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Abstract (English) 

Nanomedicine requires intelligent and non-toxic nanomaterials for real clinical applications. 

Carbon materials possess interesting properties but with some limitations due to toxic 

effects. Interest in carbon nanoparticles (CNPs) is increasing because they are considered 

green materials with tunable optical properties, overcoming the problem of toxicity 

associated with quantum dots or nanocrystals, and can be utilized as smart drug delivery 

systems. Using black tea as a raw material, we synthesized CNPs with a narrow size 

distribution, tunable optical properties covering visible to deep red absorption, non-toxicity 

and easy synthesis for large-scale production. We utilized these CNPs to label subcellular 

structures such as exosomes. More importantly, these new CNPs can escape lysosomal 

sequestration and rapidly distribute themselves in the cytoplasm to release doxorubicin 

(doxo) with better efficacy than the free drug. The release of doxo from CNPs was optimal 

at low pH, similar to the tumour microenvironment. These CNPs were non-toxic in mice 

and reduced the tumour burden when loaded with doxo due to an improved 

pharmacokinetics profile. In summary, we created a new delivery system that is potentially 

useful for improving cancer treatments and opening a new window for tagging microvesicles 

utilized in liquid biopsies.  
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Abstract (Italian) 

La traslazione della nanomedicina in ambito clinico richiede l’identificazione di 

nanomateriali che consentano un approccio intelligente alla malattia senza causare tossicità. 

In tale ambito può essere iscritta la ricerca sul carbonio, che presenta proprietà interessanti 

ma anche alcuni limiti dovuti all’insorgenza di effetti avversi. A tal proposito, tanti sforzi si 

stanno concentrando sulle nanoparticelle di carbonio (CNPs) in quanto hanno origine 

naturale, presentano proprietà ottiche modulabili e possono essere usati per la messa a punto 

di sistemi di delivery del farmaco intelligenti. Tali caratteristiche le rendono migliori rispetto 

ai quantum dots e ai nanocristalli, le cui tossicità son ben note. 

Utilizzando tè nero come materiale grezzo, abbiamo prodotto CNPs caratterizzate da una 

distribuzione molto stretta di dimensioni, proprietà ottiche modulabili (con assorbimento 

dalla luce visibile al profondo rosso), non tossiche. Il protocollo di sintesi è semplice e 

applicabile anche su larga scala. Queste CNPs sono state utilizzate per marcare strutture 

subcellulari come gli esosomi. Abbiamo anche dimostrato che queste tali strutture non 

vengono sequestrate dai lisosomi e possono rapidamente distribuirsi nel citoplasma 

rilasciando la doxorubicina (doxo) con miglior efficacia rispetto al farmaco libero. Il rilascio 

della doxo dalle CNPs risulta ottimale in condizioni di basso pH, simile a quello che accade 

nel microambiente tumorale. Gli studi in vivo hanno dimostrato che le CNPs non sono 

tossiche e riducono lo sviluppo del tumore quando caricate con doxo, grazie a un miglior 

profilo farmacocinetico. 

In conclusione, abbiamo creato un nuovo sistema di trasporto del farmaco con grandi 

potenzialità in ambito oncologico nel miglioramento della terapia, aprendo la strada per 

l’utilizzo di microvescicole funzionalizzate nelle biopsie liquide.   
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1. INTRODUCTION 

1.1. The history of Nanoscience and Nanotechnology 

 The prefix nano is referred to a Greek prefix meaning dwarf or something very small 

and depicts one billionth of a meter (10-9 m). Nanomaterials, refer to the class of materials 

with at least one of the dimensions in the nanometric range. Nanoscience deals with the 

study of atoms, molecules and nanoscale particles at scales ranging between 1-100 nm [1]. 

As a comparison, one must realize that a single human hair has 80 000 nm thickness and 

that the DNA double helix has 2 nm diameter (Figure 1) [2]. The development of 

nanoscience can be traced to the time of the Greeks and Democritus in 5th century B.C., 

when people thought that matter could be broken down to an indestructible basic component 

of matter, which scientists now call atoms. 

Nanotechnology is one of the most promising technologies of the 21st century. These 

applications are increasing exponentially because of the extremely small size of a large 

surface area per unit of volume. According to the National Nanotechnology Initiative (NNI) 

in the United States, Nanotechnology is defined as the understanding and control of matter 

at dimensions of 1-100 nm where unique phenomena enable novel applications [3]. This 

definition suggests two necessary conditions for nanotechnology. The first is an issue of 

scale: nanotechnology is concerned with things of a certain nano size. The second issue has 

to do with that of novelty: nanotechnology does not just deal with small things, but rather 

must deal with them in a way that takes advantage of some properties that are manifest 

because of the nanoscale [4].  

 

Figure 1: A comparison of Nanomaterials sizes [2]. 

 The concept of nanotechnology is credited to the American physicist and Nobel Prize 

laureate Richard Feynman. In 1959, during the annual meeting of the American Physical 
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Society, Feynman presented a lecture entitled “There’s Plenty of Room at the Bottom” at the 

California Institute of Technology (Caltech). In this lecture, Feynman make the hypothesis 

“Why can’t we write the entire 24 volumes of the Encyclopædia Britannica on the head of a 

pin?”, and described a vision of using machines to construct smaller machines which would, 

in turn make even smaller machines, and so on down to the molecular level [5]. This novel 

idea demonstrated new ways of thinking and Feynman’s hypotheses have since been proven 

correct. For these reasons, he is considered the father of modern nanotechnology. Fifteen 

years after Feynman’s lecture, a Japanese scientist, Norio Taniguchi was the first to use the 

term “nanotechnology” in 1974, and its definition is still valid even today: “nanotechnology 

mainly consists of the processing of separation, consolidation and deformation of materials 

by one atom or one molecule”  [6].  

After Feynman staked out the new field of research and awakened the interest of many 

scientists, two directions of thought arose describing the various possibilities for producing 

nanostructures. The top-down approach largely corresponds to Feynman’s comment on 

stepwise reduction in the size of already existing machines and instruments. The bottom-up 

approach revolves around the construction of nanostructures atom for atom by physical and 

chemical methods and by using and controlled manipulation of the self-organizing forces of 

atoms and molecules. This theory of “molecular engineering” became popular in 1986 when 

“Engines of Creation: The Coming Era of Nanotechnology” was published [7], the first and 

controversially discussed book on nanotechnology in which the author K. Eric Drexler 

described the construction of complex machines from individual atoms, which can 

independently manipulate molecules and atoms and thereby produce things and self-

replicate. The possible uses of such “nanobots” or “assemblers” in medicine are described 

by K. Eric Drexler, Chris Peterson and Gayle Pergamit in their book “Unbounding the 

Future: the Nanotechnology Revolution” published in 1991 [8], in which the term 

“nanomedicine” was supposedly used for the first time.  

Nanoparticles and structures have been used by humans for quite a long time. For example, 

an extraordinary work with glass made by the Roman in the fourth century AD demonstrates 

one of the greatest examples of nanotechnology in the ancient world. The Lycurgus cup, 

which is part of the collection of the British Museum, represents one of the most outstanding 

achievements in ancient glass industry. It is probably the oldest and most famous example 

of dichroic glass. Dichroic glass is the term used to describe two completely different types 

of glass, which undergo a color change in certain lighting conditions. This means that the 
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Cup have two different colors: the glass appears green in direct light, and red-purple when 

light shines through the glass (Figure 2) [9]. 

 

Figure 2: The Lycurgus cup. The glass appears green in reflected light (A) and red-purple in 
transmitted light (B) [9]. 

The explanation for this phenomenon was obtained in 1990 after scientists analyzed the cup 

using a transmission electron microscopy (TEM) [10]. It was found that the dichroism (two 

colors) is observed due to the presence of nanoparticles with 50-100 nm in diameter. X-ray 

analysis showed that these nanoparticles are silver-gold (Ag-Au) alloy, with a ratio of Ag:Au 

of about 7:3, containing in addition about 10% copper (Cu) dispersed in a glass matrix 

[11,12]. The red color observed is a result of absorption of light (~ 520 nm) by gold 

nanoparticles. The red-purple color results due to the absorption by the larger particles while 

the green color is attributed to the light scattering by colloidal dispersions of silver 

nanoparticles with size > 40 nm. The Lycurgus cup is recognized as one of the oldest 

synthetic nanocomposites [1]. A similar effect is seen in some late medieval church 

windows, which shine a luminous red and yellow because nanoparticles of gold and silver 

have been fused into the glass. Figure 3 shows an example of how these nanoparticles of 

different sizes were applied to stained glass windows [13].  
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Figure 3: Effect of nanoparticles on the colors of the stained glass windows [13]. 

During the 9th-17th centuries, glowing, glittering “luster” ceramic glazes used in the Islamic 

world, and later in Europe, contained silver or copper or other nanoparticles [14]. The 

Italians also employed nanoparticles in creating Renaissance pottery during 16th century 

[15]. They were influenced by Ottoman techniques: during the 13th-18th centuries, in the 

making of “Damascus” saber blades, carbon nanotubes and cementite nanowires were used 

to provide strength, resilience, and the ability to hold a keen edge [16]. These special 

properties of the colors and materials were already being produced intentionally many 

hundreds of years ago. Medieval artists and forgers, however, did not know the cause of 

these surprising effects. 

In 1857, Michael Faraday was the first to study the preparation and properties of colloidal 

suspensions of “Ruby” gold. Those particles are known for their unique optical and 

electronic properties, which makes them one of the most interesting nanoparticles. It 

demonstrated how gold nanostructures under certain lighting conditions produces different-

colored solutions [17]. Since Feynman’s early visionary ideas on nanotechnology, there was 

progress until in 1981 when a new type of microscope, the Scanning Tunneling Microscope 

(STM), was invented by the physicists Gerd Binnig and Heinrich Rohrer at IBM Zurich 

Research Laboratory [18,19]. The STM uses a sharp tip that moves so close to a conductive 

surface that the electron wave functions of the atoms in the tip overlap with the surface atom 
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wave functions. When a voltage is applied, electrons “tunnel” through the vacuum gap from 

the foremost atom of the tip into the surface (or vice versa). In 1983, the group published 

the first STM image of the Si(111)-7x7 reconstructed surface, which nowadays can be 

routinely imaged as shown in Figure 4 [20,21]. 

 

Figure 4: STM image of the Si(111)-7x7 reconstructed surface showing atomic scale resolution 
of the top-most layer of silicon atoms [21]. 

A few years later, in 1990, Don Eigler of IBM Almaden and his colleagues used a STM to 

manipulate 35 individual xenon atoms on a nickel surface and formed the letters of IBM 

logo (Figure 5) [22]. The STM was invented to image surfaces at the atomic scale, but has 

been used as a tool with which atoms and molecules can be manipulated to create structures. 

The tunneling current can be used to selectively break chemical bonds or to induce chemical 

associations. 

 

Figure 5: 35 Xenon atoms positioned on a nickel (110) substrate using a STM to form IBM logo 
[22]. 

In 1986, Gerd Binnig and Heinrich Rohrer shared the Nobel Prize in Physics “for their 

design of the scanning tunneling microscope”. This invention led to the development of the 

Atomic Force Microscope (AFM) and a whole range of related Scanning Probe Microscopes 

(SPM), which are the instruments of choice for nanotechnology researchers today [23,24]. 

At around the same time, in 1985, Robert Curl, Harold Kroto and Richard Smalley 
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discovered that carbon can also exist in the form of very stable spheres, which they named 

fullerenes or buckyballs [25]. The carbon balls with chemical formula C60 or C70 are 

formed when graphite is evaporated in an inert atmosphere. A new carbon chemistry has 

developed from this discovery, and it’s now possible to enclose metal atoms in them, and to 

create new organic compounds. Few years later, in 1991, Iijima et al. reported Transmission 

Electron Microscopy (TEM) observations of hollow graphitic tubes or carbon nanotubes, 

which form another member of the fullerene structural family (Figure 6) [26]. The strength 

and flexibility of carbon nanotubes makes them potentially useful in many 

nanotechnological applications. Carbon nanotubes are now used as composite fibers in 

polymers and concrete to improve the mechanical, thermal and electrical properties of the 

bulk product. They also have potential applications as field emitters, energy storage 

materials, catalysis and molecular electronics components.  

 

Figure 6: Schematic of a C60 buckyball (Fullerene) (A) and carbon nanotube (B). 

In 2004, a new class of carbon nanomaterials called carbon dots (C-dots) with size below 10 

nm was discovered accidentally by Xu et al. during the purification of single-walled carbon 

nanotubes [27]. C-dots with fascinating properties have gradually become a rising star as a 

new nanocarbon member due to their benign, abundant and inexpensive nature [28]. 

Possessing such superior properties as low toxicity and good biocompatibility renders C-

dots favorable materials for applications in bioimaging, biosensor and drug delivery [29–

33]. Based on their excellent optical and electronic properties, C-dots can also offer exciting 

opportunities for catalysis, light energy conversion, photovoltaic devices and nanoprobes for 

sensitive ion detection [34–37].  

In 2006, Paul Rothemund at the California Institute of Technology introduced the term 

“scaffolded DNA origami”, which has revolutionized the field of structural DNA 

nanotechnology by enhancing the complexity and size of self-assembled DNA 
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nanostructures in a simple “one-pot” reaction [38]. The conceptual foundation for DNA 

nanotechnology was first laid out by Nadrian Seeman in 1982: “It is possible to generate 

sequences of oligomeric nucleic acids which will preferentially associate to form 

migrationally immobile junctions, rather than linear duplexes, as they usually do” [39]. 

DNA nanotechnology has already become an interdisciplinary research area, with 

researchers from physics, chemistry, materials science, computer science, and medicine 

coming together to find solutions for future challenges in nanotechnology.  

The beginning of 21st century saw an increased interest in the emerging fields of nanoscience 

and nanotechnology. In the United States, Feynman’s concept of manipulation of matter at 

the atomic level played an important role in shaping national science priorities. President 

Bill Clinton advocated for funding of research in this emerging technology during a speech 

at Caltech on 21 January 2000. Three years later, President George W. Bush signed into law 

the 21st century Nanotechnology Research and Development Act. The legislation made 

nanotechnology research a national priority and created the National Technology Initiative 

(NNI). 

In this context, Table 1 presents some important events in the historical development of 

nanoscience and nanotechnology. 

Table 1: Evolution Timeline of Nanoscience and Nanotechnology. 

Year Event References 

4th Century Lycurgus Cup (Colored glass). [11] 

500-1450 Cathedrals (Stained glasses windows). [40] 

1450-1600 Deruta Pottery (Iridescent/metallic clusters). [40] 

1857 Michael Faraday (Synthesis of colloidal ruby gold 

nanoparticles). 

[17] 

1908 Gustav Mie (Light scattering nanoparticles). [41] 

1928 Edward Synge (Near-field optical microscope). [42] 

1931 Max Knoll and Ernst Ruska (Invention of 

Transmission Electron Microscope (TEM)). 

[43,44] 

1936 Erwin Müller (Invention of field electron 

microscope). 

[45] 
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1947 William Shockley, Walter Brattain and John 

Bardeen (Discovery of the semiconductor 

transistor). 

[46] 

1951 Erwin Müller (Invention of field-ion microscope, 

first to see atoms on the surface). 

[47,48] 

1953 Watson and Crick (Discovery of DNA). [49] 

1956 Arthur Von Hippel (Molecular Engineering). [50] 

1958 Leo Esaki (Electron tunneling). [51] 

1959 Richard Feynman (There’s Plenty of Room at the 

Bottom). 

[5] 

1960 Charles Plank and Edward Rosinski (Zeolites and 

catalysis). 

[52] 

1963 Stephen Papell (Invention of Ferrofluids). [53] 

1965 Gordon E. Moore (Moore’s Law). [54] 

1970 Eiji Osawa (Predicted the existence of C60 in the 

form of icosahedron). 

[55] 

1974 Norio Taniguchi (First use of the term 

“Nanotechnology”). 

[6] 

1974 Mark A. Ratner and Arieh Aviram (Molecular 

electronics). 

[56] 

1977 Richard P. Van Duyne (Discovery of Surface 

Enhanced Raman Spectroscopy (SERS)). 

[57] 

1980 Jacop Sagiv (Discovery of Self-Assembly 

Monolayers (SAMs)). 

[58] 

1981 Gerd Binnig and Heinrich Rohrer (Invention of 

Scanning Tunneling Microscope (STM)). 

[59] 

1981 Alexey Ekimov (Discovery of nanocrystalline 

Quantum Dots in a glass matrix). 

[60] 

1981 Eric Drexler (Molecular Engineering). [61] 

1982 Nadrian Seeman (Development of the concept of 

DNA Nanotechnology). 

[39,62] 

1983 Louis Brus (Discovery of colloidal Quantum Dots). [63,64] 
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1985 Richard Smalley, Robert Curl and Harold Kroto 

(Discovery of Buckminsterfullerenes C60). 

[25] 

1986 Gerd Binnig, Christoph Gerber and Calvin F. Quate 

(Invention of Atomic Force Microscope (AFM). 

[23] 

1987 Dimitri Averin and Konstantin Likharev (Single-

Electron Tunneling (SET) transistor). 

[65] 

1990 Donald Eigler and Erhard Schweizer (Arranged of 

individual Xenon atoms to form the letters IBM). 

[22] 

1991 Sumio Iijima (Discovery of Multi-wall Carbon 

nanotubes). 

[26] 

1992 C.T. Kresge (Discovery of mesoporous silica MCM-

41). 

[66,67] 

1993 Sumio Iijima and Donald Bethune (Discovery of 

Single-wall Carbon nanotubes). 

[68,69] 

1996 Chad Mirkin and Robert Letsinger (SAM of 

DNA+gold colloids). 

[70] 

1997 Zyvex (First nanotechnology company founded). [71] 

1998 Cees Dekker (Creation of a Transistor using carbon 

nanotubes). 

[72] 

1999 Chad Mirkin (Development of Dip-pen 

Nanolithography (DPN)). 

[73] 

2000 Mark Hersam and Joseph Lyding (Feedback-

Controlled Lithography (FCL). 

[74] 

2000 President Bill Clinton announces US National 

Nanotechnology Initiative (NNI). 

[75] 

2001 Carlo Montemagno (Molecular nanomachines). [76] 

2002 Cees Dekker (Carbon nanotubes functionalized with 

DNA). 

[77] 

2003 President George W. Bush signed into law the 21st 

Century Nanotechnology Research and 

Development Act. 

[78] 

2003 Naomi Halas (Development of gold nanoshells). [79,80] 
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2004 Andre Geim and Konstantin Novoselov (Discovery 

of graphene). 

[81] 

2004 Xu et al. (Discovery of Fluorescent Carbon dots). [27] 

2005 James Tour (Nanocar with turning buckyball 

wheels). 

[82,83] 

2006 Paul Rothemund (DNA origami). [38] 

2010 IBM (Development of an ultra-fast lithography to 

create 3D nanoscale textured surface). 

[84] 

 

1.2. Nanomedicine  

 The application of nanotechnology in the medical field is called nanomedicine. 

Nanomedicine as new branch of science, is a point of interest for many investigators due to 

the important advances, in particular for cancer treatment. Early diagnosis and effective 

cancer therapy are required to treat cancer, with approximately 14.1 million new cases and 

8.2 million deaths in a year worldwide [85].  Nanomedicine has been defined by the 

European Science Foundation’s (ESF) Forward Look Nanomedicine as follows: 

“Nanomedicine uses nano-sized tools for the diagnosis, prevention and treatment of disease 

and to gain increased understanding of the complex underlying pathophysiology of disease. 

The ultimate goal is improved quality of life” [86]. It involves the three main nanotechnology 

areas of diagnosis, imaging agents and drug delivery with nanoparticles in the 1-1000 nm 

range, biochips and polymer therapeutics [87,88]. Nanotechnology could overcome many 

limitations of conventional approaches by reducing side effects, increase tumour 

accumulation and improve the efficacy of drugs [89–93]. Early pioneers in the modern era 

of nanomedicine can be traced back to Ilya Metchnikov and Paul Ehrlich, who jointly 

received the Nobel Prize for medicine in 1908, for their work on phagocytosis [94] and cell-

specific diagnostics and cell-targeted therapies [95]. The work on nanoparticles for 

nanomedicine were increasingly developed in the last 30 years of the 20th century and 

included liposomes [96–98], DNA-drug complexes [99], polymer-drug conjugates [100–

102], antibody-drug conjugates [103], polymer nanocapsules [104–106], polymer-protein 

conjugates [107], albumin-drug conjugates [108] and block-copolymer micelles [109–111]. 

Nanotechnology was rapidly developed allowing the incorporation of multiple therapeutics, 

sensing and targeting agents into nanoparticles in order to set up new devices able to detect, 

prevent and treat complex disease such as cancer. Nanotechnology represents a 
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complementary strategy to be integrated with the information derived from the genetic and 

epigenetic characteristics of the tumours [112,113]. It is well known that chemotherapeutic 

agents present severe side effects including bone marrow suppression, cardiac and kidney 

toxicity, hair loss and mucositis. In addition, these drugs are poorly soluble in biological 

fluids, quickly recognized by the mononuclear phagocyte system (MPS) and cleared from 

the body [114]. The important properties for a drug delivery system with nanoparticles are 

biocompatibility and biodegradability of nanoparticles (reduce drug toxicity by 

encapsulating the free drug), prevention of degradation and clearance of the drug by 

minimizing protein binding and escaping the immune system, and increasing the tumour 

accumulation by passive or active targeting [115].  

With the advancements in nanotechnology, size, shape, composition, and surface properties 

of nanomaterials can be precisely controlled during synthesis. More importantly, these 

properties have been found to play important roles in the design of nanoparticles-based drug 

carriers with high efficacy (Figure 7) [116–119]. Among them, surface functionalization 

has been considered as the most important factor. For example, inorganic nanoparticles, such 

as gold or silver nanoparticles, can easily aggregate together in water, as they are 

hydrophobic. More importantly, when they are injected into the blood flow, the surfaces of 

inorganic nanoparticles are usually attached with serum proteins due to electrostatic 

interactions. Thus, these particles will be visible to the immune cells and eventually 

scavenged through phagocytosis. To overcome these issues, the biocompatible and 

hydrophilic polyethylene glycol (PEG) polymers have been widely used to decorate the 

surface of inorganic nanoparticles. With a high grafting density, tethered PEG polymers 

form a brush on the surface of these nanoparticles, and thus, they can be well-dispersed in 

water [120,121], reduce the absorption of serum proteins [122,123], increase the circulation 

time and the accumulation in tumour sites in vivo due to the enhanced permeability and 

retention (EPR) effect [120,124–126]. 
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Figure 7: Design of nanoparticles-based drug delivery platform, according to the size, shape, 
composition and surface properties of nanoparticles [116]. 

Drug delivery system and more generally nanovectors can be divided into three generations 

based on their purpose and intended function (Figure 8) [127,128]. First-generation 

nanovectors are composed of a nanoparticle (e.g. liposomes, gold, micelles, etc.) 

incorporating the agent (e.g. DNA, RNA, chemotherapeutics, etc.). The first generation 

nanovectors were the first nanoparticles developed and were approved for clinical use more 

than 20 years ago (e.g. liposomes). They passively accumulate at target lesions due to 

microenvironment abnormalities (e.g. fenestrations in the vessel walls of tumours). In 

comparison, the second-generation nanovectors are usually functionalized with 

biocompatible polymers such as PEG. Under the protection of the tethered polymer layer, 

these particles could be able to exhibit a prolonged blood half-life time, which in turn helps 

these nanoparticles to accumulate at the tumour site through the EPR effect [129,130]. Third-

generation nanovectors consist of multiple components optimized to fulfill all the tasks 

required by a drug delivery vector. These tasks include bypassing sequential biological 

barriers, protecting the drug payload, and releasing the drug payload at the pathological site 

in a time-dependent manner [131]. 



