PA05 PA10 PA21 PA22 PA35 

Tobramycin 1 1 2 >32 >32 0.5 >32 

T-Bac7(1-35) 1 1 1 2 2 1 1 

Bac7(1-35)[Cys36@] 

 
32 16 4 >32 >32 4 1 

T-Bac(1-15) 4 2 2 4 4 1 4 

Bac7(1-15)[Cys16@] 
 

>32 >32 >32 >32 >32 >32 32 

                                          MIC (µM) (a) 

       Gram negative   Gram positive 

 A. baumannii K. pneumoniae S. enteritidis S. aureus       S. epidermidis 

 ATCC 
10606 AB420 ATCC 

700603 KP#4 ATCC 14028 ATCC 25923 ATCC 12228 

Tobramycin 4 >32 16 16 8 0.5 0.5 

T-Bac7(1-35) 2 4 4 4 1 2 1 

Bac7(1-35)[Cys36@] 2 2 2 4 1 >32 32 

T-Bac(1-15) 2 >32 >32 >32 4 >32 1 

Bac7(1-15)[Cys16@] 16 32 16 32 32 >32 >32 
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3.4 CONCLUSIONS 

 

Reduced antibiotic uptake is an important and frequently observed resistance mechanism in 

Gram-negative bacteria. The presence of an outer membrane and the modifications they can 

acquire in their envelope components makes some intrinsically resistant to several classes of 

antibiotics. Tobramycin is an aminoglycoside antibiotic often used in the treatment of Gram-

negative infections, acting intracellularly by irreversibly binding to bacterial ribosomes and 

disrupting protein synthesis, but it is subject to resistance development by alterations in 

permeability or transport. 

The aim of this part of my PhD work was to design an efficient delivery system capable of 

internalizing tobramycin into bacteria and possibly overcome these resistance mechanisms. 

The idea was to conjugate it with another molecule known to be efficiently internalized in a 

different way. In this respect the PR-AMP Bac7(1-35) was an ideal candidate, given its 

capacity to efficiently internalize into Gram-negative pathogens without disrupting the 

bacterial membrane, and its lack of toxicity in animal models. Moreover, it targets the 70 S 

ribosome subunit like the antibiotic, so that the conjugate might show a mutually potentiated 

antimicrobial action. 

I linked the antibiotic to the peptide by using a disulphide bond, which should be stable in the 

extracellular medium but spontaneously cleave in the reducing conditions of the bacterial 

cytoplasm, releasing the cargo molecule. This required protecting all the antibiotics reactive 

groups except for a primary hydroxyl moiety, which could then be acylated with succinic 

anhydride, to allow linking to a cysteine residue by an amide bond. This would then allow 

formation of a disulphide bond with a Cys-modified Bac7. A second, potentially simpler 

strategy for directly introducing a sulfhydryl group onto the primary hydroxyl was tried, but 

was not successful.  

Before testing the activity of the antibiotic/PR-AMP conjugate, I evaluated if the two 

components had a synergistic effect by using a MIC checkerboard assay, and I found that they 

do not, but are rather indifferent one to the other. I then attempted to gain some information 

about how the conjugate acted by testing its antimicrobial activity against different E.coli 

strains, one of which lacked the principal PR-AMP transport system, SbmA. Unexpectedly I 

found that SbmA is important also for internalization of tobramycin. Nonetheless, the 

conjugate was quite active against an SbmA knockout mutant, suggesting it could use an 
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alternative transport system. Moreover, this gave me useful information about the conjugate’s 

stability in the extracellular medium.  

I then tested the conjugate against a large variety of bacteria, with particular attention to 

human pathogens and multidrug-resistant clinical isolates, in order to obtain further 

information for possible biomedical applications. Interestingly, the most promising results 

were observed against some P. aeruginosa clinical isolates, as the conjugate molecule 

displayed an improved antimicrobial activity compared to the single components. It appears 

that, despite the drug-resistance mechanism of some strains, Bac7 can somehow convey the 

antibiotic to and/or into the bacteria, and evading them. Furthermore, the tobramycin/Bac7 

conjugate was also surprisingly active against Gram-positive pathogens that are not 

susceptible to the carrier peptide.  

The approach of linking drug cargo to PR-AMPs is potentially applicable to other classes of 

currently available antibiotics, as long as they have reactive moieties that permit linking, and 

that can be modified without affecting the antibiotic’s activity. This would allow the use of 

molecules that are already approved as drugs for efficacy and toxicity, and may significantly 

reduce times for development of these modified compounds to be used in the clinic. 

In conclusion, this research project opens the possibility of chemical optimization and 

production of new hybrid antimicrobial molecules obtained via conjugation of a known 

antibiotic with PR-AMPs. These constructs should be capable of efficiently penetrating into 

Gram-negative bacteria species that normally represent challenging targets for many currently 

available antibiotics. The project produced some important preliminary and intermediate 

results, which will set the basis for subsequent mode-of-action, efficacy and toxicity studies in 

in vitro and animal models of infection, and may help in the recruitment of commercial 

partners necessary to further develop these new antimicrobials. My hope is that I may have 

contributed to solving the looming bacterial antibiotic resistance problem and reducing the 

increasing risk of uncontrolled spread of bacterial infections. 
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