25 
 

 

 

 

Figure 8: Hierarchy of Nanovectors. (A) First-generation; (B) Second-generation and (C) 
Third-generation nanovectors [127]. 
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2. DIFFERENT TYPES OF NANOSTRUCTURES FOR DRUG DELIVERY 

 Over the last few decades, the development of different range of nanoparticles with the 

ability to tune size, composition and functionality has provided an excellent resource for 

nanomedicine and can be categorized as organic (liposomes, polymers, micelles and 

dendrimers) and inorganic  nanoparticles (mesoporous silica, gold, silver, quantum dots, 

magnetic iron oxide and carbon-based nanostructures). These nanoparticles provide great 

opportunity as drug carriers, due to the easy modification of targeting molecules, controlling 

drug release by different stimuli, and effective delivery to target sites, resulting in improved 

of therapeutic efficacy and reduced side effects [132]. Organic nanoparticles differ from 

inorganic nanoparticles in terms of the principles of fabrication. Inorganic nanoparticles are 

normally formed by the precipitation of inorganic salts, which are linked in a matrix. The 

nature of the binding among atoms can be different: covalent, metallic, etc., and the 

inorganic structure forms a three-dimensional arrangement with linked atoms. In this regard, 

the closet organic nanoparticles to an inorganic one would be a dendrimer, which is a single-

molecule nanoparticle. Most of the organic nanoparticles are formed by several organic 

molecules, which are driven together by self-organization or chemical binding. For the 

organic nanoparticles, with the exception of dendrimers, we first need organic molecules 

that can arrange themselves three-dimensionally. Interactions among the molecules are 

sometimes not strong like for micelles and vesicles. Self-assembly and the presence of 

zwitterionic molecules, with polar and nonpolar regions, as the main components of 

nanoparticles or the means to encapsulate other organic molecules are key elements for the 

fabrication of many of the organic nanoparticles. Another important difference from 

inorganic nanoparticles is that many of organic nanoparticles, due to the weak nature of the 

interactions holding them together, have a dynamic character. Micelles and vesicles can fuse 

and generate larger particles. The continuous addition of surfactant to a micellar solution 

can increase the size of the micelles and even force it to change shape from spherical to 

cylindrical over the second critical micellar concentration (CMC). Sizes can also not always 

be truly nano for organic nanoparticles as in the case for inorganic nanoparticles. The 

formation of inorganic nanoparticles sometimes needs only the clustering of a few atoms. In 

the case of organic nanoparticles, the size and geometry of the organic molecules impose in 

many cases the limits to going nano. In micelles, which are among the smallest organic 

nanoparticles, the size is controlled by the length of the surfactant and the smallest sizes to 
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be achieved are that of a sphere with a radius equal to the length of the surfactant in the 

micellar phase, typically around 15–20 Å. The lipids forming a vesicle assemble into 

bilayers because of the relation of their hydrophilic and hydrophobic volume. The bilayers 

must close in on themselves to make the vesicle, which not only results in an internal volume 

that can be used for encapsulation but also establishes limits for the smallest reachable size.  

In this section, various organic and inorganic nanoparticles fabricated by different materials 

and their applications in drug delivery are illustrated and discussed below. The carbon-based 

nanostructures will be discussed in details in Chapter 3. 

 

2.1. Liposomes 

 Liposomes are synthetic lipid vesicles with a hydrophilic cavity surrounded by a bilayer 

of amphiphilic phospholipids such as phosphatidylglycerol, phosphatidylserine, and 

phosphatidylcholine [133,134]. A phospholipid molecule has a phosphate group on one end, 

called the "head," and two side-by-side chains of fatty acids that make up the lipid "tails”. 

The phosphate group is negatively charged, making the head polar and hydrophilic. The 

lipid tails are uncharged, nonpolar, and hydrophobic. Some lipid tails consist of saturated 

fatty acids and some contain unsaturated fatty acids. The liposomes became an important 

choice for many drug formulations since their discovery by Alec Bangham and colleagues 

in 1961 [135]. Liposomes have both a hydrophilic and hydrophobic region, permitting the 

encapsulation and transport of both therapeutic and diagnostic agents via a variety of 

methods [136]. Hydrophobic drugs can be enclosed within the phospholipid bilayers, while 

hydrophilic drugs can be entrapped in the cavity [137]. To avoid the recognition by 

reticuloendothelial system (RES) and long circulation in bloodstream, PEG molecules (e.g. 

PEG-DSPE) could be inserted into the liposomes (stealth liposomes) to form a hydrated 

layer on the liposome surface [138]. Liposome can be classified according to their 

lamellarity (uni- and multilamellar), size (small ≤ 100 nm, Intermediate 100-250 nm, and 

large ≥ 250 nm), and surface charge (anionic, cationic, or neutral) (Figure 9) [139–141]. 

The ability to synthetize liposomes with a specific size range makes them important targets 

for their natural phagocytosis by macrophages, which lead to the release of the encapsulated 
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drug. The liposomes surface can also be managed with opsonins and ligands to activate the 

endocytosis in different cell types. 

 

 

Figure 9: Schematic representation of basic structures of liposomes [139]. 

Liposomes were the first platform in nanomedicine and represent a versatile system for drug 

delivery with lots of compound effective at a preclinical stage and more than 200 are under 

clinical evaluation [120]. The liposome was described by Bangham in 1961 [142], and 

demonstrate as potential drug delivery system (DDS) in the early 1970s [143–145]. Two 

decades later in 1990, Ambisome® (liposomal amphotericin B), the first liposomal drug 

formulation, was approved by FDA and in 1995 was approved the first anticancer liposome 

formulation (Doxil®). Liposomal nanoparticles are synthesized in order to possess several 

advantages: they are able to deliver both hydrophilic and hydrophobic molecules [146], their 

formulation protect therapeutic cargo from the in vivo environment and increase circulation 

half-life, permeability, biodistribution and targeting specificity [147]. These principles were 

the base on which Barenholz developed the formulation of liposomal doxorubicin (Doxil®) 

[148]. Doxorubicin is an anthracycline antibiotic that intercalates in DNA helix preventing 

replication [149,150] and it is used for various type of cancers: breast, lung, gastric, ovarian, 

sarcoma, myeloma, leukemia and lymphomas [151]. Unfortunately, its poor selectivity 

toward cancer cells induces severe systemic side effects. In particular, the patients treated 

with doxorubicin have been experienced severe cardiotoxicity, bone marrow toxicity with 

consequent myelosuppression [152]. The development of Doxil® and its approval reduces 

drastically doxorubicin side effects. The first clinical study carried out on Doxil® 

demonstrated that the new doxorubicin formulation holds a completely different 
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pharmacokinetic profile, which enhances the circulation time of the drug changing the 

biodistribution and increasing tumoural accumulation due to the EPR effect [153]. 

Two key changes in the history of Doxil® were considered real breakthroughs. Firstly, the 

inclusion of PEG in liposome surface to create a “stealth” particle, which can escape the 

recognition by the RES. The second major improvement was the remote loading driven by 

ammonium sulfate gradient to increase doxorubicin loading within each liposome [148].  

  

2.2. Polymeric Nanoparticles 

 Polymeric nanoparticles have widely studied for their physical and chemical properties 

and used to encapsulate drugs. They are prepared from biocompatible polymers and can 

transport drugs in a controlled and targeted way through the surface modification [154]. 

Polymeric nanoparticles can be synthesized from natural polymers, such as albumin [155], 

hyaluronic acid [156], dextran [157] and chitosan [158], and from synthetic polymers, such 

as, poly acrylic acid (PAA), poly glycolic acid (PGA), poly(lactide-co-glycolide) (PLGA), 

poly lactic acid (PLA), and hyperbranched polymers [159]. Different methods of synthesis 

of polymeric nanoparticles are investigated depending on the application and drug type. 

These methods include solvent evaporation, nanoprecipitation, emulsion diffusion and 

salting out method [160–163]. 

Albumin is the most abundant protein in plasma and is used widely for the preparation of 

nanoparticles due to its biodegradability, non-toxicity, availability, hydrophilicity, and easy 

to prepare [164]. The major advantage of albumin is its high binding capacity for different 

drugs due to multiple drug binding sites [165]. The drugs can be loaded by electrostatic 

interaction on the surface of nanoparticles, incorporated into the nanoparticles matrix, or 

linked covalently to the protein due to the presence of surface reactive groups such as 
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amines, thiols, and carboxylic acids [166], and released through hydrolysis, diffusion, or 

enzymatic degradation of nanoparticles (Figure 10) [167].  

 

Figure 10: Drug release mechanism from polymeric nanoparticles: (a) diffusion from polymer 
matrix, (b) degradation of polymer matrix, and (c) biodegradation of polymer matrix due to 
the hydrolytic degradation [167]. 

Among the synthetic polymers, PLA and PLGA are polyester and commonly used in drug 

delivery due to their biocompatibility and controlled release through the hydrolysis of ester 

bonds [159,168]. PLA is a polyester homopolymer and synthesized by polycondensation of 

lactic acid or by ring-opening polymerization (ROP) of lactide (Figure 11A) [169]. PLA 

nanoparticles have been used in drug delivery to encapsulate hydrophobic compounds and 

improve solubility limitations [170]. Due to its high crystallinity and low degradation rate, 

PLA nanoparticles have slow drug release [171]. To overcome this limitation, researchers 

synthesized co-polymers of lactides, PLGA and PEG-PLA [162]. PLGA is one of the most 

widely used biodegradable polymers for the development of nanomedicine because it can 

be degraded by hydrolysis of ester bonds and break down into their monomers, lactic acid 

(LA) and glycolic acid (GA) which are excreted from the body (Figure 11B) [172]. The 

ratio of PLA to PGA can be tuned to influence the degradation of PLGA and release the 

drug molecule, due to the difference in hydrophobicity of PLA and PGA from the presence 
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of methyl group in PLA [173]. The release rate of drugs can be adjusted from a scale of days 

to months [174–176]. 

 

Figure 11: (A) Synthesis of PLA by polycondensation of lactic acid or by ring-opening 
polymerization (ROP) of lactide. (B) (1) Synthesis of PLGA by polycondensation of lactic acid 
and glycolic acid, and (2) hydrolysis of PLGA. 

In order to enhance the solubility and drug loading capacity of PLGA (or PLA), PEG has 

been copolymerized with PLGA (or PLA) to form PEG-PLGA (or PEG-PLA). The 

modification of the surface of nanoparticles by PEG (PEGylation), make them sterically 

stable, enables the nanoparticles evasion of the reticuloendothelial system (RES) and 

improve blood circulation time [177–179].  

Abraxane was the first drug formulation of this category approved by FDA in 2005. 

Abraxane is an albumin-bound (Nab) paclitaxel formulation. Paclitaxel, discovered in 1962, 

is a natural compound extracted from the bark of western yew (Taxus brevifolia) [180] and 

is widely used for the treatment of breast, lung and advanced ovarian cancer [181]. The high 

hydrophobicity of paclitaxel limits its clinical application. To overcome poor water 

solubility, a formulation of a nonionic surfactant Cremophor EL (polyethoxylated castor oil) 

and ethanol (1:1, v/v) is used to dissolve paclitaxel for clinical use [182]. However, the 

presence of Cremophor EL causes allergic, hypersensitivity and anaphylaxis reactions in 

animals and humans [181]. To overcome these side effects and deliver paclitaxel safely, a 

new paclitaxel formulation was needed. Paál et al. develop a formulation which is 

Cremophor EL free [183]. This formulation is non-covalent binding of paclitaxel to albumin, 

known as Abraxane™. Albumin is the major component of plasma protein and is a natural 

carrier of hydrophobic molecules such as vitamins, hormones, and other water-insoluble 

plasma substances [184,185]. In addition, albumin is involved in endothelial transcytosis 

through the binding of a cell surface receptor glycoprotein (gp60) called albondin [186] and 
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is also demonstrated that albumin is recognized by SPARC, a secreted acidic protein rich in 

cysteine, that appears to be up-regulated in many malignancies (breast, lung and prostate 

cancer), which can interact with albumin and increase the accumulation of albumin-bound 

drugs in the tumour [184]. Albumin stabilizes the paclitaxel particles at an average size of 

130 nm, which prevents any risk of capillary obstruction and does not necessitate any 

particular infusion systems or steroid/antihistamine premedication before the infusion [187]. 

Abraxane possesses a reduced treatment volume and time required for administration. 

Antitumour activity and mortality were assessed in nude mice bearing human tumour 

xenografts (lung (H522), breast (MX-1), ovarian (SK-OV-3), prostate (PC-3), and colon 

(HT29)) treated with Nab or cremophor-based paclitaxel. In tumours, Abraxane had a 

significantly increased efficacy compared with cremophor-based paclitaxel, the difference 

was higher in breast (MX-1) and in ovarian (SK-OV-3) xenografts. There were more tumour 

free survivors (100 vs 20% for breast, 24% vs 0% for ovarian), with a significantly longer 

time to recurrence (103 vs 22 days for breast, 63 vs 26 days for ovarian) in the Nab-paclitaxel 

treated mice. This evidence was also highlighted in prostate (PC-3; 48 vs 26 days) and in 

colon (HT-29; 36 vs 26 days). The area under the curve (AUC) of drug concentration in 

tumour was 33% higher for Abraxane versus Cremophor-based paclitaxel, indicating more 

effective intratumoural accumulation of Nab-paclitaxel. 

 

2.3. Micelles 

  In 1913, J.W. McBain introduced the term “micelle” into surface and colloidal 

chemistry in the context of the association of surfactant molecules in aqueous solution. 

Micelles are colloidal particles formed by amphiphilic molecules (block copolymers or 

surfactants). Amphiphilic molecules are prone to self-assemble into various nanostructures 

driven by hydrophobic effect. Therefore, amphiphilic polymers containing both hydrophilic 

and hydrophobic blocks have been extensively studied for use in drug delivery. Micelles 

contain polar head groups that usually form the outside as the surface of micelles. The head 

groups could be cationic, anionic or neutral groups. They face to the water because they are 

polar and hydrophilic. The hydrophobic tails are inside and away from the water since they 

are nonpolar and suitable for hydrophobic cargo. Depending on the type of amphiphilic 

molecules, micelles can be divided into lipid micelles, and polymeric micelles. Different 

from the lipid bilayer structure of liposomes, the lipid micelle is a monolayer structure with 

hydrophilic heads facing the outside aqueous medium and lipophilic tails forming the inner 
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core. Depending on the composition, concentration of surfactants, temperature and pH, the 

shape of micelles can be spherical, ellipsoidal, rode-shaped, reversed micelles, or lamellar 

[188,189]. By controlling the hydrophilic/hydrophobic balance, various nanostructures, 

such as spherical micelles, cylindrical micelles, and vesicles, can be formed from 

amphiphilic polymers. According to Won et al., the weight fraction of the hydrophilic block 

( f Phil) can play a vital role in controlling the shapes of nanostructures from amphiphilic 

polymers in a pure water medium [190]. At f Phil = 55–70%, spherical micelles are 

predominantly formed; at f Phil = 45–55%, cylindrical micelles tend to form; at f Phil = 20–

40%, vesicles are favored. Both polymeric micelles and vesicles are the most common and 

stable morphological structures of amphiphiles in water [191]. Polymeric micelles consist 

of a core and shell structure; the inner core is the hydrophobic part of the block copolymer, 

which encapsulates the poorly water-soluble drug, whereas the outer shell or corona of the 

hydrophilic block of the copolymer protects the drug from the aqueous environment and 

stabilizes the polymeric micelles against recognition in vivo by the reticuloendothelial 

system (RES). Meanwhile, polymeric vesicles possess bilayer structures with an aqueous 

interior core, isolating the core from the external medium (Figure 12) [191,192]. Polymeric 

vesicles can encapsulate hydrophilic molecules within the aqueous interior and also integrate 

hydrophobic molecules within the membrane. Therefore, polymeric vesicles have the 

capability to deliver hydrophilic as well as hydrophobic drugs such as anticancer drugs, 

genes, and proteins. 

 

Figure 12: Polymeric vesicles derived from asymmetric block copolymers [191]. 

At low concentration, the amphiphilic molecules align at the interface (liquid/air or 

liquid/oil), their hydrophilic head oriented toward the aqueous phase and the hydrophobic 

tail to the other, and reduce the surface tension between them. When the concentration 

increases, the whole surface will be covered of amphiphilic molecules. At that moment, they 

start to assemble to a micellar structure. The lowest concentration at which micelles are 

formed is called the critical micelle concentration (CMC). The concentration of free 

amphiphilic molecules is constant as the micelle concentration increases, and they exist in 
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dynamic equilibrium (Figure 13). Below CMC, they will dissociate into single polymer 

chains and thus lose the function as drug carriers. In order to avoid the dissociation of the 

self-assembled nanostructures, linking the polymers to obtain nanogels which are more 

stable in different conditions has become a common and effective approach. In recent years, 

nanogels have drawn increasing attention because of their high loading capacity and good 

stability [193]. However, the lipid micelles have two limitations: the low drug loading 

capacity due to the small hydrophobic core, and the dissociation upon dilution in vitro and 

in vivo [194]. Polymeric micelles are prepared by a self-assembly process using hydrophilic 

and hydrophobic block copolymers to form a hydrophilic shell and a hydrophobic core 

[195,196]. These cores are generally spherical and nano-sized (10–100 nm) and can be used 

as nano-containers for the efficient loading of hydrophobic drugs or agents [197–199]. Thus, 

hydrophobic drugs that incorporate the micelles are effective drug delivery systems. 

 

Figure 13: Formation of Micelles. 

PLGA is one of the most popular hydrophobic polymers used as a core for drug 

encapsulation and break down the ester bonds in the body, resulting in the release of the 

drug [200]. Poly(ethylene-glycol) (PEG) polymers are usually adopted as the hydrophilic 
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segments of micelles [197,201,202] because they provide a brush-like stability corona that 

increases the circulatory half-time of micelles in the blood stream [130,203]. 

There are two routes to load drug using the amphiphilic micelle structure by chemical 

conjugation [204] or physical entrapment [205], and the respective drug release processes 

are dependent on the type of encapsulation. In the chemically conjugated drug, a non-water 

soluble drug as a hydrophobic core of the micelle, is conjugated to the hydrophilic polymer 

backbone [206] and the release occurs by bulk degradation of polymer matrix or surface 

erosion, whereas the physically entrapped drug is formed by the encapsulation of 

hydrophobic drugs into the core of a core-shell nanostructures during the self-assembly 

process via hydrophobic interactions [207]. Other factors that affect drug release are 

partition coefficient, amount of drug loaded, length of the core-forming part of the polymer, 

and presence and extent of cross-linking in the core.  

Recent research has focused on stimulus-sensitive (smart) nanostructures for drug delivery 

because it is a superior approach for delivering and releasing drugs to specific site at the 

desired time. Many kinds of stimuli, including chemical (e.g., redox, pH), physical (e.g., 

temperature, light), and biological (e.g., enzymes), have been exploited in the design of 

smart drug delivery systems [193]. For example, a cholesterol modified amphiphilic 

copolymers poly((hydroxyethyl methylacrylate)-co-(2-(diethylamino)ethyl methacrylate))-

b-poly(poly(ethylene glycol) methyl ether methacrylate) (Chol-g-P(HEMA-co-DEAEMA)-

b-PPEGMA) is used with specific pH-sensitive/hydrophilic/hydrophobic structures 

containing different ratios of pH-sensitive PDEAEMA segments and synthesized via the 

combination of activators regenerated by electron transfer atom transfer radical 

polymerization (ARGET ATRP) and alcoholysis reaction. During the process of 

micellization, cholesterol formed the core of the polymeric micelle, random pH-sensitive 

PDEAEMA/hydrophilic PHEMA comprised the middle layer, and the PPEGEMA 

distributed and stretched dendritically on the surface of the polymeric micelles. Their three-

layered self-assembled micelles were used as doxorubicin (DOX) delivery carriers (Figure 

14) [208]. Currently, several micellar formulations for cancer therapy are under clinical 
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evaluation, but only Genexol-PM has been approved by FDA in 2007 for the treatment of 

breast cancer. 

  

 

Figure 14: Scheme of drug entrapping and pH-dependent release from the polymeric micelles 
[208]. 

Genexol-PM is based on the development of polymeric micelles formulation of paclitaxel. 

The formulation of micelles is based on biodegradable amphiphilic di-block copolymer 

comprised of monomethoxy poly(ethylene-glycole)-block-poly (D,L-lactide) (mPEG-

PDLLA). Like Abraxane, this formulation avoiding the employment of lipid-based solvent 

(Cremophor EL). The first preclinical study compared the in vivo efficacy, toxicity and 

biodistribution of Genexol-PM to cremophor-EL based paclitaxel [209]. The increasing of 

MTD and the lethal dose 50 (LD50) of Genexol-PM compared to classical paclitaxel 

formulation demonstrated that is a less toxic formulation. Administered in animals at the 

same dose of lipid-based paclitaxel, Genexol-PM resulted with the same concentration in 



40 
 

 

 

plasma with an increased accumulation (2-3 fold higher) in heart, lungs, kidneys and spleen. 

Importantly, Genexol-PM also resulted in 2-fold higher levels of paclitaxel in tumours.  

 

2.4. Dendrimers 

 Apart from these nanostructures, dendrimers with three-dimensional, hyperbranched 

globular nanopolymeric architectures have been the research focus of many scientists these 

years. The term dendrimer, first proposed by Tomalia in 1985, was chosen due to its 

structural shape, with highly branched, three-dimensional features that resemble the 

architecture of a tree [210]. A typical dendrimer consists of three main structural 

components: (a) a focal core, (b) building blocks with several interior layers composed of 

repeating units, and (c) multiple peripheral functional groups (Figure 15). The branched 

units are organized in layers called ‘‘generations’’, and represent the repeating monomer 

unit of these macromolecules [211]. 

 

Figure 15: Typical architecture of a fourth generation (G4) dendrimer. 

Two major synthetic strategies are used for the synthesis of dendrimers, namely, the 

divergent (core to periphery) and convergent (periphery to core) approach. Both synthetic 

strategies possess relative advantages and disadvantages and the appropriate route depends 

mainly on the kind of monomer employed and the target polymer structure [212–214]. Due 

to their attractive features like nanoscale size, narrow polydispersity index, excellent control 

over molecular structures, and availability of multiple functional groups at the periphery and 

cavities in the interior [215], dendrimers have been explored to be used in the delivery of 

different bioactive agents such as drugs [216], oligonucleotides [217], enzymes [218], 

vaccines [219], and genes [220].  

In the last two decades, the development of dendrimers as potential drug vehicles is one of 

the most active areas of biomedical and pharmaceutical sciences. Dendrimers offer several 

featured advantages as drug carrier candidates. These advantages include: (1) high density 
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and reactivity of functional groups on the periphery of dendrimers that make multifarious 

bioactive molecules to be easily modified onto the surface [221,222] (2) well-defined 

globular structure, predictable molecule weight and monodispersity of dendrimers ensure 

reproductive pharmacokinetics [223], (3) controllable size (generation-dependent) of 

dendrimers satisfies various biomedical applications [224], (4) high penetration abilities of 

dendritic structures through the cell membrane cause increased cellular uptake level of the 

drugs complexed or conjugated to them [225], (5) the lack of immunogenicity of dendrimers 

makes them much safer choices than synthesized peptide carriers and natural protein carriers 

[225], (6) enhanced penetration and retention (EPR) effect of dendrimers offers preferential 

uptake of the materials by cancer tissues [226], (7) well-established methodologies proposed 

to construct nanodevices with various functional moieties based on dendrimers provide 

miscellaneous biomedical applications of these promising materials, such as cancer targeting 

therapy, magnetic response imaging, photodynamic therapy, and neutron capture therapy 

[227], (8) Perfectly programmed release of drugs molecules or other bioactive agents from 

dendrimers leads to reduced toxicity, increased bioavailability and a simplified dosing 

schedule [227,228]. Prolonged residence time of the drug in the blood and protection of the 

bioactives from their environment with increased stability are other potential advantages of 

dendrimeric architecture [229]. Different types of dendrimers, include polyamidoamine 

(PAMAM), polypropylene imine (PPI), polylysine dendrimers have been used as host for 

both hydrophilic and hydrophobic drugs. The ideal dendrimer carrier should exhibit high 

aqueous solubility and drug-loading capacity, biodegradability, low toxicity, favorable 

retention and biodistribution characteristics, specificity, and appropriate bioavailability 

[230].  Two strategies are used for the application of dendrimers to drug delivery: drug 

conjugation to dendrimers and drug encapsulation by dendritic structure (Figure 16). Firstly, 

the drug molecules can be covalently attached onto the surface or other functionalities to 

afford dendrimer–drug conjugates; secondly, the drug molecules can be physically 

entrapped inside the dendrimers.  
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Figure 16: Types of Interactions using dendrimers. (A) Drugs covalently linked to dendrimers, 
and (B) Drugs entrapped inside the dendrimers. 

Dendrimer-drug conjugates 

Dendrimer-drug conjugates generally consist of an anti-neoplastic agent covalently attached 

to the peripheral groups of the dendrimer. This method offers distinct advantages over drug-

encapsulated systems. Multiple drug molecules can be attached to each dendrimer molecule 

and the release of these therapeutic molecules is partially controlled by the nature of the 

linkages. The grafting of drugs to dendrimers has also been proposed to overcome 

resistances induced by monomeric drugs. For instance, trans-diaminochloroplatinum 

moieties have been linked to a small poly(propyleneimine) (PPI) dendrimer (Figure 17). It 

was shown that this dendrimer is equally toxic towards cisplatin-sensitive and cisplatin-

resistant leukemia cell lines, but less toxic in both cases than cisplatin. This unexpected 

result was ascribed to difficulties to cross the cell barrier [231]. 

 

Figure 17: First generation poly(propyleneimine) (PPI) dendrimer ended by platinum, in order 
to overcome cisplatin resistance [231]. 

Gurdag et al. reported the synthesis of polyamido amine (PAMAM)-methotrexate (MTX) 

conjugates from carboxylic acid-terminated G2.5 PAMAM (conjugate A) or amine-

terminated G3 PAMAM (conjugate B) in order to assess the activity of dendrimer-delivered 

methotrexate to sensitive and resistant human acute lymphoblastoid leukemia (CCRF-CEM) 

and Chinese hamster ovary (CHO) cell lines [222]. Although both polymers were conjugated 

to the drug by the formation of amide bonds, the carboxylic acid-conjugated G2.5 PAMAM 

system showed increased sensitivities of 8- and 24-fold towards the MTX-resistant cell lines 
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CEM/MTX and RII, while amine-conjugated G3 PAMAM showed no such increases 

compared to free methotrexate. The differences in cytotoxicity of these amide-bonded 

conjugates may be indicative of differences in the intracellular drug release from the cationic 

dendrimer (conjugate B) versus the anionic dendrimer (conjugate A), perhaps due to the 

differences in lysosomal residence times dictated by the surface functionality. The results 

indicate the potential of dendrimer-drug conjugates for the treatment of cancer cells, 

particularly those that have demonstrated resistance to chemotherapeutics. 

Another example of stochastic functionalization concerns methotrexate (MTX) and the 

TAMRA (tetramethylrhodamine) fluorophore conjugated to PAMAM dendrimers by 

copper-free click chemistry. Such a reaction produces serum stable linkages (Figure 18). 

The binding avidity of the dendrimer-MTX to the folic acid receptor is enhanced by a factor 

of 857 relative to a free MTX molecule, but the conjugate was comparatively less toxic than 

free MTX towards B16–F10 (melanoma) cells [232]. 

 

Figure 18: Stochastic grafting of methotrexate (MTX) by a stable bond to PAMAM G5 
dendrimers [232]. 

In a comparative study, doxorubicin (DOX) was conjugated to G4 PAMAM dendrimers 

either through a non-cleavable amide group (a PEG-PAMAM-succinic-DOX (PPSD) 

conjugate) or an amide group cleavable under acidic conditions (a PEG-PAMAM-cis-

aconityl-DOX (PPCD) conjugate) (Figure 19). PEG derivative was utilized to enhance the 

conjugate water solubility, reduce toxicity for healthy cells, induce longer half-life in serum 

and enhanced tumour uptake. Both types of conjugates (PPSD and PPCD) were internalized 

by Skov-3 cells (ovarian carcinoma), and delivered to acidic lysosomes. However DOX was 

released only from the cleavable PPCD conjugates, and diffused into the nuclei, inducing 

cell death. The non-cleavable PPSD conjugates were found non-toxic to these cells [233]. 
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Figure 19: Fourth generation PAMAM dendrimers stochastically modified with DOX through 
a non-cleavable or cleavable bond [233]. 

Paclitaxel, a poorly soluble anticancer drug, was covalently conjugated with PEG or G4- 

PAMAM to compare the anti-cancer activity of the drug delivered by a linear or dendritic 

carrier [234]. Both PEG and PAMAM increased the aqueous solubility of paclitaxel (0.3 

μg/mL) dramatically to 2.5 mg/mL and 3.2 mg/mL respectively. Upon exposure to human 

ovarian carcinoma A2780 cells, free paclitaxel accumulated in the cytoplasm near the 

plasma membrane. The polymer conjugates tended to distribute intracellularly in a more 

homogenous fashion compared to free drug. PEG-paclitaxel conjugates reduced the efficacy 

of the drug 25-fold, but the PAMAM-paclitaxel conjugates decreased the IC50 more than 

10-fold when compared against free drug, leading to the conclusion that the availability of 

a drug is dramatically influenced by the architecture of its polymer conjugate. 

Drug-encapsulated dendrimers 

The covalent linkage of drugs to dendrimers generally necessitates the chemical 

modification of both the drug and the dendrimer. In order to simplify the molecular design, 

the simple encapsulation of an unmodified drug inside a dendrimer has been proposed 

(Figure 16B), in particular for low water-soluble drugs [235]. Poly(glycerol succinic acid) 

dendrimers, or PGLSA dendrimers, were investigated as delivery vehicles for 

camptothecins, a group of naturally-derived hydrophobic compounds with anti-cancer 

activity. In a preliminary study reported by Morgan et al., G4-PGLSA dendrimers with 
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hydroxyl (G4-PGLSA-OH) or carboxylate (G4-PGLSA-COONa) peripheral groups were 

used to encapsulate 10-hydroxycamptothecin (10-HCPT) for delivery to cancer cells  [236]. 

Upon exposure to MCF-7 human breast cancer cells, unloaded dendrimer showed no 

cytotoxic effects, while 10-HCPT-encapsulated dendrimers led to significant cytotoxicity 

with less than 5% of viable cells at higher concentrations (20 μM). An alternative triblock 

structure was explored by introducing a 3400 molecular weight PEG core to the G4-PGLSA 

dendrimer to afford (G4-PGLSA-OH)2-PEG3400 [237]. A 20-fold increase in 10-HCPT water 

solubility was observed following encapsulation. The anti-cancer activity of the 

macromolecule/drug complex was examined using HT-29 human colon cancer cells and 

similar cytotoxicities were reported for encapsulated and free 10-HCPT. The conclusions 

drawn from these two studies led to the selection of G4-PGLSA-COONa dendrimer as a 

delivery vehicle for 10-HCPT and 7-butyl-10-aminocamptothecin (BACPT), a highly potent 

lipophilic camptothecin derivative. Anti-cancer activity was investigated for a human cancer 

cell line panel including breast adenocarcinoma (MCF-7), colorectal adenocarcinoma (HT-

29), non-small cell lung carcinoma (NCI-H460), and glioblastoma (SF-268). The most 

potent formulation is with the dendrimer encapsulating 7-butyl-10-aminocamptothecin 

(BACPT), used towards lung cancer cells (Figure 20). This formulation increases aqueous 

solubility, induces more BACPT uptake, and increases retention, providing a rationale for 

the increased cytotoxicity observed [238]. 

 

Figure 20: PGLSA dendrimer for the encapsulation of the camptothecin derivative BACPT 
[238]. 
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Dendrimers based on melamine have been used also to dissolve MTX and 6-mercaptopurine 

(anti-cancer agents) that are known as hepatotoxins (Figure 21). C3H mice received 

subchronic doses of drug-encapsulated dendrimers and alanine transaminase (ALT) levels 

were evaluated to determine hepatotoxicity. A significant reduction in hepatotoxicity has 

been observed in vivo for mice with the drugs entrapped in the dendrimer [239]. 

 

Figure 21: Melamine dendrimer for the encapsulation of MTX [239]. 

Doxorubicin-G4-PAMAM complexes have been encapsulated into liposomal formulations 

for potential local delivery to locations such as skin metastasis from breast cancer [240]. The 

dendrimer-drug complex was incorporated into one of two formulations to modulate release 

compared to doxorubicin-liposomal systems. The first formulation was comprised of egg 

phosphatidylcholine, stearylamine, and the anti-tumour ether lipid 

hexadecylphosphocholine (HePC), while the second formulation did not include HePC. 

Incorporation efficiencies were above 90% and slow release was achieved with less than 

20% released over 48 h for both systems. Cytotoxicity was assessed based on doxorubicin 

(DOX) activity on several cancer cell lines DMS114 and NCI-H460 (small cell lung cancer 

and non-small cell lung cancer, respectively), HT29 and HCT116 (colon), MDA-MB435 

and MCF7 (breast), DU145 (prostate), and SF268 (central nervous system). The 

doxorubicin-PAMAM liposome formulation with HePC showed the highest activity against 

most of the cell lines, with enhanced activity towards MDA-MB435 breast cells compared 

to the dendrimers conjugate alone, and high sensitivity towards DMS114 and NCI-H460 

lung cancer cells. 
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Therefore, the complexation of drugs to dendrimers via hydrophobic encapsulations or 

electrostatic interactions usually preserves the chemical integrity and pharmacological 

properties of drugs, while covalent attachment of drugs to the surface groups of dendrimers 

through chemical bonds is more suitable for a better control over drug release than can be 

achieved by simple encapsulation/electrostatic complexation of drugs into/with the 

dendrimers [241,242]. For this reason, drug-encapsulated dendrimer systems may best be 

utilized via direct intratumoural injection. 

 

2.5. Mesoporous Silica Nanoparticles 

 Mesoporous silica nanoparticles (MSN) discovered in 1992 by the Mobile Oil 

Corporation have received intensive attention due to their monodispersity, high specific 

surface area, tunable pore size and diameter, and versatile functionalization [243,244]. MSN 

are synthesized in the presence of assembled cationic surfactant micelle templates, which 

serve as structure-directing agents for polymerizing silica component by electrostatic 

interaction (Figure 22) [245]. 

 

Figure 22: Synthesis scheme for the preparation of MSNs (A) and transmission electron 
microscopy (TEM) images of MCM-41 (B) [245]. 

In 1968, Stöber et al. first discovered an effective method for the synthesis of monodispersed 

silica particles, which involves the hydrolysis of tetraalkyl silicates in a mixture of alcohol 

and water using ammonia as a catalyst [246]. The ‘‘Stöber method’’ has since been 

investigated widely, and subsequently particles with diameters ranging from tens of 

nanometers to a few microns have been obtained. With the Stöber method, excellent control 

can be obtained not only in the synthesis of silica particles but also in that of non-silica ones 

[247,248]. Based on a Stöber-like approach, it is possible to synthesize mesoporous silica 
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nanoparticles of a uniform size by modifying the reaction compositions. Grun et al. first 

modified the Stöber synthetic compositions by adding a cationic surfactant to the reaction 

mixture and obtained the submicrometer-scaled MCM-41 spherical particles [249]. Since 

then, mixtures of alcohol, water and ammonia have been widely used with different template 

systems to prepare uniform MSNs with different pore sizes and mesostructures. Later, 

Nooney et al. used both cationic surfactants (cetyltrimethylammonium bromide (CTAB)) 

and neutral surfactants (n dodecylamine) as templates, and showed that MSNs with a wide 

range of diameters from 65 to 740 nm can be obtained by simply varying the Tetraethyl 

orthosilicate (TEOS)–surfactant ratio under dilute conditions [250]. It is noted that when an 

aprotic cosolvent was used to create a homogeneous condition, spherical MSNs with smooth 

surfaces were formed. Mou and co-workers developed a strategy for synthesizing mono-

disperse MSNs by separating the nuclei formation and particle growth into two steps [251], 

and subsequently modulated the size of the MSNs by controlling the pH (10.86–11.52) of 

the reaction solution [252]. Qiao et al. found that the size of MSNs increases from 30 nm to 

85 nm with the decrease in pH from 10.0 to 6.0 presumably due to an decreased condensation 

rate [253]. It is worth noting that Chiang et al. systematically investigated the effects of the 

key reaction conditions (e.g., amount of TEOS, pH value, and reaction time) on the resulting 

MSNs, and concluded that the pH value is the dominant parameter influencing particle size 

[254]. 

MCM-41 as one of the importantly synthesized mesoporous materials [66], has been firstly 

employed as a drug delivery matrix. MCM-41 has been widely studied due to its attractive 

features, such as stable honeycomb mesoporous structure, large surface area (>1000 m2/g), 

narrow tunable pore size (2–10 nm), and well-defined surface properties. Other groups of 

mesoporous materials with larger pore size such as SBA including SBA-15, SBA-16, SBA-

1, SBA-3, HMS, and MSU were also used for drug delivery. For drug delivery based on 

mesoporous materials, several investigations using organic modified mesoporous silica have 

been reported [255]. MSN were designed for diagnostic (fluorescence imaging [251,256] 

and/or MRI [257–259]), and for therapy (drug delivery [260,261] or photodynamic therapy 

[262–268]). Many different drugs have been successfully loaded in MSN or covalently 

grafted at MSN, such as camptothecin [244], paclitaxel [269,270], doxorubicin [271,272], 

methotrexate [273], cysteine [274], telmisartan [275], and chlorambucil [276].  

The particle size of MSN can be tuned from 50 to 300 nm allowing facile endocytosis 

without any significant cytotoxicity. MSN is more stable to heat, pH, mechanical stress, and 
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hydrolysis-induced degradations, compared to other polymer-based drug carriers. The 

uniform pore size distribution of MSN is very narrow and the pore diameter can be tuned 

between 2 and 6 nm. These features allow one to adjust the loading of different drug 

molecules and to study the kinetics of drug release with high precision. The high surface 

area (>900 m2/g) and large pore volume (>0.9 cm3/g) of MSN, allow high loadings of drug 

molecules [277]. The internal surface (i.e., cylindrical pores) and the external surface (i.e. 

exterior particle surface) of MSN allow the selective functionalization of the internal and/or 

external surfaces of MSN with different moieties. To further improve the efficiency of MSN, 

targeting of cancer cells with biomolecules [263,278–281] or antibodies [282] anchored on 

the MSN surface has been carried out. For example, mannose or galactose functionalized 

MSN have been reported to induce a higher cytotoxicity of cancer cells than 

unfunctionalized MSN and target to cancer cells more efficiently [278,279]. Folate, a 

targeting ligand, has been covalently attached to amino-functionalized silica nanoparticles 

loaded with a hydrophobic small molecule anticancer drug. Folate-functionalized 

nanoparticles turned out to be significantly cytotoxic to tumour cells, whereas normal cells 

were much less affected by the presence of these structures [283]. Lee et al. synthesized 

multifunctional nanoparticles by assembling Fe3O4 nanocrystals on uniform dye-doped 

MSN (designated as Fe3O4-MSN) as well as their applications to simultaneous magnetic 

resonance (MR) imaging, fluorescence imaging, and as a drug delivery vehicle (Figure 23). 

The superparamagnetic property of the magnetite nanocrystals enabled the nanoparticles to 

be used as a contrast agent in MR imaging, and the dye molecule in the silica framework 

imparted optical imaging modality. Integrating a multitude of magnetite nanocrystals on the 

silica surface resulted in remarkable enhancement of MR signal due to the synergistic 

magnetism. An anticancer drug, doxorubicin (DOX), could be loaded in the pores and 

induced efficient cell death. They demonstrated in vivo passive targeting and accumulation 

of the nanoparticles at the tumour sites by both T2 MR and fluorescence imaging. 

Furthermore, apoptotic morphology was clearly detected in tumour tissues of mice treated 

with DOX loaded nanocomposite nanoparticles, demonstrating that DOX was successfully 

delivered to the tumour sites and its anticancer activity was retained [271]. 
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Figure 23: (A) Schematic illustration of the synthetic procedure for Fe3O4-MSN, and TEM 
images of (B) as synthesized MSN, (C) Fe3O4-MSN [271]. 

Controlled and targeted release of cytotoxic agents can also be achieved by surface 

functionalization of MSNs. Li et al. established a core MSN cross-linked with a poly(acrylic 

acid) (PAA) through disulphide linkage, which acted as a drug release switcher (Figure 24) 

[284].  

 

Figure 24: (A) Schematic preparation process of PAA–MSN. (B) TEM images of (a) MSN and 
(b) MSN–PAA [284] . 

DOX loaded into MSN-PAA (DOX@MSN-PAA), released to the medium by the 

dissociation of disulphide linkage achieved by a reduction-responsive reaction. The loading 

content and the entrapment efficiency of DOX could reach up to 40.2% and 80.4%, 
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respectively. Additionally, controlled release was achieved by varying the concentration of 

the reductant. This study analyzed DOX release in two different mediums (phosphate-

buffered saline (PBS) of pH 7.4), one with 2 mM of glutathione, simulating environment of 

cancer cells, and one without glutathione, corresponding to normal human cells. The release 

rate was 49.4% after 24h with the existence of 2 mM glutathione (simulated environment of 

cancer cells), about three times higher than that of without glutathione (corresponding to 

normal human cells), which was only 16.9%. (Figure 25A). Through in vitro assays, this 

study showed that DOX@MSN-PAA cross-linked produced remarkable cytotoxicity to 

HeLa cells (human cancer cells), and relatively lower cytotoxicity to 293 cells (human 

normal cells) (Figure 25B,C). 

 

Figure 25: (A) The drug release curves of DOX@MSN–PAA (a) with and (b) without adding 2 
mM of glutathione in PBS of pH = 7.4; and relative viabilities of HeLa and 293 cells incubated 
with DOX@MSN–PAA for (B) 24 h and (C) 48 h at different concentrations [284]. 

 

2.6. Gold Nanoparticles 

 Gold nanoparticles (AuNPs or colloidal gold) are a suspension of nanometric particles 

of gold. The history of AuNPs dates back to the 4th century when they were used in stained-

glass windows of medieval churches [285]. However, the scientific research of colloidal 

gold begin with Michael Faraday in the 1850’s, when he observed a difference between the 

properties of colloidal gold solutions and bulk gold [17,286]. Moreover, the unique optical 

properties of AuNPs, depend on its shape and size, due to their interaction with light. The 

enhancement in the optical and photothermal properties arises from the localized surface 

plasmon resonance (LSPR) which cause the color of a colloidal AuNPs solution and is 

influenced by size and shape of AuNPs [287]. For example, spherical AuNPs with particle 

size of 10-20 nm show a LSPR absorption around 520 nm with red color solution [288]. 

Changing the size of the particles, or its length to form nanorods, the LSPR wavelength can 
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be increased to the near infrared (NIR) region due to the electromagnetic retardation in larger 

particles [289]. Moreover, gold nanorods present two LSPR bands: one is a weak band with 

a wavelength similar to spherical AuNPs (absorption arround 520 nm) due to the plasmon 

oscillation along the short axis, referred to transverse bands which is insensitive to the size 

changes. The second is a strong band in NIR region due to the plasmon oscillation along the 

long axis, referred to longitudinal band, which depends on the nanorod aspect ratio 

(Length/Width) (Figure 26) [289]. 

 

 

Figure 26: Tunable optical properties of gold nanorods by changing the aspect ratios. Gold 
nanorods of different aspect ratios exhibit different dimensions as seen by TEM (A), in 
different color (B) and different SPR wavelength (C) [289]. 

This property of AuNPs is advantageous for the optical imaging and the photothermal 

therapy, make them suitable for medical applications aiming to kill cancer cells through the 

selective localized photothermal heating [290]. There are several methods for the 

preparation of AuNPs such as chemical [291–295], physical [296–298] and biological 

methods [299,300]. Chemical methods are widely used for the synthesis of AuNPs. The 

method pioneered by Turkevich et al. in 1951 and refined by Frens et al. in 1973 was the 

most commonly method for the synthesis of spherical AuNPs [291,292,301,302]. The 

principle of this method involves a reduction of gold salts as metal precursor to form gold 

atoms (Au0) in the presence of reducing agent such as sodium citrate, sodium borohydrate, 

or phosphorous which produces a monodisperse AuNPs in the size range of 10-20 nm 

(Figure 27A) [291]. Citrate can act as a reducing agent and as a stabilizer of AuNPs [295]. 
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In 1973, Frens found that the size could be controlled by changing the gold/stabilizer ratio 

[295,302].  

Other method discovered by Brust and Schiffrin in 1994 for the synthesis of AuNPs in 

organic solvents that are not miscible in water with size range of 1.5-5.2 nm was inspired 

from Faraday’s two phase system [17,293,294]. This method involved the transfer of an 

aqueous solution of HAuCl4 to an organic solvent (e.g. toluene, chloroform, or benzene) 

using tetraoctylammonium bromide (TOAB) as phase transfer agent. The gold is then 

reduced by sodium borohydride (NaBH4) in the presence of alkanethiol (e.g. dodecanethiol) 

which stabilized the AuNPs (Figure 27B) [303], resulting in a color change from orange to 

brown upon addition of NaBH4 [293].  

 

Figure 27: Two general procedures to prepare colloidal gold suspensions of small nanometre 
size: (A) Turkevich method and (B) Brust method [304]. 

Another common approach to controlling the morphology of AuNPs and produce larger 

NPs, resulting in the formation of nanorods [305,306], nanocubes/nanocages [307–309], and 

nanotubes [310] is the seeding growth method (Figure 28). Typically, this method consists 

of three independent steps: (1) the preparation of surfactant-capped gold nanoparticle seeds 

(generally ranging in diameter from 1.5 to 5 nm) by reducing HAuCl4 using NaBH4, (2) the 

preparation of a growth solution via the reduction of HAuCl4 using a milder reducing agent 

such as ascorbic acid (both steps in the presence of cetyltrimethylammonium bromide 

(CTAB) as a stabilizing surfactant, and finally (3) an addition of the gold nanoparticle seeds 

prepared in the first step to the growth solution (Figure 28) [305,311–313]. 

Cetyltrimethylammonium bromide (CTAB), a cationic surfactant which forms a rodlike 

micelles in water [314], is widely used in the gold nanorod synthesis [306,315]. It serve as 
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a soft template that adsorb along the long-axis crystal faces, forming a bilayer around the 

side wall of the nanorods, and causes a longitudinal growth of the nanostructure [315].  

 

Figure 28: Seed-mediated growth of gold nanorods. 

Moreover, the spherical AuNPs absorptions have not been optimal for in vivo application, 

because their absorption peak was limited to 520 nm. This limitation was overcome by the 

invention of gold nanorods by Murphy et al., which are able to tune the optical properties 

from 520 nm up to 1000 nm by changing the aspect ratio of nanorods, which have been used 

as photothermal agents [289,290,315,316]. However, their incompatibility with other high-

resolution imaging techniques (e.g. MRI) and irreproducibility in shapes led to the invention 

of other structures such as nanoshells and nanocages, which tune the optical properties in 

NIR regions to maximize the penetration depth. Gold nanoshells (AuNSs), developed by 

Halas and coworkers, are composed of a silica core around 60 nm and a thin shell of gold 

about few nanometers [317]. AuNSs are plasmonic materials with intense absorbing and 

scattering properties. The LSPR wavelength of AuNSs can be controlled by changing the 

shell thickness. Decreasing the gold shell thickness from 20 nm to 5 nm leads to LSPR red 

shift from 700 nm to 1000 nm. This red shift can be attributed to the hybridization of the 

inner and outer shell surface plasmons for thinner shell particles [318]. AuNSs possess 

highly favorable optical and chemical properties for photothermal cancer therapy 

[316,319,320], and imaging, such as optical coherence tomography (OCT) [321,322], 
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photoacoustic tomography (PAT) [323], and surface enhanced raman scattering (SERS) 

[320,324]. Similar to AuNSs, gold nanocages that are hollow and porous gold nanostructures 

invented by Xia and coworkers in 2002 [325] represent a class of nanostructures with tunable 

LSPR peaks in the NIR region. AuNSs are prepared by a galvanic replacement reaction 

between silver nanocubes and aqueous solution of HAuCl4 [307]. By controlling the 

thickness, the porosity of the walls, and the amount of HAuCl4 added to reaction, the LSPR 

of gold nanocages can be tuned to NIR region (600-1200 nm), making them suitable for 

photothermal therapy [326].  

Owing to their large scattering and absorption, gold nanocages are used as contrast agents 

for imaging modalities such as dark-field microscopy [327], optical coherence tomography 

(OCT) [308], photoacoustic tomography (PAT) [328], and multi-photon luminescence-

based detection [329,330]. Furthermore, the hollow interiors, porous walls, and tunable 

LSPR properties of gold nanocages can be used to construct multifunctional hybrid 

nanostructures interesting for theranostic applications as smart carriers for controlled release 

with a NIR laser [331–333].  Moreover, the drugs can be loaded into the AuNPs through a 

covalent or non-covalent conjugation, based on the strong affinity of different functional 

groups such as thiol, amines, and phosphines for gold surfaces [334]. Gibson et al. 

conjugated covalently 2 nm of AuNPs functionalized with mercaptophenol to a 

chemotherapeutic drug, paclitaxel, through a flexible hexaethylene glycol spacer anchored 

at the C-7 position of paclitaxel using carbodiimide-based esterification chemistry (Figure 

29) [335]. Hwu et al. synthesized paclitaxel-polyethylenglycol-thiol (PTX-PEG-thiol) using 

a phosphodiester spacer attached to the surface of AuNPs, and the release of paclitaxel is 

triggered by phosphodiesterases in cancer cells [336]. These methods provide a simple and 

versatile method to use AuNPs to deliver other types of drugs using the same strategy. 
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Figure 29: Covalent Coupling of Paclitaxel to 4-Mercaptophenol-Modified 2 nm AuNPs [335]. 

The cytotoxicity of oxaliplatin-conjugated AuNPs has been also investigated. Oxaliplatin is 

an analog of cisplatin and is readily used in colorectal cancer chemotherapy. Its mechanism 

of action is to intercalate into DNA and inhibit DNA synthesis in cancer cells. Although it 

is very effective, oxaliplatin does not specifically target cancer cells and, therefore, can 

attack other rapidly dividing healthy cells. In order to improve this form of chemotherapy, 

enhanced drug delivery must be achieved, Brown et al. demonstrated increased potency of 

oxaliplatin when conjugated to the surfaces of AuNPs through thiolated PEG linkers [337]. 

Their reported fivefold increase in in vitro cytotoxicity after conjugation was again attributed 

to the efficient uptake of the particle conjugates through endocytosis into cancer cells. 

Dreaden et al. utilized AuNPs conjugated to thiol-PEGylated tamoxifen derivatives that can 

be used to selectively target and deliver plasmonic AuNPs to estrogen receptor (ER) positive 

breast cancer cells with up to 2.7-fold enhanced drug potency in vitro [338]. The PEG linker 

allowed for increased particle stability in the cell culture media as well as reduced the 

nonspecific binding of serum proteins to the surface of the conjugated particle.  

One treatment area that has the potential to greatly benefit from coupling to AuNPs is 

photodynamic therapy (PDT). PDT is a form of cancer treatment that utilizes light, 

photosensitizers and tissue oxygen [339]. Most photosensitizing agents, such as porphyrins 

and phthalocyanines (Pc's), are hydrophobic and locate preferentially in apolar sites such as 

the lipid bilayer membranes of cells. After photosensitizer accumulation, diseased tissues 

are excited by specific wavelengths of light, causing energy transfer from the photosensitizer 

to molecular oxygen in the surrounding tissue, generate highly reactive oxygen species and 
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induce cell death through apoptosis. The lack of solubility of the photosensitizer’s in 

physiological environments, which inhibits its uptake/accumulation into the diseased tissues 

is a significant drawback to this form of chemotherapy. To improve PDT, Cheng et al. 

conjugated Pc4, a photosensitizer, to 5-nm AuNPs and studied the coupled particles uptake 

and delivery (Figure 30A) [340]. Unlike free Pc4, the conjugated form was soluble in 

aqueous environments. Silicon phthalocyanine 4 (Pc4) is a hydrophobic PDT drug currently 

under phase I clinical trials [341]. When Pc4 is injected for in vivo PDT, it usually takes 1 

or 2 days until sufficient Pc 4 reaches the tumour site, which then can be irradiated with 672 

nm light for therapy [342]. With the NP–Pc4 conjugates, the time for the maximum drug 

accumulation to the target tumour has been greatly reduced to only < 2 h, compared to 2 

days for the free Pc4 (Figure 30B). 

 

Figure 30: Conjugation (A) and in vivo tumour accumulation (B) of a PDT photosensitizer–Au 
nanoparticle conjugate [340]. 

AuNPs also possess other properties that can be employed in drug delivery applications. Due 

to strong NIR light absorption, the majority of interest in gold nanoparticle cancer therapy 

is in photothermal therapy (PTT), so the amount of heat generated by NIR irradiation is 

critical to effective cancer treatment. AuNP size/shape can be altered, affording the ability 

to tune their energy absorption profiles for use in PTT of solid tumours [80,343–345]. PTT 
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with AuNPs is desirable for many reasons. First, with advancements in synthesis, scientists 

have been able to scale up preparations of AuNPs of various sizes and shapes [346,347]. 

Second, compared to other metals, gold is more chemically inert, potentially rendering the 

AuNPs core biocompatible. Studies of short-term AuNPs exposure to various cell types 

suggest they are noncytotoxic and nonimmunogenic at clinically relevant concentrations 

[348,349]. Therefore, the effect of a chosen surface ligand on cell viability and cell behavior 

is an important consideration before biological exposure. Third, since AuNPs are highly 

tunable in their size, shape, and surface chemistry it may be possible to engineer them for 

maximum tumour accumulation in vivo [350]. Nanoparticles that are 60–400 nm in diameter 

can extravasate in solid tumours due to the leakiness of tumour vasculature, allowing for a 

passive form of tumour targeting. This is known as the enhanced permeability and retention 

(EPR) effect [351,352]. Finally, AuNPs can be designed to more actively target tumour sites 

through modification of their surface chemistry. A wide array of small molecules, proteins, 

and peptides have been developed to bind to specific receptors on tumour cells with varying 

degrees of tumour accumulation [353]. Then, once AuNPs bind to or accumulate in 

cells/tumours, NIR irradiation can trigger photothermal heating [354]. Nanoparticle LSPR 

and irradiation conditions can be designed to maximize heating efficiency [355]. Because 

irradiation is localized at the tumour site, this may avert unwanted side effects associated 

with conventional cancer treatments. However, photothermal therapy may also be used in 

conjunction with other cancer treatments, such as chemotherapy, to enhance tumour 

destruction [356]. PTT typically uses laser exposure in the NIR (650-900 nm) region due to 

minimal absorption by tissues and physiological fluids at these wavelengths, and to induce 

cytotoxic damage in diseased tissues through the selective administration of heat sufficient 

to induce hyperthermic cellular responses [357,358]. AuNPs such as nanorods, nanoshells 

and nanocages, are optimal for this treatment because they have the ability to absorb NIR 

light and release the absorbed energy as heat at their localized accumulation site. The first 

example of AuNPs-mediated photothermal cancer therapy was reported in 2003 by Halas 

and coworkers [80]. Gold nanoshells (AuNSs) consisting of 110 nm silica cores surrounded 

by 10 nm gold shells were functionalized with the biocompatible polymer polyethylene 

glycol (PEG) which is often used to minimize nanoparticle aggregation and to increase blood 

circulation and half-life. These particular nanoshells had a λmax of 820 nm, but LSPRs in 

gold nanoshells can be tuned from 700 to 1000 nm by increasing the core-to-shell ratio [359]. 

SK-BR-3 cells (human breast cancer cell line) [80], PC-3 and C4-2 (human prostate cancer 
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cell lines) [360] were incubated with AuNSs, without any toxic effect in the absence of NIR 

stimulation. Once the NIR is applied, it was seen a cell death area well-demarcated with a 

remarkable increase of temperature. Another important study showed the passive targeting 

of AuNSs in tumour, by the use of NIR laser and AuNSs on subcutaneous PC-3 mouse 

cancer model after intravenous (i.v.) injection of AuNSs. In the treated group 

(AuNSs+Laser) an increased temperature of 28.9 °C was observed compared with 13.8 °C 

in the control group (Saline+Laser). Tumour were isolated 21 days after treatment, with a 

93% of tumour necrosis [361].  

Recently, researchers have demonstrated combined PTT and imaging/diagnosis in vivo 

using multifunctional nanocomposites. Jin and co-workers designed 300 nm PEG-coated 

gold nanoshelled perfluorooctoyl bromide nanocapsules for photothermal therapy and 

bimodal contrast imaging via ultrasound and X-ray computed tomography. The authors were 

able to enhance contrast in U87 human glioblastoma tumour-bearing nude mice, and 

photothermal heating (808 nm, 1.3 W/cm2, 10 min) resulted in a 35 °C temperature increase 

and decreased tumour volume by 68% after 16 days [362]. Lin et al. combined T2 magnetic 

resonance imaging (MRI) and photothermal heating using 60 nm PEG-functionalized gold 

nanoshells containing Fe3O4/Ag cores (λmax = 800 nm). B16–F10 melanoma tumours were 

implanted in C57BL/6 mice and could be detected by MRI when the nanoparticles were 

present. PTT (808 nm, 4 W/cm2, 30 s) resulted in complete elimination of the tumour after 

13 days when the nanoshells were injected directly into the tumour. However, treatment only 

slowed growth when the nanoparticles were injected intravenously (Figure 31) [363]. 

 

Figure 31: PTT efficacy evaluation of magnetic hollow gold nanoshell (magHGN) in a 
melanoma tumour murine model. A) Tumour growth measured in days post implantation. The 
arrow denoted the PTT treatment with intravenous or intratumour injections of magHGNs. 
(*p < 0.05 in comparison to the control). B) Survival percentage measured in days after PTT 
treatment [363]. 
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These examples demonstrate the potential versatility of multifunctional AuNPs for in vivo 

diagnostic imaging and PTT. Systems such as these may be beneficial for clinical application 

because therapy can be limited to the detected diseased area, potentially preventing side 

effects associated with part or whole-body treatments. 

Photothermal chemotherapy of gold–drug nanoconjugates has also been employed in vivo 

to enhance tumour destruction. Nam et al. designed 10 nm gold nanospheres (λmax = 535–

540 nm) with pH-responsive ligands covalently linked to DOX via carbodiimide coupling. 

In the acidic tumour environment DOX release was triggered via hydrolysis. Also, the 

negatively charged surfaces were converted to a mixture of negative and positive charges, 

reducing electrostatic repulsion, and resulted in rapid nanoparticle aggregation and a 

broadening/red-shift in the LSPR to 650 nm (Figure 32). Laser irradiation (660 nm, 0.5 

W/cm2, 5 min) in nu/nu nude mice having B16–F10 melanoma tumours demonstrated 

tumour temperature increases of 15 °C, and tumour growth was halted. This was more 

effective than DOX or nanoparticles alone, which only slowed tumour growth [364].  

 

Figure 32: Schematic illustration the mechanism of “smart” AuNPs doxorubicin conjugate 
[364]. 

These examples reveal that combination photothermal chemotherapy treatment can also be 

synergistic and effective in vivo for tumour destruction. Further work to maximize drug 
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conjugation and better control release rates in vivo may serve to increase their potential for 

clinical application. 

 

2.7. Silver Nanoparticles 

 Silver nanoparticles (AgNPs) are nanoparticles of silver in the range of 1 and 100 nm 

in size. AgNPs have unique properties, which help in molecular diagnostics, therapies, as 

well as in devices that are used in several medical procedures. Metallic silver, has been 

widely used for thousands of years in human applications, including currency coins, 

jewellery, photography, surgical prosthesis, and dental alloy. Silver vessels were used in 

ancient times to preserve water and wine. The silver powder (e.g. silver nitrate) have 

beneficial healing and anti-disease properties and was employed for the treatment of ulcers 

in the 17th and 18th centuries [365]. In 1881, German obstetrician C.S.F. Crede introduced 

1% silver nitrate as an eye solution to prevent gonococcal ophthalmia for new born babies 

[366]. Further, in 1967, C.L. Fox introduced a formulation containing silver, silver 

sulfadiazine (Flammazine®, Silvadene®) in the treatment of burn patients, and even today 

silver sulfadiazine cream remains the most widely used as standard antibacterial treatment 

for serious burn wounds [367]. However, prolonged exposure to silver or silver compounds 

may resulting in irreversible pigmentation of the skin or eyes, i.e. argyria or argyrosis, due 

to silver deposition in the body [368]. Because of this problem and with the advent of 

antibiotics such as penicillins and cephalosporins, silver’s medicine largely faded away as 

an anti-infection agent. However, the advancement of modern science helped silver to 

revive, under the large increase in the number of multiple-resistant bacterial strains due to 

the abuse of antibiotics and the discovery that AgNPs showed excellent performance in 

antibacterial application. The AgNPs with its antimicrobial activity was regulated for wound 

management in the 1920s by the FDA [369]. An important aspect of the antimicrobial 

activity of AgNPs is the synergistic effect that occurs when these particles are combined 

with others natural and synthetic compounds [370,371]. Moreover, their particular structure 

and the different modes of establishing an interaction with bacterial surfaces may offer a 

unique antibacterial mechanism to exploit. It was reported that AgNPs show biocidal action 

by the slow release of silver ions, and by multiple mechanisms, such as inhibition of DNA 

replication, induction of oxidative stress, and interaction with thiol groups in proteins and 

enzymes, making it more difficult to produce resistant strains [372–376]. Different methods 

have been developed to synthesize AgNPs with various shapes and sizes, such as physical, 
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chemical, and biological methods. In physical approach, evaporation-condensation and laser 

ablation are the most important methods for the synthesis of AgNPs. Evaporation-

condensation technique [377] was carried out using a tube furnace at atmospheric pressure. 

However, the synthesis of AgNPs using this approach has several drawbacks because the 

tube furnace occupies a large space and consumes a great amount of energy while raising 

the environmental temperature around the source material, and requires a lot of time to 

achieve thermal stability. A tube furnace requires power consumption and a preheating time 

to attain a stable operating temperature [378]. The absence of solvent contamination in the 

prepared film and the uniformity of NPs distribution are the advantage of this method in 

comparison with chemical approaches [378]. It was demonstrated that AgNPs could be 

synthesized via a small ceramic heater, which is used to evaporate source materials 

[377,379,380]. The evaporated vapor can cool at a suitably rapid rate, because the 

temperature gradient in the vicinity of the heater surface is very steep in comparison with 

that of a tube furnace. This makes possible the formation of stable small NPs in high 

concentration [379]. Furthermore, AgNPs have been synthesized by laser ablation of 

metallic bulk in solution [381–383]. The production of AgNPs by this approach depends on 

many parameters, such as the wavelength of the laser impinging the metallic target, the 

duration of the laser pulses, the ablation time duration and the effective medium, with or 

without the presence of surfactant [384,385]. The advantage of laser ablation compared to 

other methods for production of metal colloids is the absence of chemical reagents in 

solutions. Therefore, pure and uncontaminated metal colloids for further applications can be 

prepared by this method [383]. The physical methods produce large quantities of AgNPs in 

a single process with narrow size distribution. Recently, biosynthetic methods using 

naturally capping/reducing agents such as polymers [386–388], polysachharides [389,390], 

biological microorganism such as bacteria [391,392], fungi [393,394], algae [395], and plant 

extracts [396,397] have been emerged for the synthesis of AgNPs as environmentally and 

eco-friendly process. The synthesis of NPs using plant extracts can be advantageous over 

other biological processes by eliminating the elaborate process of maintaining cell cultures 

and can also be suitably scaled up for large-scale synthesis of NPs [398]. The most popular 

chemical approaches, including chemical reduction [399–402], electrochemical techniques 

[403,404], irradiation-assisted chemical [405,406], pyrolysis [407] and microemulsion 

techniques [408,409] are widely used for the synthesis of AgNPs. Besides those approaches, 

chemical reduction is the most common method for the synthesis of AgNPs. In general, 
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different reducing agents (such as sodium citrate, sodium borohydride, and ascorbate) are 

used for reduction of silver ions (Ag+) in aqueous or non-aqueous solutions, leading to the 

formation of metallic silver (Ag0). The formation of colloidal solutions from the reduction 

of silver salts involves two stages of nucleation and growth. The size and shape of AgNPs 

synthesized are strongly dependent on these stages. The nucleation and the growth of initial 

nuclei can be controlled by adjusting the reaction parameters such as temperature, pH, 

precursors, reduction agents (e.g. sodium borohydride, sodium citrate), and stabilizing 

agents. Polymeric compounds such as polyvinyl alcohol (PVA), polyvinylpyrrolidone 

(PVP), and sodium oleate have been reported to be effective protective agents to stabilize 

AgNPs [410–412]. It is important to use stabilizing agents to stabilize the dispersive NPs 

during the preparation of metal NPs, and protect the NPs from agglomeration [400]. The 

optical properties of AgNPs result from their unique interaction with light, which causes the 

collective coherent oscillation of their free conduction band electrons (LSPR). The width 

and position of the LSPR peaks depends on the size, shape and dispersion of the NPs [413], 

which can be used to tune the plasmon peaks of AgNPs in the range of 393-738 nm [414] 

and 500-1000 nm [415]. Therefore, LSPR of AgNPs showed in strong visible and NIR 

scattering and absorption, which enables the development of photothermal and laser 

therapies [416,417]. Moreover, it was revealed that AgNPs could enhance the effect of 

cancer cell killing in radiation treatment [418]. AgNPs are also used for Surface-enhanced 

Raman spectroscopy (SERS), which enhance their efficiencies and allow the identification 

of single molecules [419]. Apart from the antimicrobial and antifungal application of AgNPs 

[420,421], they also have various applications in some other fields such as photosensitizers 

and/or radiosensitizers [416–418,422], and anticancer therapeutic agents in leukemia 

[423,424], breast cancer [425,426], hepatocellular carcinoma [427,428], lung carcinoma 

[429], and colon carcinoma [430]. AgNPs are used as photosensitizers and/or 

radiosensitizers due to the LSPR of NPs, which enable the use of AgNPs in nonionizing and 

ionizing radiation. Wu et al. reported an aptamer-Ag-Au shell-core nanostructure-based NIR 

photothermal therapy of lung adenocarcinoma cells (A549 cells) at a very low irradiation 

power density (0.20 W cm-2) without destroying the healthy cells and the surrounding 

normal tissues [416]. Moreover, Shi et al. reported that graphene oxide@Ag-doxorubicin-

DSPE-PEG2000-NGR (GO@Ag-DOX-NGR) showed excellent chemo-photothermal 

therapeutic efficacy, tumour-targeting property, NIR laser-controlled drug releasing 

function and X-ray imaging ability, with a great potential of GO@Ag-DOX-NGR for cancer 
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diagnosis and therapy [417]. AgNPs have proven promising anticancer effects. Several 

investigators have reported that AgNPs induced a cytotoxic effect against leukemic cells. 

Guo et al. reported that PVP-coated AgNPs could effectively reduce viability of acute 

myeloid leukemia (AML) cells, through the generation of reactive oxygen species (ROS), 

release of silver ions, which led to DNA damage and apoptosis [423]. It has also been 

observed by Gurunathan et al. that AgNPs might be a potential alternative agent for human 

breast cancer therapy. AgNPs showed dose-dependent cytotoxicity against MDA-MB-231 

cells through activation of caspase-3, ROS generation, leading to induction of apoptosis and 

DNA fragmentation [425,426]. Recently, Sahu et al. revealed a significant concentration-

dependent cytotoxicity of AgNPs in human liver (HepG2) cells was observed in the 

concentration range of 1 to 20 µg/ml, and that a different mechanism of AgNPs-induced 

mitochondrial injury leads to the cytotoxicity [427]. However, Faedmaleki et al. showed that 

AgNPs had 44 times stronger inhibitory effect on the growth of cancerous cells (HepG2 cell 

line) compared to the normal cells (primary liver cells of mice), which might further justify 

AgNPs as a cytotoxic agents and a potential anticancer candidate [428]. AgNPs have also 

been shown to display cytotoxicity to the lung cancer cells. Foldbjerg et al. observed a dose-

dependent reduction in mitochondrial function of human alveolar cell line A549 cells 

exposed to PVP-coated AgNPs (0–20 μg/ml). Furthermore, an AgNP-mediated increase in 

ROS was associated with DNA damage, apoptosis and necrosis [429]. Also, El-Deeb et al. 

report a simple, cost-effective and environmentally synthesis of AgNPs using honey bee for 

the treatment of colon carcinoma CaCo2 cells. They indicated that the AgNPs obtained could 

be used safely with concentrations up to 39 μg/ml with 60% inhibition on CaCo2 cell 

proliferation [430]. Benyettou et al. presents the synthesis of AgNPs based drug-delivery 

system that achieves the simultaneous intracellular delivery of doxorubicin (Dox) and 

alendronate (Ald) and improves the anticancer therapeutic indices of both drugs (Figure 33) 

[431]. AgNPs were coated with Ald molecules by chelating bisphosphonate moieties. This 

mode of Ald binding leaves the ammonium group of the drug free in solution. The 

ammonium group serves as an attachment site for either Rhodamine B (RhB), a hydrophilic, 

drug-like molecule, or Dox. RhB was attached by amide formation, and Dox, by imine 

formation. Both types of bond are pH sensitive and allow for intracellular release of RhB or 

Dox within the acidic microenvironment of late endosomes and lysosomes.  
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Figure 33: (A) Schematic representation of Ald@AgNP formation and dye/drug conjugation. 
(B) Schematic representation of the uptake of drug–Ald@AgNPs into cells and drug cargo 
release [431]. 

Dox release from Dox–Ald@AgNPs was monitored over time by measuring Dox 

fluorescence in solution. Two aqueous samples were analyzed: one at physiological pH (7.4) 

and the other at a pH typically found within late endosomes and lysosomes (5.4). Figure 34 

shows the corresponding drug release profiles. A small amount (∼9%) of Dox was released 

over seven days at pH 7.4, whereas up to 95% of the drug was released at pH 5.4 over the 

same period. The release of Dox from the NPs resulted from acid-promoted hydrolysis of 

the imine-linkage between Dox and Ald. The pH-sensitive Dox–Ald@AgNPs exhibit 

limited premature drug-release in the bloodstream (pH 7.4), but effectively kill cancer cells 

following cell internalization and Dox release within endocytic compartments at pH 6.5–

4.5.  
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Figure 34: In vitro Dox release profiles for Dox–Ald@AgNPs conducted over seven days at 37 
°C and either pH 7.4 or pH 5.4. Schematic representations show the imine linkage that breaks 
under acidic conditions to release Dox [431]. 

The intracellular localization of Dox–Ald@AgNPs following uptake by endocytosis was 

determined by confocal laser scanning microscopy. HeLa cells were incubated with Dox–

Ald@AgNPs for 3 h at 37 °C. After incubation, Dox was found to be distributed within the 

cytoplasm (Figure 35), which indicates that Dox is released from endolysosomal 

compartments after endocytosis. The facile release of Dox into the cytoplasm is highly 

advantageous and makes Ald@AgNPs well-suited for intracellular drug delivery.  

 

Figure 35: Confocal images of HeLa cells incubated for 3 h at 37 °C with (A) phosphate 
buffered saline as a control or (B) Dox–Ald@AgNPs, which are seen distributed evenly in the 
cytosol and appear red as a result of Dox fluorescence ([Ag] = 0.1 μM, [RhB] = 1.2 μM). Cell 
membranes are labeled with the green dye Alexa Fluor® 488 [431]. 
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2.8. Magnetic Iron oxide Nanoparticles 

 Iron oxide nanoparticles (IONPs) are one of the most investigated inorganic 

nanoparticles used in the development of medical and diagnostic applications such as 

magnetic resonance imaging (MRI) [432], cell separation [433], hyperthermia [434,435], 

drug delivery [436,437], biolabeling and magnetic sensors [438]. IONPs have many 

advantages over other nanoparticles due to the innate magnetic responsiveness, which can 

be controlled and facilitate particle targeting [439], imaging [440], localized heating in a 

magnetic field to produce hyperthermia/ablation of tissue [441,442], their biocompatibility 

and biodegradability [443]. IONPs have been most used as contrast agents for diagnostic 

imaging in combination with magnetic resonance imaging (MRI) [444]. The unique 

magnetic properties of IOPNs that result from their ability to enhance proton relaxation in 

tissues which leads to enhanced MRI images, and the ability to function at the cellular and 

molecular level of biological interactions making them an attractive platform as contrast 

agents for MRI and as carriers for drug delivery [445]. Colloidal IONPs, such as 

superparamagnetic iron oxides (SPIO) and ultrasmall superparamagnetic iron oxides 

(USPIO), are composed of a magnetic core formed from nanocrystalline magnetite (Fe3O4) 

or maghemite (γ-Fe2O3) and a non-magnetic coating of different surface chemistry. 

Hydrodynamic particles sizes range from 50-500 nm (SPIO) and less than 50 nm (USPIO), 

influence their magnetization, dispersibility, and stability in solution [446,447]. The sizes of 

10-100 nm are optimal for in vivo delivery, as they escape rapid renal clearance (< 10 nm) 

and sequestering by the reticuloendothelial system (RES) of the spleen and liver (> 200 nm) 

[446]. Ligands such as targeting agents, permeation enhancers, optical dyes, and therapeutic 

agents can be conjugated on the surface or incorporated within these structures (Figure 36) 

[448]. Without surface coating, IONPs have hydrophobic surfaces with large surface area to 

volume ratios and tends to agglomerate [447].  

 

Figure 36: Magnetic NPs possessing various ligands to enable multifunctionality from a single 
nanoparticle platform [448]. 
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In order to increase their stability, circulation half-life and biocompatibility, IONPs are 

commonly coated with organic polymers (dextran, chitosan, polysorbate, PEG, polyaniline), 

organic surfactants (sodium oleate and dodecylamine) or other metallic materials (gold, 

silica or carbon), providing limited cargo space for therapeutic payloads within the 

protective coatings [449,450]. The modifications mitigate the fast uptake of magnetic 

nanoparticles by human fibroblasts, which result in the eventual cell death. The coating of 

dextran and proteins onto the magnetite nanoparticle surface mediates the interactions 

between the modified nanoparticles and cell membrane so as to retain the magnetic 

nanoparticles only to adhere onto the cell outside surface and thus keep the cells viable. 

There are a variety of methodologies used for the synthesis of IONPs, including physical or 

wet chemical approaches. Concerning physical methods, there are some methodologies, 

including gas-phase deposition and electron beam lithography [451,452]. Numerous 

chemical methods can be used to synthesize IONPs, including microemulsions [453], sol-

gel synthesis [454], sonochemical reactions [455], hydrothermal reactions [456], flow 

injection synthesis [457], oxidation methods [458,459], and chemical coprecipitation [460–

462]. 

The coprecipitation method is the simplest and most efficient chemical route to obtain a 

large scale of magnetic nanoparticles. Iron oxide (Fe3O4 or γ-Fe2O3) are prepared by mixing 

ferric and ferrous ions (Fe3+/Fe2+) in a 2:1 molar ratio at pH between 8 and 14, in a non-

oxidizing oxygen environment [463]. However, magnetite (Fe3O4) is not very stable and is 

sensitive to oxidation, which is transformed into maghemite (γ-Fe2O3) in the presence of 

oxygen. Various electron or ion transfers depending upon the pH of the suspension are 

involved also in the transformation of Fe3O4 into γ-Fe2O3. Two stages are involved in the 

coprecipitation process: A short burst of nucleation occurs when the concentration of the 

species reach critical supersaturation, and then, a slow growth of the nuclei by diffusion of 

the solutes to the surface of the crystal [464,465]. Many factors can be adjusted in the 

synthesis of IONPs to control size, magnetic characteristics, or surface properties 

[460,466,467]. The size and shape of the nanoparticles can be controlled by adjusting pH, 

ionic strength, temperature, nature of salts, and the concentration ratio of Fe2+/Fe3+. The 

influence of these parameters on magnetic properties and size has been studied in a basic 

coprecipitation process [468]. The addition of chelating organic anions (such as citric, 

gluconic, or oleic acid) or polymer surface complexing agents (such as dextran, starch, or 

polyvinyl alcohol) during the formation of IONPs can help to control the size of 
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nanoparticles. Depending on the molar ratio between the organic ion and the iron salts, the 

chelation of the organic ions on the iron oxide surface can prevent nucleation and lead to 

larger particles, or inhibit the growth of the crystal nuclei, leading to small nanoparticles 

[469]. The first controlled preparation of IONPs (Fe3O4) using alkaline precipitation of 

FeCl2 and FeCl3 was developed by Massart in 1979 without molecules for stabilization 

[470]. The magnetite (Fe3O4) particles was spherical with 8 nm of diameter measured by X-

ray diffraction (XRD). The parameters of this process were studied to demonstrate the 

influence of the base (ammonia, CH3NH2, and NaOH), the pH value, the cations added 

(NaOH, LiOH, KOH, and NH4OH) and the Fe2+/Fe3+ ratio on the yield of the coprecipitation 

reaction, the diameter and polydispersity of NPs [471]. Recently, several modified 

coprecipitation methods has been developed. For example, Pereira et al. [472] synthesize 

superparamagnetic Fe3O4 NPs with sizes of 4.9-6.3 nm by a one-step aqueous 

coprecipitation method based on the use of alkanolamines (e.g. isopropanolamine (MIPA) 

and diisopropanolamine (DIPA)) as base, leading to nanoparticles with enhanced 

magnetization and smaller size than those prepared with traditional bases (NaOH). 

Currently, many surfactants and biomolecules have been introduced directly in the 

coprecipitation process to resolve the problems of aggregation and biocompatibility of 

IONPs, which hinder their applications in biomedical fields. Salavati-Niasari et al. [461] 

have reported a facile chemical coprecipitation method for the synthesis of Fe3O4 NPs with 

a size range of 25 nm by using octanoic acid as surfactant in the reaction to improve the 

dispersity of nanoparticles. Recently, Suh et al. [462] reported an in situ synthesis of 

multifunctional and nonspherical magnetic IONPs with strong magnetic properties in a 

carboxyl functionalized polymer matrix, in which the iron ions diffused into the polymer 

particles, and chelate with the carboxylate groups, nucleated and finally grew to the IONPs 

in the polymer particles (Figure 37). This method can be used to add multiple 

functionalities, such as the addition of biomolecules after subsequent reactions. 
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Figure 37: Schematic showing the in situ co-precipitation synthesis process of IONPs 
in polymer [462]. 

The first example for the use of IONPs for cancer therapy was in 1957 [473]. Since that 

time, a lot of progress accompanied the synthesis and design of SPIONs. In the concept of 

SPIONs combined with alternating magnetic field for heat generation, a moderate 

hyperthermia treatment (42°C - 45°C) for a duration of 30–60 minutes showed an alteration 

of cellular metabolism depending of the applied thermal dose. Ablative temperatures more 

than 50 °C for a duration of 4 to 6 minutes cause irreversible damages in cancer cells which 

induce their necrosis [474,475]. In addition, the use of SPIONs as an internal heating sources 

destroy tumour tissues with high selectivity and low adverse effects [476]. Several studies 

have focused on the same concept of the SPIONs thermal ablation in vitro and in vivo for 

cancer therapy with highly interesting results regarding cancer cells destroying by the 

generation of heat spots [477,478].  

By conjugating multiple components such as fluorescent molecules, tumour-targeting 

moieties, anticancer drugs, to the polymer-coated SPIONs, these multifunctional 

nanoparticles can target human cancers, and they can also be imaged inside the body by both 

magnetic resonance (MR) and fluorescence imaging [479]. The capability to simultaneously 

image and treat tumours with nanoparticles may prove advantageous over conventional 

chemotherapy. Drug molecules are conjugated onto the surface modified magnetic 

nanoparticles, and then the organic/inorganic superparamagnetic nanohybrids are 

concentrated at a specific target site within the body by an external, high-gradient magnetic 

field [480,481]. Kohler et al. [479] developed a methotrexate-immobilized IONPs drug 

carrier that may potentially be used for real-time monitoring of drug delivery through MRI. 

Methotrexate (MTX) was immobilized on the nanoparticle surface via a poly(ethylene 

glycol) self-assembled monolayer (PEG SAM) (Figure 38). This method of MTX 
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immobilization by covalent binding creates a linker between the PEG SAM and the glutamic 

acid residue of the MTX molecule, which is stable under intravenous conditions. 

 

Figure 38: Immobilization of PEG-MTX on IONPs [479]. 

The PEG coating serves as a protective biological layer to improve particle stability, 

preventing particle agglomeration and protein adsorption and increasing efficiency of the 

particle internalization by target cells [482]. Further, the presence of the amide bond between 

the 3-aminopropyltriethoxysilane self-assembled monolayer and the PEG linker provides 

monolayer stabilization through hydrogen bonding [483]. It is envisioned that the covalent 

modification of the nanoparticle with MTX via an amide bond will result in release of the 

MTX through the action of proteinase K enzyme following intracellular uptake of the 

conjugate into the target cells. The cytotoxicity assay, and MRI, results of the NP-PEG-

MTX conjugates suggest that the nanoparticle conjugate developed by kohler et al. [479] 

may be a viable solution to chemotherapeutic drug delivery for treatment of gliomas and 

other cancers that highly express folate receptors. This nanoparticle conjugate demonstrated 

an increased MRI contrast enhancement through intracellular uptake by target cells. 

Leucovorin, an MTX antidote, was used to rescue the cells (9L glioma cells) that had been 

exposed to NP-PEG-MTX or free MTX, and the experiment verified the biocompatibility of 

NP-PEG-MTX conjugates and the MTX on NP-PEG-MTX conjugates to be the source of 

the cytotoxicity to the target cells. Kohler et al. demonstrated that the NP-PEG-MTX 
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conjugate can be specifically delivered to tumour cells, detectable by MRI, and induce 

cellular apoptosis, suggesting both the diagnostic and therapeutic roles of the developed 

nanoparticle conjugate. Chang et al. developed a pH-responsive drug release system based 

on the conjugates of PAMAM dendrimers-doxorubicin (PAMAM–DOX) and 

superparamagnetic iron oxide (Fe3O4) nanoparticles (IONPs) (Figure 39) [484]. The IONPs 

were stabilized by mPEG-G2.5 PAMAM dendrimers (PAMAM–DOX@IONPs). The 

anticancer drug DOX was conjugated to the dendrimer segments of amino-stabilized IONPs 

using hydrazine as the linker via hydrazone bonds, which is acid cleavable and can be used 

as an ideal pH-responsive drug release system.  

 

Figure 39: (A) Synthesis of mPEG-G2.5-DOX@IONPs, and (B) Direct exchange reactions 
between the monovalent capping ligand ODA and the mPEG-G2.5-DOX ligand [484]. 

The drug release profiles of DOX–PAMAM dendrimer conjugates were studied at pH 5.0 

and 7.4 (Figure 40). The results showed that the hydrolytic release profile can be obtained 

only at the condition of lysosomal pH (pH = 5.0), and IONPs participated in carrying DOX 

to the tumour by the Enhanced Permeability and Retention (EPR) effect.  
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Figure 40: The DOX release profile from the DOX conjugates in a releasing environment with 
pH values of 5.0 and 7.4 [484]. 

Moreover, Chang et al. found that DOX released from the conjugates were localized within 

the cells at the perinuclear regions as well as the nuclei, which can enhance the cytotoxicity 

of DOX and IONPs can be used as MR probe. These DOX conjugates have the potential to 

enhance the effect of MRI contrast and cancer therapy in the course of delivering anticancer 

drugs to their target sites by EPR [484]. 

Recently, Marcu et al. developed IONPs for targeted drug delivery in breast cancer. IONPs 

(8–10 nm) produced by laser pyrolysis, with uniform size and high magnetic properties were 

coated with the anthracycline antibiotic Violamycine B1 (VB1) and tested for the anti-

tumour effect on MCF-7 cells. VB1 has a high binding efficiency to DNA but its clinical 

use is not allowed due to severe side-effects, such as cardiotoxicity. VB1 is the only 

anthracycline antibiotic with two amino-sugar groups which are supposed to play a role in 

the coating process on the nanoparticle surface. VB1 was attached to nanoparticles by 

electrostatic interaction between iron oxide groups on to the surface of nanoparticles and 

amino sugars present of VB1. The drug delivery system produced by Marcu et al. may 

provide better and more targeted drug accumulation in the tumour cells, thus lowering the 

therapeutic dose and consequently the side-effects of chemotherapy [485]. 

NanoTherm® is the first therapeutic formulation of magnetic nanoparticles approved in 

Europe in 2010 for the treatment of glioblastoma multiforme (brain tumour). The concept is 

based on the use of iron oxide core in magnetite phase (Fe3O4) coated with aminosilane with 

average size ranges from 10 to 15 nm, by intratumoural injection. An alternating magnetic 

field is then applied causing the rapid rotation of the nanoparticles, therefore heating the 

tumour with the generated friction. Depending on the duration of treatment and the increase 
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of temperatures within the tumour, cancer cells are irreversible damaged or sensitized for 

additional chemo- or radiotherapy. With this procedure, it is possible to combat the tumour 

from within, while sparing surrounding healthy tissue. Due to their coating, the nanoparticles 

remain at the treatment site, allowing repeated treatments and multimodal therapy concepts. 

NanoTherm® is currently under clinical development within Phase I (feasibility studies) for 

local ablation in prostate cancer or Phase II (efficacy studies) for pancreatic and esophageal 

cancers [486,487]. 
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3. CARBON-BASED NANOSTRUCTURES 

 Among numerous types of nanomaterials developed in the past years, carbon 

nanomaterials have attracted particular interests in a large variety of fields including 

biomedicine [488–491], owing to their highly-enriched distinctive physical and chemical 

properties. Based on their covalent bonds linking their carbon atoms, carbon nanomaterials 

may be classified into sp2- and sp3-carbon nanomaterials (Figure 41). Typical sp2-carbon 

nanomaterials include zero-dimensional (0D) fullerene, one-dimensional (1D) carbon 

nanotubes (CNTs), and two-dimensional (2D) graphene, all with well-defined structures. 

Carbon nanoparticles (CNPs) or carbon dots (C-dots), are nano-clusters of amorphous 

carbon (or composed by small crystalline structures) with sizes smaller than 10 nm, and may 

also be deemed as a type of 0D sp2-carbon nanomaterials. Sp3-carbon nanomaterials, usually 

are nano-diamonds (NDs) with crystal sizes in the nano-range.  

 

Figure 41: Different types of carbon nanomaterials explored for biomedical applications. 

Many carbon nanomaterials, including CNTs, graphene derivatives, C-dots, and NDs, show 

interesting inherent optical properties such as fluorescence, making them useful contrast 

agents in optical imaging and sensing [492–495]. The excellent electrical properties of CNTs 

and graphene, allow them to be extensively used in a wide range of biosensing platforms 

[496,497]. Sp2-carbon nanomaterials especially single-walled carbon nanotubes (SWCNTs) 

and graphene with all carbon atoms exposed on their surfaces, exhibit ultra-high surface area 

available for efficient drug loading and bioconjugation [488,498–500]. For fullerene and 

CNTs with hollow structures, the inside space may be utilized to load other functional 

species for theranostic purposes [501,502]. CNTs and graphene derivatives with strong 

optical absorbance in the NIR region are also useful for photothermal ablation of cancer 

[503–506]. Moreover, compared with many other inorganic nanomaterials such as quantum 

dots (QDs), which usually contain heavy metals, carbon nanomaterials composed simply by 

carbon are relatively safe at least in term of elementary composition. 
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3.1. Fullerenes 

 Fullerene or Buckminsterfullerene (C60) is a carbon allotrope discovered in 1985 by 

Kroto, Curl and Smalley [25]. Fullerene are composed entirely of carbon, in form of a hollow 

sphere, ellipsoid or tube. Spherical fullerenes are also referred to as buckyballs (Figure 41). 

An important property of C60 molecule is its high symmetry. There are 120 symmetrical 

operations, like rotation around the axis and reflection in a plane, which map the molecule 

onto itself. This makes C60 the most symmetrical molecule [507]. The C60 fullerene surface 

contains 20 hexagons and 12 pentagons. All the rings are fused; all the double bonds are 

conjugated. Fullerenes belong to the class of inorganic nanoparticles and show wide 

availability due to their small size (~ 1 nm) and biological activity. However, the difficult 

processability of fullerenes has presented a major problem in hectic search for medicinal 

applications. C60 are insoluble in aqueous media and aggregate very easily [508]. There 

have been several attempts to overcome the poor solubility of fullerenes. They can be 

entrapped in cyclodextrins [509], calixarenes [510–512], polyvinylpyrrolidone [513], 

micelles and liposomes [514]. In addition, the combination of fullerenes and lipid 

membranes has led to very interesting results. Lipid bilayers are dynamically mobile 

structures, partially ordered and of biopharmaceutical interest for covering biocompatible 

surfaces or for the controlled release of drugs [515]. Various functionalizations have been 

utilized to increase the hydrophilicity (e.g. with amino acid, carboxylic acid, polyhydroxyl 

group, amphiphilic polymers) and to prepare new compounds presenting biological and 

pharmacological activity. The empty interior cavity of the fullerene molecule makes it an 

ideal site for containment of a metal atom to form metallofullerene. This special structure of 

metallofullerene shows advantages compared to the metal itself or metal chelate complexes. 

One of their most important and novel electronic properties is the so-called intra-fullerene 

electron transfer from the encaged metal atom to the fullerene cage, which has been 

suggested to use in MRI [516]. Most likely due to its unique chemical structure, C60 

possesses interesting photo-physical properties and generates reactive oxygen species (ROS) 

by exposure to visible light, making it a potentially strong agent for photodynamic therapy 

in biological systems [517]. The specific physicochemical properties of fullerenes promoted 

the development of tumour theranostic; consequently, functionalized fullerenes are currently 

under extensive investigation due to their potential application to cancer imaging such as 

MRI [518–521] and cancer therapy such as photodynamic therapy (PDT) [522–524], 

radiotherapy [525,526] and chemotherapeutics [501,527,528].  
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Among many imaging strategies, such as optical imaging (OI), computed tomography (CT), 

MRI, ultrasound (US), and radionuclide imaging with positron emission tomography (PET), 

MRI is a versatile, non-invasive medical diagnostic technique that can provide both 

physiological and anatomical information, while not requiring the use of ionizing radiation. 

In addition, in many applications it is often the most sensitive method available to depict 

soft tissues. Therefore, it has been extensively used for brain and central nervous system 

imaging, for assessing cardiac function and for detecting abnormal tissues such as tumours 

[529]. Paramagnetic metal ions, especially gadolinium (Gd3+), have been proposed as MR 

contrast agents. Conventional T1 contrast agents have been developed in the form of more 

stable and less toxic metallochelates, including gadolinium(III) diethyltriaminepentaacetic 

acid (Gd(III)-DTPA) and gadolinium-tetraazacyclododecanetetraacetic acid (Gd(III)-

DOTA), which are currently marketed as Omniscan® and ProHance®, respectively 

[258,530]. However, the main limitation for Gd3+ chelate complexes is the release of metal 

ions in vivo during metabolic processes and the subsequent toxicity. Since gadolinium-

containing metallofullerenes were first used as excellent contrast agents for MRI with 

relatively high spatiotemporal resolution, they have attracted much attention for their 

potential application in clinical diagnosis. The Gd3+ ion encapsulated in the fullerene cage, 

preserves the properties of the metal ion, avoids any leakage and thus prevents its 

dissociation in vivo [530]. After specific chemical modifications, various Gd@Cn (n=60, 82) 

derivatives have been developed and widely explored (Figure 42) [531,532]. 

 

Figure 42: Schematic representation of (A) Gd@C60[C(COOH)2]10, (B) Gd@C60(OH)x, (C) 
Gd@C82(OH)22 [531,532]. 

Gd@C82(OH)n has shown a water proton relaxivity twenty times higher than the commercial 

Gd-DTPA. After intravenous (i.v) administration of Gd@C82(OH)40 at a dose of 1/20 of the 

typical clinical dose of Gd-DTPA, a higher signal enhancement was measured in vivo 

(Figure 43) [518]. To achieve better bio-distribution, modification of the fullerene cages 

with biologically active groups has often been proposed. For example, the organic 
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phosphonate modified Gd@C82O2(OH)16(C(PO3Et2)2)10 has exhibited high affinity to bone 

[533]. 

 

Figure 43: (A) T1-weighted MRI of Gd@C82(OH)40 and Gd-DTPA phantom at a concentration 
of 0.05, 0.1, and 0.2 mmol Gd/L, (B) CDF1 mice before and 30 min after i.v. administration of 
Gd@C82(OH)40 via tail vein as a dose of 5 μmol Gd/kg [518]. 

However, tumour-targeting by directly administering fullerenes into tumour tissue is 

certainly a subsequent challenge for tumour imaging. Shu et al. conjugated antibodies of the 

green fluorescent protein (anti-GFP) to endohedral gadofulleride, Gd@C82O6(OH)16-

(NHCH2CH2COOH)8, as a model for “tumour-targeted” imaging agents, and could be 

detected by using a fluorescent GFP probe. The results revealed that the antibody activity 

was well preserved after the conjugation, and the MRI activity was higher than that of 

unconjugated gadofulleride [520]. Recently, a more encouraging result was obtained. 

Fillmore et al. conjugated a carboxyl functionalized metallofullerene 

Gd3N@C80(OH)26(CH2CH2COOH)16 to an interleukin-13 (IL-13) peptide, the receptor of 

which was expressed on glioblastoma multiforme cells. This preliminary finding 

demonstrated that functionalized gadolinium metallofullerenes could serve as a platform to 

deliver imaging and therapeutic agents to tumour cells [521]. 

Photodynamic therapy (PDT) is a non-invasive treatment for various types of tumour. The 

combination of a photosensitizing agent and focused irradiation is used to controlled 

production of reactive oxygen species in a localized area, leading to cell destruction. By 

using highly focused light irradiation, photodynamic therapy has the potential to act 

specifically at the desired site of action with low levels of collateral damage to healthy cells 

[534]. Fullerenes can efficiently generate reactive oxygen species when exposed to visible 

light, which means it may be an effective cytotoxic agent. 

After the ideal molecular size, water-solubility, and tumour targeting were developed 

through various modifications, functionalized fullerenes are now available for cancer PDT 
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both in tumour cells and tumour-bearing mice [535,536]. Liu et al. demonstrated the use of 

poly ethylene glycol (PEG)-conjugated fullerene containing Gd3+ ions for photodynamic 

therapy in combination with magnetic resonance imaging (MRI). The authors demonstrate 

through experimental data that tumour PDT effect was significantly promoted by 

photosensitizer tumour targetability and MRI activity. C60-PEG-Gd was injected into 

tumour bearing mice. The MRI activity was introduced into C60-PEG of PDT 

photosensitizer. The chelate incorporation of Gd3+ ions could convert C60-PEG derivative 

to a photosensitizer with both the diagnostic and therapeutic functions [537]. Ji et al. also 

studied the biodistribution and tumour uptake of C60(OH)x in five kinds of tumour models 

by radiotracer 125I-labeled C60(OH)x. The accumulation ratios of 125I-C60(OH)x in tumour 

compared to normal muscle tissue (T/N) and blood (T/B) at different time points revealed 

that C60(OH)x could be accumulated in several tumours readily and persistently, especially 

in mouse H22 hepatocarcinoma, suggesting that it could be used as a good photosensitizer 

in photodynamic tumour therapy [538].  

Besides surgery, chemotherapeutics is another principal method for tumour therapy. In 

recent years, functionalized fullerenes have been found to have some good characteristics to 

aid with antitumour treatments, and some of them have exhibited the potential for tumour 

inhibition [539]. Zhu et al. also tested the tumour-inhibitory effect of C60(OH)x on the 

murine H22 hepatocarcinoma model [527]. In the C60(OH)x treated group, significant 

tumour inhibition rates and reduced damage to liver were shown, in accordance to the 

histological results of inhibited tumour infiltration. Additionally, the anti-metastatic 

activities of fullerenol C60(OH)20 was observed in cancer metastasis models [528]. Mroz et 

al. investigated the photodynamic activity of fullerenes derivatized with hydrophilic and 

cationic groups against a range of mouse cancer cell lines [524]. They found that, 

monocationic fullerene is highly effective photosensitizer for killing cancer cells by rapid 

induction of apoptosis after illumination. 

Moreover, some fullerenes could increase the chemo-sensitization of tumour cells to 

chemotherapeutic agents and result in antitumour drug-mediated cell death, especially in 

some drug-resistant cancer cells [501].  

The direct delivery of drugs and biomolecules through cell membrane into cells has attained 

increasing attention and has put a main focus on the development of efficient and safe 

carriers to transport drugs. Transport of any compound into the nucleus of an intact cell is a 

major challenge, as transfer is limited by at least three membrane barriers, which are the cell 
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membrane, the endosomal membrane and the nuclear membrane. A fullerene-paclitaxel 

conjugate (Figure 44) has been designed by Zakharian et al. as a slow-release drug for 

aerosol liposome delivery of paclitaxel for lung cancer therapy via enzymatic hydrolysis 

[540]. 

 

Figure 44: Fullerene-Pacliltaxel Conjugate [540]. 

The C60-paclitaxel conjugate is stable in the solid state and in aprotic organic solvents as 

well as in aqueous media (10% DMSO) at physiological pH. However, incubation of C60-

paclitaxel conjugate with bovine plasma at 37 °C resulted in the release of paclitaxel, with 

the half-life of hydrolysis around 80 min. Assuming a similar half-life for C60-paclitaxel 

conjugate in vivo and the ability of C60-paclitaxel conjugate to remain in lungs, a several-

fold increase in the exposure time of cancer cells to the drug should be achieved by C60-

paclitaxel conjugate since the half-life of paclitaxel itself in the lungs has been reported to 

be only 20 min after delivery by aerosol [541]. A liposome formulation of the C60-paclitaxel 

conjugate has been prepared using dilauroylphosphatidylcholine (DLPC), and showed a 

significant anticancer activity in human epithelial lung carcinoma A549 cells. With both 

clinically relevant kinetics of hydrolysis and significant cytotoxicity in tissue culture, the 

C60-paclitaxel conjugate holds promise for enhanced therapeutic efficacy of paclitaxel in 

vivo [540]. Furthermore the ability of fullerenes to penetrate through intact skin is widening 

their application in cellular drug delivery [542]. 

 

3.2. Carbon nanotubes 

 Carbon nanotubes (CNTs) represent one of the most studied allotropes of carbon. Since 

their discovery in 1991 by Sumio Iijima [26], CNTs have raised considerable attention due 

to their important electrical, chemical, thermal, mechanical, and structural properties which 

have made them an area of great research interest [543]. The large surface area, size stability 

on the nanoscale, ability to encapsulate therapeutic/diagnostic agent and suitability for 
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surface modifications made CNTs suitable for theranostic applications [544–546]. The 

carbon atoms in CNTs are arranged to form a cylinder of graphite layers. CNTs are classified 

into single-walled carbon nanotubes (SWCNTs) which are formed of one layer of graphene 

have diameters of around 0.4-2 nm and are several micrometers long, with an empty internal 

space; or multi-walled carbon nanotubes (MWCNTs) which are formed of multiple layers 

of graphene. CNTs are commonly synthesized by chemical vapor deposition (CVD), laser-

ablation method, and arc-discharge method (Figure 45) [546–548].  

 

Figure 45: Schematic illustration showing different synthesis methods of carbon nanotubes. 
(A) Chemical vapor deposition (CVD) method used for carbon nanotubes synthesis. (B) Laser-
ablation technique used in the synthesis of carbon nanotubes. (C) Carbon arc-discharge 
technique performed to synthesize carbon nanotubes [549]. 

Through appropriate functionalization (Figure 46), CNTs have been used as nanocarriers to 

transport anticancer drugs, genes, and proteins for chemotherapy. They have also been used 

as mediators for photothermal therapy (PTT) and photodynamic therapy (PDT) to directly 

destroy cancer cells. Therefore, the interaction between CNTs and the biological 

environment is very complex and sometimes unpredictable. Researchers have found that 

CNTs can show different levels of toxicity depending on their synthesis, surface-to-volume 

ratio, shape, concentration, aspect ratio, extent of oxidation, composition, functional groups, 

and the applied dosage [550,551]. 
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Figure 46: Different functionalization strategies of CNTs showing (i) cycloaddition with in situ 
generated dichlorocarbene, (ii) photoinduced generation of reactive nitrenes, (iii) 
functionalization by nitrenes, (iv) 1,3 dipolar cycloaddition of azomethine ylides, (v) reaction 
scheme for fluorination of nanotubes, defunctionalization, and further derivatization; (vi) 1,3 
dipolar cycloaddition of nitrile amines; (vii) reaction pathway for obtaining water-soluble 
ammonium-modified nanotubes [552].   

In addition, CNTs are highly hydrophobic, which plays a major role in reducing their 

biocompatibility [553]. Therefore, it is critical to functionalize CNTs to make them more 

soluble and allow their integration into many organic, inorganic, and biological systems and 

applications [552]. CNTs have the ability to damage the DNA and the cell membrane as 

well. They can also cause toxicity through oxidative stress, mitochondrial activities 

modification, protein synthesis, and altered intracellular metabolic routes [551]. The most 

common CNTs mechanisms that lead to cytotoxicity also include necrosis and apoptosis 

[551]. There are three main approaches for CNTs modification, namely, (a) the covalent 

functionalization of the π-conjugated skeleton of CNTs using various chemical groups and 

reactions; (b) the endohedral filling of their inner empty cavity; and (c) the noncovalent 

adsorption of numerous functional bio/molecules (Figure 47) [552]. 
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Figure 47: Modification possibilities for CNTs (A) covalent sidewall functionalization, (B) 
Endohedral functionalization of the inner empty cavity, (C) Non-covalent surfactant 
encapsulation, and (D) Non-covalent polymer wrapping [554]. 

Covalently conjugated drug molecules are linked to the functional groups on the CNTs 

surface or to the polymer coating of CNTs, usually via cleavable bonds. Anti-cancer drugs 

were linked by 1,3-dipolar cycloaddition to functionalized CNTs via amide bonds for drug 

delivery [555,556]. 

Traditionally, chemotherapy is used to diminish cancers with other treatment techniques 

such as radiation and surgery. However, during treatment, undesirable toxicity narrows the 

therapeutic window, and the nonspecificity of drugs can increase drug resistance [557]. 

Therefore, new methods for delivering anticancer molecules specifically to tumours to 

reduce side effects and improve therapeutic efficacy are greatly needed. Many drug delivery 

systems have been designed using CNTs for the treatment of a variety of diseases. In fact, 

CNTs-based anticancer drugs have attracted much attention, and depend on two strategies: 

(1) selective targeting, which is accomplished through functionalization with specific 

tumour receptors, and (2) the controlled release of the drugs usually present in tumour 

environment such as lower pH [558–560]. Aromatic molecules with a flat structure can be 

adsorbed on the surface of CNTs via non-covalent π-π stacking. In 2007, Liu et al. 

discovered that DOX could be stacked on the surface of PEGylated SWCNTs with a 

remarkably high loading capacity of up to 4 grams of DOX per 1 gram of CNTs (Figure 

48A), owing to the ultra-high surface area of SWCNTs [561]. DOX bounded onto SWCNTs 

was pH-dependent, decreasing from a loading factor of ∼4 to ∼2 and ∼0.5 as pH was 

reduced from 9 to 7 and 5, respectively (Figure 48B). This trend was attributed to the 

increased hydrophilicity and higher solubility of DOX at lower pH caused by increased 
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protonation of amino groups on DOX, thereby reducing the hydrophobic interaction between 

DOX and SWCNTs. In term of release, DOX stacked on SWCNTs remained stably bound 

in physiological buffers. In an acidic solution of pH 5.5, they observed a release of DOX 

from SWCNTs by ∼40% over 1 day, attributed to the increased hydrophilicity and solubility 

of DOX at this pH (Figure 48C) [561]. The pH-dependent drug release from SWCNTs 

could be exploited for drug delivery applications since the micro-environments of 

extracellular tissues of tumours and intracellular lysosomes and endosomes are acidic, 

potentially facilitating active drug release from SWCNT delivery vehicles. 

 

Figure 48: (A) A scheme showing supramolecular π-π stacking of DOX on PEGylated 
SWCNTs, (B) Doxorubicin loading efficiency at various pH values for SWCNTs, and (C) 
Doxorubicin retained on PL-PEG-SWCNTs over time in buffers at the three pH values 
indicated [561]. 

PEGylated SWCNTs loaded with DOX by π-π stacking could also be used for in vivo cancer 

treatment in a Raji B-cell lymphoma model. The SWCNT-DOX complex, while only 

exhibiting marginally improved tumour growth inhibition compared with free DOX, was 

much less toxic to the treated mice, thus offering a remarkably improved therapeutic 

outcome (Figure 49) [562]. 
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Figure 49: In vivo doxorubicin delivery with carbon nanotubes for cancer treatment. (A) A 
scheme showing supramolecular π-π stacking of DOX on PEGylated SWCNTs. (B) Tumour 
sizes of untreated (n = 7), 5 mg/kg free DOX treated (n = 10, 2 mice died in the second week), 
5 mg/kg Doxil treated (n = 5), 5 mg/kg SWCNT-DOX treated (n = 10) and 10 mg/kg SWCNT-
DOX treated (n = 10) mice were measured. (C) SWCNT-DOX resulted in far less weight loss 
than DOX and DOXIL. Averaged tumour volumes and body weights were normalized to day 
0 [562]. 

Using a similar strategy, Ali-Boucetta et al. formed MWCNTs complexes with DOX via π–

π stacking interactions. Their complexes showed enhanced cytotoxicity in human breast 

cancer MCF-7 cells [563]. The enhanced cytotoxicity suggests that MWCNTs can mediate 

the delivery of doxorubicin and hence improve the cellular uptake of the drug.  

In another study, Tian et al. prepared the poorly water-soluble anticancer Camptothecin 

(CPT)-loaded MWCNTs with tri-block copolymer through π–π stacking interactions to 

improve antitumour activity. The MWCNTs were coated with the tri-block copolymer 

Pluronic P123 to enhance aqueous solubility. The polymer-coated MWCNTs formed non-

covalent supramolecular complexes with CPT. In vitro cytotoxicity studies using HeLa cells 

showed that these complexes had enhanced antitumour activity compared to free CPT. These 

results suggest that functionalized MWCNTs improve the activity of anticancer drugs [564]. 

Tripisciano et al. encapsulated irinotecan, a more water-soluble semisynthetic analog of 

CPT, within MWCNTs. It was observed that a larger inner diameter tube exhibited higher 

filling amount of irinotecan than a smaller one and a loading efficiency of 32% was 

achieved. Because the stability and hydrophilicity of irinotecan are increased under acidic 

conditions (tumour environment), rapid and complete release was observed (pH 6.0 vs 7.0) 

in a mild acidic environment [565].  
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Paclitaxel is a poorly water-soluble anticancer molecule. The commercialized paclitaxel 

product (Taxol) used Cremophor EL to solubilize the drug. Unfortunately, the toxicity of 

Cremophor EL itself makes finding a suitable alternative a high priority. Moreover, the 

circulation time of Taxol is very short. Coating the nanocarriers with hydrophilic polymers 

such as polyethylene glycol (PEG) has been established as a strategy to prolong circulation 

of the nanocarrier-entrapped molecules in the blood by making the carrier highly evasive to 

uptake by the blood macrophages [566,567]. PEGylation of paclitaxel increases the 

circulation time in the blood over Taxol [568]. Liu et al. conjugated functionalized SWCNTs 

with paclitaxel (PTX) through branched PEG chains via a cleavable ester bond to obtain a 

SWCNT-PTX conjugate highly soluble and stable in aqueous solutions (Figure 50A). They 

performed an in vitro cell toxicity tests with a 4T1 murine breast cancer cell line and found 

that SWCNT-PTX exhibited similar toxicity as Taxol and PEGylated PTX without any loss 

of cancer cell destruction ability (Figure 50B).  

 

Figure 50: (A) Schematic illustration of PTX conjugation to SWCNT functionalized by 
phospholipids with branched PEG chains. (B) Cell survival versus concentration of PTX for 
4T1 cells treated with Taxol, PEG-PTX, DSPE-PEG-PTX, or SWCNT-PTX for 3 d. The PTX 
concentrations to cause 50% cell viability inhibition (IC50 values) were determined by 
sigmoidal fitting to be 16.4 ± 1.7 nmol/L for Taxol, 23.5 ± 1.1 nmol/L for DSPE-PEG-PTX, 28.4 
± 3.4 nmol/L for PEG-PTX, and 13.4 ± 1.8 nmol/L for SWCNT-PTX [569]. 

The strong therapeutic efficacy of SWCNT-PTX is shown by its ability to slow down tumour 

growth in vivo even at a low drug dose (5 mg/kg PTX). They observe higher tumour uptake 

of PTX and higher ratios of tumour to normal organ PTX uptake for SWCNT-PTX than 
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Taxol and PEG-PTX, highly desired for higher treatment efficacy and lower side effect 

(Figure 51) [569].  

 

Figure 51: Tumour growth curves of 4T1 tumour-bearing mice that received different 
treatments indicated. The same PTX dose (5 mg/kg) was injected (on days 0, 6, 12, and 18, 
marked by arrows) for Taxol, PEG-PTX, DSPE-PEG-PTX, and SWCNT-PTX. *P < 0.05; 
**P < 0.01; ***P < 0.001, Taxol versus SWCNT-PTX. Number of mice used in experiments: 8 
mice per group for untreated, 5 mice per group for SWCNT only, 9 mice per group for Taxol, 
5 mice per group for PEG-PTX, 6 mice per group for DSPE-PEG-PTX, and 14 mice per group 
for SWCNT-PTX. Inset, a photo of representative tumours taken out of an untreated mouse 
(left), a Taxol-treated mouse (middle), and a SWCNT-PTX–treated mouse (right) after 
sacrificing the mice at the end of the treatments [569]. 

As compared to DOX, PTX has much lower solubility in aqueous solution and has no 

extended π-structures larger than one aromatic ring. PTX cannot be loaded onto CNTs by 

adsorption from aqueous solution directly like DOX. Lay et al. developed an approach to 

physically load PTX onto the side walls of CNTs by immersing PEGylated SWCNTs or 

MWCNTs in a saturated solution of PTX in methanol. The physical loading of PTX onto 

the side walls of PEGylated CNTs might be attributed to a strong hydrophobic interaction 

among PTX and the side walls of CNTs. Due to the low solubility of PTX in aqueous 

solution, the release rate of free PTX is very slow. After loaded PTX onto CNTs, they can 

be released faster but still in a sustained profile. Both PEGylated SWCNTs and MWCNTs 

show low cytotoxicity in HeLa cells and MCF-7 cells, but PTX loaded PEGylated SWCNTs 

and MWCNTs have strong efficacy to kill cancer cells with IC50 lower than free PTX [570]. 

Platinum (Pt) based compounds have been studied as a class of effective anticancer agents 

[571]. They kill cancer cells by chelating DNA and forming adducts that affect key cellular 

processes, such as transcription and replication, and trigger apoptosis [572]. Inert Pt(IV) 
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prodrugs and the combination between Pt(II) drugs and drug carriers have been widely 

studied [573,574]. Pt(IV)-conjugated CNTs were constructed to effectively deliver cisplatin 

[575–579]. Therefore, targeted drug-delivery constructs are much desired. In general, a 

tumour-targeting drug-delivery system consists of a cell surface recognition moiety and a 

chemical warhead connected directly or through a suitable linker to a delivery system such 

as a SWCNTs (Figure 52). The conjugate itself should be nontoxic and the linker must be 

stable in blood circulation. Upon internalization into the cancer cell, the conjugate should be 

readily cleaved to generate the active agent. 

 

Figure 52: Targeted prodrug-delivery system [575]. 

A variety of receptors have been identified as markers for carcinomas. Among these is the 

folate receptor (α-FR), and its substrate folic acid (FA) has the potential to target several 

types of cancer cells because of its ability to react with this high-affinity, membrane-

anchored protein [580]. Expression of α-FR on tumour cell surfaces has led to the 

exploitation of FA as an important ligand for specific targeting by diagnostic or therapeutic 

cancer cell agents [581,582]. 

Dhar et al. have developed amine-functionalized SWCNTs (SWCNTs-phospholipid-PEG-

NH2) as a “longboat delivery system” for targeting delivery of cisplatin upon reduction in 

the cell (Figure 53). They designed a Pt(IV) complex having succinate as one of its axial 

ligands for conjugation with amine-functionalized SWNTs. The second axial ligand contains 

a folic acid derivative separated from the platinum center by a PEG spacer. The use of PEG 

makes the compound more water soluble and biocompatible. Pt(IV) complex has been 

reported to be taken up by cancer cells via endocytosis, followed by the release of the drug 

and its subsequent interaction with the nuclear DNA [575].  
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Figure 53: The “longboat” anticancer system in which the chemotherapeutic agent cisplatin is 
attached from one end to the FA derivative and from the opposite end to a SWCNT via an 
amide link [575]. 

Magnetic functionalization of CNTs combined with Pt-based anticancer agents show 

potential as magnetic carriers in drug delivery. Yang et al. developed magnetic CNTs 

containing anticancer agents [576]. Magnetite (Fe3O4) nanoparticle layers were synthesized 

on the inner surface of CNTs, and chemotherapeutic agents, such as 5-fluorouracil and 

cisplatin, were incorporated into the pores of the CNTs. Individualized CNTs were non-

covalently functionalized by phospholipids with a PEG moiety and FA terminal group to 

enhance drug delivery to cancer cells. Their magnetic CNTs were retained in the draining 

targeted lymph nodes for several days and continuously released chemotherapeutic drugs, 

enabling the selective killing of tumour cells. They also studied the lymphatic distribution 

of magnetic CNTs in vivo [583]  . They prepared magnetic MWCNTs functionalized with 

poly(acrylic acid), which were subcutaneously injected into mice. The degree of black 

staining of lymph nodes and the concentration of magnetic CNTs were found to be dose 

dependent. The injection of CNTs did not show local or systemic toxicity. Their results 

demonstrated the potential of using magnetic CNTs for diagnosing and treating cancer. 

Another platinum anticancer, namely, carboplatin, after being incorporated into CNTs has 

been shown to inhibit the proliferation of urinary bladder cancer cells in vitro. In another 

study, anticancer effects have been shown to be dependent on the method used to entrap the 

drug in the CNTs, which highlighted the possible effects of preparation conditions on the 

therapeutic activity of therapeutic molecules associated with CNTs [584].  
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Chemical functionalization of CNTs offers the advantage that the functional groups, further 

modified with a therapeutic, targeting or imaging molecule, are stably attached on the 

nanotube backbone, and therefore avoid the risk of macromolecule desorption or exchange 

with serum proteins and other blood components following administration. For example, 

Khazaei et al. found that covalent functionalization of SWCNT with amide and ester bonds 

facilitates the slow administration of drug for longer periods and improves the solubility in 

aqueous and organic media [585]. Recently, Das et al. designed a theranostic MWCNTs by 

including acid-oxidized MWCNTs with four varieties of functional moieties: a 

fluorochrome (Alexa-fluor, AF488/647), targeting agent (i.e, folic acid), radionucleide 

(Technitium-99m), and methotrexate (MTX). MTX was conjugated to MWCNTs via a 

serum-stable yet intracellularly hydrolysable ester linkage to ensure minimum drug loss in 

circulation. The cellular uptake studies showed the selective internalization of theranostic 

MWCNTs by folate receptor positive human lung (A549) and breast (MCF-7) cancer cells 

through folate receptor mediated endocytosis. The tumour specific accumulation of targeted 

theranostic MWCNTs in xenografted mice after 24 h was 19.14 and 8.62 times higher in 

comparison to free and non-targeted theranostic MWCNTs. This study shows the controlled 

delivery of MTX from theranostic MWCNTs, receptor mediated delivery, optical 

detectability of fluorochromes, and radio-traceability of 99mTc. MWCNTs could be a 

promising multimodal theranostic platform for cancer diagnosis and therapy [586]. 

Because of the unique properties of CNTs that can generate singlet oxygens, which are 

cytotoxic, through photochemistry and generate significant amounts of heat upon excitation 

with NIR light, CNTs have been evaluated as candidate materials in photothermal therapy 

(PTT) and photodynamic therapy (PDT). PTT and PDT are two methods that can be utilized 

for cancer treatment and show noninvasiveness and minimal side effects compared to other 

strategies including radiotherapy and chemotherapy (Figure 54) [587]. 
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Figure 54: PTT and PDT using CNTs [587]. 

CNTs can effectively absorb NIR light, and the absorbed NIR light transmits heat to the 

nanotubes. Therefore, when the optical coupling effect of light and CNTs is applied, external 

heat energy can be transmitted inside the body [588]. This unique property of CNTs has 

been exploited as a method for killing cancer cells via thermal effects [506,589–591]. The 

optical coupling of light with CNTs can be enhanced by the surface defects of CNTs and by 

creating intentional surface defects to increase nanotube heating [589]. This 

physicoelectronic characteristic of the engineered CNTs can be employed to thermally 

destruct the tumour cells by using CNTs that have good heat conducting properties.  

Torti et al. proposed a photo-ablative model using MWCNTs and NIR light to kill kidney 

cancer cells. They confirmed that an effective NIR coupling effect occurs at nanotube 

lengths exceeding half of the wavelength of the radiating NIR, as demonstrated by the 

antenna theory. This radiation increased the temperature of MWCNTs through induction 

processes, and then the generated heat from MWCNTs was transferred to the surrounding 

media to continue killing cancer cells at lower radiation doses. Their work showed that 

nanotube lengths of 700 and 1100 nm are much more desirable in killing tumour cells 

compared with the length of 300 nm (Figure 55) [589]. 
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Figure 55: Comparison plot of 300, 700 and 1100 nm nanotube lengths versus cell survival 
[589]. 

Zhou et al. utilized SWCNTs with a uniform size (~0.81 nm) and a narrow absorption peak 

at 980 nm for selective PTT to kill cancer cells. Their SWCNTs were conjugated to FA, 

which can specifically bind to the tumour surface. The FA-SWCNT-targeted tumour cells 

were irradiated by a 980 nm laser. According to in vitro and in vivo experiments, FA-

SWCNTs effectively improved the photothermal destruction of tumour cells while 

noticeably minimizing the photothermal destruction of nontargeted normal cells. The 

combination of laser and SWCNTs showed remarkable efficacy for suppressing breast 

cancer growth and complete tumour regression in some cases [590]. Moon et al. studied the 

in vivo obliteration of solid malignant tumours by combined treatment with SWCNTs and 

NIR irradiation (Figure 56) [506]. The tumours were completely destroyed in mice in the 

photothermal treatment group, and harmful side effects or tumour recurrence was not 

observed over 6 months. However, the tumours in other control groups treated only with 

SWCNTs or NIR irradiation continued to grow until the mice eventually died. In addition, 

most injected SWCNTs were excreted from the bodies of mice within 2 months via the 

biliary or urinary pathways. 
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Figure 56: PTT for in vivo tumour ablation using PEG-SWNTs: (A) schematic view of the 
procedure and results of PEG-SWNTs mediated photothermal treatment of tumours in mice; 
(B) photograph of a mouse bearing KB tumour cells (∼70 mm3); (C) photograph of a mouse 
after intratumoural injection of PEG-SWNTs solution (∼120 mg/L, 100 μL); (D) photograph 
of NIR irradiation (808 nm, 76 W/cm3) for 3 min to tumour region [506]. 

PDT is a noninvasive cancer therapy with minimal side effects. To utilize PDT, a light 

source, photosensitizer, and molecular oxygen are required (Figure 54). After the uptake of 

a photosensitizer into cancerous cells, the photosensitizer is activated by light at a specific 

wavelength and the excited photosensitizer transfers energy to oxygen molecules. Energy 

received by oxygen in a ground state is changed to excited singlet oxygen, which is 

cytotoxic. This cytotoxic oxygen irreversibly damages cancerous cells [592]. Thus, CNTs 

show great potential as carriers of photosensitizers. Erbas et al. proposed a pyrenyl-

functionalized distyryl-Bodipy PDT sensitizer, which is attached to SWCNTs via non-

covalent π–π stacking. This sensitizer generated singlet oxygen when excited at 660 nm with 

a red light emitting diode array and showed slightly lower activity than the free compound. 

This work revealed the potential of SWCNTs as alternative carriers with a visibility of PDT 

sensitizers [593]. In another study, Huang et al. studied polyamidoamine dendrimer-

modified MWCNTs as carriers of the photosensitizer 5-aminolevulinic acid (5-ALA) for 

tumour treatment. The incubation of human gastric cancer MGC-803 cells with the 

nanocomposites resulted in significant accumulation of protoporphyrin IX in the tumour 

cells and substantially increased their destruction after PDT treatment at 632 nm. Their 
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results suggested that these nanocarriers have remarkable photodynamic antitumour effects 

[594]. Although PDT-based cancer therapy is currently in an early stage of development, 

PDT has shown potential for selective and controllable treatments. 

 

3.3. Carbon Nanoparticles or Carbon dots 

 Carbon nanoparticles (CNPs) or carbon dots (C-dots) are a new class of carbon 

nanomaterials have been acknowledged as quasispherical particles with sizes below 10 nm 

[27,595]. The accidental discovery of C-dots during the separation and purification of 

SWCNTs by Xu et al. in 2004 triggered subsequent studies to exploit the fluorescence 

properties of C-dots and create a new class of viable fluorescent nanomaterials [27]. 

Fluorescent CNPs received their name carbon quantum dots (CQDs), or carbon dots (C-

dots), or carbon nanodots (CNDs) in 2006 from Sun et al. who proposed a synthetic route to 

produce C-dots with much enhanced fluorescence emissions via surface passivation [493]. 

C-dots contain amorphous to nanocrystalline cores with predominantly graphitic or 

turbostratic carbon (sp2 carbon) or graphene and graphene oxide sheets fused by diamond-

like sp3 hybridized carbon insertions (Figure 57) [596]. 

 

Figure 57: Chemical structure of C-dots [596]. 

As shown in Figure 57 there are many carboxyl moieties on the C-dots surface, which 

impart excellent water solubility and suitable chemically reactive groups for further 

functionalization and surface passivation with various organic, polymeric, inorganic or 

biological materials to C-dots. Upon surface passivation, the fluorescence properties of C-

dots are enhanced. Surface functionalization also modifies their physical properties, like 

their solubility in aqueous and non-aqueous solvents [30,596]. C, O and H are the main 

components and elements of C-dots. Meanwhile, a number of heteroatom-doped C-dots can 

also be created. Resulting from their diverse composition and alterable structure, 
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advantageous characteristics of C-dots have been found, such as tunable fluorescence with 

high quantum yield, high water solubility, excellent chemical stability, non-toxicity, good 

biocompatibility and ease of modification. Particularly, C-dots have wide applications 

including bioimaging [30,597–599], drug delivery [491,600–602], photodynamic therapy 

[603–605], sensors [36,606–608], optoelectronics [609] and photocatalysis [610]. 

Moreover, researchers recently found that C-dots exhibit strong luminescence upon two-

photon excitation in the near-infrared (NIR) region, which further expands their applications 

in bioimaging [32,611]. In fact, the colorful photoluminescence, high photostability, and low 

toxicity of C-dots enable them strong competitors and potential alternatives to those heavy 

metal-based semiconductor quantum dots (QDs) currently in use [612].  

In recent years, much progress has been made in terms of the synthesis, properties and 

applications of C-dots [612,613]. Many methods have been proposed to prepare C-dots 

during the last decade, which can be roughly classified into “Top-down” and “Bottom-up” 

approaches, and they can be modified during preparation or post-treatment. Top-down 

methods consist of arc discharge [27], laser ablation [30–32,34,493,614], and 

electrochemical oxidation [615–618], where the C-dots are formed or “broken off” from a 

larger carbon structure. Bottom-up approaches consist, for example, of 

combustion/thermal/hydrothermal [619–624], microwave [625], or ultrasonication methods 

[611,626] during which the C-dots are formed from molecular precursors. Typically, their 

surfaces are oxidized by nitric acid (HNO3) and further purified by using centrifugation, 

dialysis, electrophoresis, or another separation technique. Three problems facing C-dots 

preparation need to be noticed: (a) carbonaceous aggregation during carbonization, which 

can be avoided by using electrochemical synthesis, confined pyrolysis or solution chemistry 

methods, (b) size control and uniformity, which is important for uniform properties and 

mechanistic study, and can be optimized via post-treatment, such as gel electrophoresis, 

centrifugation, and dialysis and (c) surface properties that are critical for solubility and 

selected applications, which can be tuned during preparation or post-treatment. 

 

3.3.1. Synthetic Methods of C-dots 

3.3.1.1. Top-Down Approaches 

3.3.1.1.1. Arc-Discharge Methods 

 In 2004, Xu et al. isolated an unknown fluorescent carbon nanomaterial while 

purifying SWCNTs derived from arc-discharge soot (Figure 58). To improve the 
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hydrophilicity of the material, they oxidized the arc soot with 3.3 M HNO3 to introduce 

carboxyl functional groups, and then extracted the sediment with a NaOH solution (pH 8.4) 

to produce a stable black suspension. The suspension was separated by gel electrophoresis 

into SWCNTs, short tubular carbons, and a fast moving band of highly fluorescent material, 

which was composed of C-dots [27].  

 

Figure 58: (A) Picture of different fractions of fluorescent carbon under 365 nm, TEM images 
of short tubule carbon, and purified SWNTs, (B) The PAGE results for the arc-discharge soot, 
(C) AFM image (left) and feature height distribution (right) of the C-dots from the arc-
discharge soot [27]. 

 

3.3.1.1.2. Laser-Ablation Methods 

Sun et al. produced C-dots via laser ablation of a carbon target in the presence of water vapor 

with argon as a carrier gas at 900 °C and 75 kPa [493]. Upon post surface passivation of 

PEG1500N (Figure 59A), the final C-dots can emit strong and tunable photoluminescence in 

both solution and solid states, depending on the excitation wavelength progressively 

changing from 400 nm to 600 nm. Hu et al. reported the synthesis and the passivation of 

fluorescent C-dots by laser irradiation of a suspension of carbon materials in organic solvent 

(Figure 59B). By selecting organic solvents, the surface states of C-dots could be modified 

to achieve tunable light emission. Based on control experiments, the origin of the 
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luminescence was attributed to the surface states related to the ligands on the surface of C-

dots. In this approach, a pulsed Nd:YAG laser was used to irradiate graphite or carbon black 

dispersed in diamine hydrate, diethanolamine, or PEG200N for 2 h while under 

ultrasonication to aid in particle dispersal. After laser irradiation, centrifugation was used to 

precipitate residual carbon powder fragments while C-dots remained suspended in the 

supernatant. These C-dots averaged 3 nm in size, with lattice spacings varying from 0.20-

0.23 nm, similar to that of diamond [614].  

 

Figure 59: (A) Schematic illustration of the fluorescence change of C-dots after surface 
modification with PEG1500N [493], (B) One-step synthesis of C-dots in PEG200N solvent [614]. 

 

3.3.1.1.3. Electrochemical Synthesis 

Electrochemical synthesis of C-dots was first demonstrated by Zhou et al. when they grew 

MWCNTs from scrolled graphene layers on carbon paper by chemical vapour deposition 

(CVD). These nanotubes were designed to serve as the working electrode in an 

electrochemical cell consisting of a platinum (Pt) wire counter electrode and a Ag/AgClO4 

reference electrode with degassed acetonitrile solution containing 0.1M 

tetrabutylammonium perchlorate (TBA+ClO4
−) as the electrolyte. Cycling the applied 

potential between −2.0 and +2.0 V at a scan rate of 0.5 V s-1 resulted in the solution changing 

from colorless to yellow to dark brown, which indicated the formation of C-dots with good 

solubility in various solvents [618]. 

Li et al. reported an alkali-assisted electrochemical method to prepare 1-4 nm C-dots with 

controlled sizes. It can be imagined that judicious cutting of a graphite honeycomb layer into 

ultrasmall particles can lead to tiny fragments of graphite, yielding C-dots, which may offer 

a straightforward and facile strategy to prepare high-quality C-dots. Using graphite rods as 

both anode and cathode, and NaOH/EtOH as electrolyte, they synthesized C-dots with a 
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current intensity of 10-200 mA cm-2. As a reference, a series of control experiments using 

acids (e.g. H2SO4/EtOH) as electrolyte yielded no formation of C-dots. This result indicates 

that an alkaline environment is the key factor, and OH− groups are essential for the formation 

of C-dots by this electrochemical oxidation process [627]. Another facile electrochemical 

approach was also reported by Ming et al. for the large-scale synthesis of high-quality C-

dots with high purity, using only pure water as an electrolyte without any other chemical 

additives (Figure 60). The obtained C-dots feature a highly crystalline nature, excellent 

aqueous solubility, and remarkable down- and up-converted photoluminescence (PL) 

properties, and require no further purification. Moreover, they further demonstrated that the 

C-dots possess high photocatalytic activity under visible irradiation, and potential for high-

efficiency complex catalyst design [628]. 

 

Figure 60: (A) Reaction equipment for the preparation of C-dots; digital image of C-dots 
solution (B) before treatment, (C) after treatment; (D) DLS histogram of C-dots; (E) TEM, (F) 
HRTEM image of C-dots [628]. 

 

3.3.1.2. Bottom-up Approaches 

3.3.1.2.1. Combustion/acidic oxidation Methods 

Liu et al. first reported that fluorescent C-dots can be obtained from the combustion soot of 

candles after refluxing with oxidative acid [629]. A glass plate on the top of a burning candle 

was used to collect the hydrophobic soot, which could be turned hydrophilic by means of 

HNO3 treatment. The suspension was allowed to perform denatured polyacrylamide gel 
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electrophoresis, with the aim of obtaining pure C-dots. Unexpectedly, the mixture was 

separated into three bands and the first one consisted of nine fast-moving fluorescent smaller 

bands, showing different emission spectra although they were excited at the same 

wavelength (Figure 61). This study indicated that the fluorescent emission of C-dots is size-

dependent and/or charge-dependent. 

 

Figure 61: Optical characterization of PAGE separated C-dots produced from candle soot. 
Optical images illuminated under white (top) and UV light (312 nm; center). Bottom: 
Fluorescence emission spectra (λex at 315 nm) of the corresponding C-dots solutions. The 
maximum emission wavelengths are indicated above the spectra [629]. 

This candle-burning approach was also followed by Ray et al. The candle soot was similarly 

collected and refluxed with 5 m HNO3 for 12 h. It was found that refluxing for under 12 h 

gave a lower C-dots yield, while refluxing for longer periods resulted in no appreciable gain 

in yield. The particles suspended in solution were then precipitated by adding acetone and 

centrifuging at 14 000 rpm for 10 minutes. Size separation was then performed in a solvent 

mixture (water/ethanol/chloroform) via high-speed centrifuge separation. Supernatant was 

collected at spinning speeds of 4000, 5000, 6000, and 8000-16 000 rpm, in each case starting 

with the supernatant collected from the previous step. The supernatant obtained with 

centrifugation at 8000 rpm, for which precipitate was no longer observed, contained C-dots 

with particle sizes in the 2-6 nm range. Precipitates at lower centrifugation speeds contained 

large carbon nanoparticles of 201-350 nm in size. The 2-6 nm C-dots were found to be 

graphitic in nature, according to lattice spacings in HRTEM images, and exhibited high PL 

quantum yields in comparison with the larger particles found. XPS compositional analysis, 
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while insensitive to hydrogen, revealed the presence of C, O, and N at 59, 37, and 4 atom %, 

respectively [622]. 

In a further study, Tian et al. purified C-dots from the combustion soot of natural gas. By 

inverting a glass beaker above the flame of a natural gas burner, they were able to collect 

around 100 mg of soot, which was then refluxed in 5 M HNO3 for 12 h, followed by 

centrifugation and dialysis to afford purified C-dots. The as-purified C-dots exhibited PL 

with a λex maximum of 310 nm and an emission wavelength (λem) maximum of 420 nm. 

Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) results 

showed that the C-dots exhibited an average diameter of (4.8 ± 0.6) nm and the crystalline 

lattices were consistent with graphitic carbons (Figure 62) [623].  

 

Figure 62: Representative TEM micrographs of C-dots at (A) low and (B) high resolution [623]. 

13C NMR and FTIR measurements also revealed the presence of sp2 carbon and 

carboxylic/carbonyl moieties, thus leading the authors to conclude that the C-dots most 

likely consist of a nanocrystalline core featuring graphitic sp2 carbon atoms and a surface 

functionalized with carboxylic/carbonyl moieties. Interestingly, in contrast to C-dots made 

from candle combustion, no N (as determined from XPS data) was found to be present in 

these C-dots [623]. 
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Acidic oxidation is one of the popular methods of acquiring C-dots. Typically, in this process 

strong acid treatment of carbon precursors is conducted at high temperature. Leblanc's group 

reported an acidic oxidation route for converting carbon powder into C-dots, in which a 

mixture of sulfuric acid, nitric acid and carbon powder was refluxed at 110 °C for 15 h in a 

sand bath [630]. After a series of processes comprising cooling, crystallization, evaporation, 

concentration, extraction, dialysis and another concentration and evaporation, C-dots were 

successfully obtained as a black powder. The as-prepared C-dots were found to be able to 

inhibit human insulin fibrillation. Qian et al. reported a mild and facile synthesis of C-dots 

from the mixed acid treatment of activated carbon [631]. In their synthesis, a low reaction 

temperature of 80 °C was used and the product can be obtained just after dialysis. 

 

3.3.1.2.2. Thermal/Hydrothermal/Solvothermal Methods  

Thermal/hydrothermal carbonization is one of the most reported routes for the synthesis of 

C-dots, due to its low cost, easy feasibility, environmental friendliness and various carbon 

sources. Generally, in this process a solution of organic precursors, such as glucose 

[632,633], sucrose [634], polyols [635], polymers [636,637], amino acids [638,639], 

proteins [640,641], natural products [642–645], and some wastes [646–648] is sealed in an 

autoclave at high temperature. Sahu et al. prepared highly photoluminescent C-dots with a 

quantum yield (QY) of 26% in one step by hydrothermal treatment of orange juice followed 

by centrifugation [649]. These C-dots with sizes of 1.5-4.5 nm were applied in bioimaging 

due to their high photostability and low toxicity. Yang et al. reported a one-step synthesis of 

amino-functionalized fluorescent C-dots by hydrothermal carbonization of chitosan at 180 

°C for 12 hours [597]. These C-dots are demonstrated as excellent probes as bioimaging 

agents. 

Pan et al. reported a hydrothermal route for cutting graphene sheets into blue luminescent 

C-dots [650]. The obtained C-dots exhibited strong fluorescence with a quantum yield (QY) 

of 6.9%. Fluorescent C-dots with diameter of about 2.0 nm were also prepared directly via 

a simple hydrothermal method by using L-ascorbic acid as a carbon source. The solvent used 

in the dissolution of the acid was investigated and proved to have strong link with the PL 

generated by the C-dots. Among the solvents investigated, ethanol proved to be more 

suitable. It had not only improved on the surface states of the nanoparticles, but also provided 

a reaction medium for the uniform growth of the nanoparticles due to its ability to cap and 

inhibit the aggregation of the nanoparticles. In contrast to the previous methods, no strong 
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acid or further surface modification was needed for the preparation. The as-prepared C-dots 

with uniform shapes and sizes in the range 2.0-2.5 nm were found to be water soluble and 

exhibited λex dependent emission. Experiments revealed that the emission of these C-dots 

exhibited good stability in reaction media of high ionic concentrations, and could as well be 

tuned by adjusting the pH [651]. Water-soluble and well-crystallized C-dots with a lateral 

size about 3.0 nm were also fabricated by a hydrothermal cutting method [652]. The atomic 

force microscopy (AFM) observation of the C-dots deposited on a mica substrate shows a 

narrow height distribution from 1.5 to 1.9 nm, suggesting that the C-dots typically consist 

of 2-3 graphene layers. In another study, Zhang et al. reported a high-yield synthesis of 

hydrophilic C-dots by controlled carbonization of sucrose. Green luminescent C-dots and 

non-luminous C-dots were effectively separated by dialysis. After surface functionalization 

with PEG2000N, the non-luminous C-dots emitted blue fluorescence (Figure 63) [653]. 

 

Figure 63: (A) The synthesis procedure of green and blue luminescent C-dots. Absorption and 
emission spectra of (B) green and (D) blue luminescent C-dots dispersed in distilled water. 
Inset: photographs of each kind of luminescent C-dots solution taken under a UV light in a 
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fluorescence spectrophotometer (left) and under visible light (right). (C) Emission spectra of 
green luminescent C-dots at excitation wavelengths progressively increasing from 400 nm in 
10 nm increments. (E) Emission spectra of blue luminescent C-dots at excitation wavelengths 
progressively increasing from 330 nm in 10 nm increments. Inset: normalized emission spectra 
[653]. 

Another one-step synthetic route in which the C-dots were synthesized from the 

hydrothermal oxidation of carbohydrates (glucose/sucrose/starch) with acid/alkali additives, 

was reported (Figure 64). The carbohydrates provided the carbon source and the acid/alkali 

used as additives. The HCl additive enhanced emission distribution of C-dots at longer 

wavelengths while the NaOH additive enhanced emission distribution of C-dots at shorter 

wavelengths. The authors presumed that these additives probably induce different defects 

on the surface of the C-dots which act as surface energy traps that result into the different 

PL behaviors. The as-prepared C-dots exhibited NIR emission excited by NIR excitation as 

well as up-conversion PL properties. The elemental analysis showed that the obtained C-

dots contained predominantly elemental carbon and oxygen. It was also revealed that the 

functional carboxyl and hydroxyl groups on the surface of these C-dots rendered them good 

water dispersibility [654].  

 

Figure 64: (A) Fabrication of C-dots capable of visible and NIR emission by acid/alkali-assisted 
hydrothermal oxidation, (B) Typical (a) TEM and (b) SEM images of C-dots samples prepared 
from carbohydrates, (C) Typical PL images (all scale bars are 20 μm) of C-dots samples 
prepared from starch with excitation wavelengths at (a) 365 nm, (b) 455 nm, (c) 545 nm and 
collection wavelengths at (a) >470 nm, (b) >515 nm, (c) 600 ± 40 nm, respectively [654]. 
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Recently, Guo et al. developed a simple and low-cost approach to synthesize highly 

fluorescent C-dots, by establishing a one-step hydrothermal treatment of sodium citrate and 

ammonium bicarbonate (NH4HCO3) in water. Experimental investigation confirmed that 

NH4HCO3 decomposed to CO2 and NH3 that conferred high pressure into the reaction 

medium, and thus facilitated the decomposition of sodium citrate into small nanoparticles 

that produced the C-dots. The as-prepared C-dots had an average size of about 1.59 nm, and 

exhibited a high PL quantum yield (68%) as well as good photostability. The XPS analysis 

confirmed the presence of carboxyl and hydroxyl groups on the surface of the C-dots. The 

obtained C-dots were found to be very stable in high concentration of ionic solution, and 

with good selectivity and sensitivity could be used to detect mercury ions in aqueous solution 

(Figure 65) [655]. 

 

Figure 65: (A) UV–vis absorption spectrum of C-dots, the inset is the picture of C-dots 
illuminated by a UV lamp with 365 nm light. (B) Excitation spectrum of the C-dots. (C) 
Emission spectra of C-dots at different excitation wavelengths. (D) TEM image of the C-dots, 
the inset picture is the histogram of C-dots size distributions [655]. 

Zhou et al. reported large-scale C-dots prepared by cheap and easily got watermelon peel as 

precursor. The fresh peel was carbonized at 220 °C for 2 h under air atmosphere, the obtained 

product was filtrated, centrifuged and dialyzed without any complex or post-treatment, 

finally, highly luminescent C-dots were obtained. The C-dots exhibited good water-
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solubility, small particle size, strong blue luminescence and good stability in a wide range 

of pH values and at high salt concentration (Figure 66) [656]. 

 

Figure 66: Schematic illustration of the synthesis of water-soluble fluorescent C-dots from 
watermelon peel [656]. 

In order to reinforce their PL property and broaden their application, further passivation of 

the C-dots with tailored organic coating materials can render C-dots brighter, better 

biocompatible and long-term stability. Therefore, passivation of C-dots provides an effective 

bridge to connect the C-dots with fascinating biological applications, such as in vivo 

bioimaging and bioprobe, and modification of C-dot has become increasingly important 

[657]. Apart from surface-passivation, doping with heteroatoms can significantly increase 

the quantum yield of C-dots. Zhu et al. fabricated nitrogen-doped C-dots by a hydrothermal 

method (Figure 67). Citric acid and ethylenediamine were dissolved in deionized-water, and 

heated at 200 °C for 5 h in a Teflon-lined autoclave. The reaction was conducted by first 

condensing citric acid and ethylenediamine, whereupon they formed polymer-like C-dots, 

which were then carbonized to form the C-dots. The quantum yield of N-doped C-dots 

reached up to 80.6 % at the excitation wavelength of 360 nm, nearly equal to most 

semiconductor QDs and fluorescent dyes [658].  

 

Figure 67: A synthetic route using citric acid and ethylenediamine: from ionization to 
condensation, polymerization, and carbonization [658]. 

Another approach towards N-doped C-dots was recently reported by Jiang et al., who 

synthesized color-tunable C-dots by varying the precursor materials. Instead of having two 
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precursor molecules, the synthesis contained only phenyldiamines, which were 

solvothermally heated in ethanol at 180 °C for 12 h (Figure 68). The variation of the 

functional group configuration of this precursor from ortho, to meta and para changed the 

emission color of the resulting C-dots from green, to blue and red [659].  

 

Figure 68: (A) Preparation of the red, green and blue (RGB) PL C-dots (CDs) from three 
different phenylenediamine isomers (i.e., oPD, mPD and pPD); (B) Photographs of m‐CDs, o‐
CDs, and p‐CDs dispersed in ethanol in daylight (left), and under λ=365 nm UV irradiation 
(right) [659]. 

More Recently, Lu et al. synthesized N-C-dots with an average size of 2.6 nm using a one-

pot hydrothermal treatment with citric acid as carbon source in the presence of 

polyethylenimine (PEI) as a simultaneous nitrogen dopant and surface passivation agent. N-

CDs synthesized emitted a strong blue luminescence with a QY of 51%. The N- C-dots 

exhibited an excellent photostability and low cytotoxicity makes the N- C-dots promising 

optical nanoprobes for real-time live-cell imaging. Moreover, their small size and the surface 

positive charge rendered by the PEI endow them with the ability to cross the BBB, making 

them potentially useful in traceable drug delivery in brain disorders [624]. 

The second prominent heteroatom, which is included into the structure of C-dots is sulfur. 

Aside from limited examples, where only sulfur was reported to be doped into the C-dots 

[660,661], most studies focus on its co-doping with nitrogen, in order to improve the optical 

properties of the C-dots, in particular their PL QY [662]. Dong et al. synthesized nitrogen-

sulfur co-doped C-dots via a one-pot hydrothermal treatment of citric acid and L-cysteine at 

200 °C (PL QY of 73%) [662].  
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Solvothermal carbonization followed by extraction with an organic solvent is a popular 

approach to prepare C-dots [598]. Typically, carbon-yielding compounds were subjected to 

heat treatment in high boiling point organic solvents, followed by extraction and 

concentration. Bhunia et al. synthesized two kinds of the C-dots, hydrophobic and 

hydrophilic with diameters less than 10 nm from the carbonization of carbohydrates (Figure 

69) [598]. The hydrophobic ones were produced by mixing different amounts of 

carbohydrate with octadecylamine and octadecene before being heated up to 70-300 °C for 

10-30 minutes. The hydrophilic ones can be synthesized by heating an aqueous solution of 

carbohydrate within wide pH ranges. The hydrophilic C-dots with yellow and red emissions 

can also be synthesized by mixing an aqueous solution of carbohydrate with concentrated 

phosphoric acid followed with heating at 80-90 °C for 60 min. 

 

Figure 69: Digital images of C-dots solutions under appropriate excitations and their 
absorption (solid black lines), excitation (dashed black lines) and emission (color lines) spectra. 
Emission spectra were measured by excitation at 370 nm, 400 nm, 425 nm, and 385 nm for blue 
C-dots, green C-dots, yellow C-dots, and red C-dots, respectively. All excitation spectra were 
recorded in respective emission maxima [598]. 

 

3.3.1.2.3. Microwave Methods 

Microwave technology has become a very important process in synthetic chemistry. 

Compared with other approaches, it is more conveniently and rapidly to heat the carbon 

precursors, simplifies the synthesis process, so C-dots are readily obtained within a few 

minutes and with improved yield. Multicolor luminescence has been achieved by microwave 

synthesis of C-dots using dextrin as a starting material. A solution containing dextrin and 

water was prepared, to which sulfuric acid (H2SO4) was added while stirring vigorously. 

This solution was then exposed to microwaves for 2.5 min at 800 W. A light brown 

supernatant was obtained along with a black precipitate. The solution containing the C-dots 

was centrifuged to obtain a clear solution. The as-prepared C-dots were characterized using 
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different techniques and the luminescence spectra showed that the particles attained 

multicolor luminescence without any requirement for surface-passivating agents. The 

quantum yield was between 5 and 9 % [663]. This multicolor luminescence might be very 

helpful in the field of bioimaging. Wang et al. presented a facile one-step microwave assisted 

approach to prepare water-soluble phosphorus-containing with strong green fluorescence C-

dots. In this synthesis process, 2 mL of 70 % phytic acid and 1 mL ethylenediamine were 

mixed in 25 mL ultrapure water, and then the turbid mixture was heated for about 8 min in 

a domestic 700 W microwave oven. After further purification of the crude product, 

phosphorus-containing C-dots were obtained, and phosphorus groups were covalently 

bonded to the graphite-like structure existed in the C-dots. Notably, the phosphorus-

containing C-dots showed two-peak emissions when excited at low wavelengths, while at 

high excitation wavelengths (360-460 nm), the nanoparticles showed single-peak emission 

at 525 nm (green fluorescence). The highest quantum yield of the resulting phosphorus-

containing C-dots was about 21.65 % (Figure 70) [664]. 

 

Figure 70: (A) Schematic diagram for synthesizing green C-dots. (B) Emission under daylight 
and 365 nm ultraviolet excitation [664]. 

Qu and co-workers reported a one-step microwave heat treatment of carbohydrates to 

synthesize multicolored photoluminescence (PL) C-dots without any surface passivation 

reagents. Glycerol was mixed with phosphate solution and subjected to microwave heating 

for 14 min to generate the C-dots. The PL showed that the emission spectra were broad and 

ranged from blue to yellow depending on the excitation wavelength. The as-synthesized C-

dots possessed carboxyl and hydroxyl moieties that enhanced their hydrophilicity and 

stability in aqueous systems, shown by their ability to maintain PL intensity even with 

increased in ionic strength. The obtained C-dots were biocompatible and were found to be 

promising in biolabelling and bioimaging. This work has also demonstrated that inorganic 

ions were able to effectively promote the carbonization of carbohydrates [665].  

Jaiswal et al. developed a simple one step microwave mediated synthesis of C-dots using 

PEG, a biocompatible polymer, as a sole source of carbon and a passivating agent [666]. An 
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aqueous solution of the polymer precursor, (PEG-solution), was irradiated for 10 min to 

generate the amorphous C-dots with an average size estimated to be 3.6 nm or 5.4 nm. The 

obtained C-dots were compliant to size separation by gel electrophoresis, and possessed high 

photostability, which was confirmed by their ability to maintain luminescence under 

extended irradiation. Zhu et al. synthesize C-dots by combining PEG200 and a saccharide 

(for example, glucose, and fructose) in water to form a transparent solution, followed by 

heating in a 500 W microwave oven for 2-10 min (Figure 71). The solution changed from 

colorless, tanned to dark brown over the time course of the reaction. The recovered C-dots 

exhibited sizes and PL properties related to the duration of the microwave heating. Longer 

heating times result in the C-dots enlarging slightly and emitting at longer wavelengths. For 

example, the average C-dot diameters were (2.75±0.45) nm and (3.65±0.6) nm for heating 

times of 5 and 10 minutes, respectively. When PEG was omitted, a similar color change was 

observed during microwave heating, but it is noteworthy that the nonpassivated particles 

expressed weak and irregular PL [625]. 

 

Figure 71: Microwave approach to C-dots synthesis [625]. 

 

3.3.1.2.4. Ultrasonication Methods 

The ultrasonication method is a process in which the ultrasonic waves produce alternating 

expansion and compression in a reaction solution, resulted to the growth and implosive 

collapse of bubbles irradiated with the waves. The mechanism causes high speed 

interparticle collisions, which can change the morphology, composition and reactivity of the 

particles. When integrated with carbonization, the energy of the ultrasonic waves generates 

intermediates that can be further carbonized, to generate tiny size C-dots. Li et al. described 

a simple synthesis of C-dots from glucose or active carbon by using an ultrasonic treatment 

method [611,626]. Such monodispersed water-soluble fluorescent C-dots could emit bright 

and colorful PL covering the entire visible-to-NIR spectral range (Figure 72). Notably, the 

NIR emission of C-dots could be obtained by NIR excitation. Furthermore, the C-dots had 

excellent up-conversion fluorescent properties [611]. 
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Figure 72: (a) TEM image of C-dots prepared from glucose with a diameter of less than 5 nm; 
(b) and (c) photographs of C-dots dispersions in water with sunlight and UV (365 nm, center) 
illumination, respectively; (d–g) fluorescent microscope images of C-dots under different 
excitation: d, e, f, and g for 360, 390, 470, and 540 nm, respectively [611]. 

 

3.3.2. Chemical composition and structure of C-dots 

C, H, and O are three fundamental elements of C-dots, and the ratios of the three elements 

are variable in different C-dots. The introduction of heteroatoms has been studied to tune 

the conduction/valence band position of C-dots, which confers additional functions 

[615,619,667]. For example, the quantum yield (QY) of C-dots could be significantly 

improved by incorporating the N element while C-dots with a wide band gap could be 

synthesized by incorporating the S element [661,662,668–670]. Furthermore, P-doped C-

dots showed green fluorescence, which could be utilized as an imaging signal with low 

background [664,671,672]. Moreover, other heteroatoms such as Cl and B could also be 

doped into C-dots by changing the synthetic methods or raw materials [673,674]. 

Hu et al. reported that the selected-area electron-diffraction (SAED) experiments on C-dots 

with a size of about 3 nm prepared by a one-step laser ablation/passivation method revealed 

a ring pattern, with the ratio of the squares of the ring radius of 3:8:11:16:19. This implies a 

diamond-like structure, with the rings respectively corresponding to the (111), (220), (311), 

(400), and (331) planes of diamond [614]. This apparent structure was observed whether or 

not the C-dot was synthesized in PEG200N as the passivating ligand or in water. The lattice 

spacings observed was 0.2-0.23 nm and are, in fact, quite close to the (100) facet of graphite. 

The lattice fringes of the diffraction planes of diamond-like and graphitic carbon lie very 

close to one other, thus rendering unambiguous assignment difficult without other 

corroborating evidence.  
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Additionally, Ray et al. found that the C-dots prepared from oxidizing candle soot had 0.208 

nm lattice spacings, which suggests sp3 diamond-like carbon or sp2 graphitic carbon [622]. 

By using 13C NMR studies, Tian et al. were able to confirm the presence of sp2 carbon with 

signals in the δ=90-180 ppm range, while the absence of signals in the δ=8-80 ppm range 

led to the assertion of a lack of detectable sp3 carbon. Furthermore, FTIR measurements also 

confirmed the presence of C=C aromatic ring stretches. Therefore, they concluded that their 

C-dots consisted of a nanocrystalline core of graphitic sp2 carbon atoms functionalized with 

peripheral carboxylic/carbonyl moieties [623]. One-step thermal decomposition reactions of 

citrate salts produced C-dots with a size of 7 nm, whose XRD patterns were indicative of 

disordered carbon alongside the respective passivation agent [620]. The XRD pattern of C-

dots made from octadecylammonium citrate shows two superimposed broad reflections: a 

broad one centered at 4.3 Å and a sharper peak at 4.14 Å, which are indicative of disordered 

carbon and densely packed alkyl groups arising from the octadecyl chains, respectively. The 

XRD pattern of C-dots prepared by supported method displayed a sharp, low-intensity 

reflection centered at d002 = 3.3 Å, which was very close to the graphite (002) lattice spacing 

[619]. However, the XRD pattern of the hydrophilic C-dots (prepared by controlled 

carbonization of sucrose) showed an (002) interlayer spacing of 4.2 Å, which is larger than 

that of bulk graphite (3.3 Å), indicating poor crystallization [653]. 

It can generally be concluded that the most C-dots consist of an amorphous to 

nanocrystalline core with predominantly sp2 carbon, the lattice spacings of which are 

consistent with graphitic or turbostratic carbon. However, some C-dots showed poor 

crystallization (the C-dots prepared by controlled carbonization of sucrose). Unless 

otherwise modified, oxidized C-dots generally feature carboxylic moieties at their surface, 

with overall oxygen contents ranging from 5-50 weight (wt) %, depending upon the 

experimental conditions used [612]. 

 

3.3.3. Optical properties of C-dots 

3.3.3.1. Absorbance 

C-dots typically show strong optical absorption in the UV region, with a tail extending out 

into the visible range (Figure 73) [493].  
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Figure 73: (A) Aqueous solutions of PEG1500N-passivated C-dots (a) excited at 400 nm and (b) 
excited at the indicated wavelengths; (B) absorption and emission spectra of PPEI-EI 
passivated C-dots in water with increasing λex from 400 nm on the left with 20 nm increments. 
Inset: emission intensities normalized to quantum yields [493]. 

Most of the C-dots, such as those prepared by laser-passivation [614], electrochemical 

oxidation [618], or microwave/ultrasonic method [625,626], have an absorption band around 

260-320 nm. The several shoulder peaks in UV absorption spectra are generally attributed 

to the transitions from π-π* of benzene rings and the C=C bonds or from n-π* of C=O bonds 

or other sub-fluorophore groups [675]. However, the absorbance of C-dots was found to 

increase to longer wavelength in the 350 to 550 nm range after surface passivation with 

4,7,10-trioxa-1,13-tridecanediamine (TTDDA) [676]. 

 

3.3.3.2. Photoluminescence  

One of the most fascinating characterizations of C-dots, from a fundamental viewpoint to 

application, is their photoluminescence (PL).  The most prominent feature of PL from C-

dots is the tunable emission wavelength and intensity, which may originate from the broad 

size distribution, different surface defects, different surface states or different degrees of π 

conjugation. Similarly, the requirement for surface passivation is little understood, but 

appears to be linked to the synthetic method. As reported by Sun et al., emission from C-

dots passivated with PEG1500N covers the visible light region from purple to red and spreads 

to the NIR region with the excitation wavelength progressively increasing from 400 nm on 

the left in 20 nm increments (Figure 73) [493]. Upon surface passivation with organic or 

polymeric materials, such as poly(propionyl ethyleneimine-co-ethyleneimine) (PPEI-EI) 

attached to the C-dots surface, surface defects are stabilized and strong fluorescence 

emissions both in solution-like suspension and in solid state were detected. The emissions 
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of such passivated C-dots covered a broad range of the visible region and extended into the 

NIR region as shown in Figure 73. It should be noted that the surface passivation agents 

used were not emissive in the visible and NIR regions, thus any fluorescence emissions 

observed must have originated from the surface passivated C-dots. The tunable emission 

property of C-dots is clearly demonstrated in Figure 73. From the fluorescence spectra of 

PPEI-EI-passivated C-dots, it is evident that the emissions are broad and excitation 

wavelength-dependent [493,677]. The tunable emissions of the surface-passivated C-dots 

could be a result of varied fluorescence characteristics of particles of different sizes of the 

C-dots and the distribution of different emissive sites on the surface of the C-dots. 

By comparing with larger carbon nanoparticles, Mohapatra et al. unambiguously confirmed 

the red shift in emission wavelength of C-dots with increasing size when both were excited 

at 390 nm [649]. Evidently, if the size of C-dots is changed, the nature and content of sp2 

hybridized sites and the band gap from the quantum confinement effect would vary. The 

authors pointed out that excitation dependent photoluminescence could be caused by surface 

states, excitons of carbon, emissive traps, aromatic conjugation structures and free zig-zag 

sites.  

Li et al. presented definitive evidence for luminescence arising from quantum-confinement 

effects and size-dependent optical properties of C-dots prepared by alkali-assisted 

electrochemical method [627]. Figure 74a shows the optical images of C-dots of four typical 

sizes, illuminated by white and UV light. The bright blue, green, yellow, and red PL of C-

dots is strong enough to be seen with the naked eye. Figure 74b shows the corresponding 

emission spectra, in which the red, black, green, and blue lines show the PL spectra for blue-

, green-, yellow-, and red-emitting C-dots, respectively. The PL properties vary sensitively 

with C-dot size (Figure 74c), with small C-dots (1.2 nm, center) giving UV light emission, 

medium-sized C-dots (1.5-3 nm) visible light emission (400–700 nm), and large C-dots (3.8 

nm, center) NIR emission. To confirm that strong emission of C-dots came from the 

quantum-sized fragment of graphite, the as-synthesized C-dots were treated by hydrogen 

plasma to remove the surface oxygen. A series of control experiments showed no obvious 

change in the PL spectra of C-dots before and after hydrogen plasma. To further confirm 

that and explain why the strong emission comes from the quantum-sized graphite fragment 

of C-dots, they performed theoretical calculations to investigate the relationship between 

luminescence and cluster size [627]. Figure 74d shows the dependence of HOMO–LUMO 

gap on the size of the graphene fragments. As the size of the fragment increases, the gap 
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decreases gradually, and the gap energy in the visible spectral range is obtained from 

graphene fragments with a diameter of 14-22 Å, which agrees well with the visible emission 

of C-dots with diameters of <3 nm. Thus, they deduced that the strong emission of C-dots 

comes from the quantum-sized graphite structure instead from the carbon–oxygen surface 

[627]. 

 

Figure 74: (a) Typical sized C-dots optical images illuminated under white (left; daylight lamp) 
and UV light (right; 365 nm); (b) PL spectra of typical sized C-dots: the red, black, green, and 
blue lines are the PL spectra for blue-, green-, yellow-, and red-emission C-dots, respectively; 
(c) relationship between the C-dots size and the PL properties; (d) HOMO–LUMO gap 
dependence on the size of the graphene fragments [627]. 

C-dots produced from glucose using an ultrasonic treatment method reported by Li et al. 

exhibited NIR emission upon excitation by NIR light (Figure 75) [611]. It should be noted 

that such NIR PL emission excited by NIR excitation is particularly significant and useful 

for bioapplications because of the transparency of body tissues in the NIR “water window”. 

 

Figure 75: Photoluminescence spectra of C-dots under NIR excitation (emission in NIR range): 
(a) C-dots prepared from glucose/NaOH, (b) C-dots prepared from glucose/HCl [611]. 

Moreover, pH-dependent PL emission was also reported and this phenomenon can be 

reasonably explained by surface states, as Qu et al. have discussed [678]. Functional groups 
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such as N–H and O–H on the surface of C-dots can form intramolecular and intermolecular 

hydrogen bonds, which endows the C-dots with different surface states. When pH increases 

or decreases, deprotonation or protonation of functional groups can lead to the variation of 

surface states and fluorescence. Except for excitation and pH tunable fluorescence, solvent 

polarity can also tune the fluorescence emission of C-dots. Jia et al. reported that C-dots 

prepared from direct heating of ascorbic acid solution show a practically linear dependence 

on the pH of the solution in the range of 4.0 to 8.0. The fluorescence intensity decreased by 

as much as 90% from pH 4.0 to 8.0. Varying the pH of the solution from 4.0 to 8.0, 

corresponding to the deprotonation of the carboxyl groups on the surface of the C-dots, 

might cause electrostatic doping/charging to the C-dots and shift the Fermi level [679]. Gao 

et al. observed the enhancement of fluorescence when the solvent changed from water to 

ethylene glycol. This may be due to the change of surface states and the decrease of non-

irradiative transitions [635]. It is worthy of noting that some C-dots exhibit fluorescence that 

is independent on excitation wavelength and pH [680,681].  

Although C-dots possess excellent photostability, which is a key factor for bioimaging. 

Photostability means the fluorescence emission intensity keeps stable during a long-time 

continuous excitation. Wei et al. synthesized a series of C-dots using glucose and the serial 

amino acid analogues as starting materials. Under 60 min excitation, the PL intensity of all 

the C-dots decreased slightly, preserving 90 % of the initial intensity. PL of the C-dots was 

much more stable than that of fluorescein isothiocyanate (FITC) dye, CdTe QDs and the 

previously reported polymer nanoparticles or dye-doped silica (Figure 76) [668].  

 

Figure 76: Stability comparison of fluorescence signals of HeLa cells labeled by C-dots (A), 
and FITC (B). Scale bar = 10 μm [668]. 
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Ge et al. prepared red-emissive C-dots using polythiophene phenylpropionic acid as 

precursor, and the photostability of the C-dots was investigated. Fixed-cell images of the C-

dot labeled HeLa cells showed intense red fluorescence, which was clearly resolved even 

after laser irradiation for 120 min. By contrast, the fluorescence of FITC, a frequently used 

dye, quickly dropped below undetectable levels in only 10 min, indicating high 

photostability of the C-dots in vitro (Figure 77) [682]. 

 

Figure 77: Fluorescent images of C-dots at different exposure time in vitro with FITC as a 
control [682]. 

Due to unstable surface defects leading to reduced radiative recombination, raw C-dots 

usually have very low quantum yields (QY) [683]. Thus, the drawback limited the 

application of C-dots in many areas. In order to improve the luminescence of C-dots, great 

effort has been taken through physical and chemical methods. Wang et al. reported that C-

dots with PL QY of 55-60 % can be acquired through column chromatography purification 

of C-dots mixture with 16-20 % PL QY [684]. To enhance the QY of C-dots, diverse designs 

have been developed including surface passivation, element doping, and inorganic salt 

doping. Passivation is the common way to improve the QY of C-dots due to its facile 

processibility and high efficiency. Passivation usually utilizes the strategy of oxidation or 

reduction of the C-dots surface and subsequently capping the C-dots with organic polymers 

or diamine compounds. Zheng et al. reported that original C-dots prepared with graphite 

oxide as precursor were reduced by NaBH4, and the QY of the reduced-state C-dots 

enhanced greatly from 2 to 24 %, meanwhile, the maximum emission wavelength shifted 

from 520 to 450 nm under the excitation wavelength of 360 nm (Figure 78) [685]. 
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Figure 78: Graphical representation of the synthesis of reduced state C-dots (r-CDs) with blue 
luminescence from original C-dots. Inset: photographs of aqueous solutions of the C-dots 
(CDs) (left) and the r-CDs (right) obtained under UV light (360 nm) [685]. 

To stabilize and maximize fluorescence, C-dots were usually doped with inorganic salts and 

other elements. One approach is to dope newly-produced C-dots with heteroatoms. Nitrogen 

is widely used as a doping element to synthesize N-doped C-dots with a high QY using 

various nitrogenous compounds [668,686,687]. Jiang et al. prepared C-dots with high QY 

(44.9 %) from amino acids as the raw materials via a microwave method [688]. Since some 

nitrogenous compounds can serve as both surface passivation and nitrogen source, it should 

be noted that the element doping and surface passivation of nitrogenous reagents are hard to 

discriminate. For instance, Li et al. prepared nitrogen and sulfur co-doped C-dots via 

hydrothermal method with extremely high QY (73%) [662]. In this method, L-cysteine was 

used as both surface passivation and element-doped source. To our knowledge, the QY of 

N, S- C-dots is highest (>70%) among all the luminescent C-dots by introducing both 

nitrogen and sulfur elements. In addition, Xu et al. synthesized S-doped C-dots with 

significant fluorescence QY (67%) via a hydrothermal method, which indicated that the 

sulfur doping achieved an efficient QY improvement [689]. Moreover, some other methods 

have been developed to improve the QY of C-dots. For example, Sun et al. developed C-

dots doped with inorganic salt to achieve high QY. An aqueous suspension of the C-dots 

and Zn(CH3COO)2 was hydrolysed with NaOH, then Zn(OH)2 was converted to ZnO by 

thermal annealing, the QY of the ZnO-doped C-dots in aqueous solution were around 45%. 

For the latter, the suspension of the C-dots and Zn(CH3COO)2 was precipitated with Na2S, 

the QY of the ZnS-doped C-dots were consistently higher than 50%. Sun et al. speculated 

that, combined with the organic passivation agents, dopant might provide another form of 

surface passivation or enhance the surface passivation effect. Under the two-photo excitation 
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at 800 nm, these doped C-dots emitted bright luminescence in the visible region, suggesting 

promising potentials for imaging applications [690]. 

3.3.3.3. Up-conversion photoluminescence 

In addition to normal fluorescence, a new and interesting phenomenon has been found in 

recent studies, such as up-conversion fluorescence emission. Up-conversion fluorescence is 

anti-Stokes behavior, in that a longer excitation wavelength produces a shorter emission 

wavelength. As shown by Sun et al., C-dots were strongly emissive in the visible region 

under irradiation by an argon-ion laser (458 nm) or a femtosecond pulsed laser for two-

photon excitation in the NIR range (800 nm) [32]. Figure 79 shows that the one- and two-

photon luminescence images for the same scanning area of C-dots are well matched. The 

representative two-photon luminescence spectrum shows that such C-dots have UCPL 

properties. Results from further bioimaging experiments in vitro also showed the UCPL 

property of C-dots. 

 

Figure 79: Luminescence images (all scale bars 20 μm) of the C-dots with (a) argon ion laser 
excitation at 458 nm and (b) femtosecond pulsed laser excitation at 800 nm; (c) is an overlay of 
(a) and (b) [32]. 

Recently, Jiang et al. reported that C-dots emitted strong up-conversion photoluminescence 

(UCPL) under excitation with a femtosecond pulsed laser (λ = 800 nm) and this has been 

demonstrated to be a two-photon excitation process [659]. 

Stan et al. studied the up-conversion fluorescence of N-doped C-dots in the wavelength 

range of 750-960 nm [691]. Interestingly, distinct from the down-conversion case, up-

conversion fluorescence showed excitation wavelength independent and solvent polarity 

dependent emission. Moreover, such up-conversion fluorescence can be easily observed by 

the naked eye. Shen et al. fabricated C-dots surface-passivated with PEG by a one-pot 

hydrothermal reaction. The PL quantum yield of the C-dots at the excitation wavelength of 

360 nm was about 28.0 %. The C-dots possessed the up-conversion PL properties, emitted 

blue PL in the fluorescent microscopy images both under the ultraviolet and 808 nm laser 
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[692]. As shown in Figure 80a, when the excitation wavelength changed from 700 to 980 

nm, the up-converted emission peaks shifted from 431 to 544 nm, respectively. The shifting 

between the energy of up-converted emission light (Em) and excitation light (Ex) was almost 

unchanged, about 1.1 eV. Figure 80b shows the linear relationship between Em and Ex, and 

the function of the fit line is Em = 1.00Ex + δE (R2 = 0.9747) with δE = 1.1 eV. The authors 

speculate on the UCPL due to the anti-Stokes PL, where the δE between the π and σ orbitals 

is near 1.1 eV [677]. 

 

Figure 80: (a) Upconverted PL properties of the C-dots-PEG, inset is the enlarged image of the 
PL spectrum excited at a 980 nm laser. (b) The energy of the excitation light as a function of 
the emission [677]. 

To further confirm that and explain how UCPL comes from the C-dots, an energy level 

structural model was established, in which the UCPL spectrum could be regarded as an anti-

Stokes transition (Figure 81). The energy levels of π and σ orbitals were provided by the 

carbene ground-state multiplicity, which is related to the energy difference (δE) between the 

π and σ orbitals. The energy between the excitation light and the emission light in the up-

conversion process was close to 1.1 eV (Hoffmann determined δE should be below 1.5 eV). 

When a bunch of low-energy photons excite the electrons in the π orbital, the π electrons 

would transition to a high-energy state such as the LUMO, and then fall back to a low-energy 
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state. Thus, an UCPL is emitted if the electrons transition back to the σ orbital. The electrons 

in the σ orbital can also be excited, they only can emit normal PL (Figure 81a and b). This 

explains why the difference between up-conversion excitation and emission light is a 

constant energy related to the energy difference of the π and σ orbitals [677]. 

 

Figure 81: A schematic illustration of various typical electronic transitions processes of C-dots. 
Normal PL mechanisms in C-dots for small size (a) and large size (b); UCPL mechanisms in 
C-dots for large size (c) and small size (d) [677]. 

The UCPL of C-dots opens up new opportunities for cell imaging with two-photon 

luminescence microscopy, as well as highly efficient catalyst design, for applications in 

bioscience and energy technology. 

 

3.3.3.4. Chemiluminescence 

Chemiluminescence (CL) refers to a phenomenon whereby during a chemical reaction, a 

substance can absorb chemical energy to turn into an excited state and then go back to the 

ground state by light irradiation. CL properties of C-dots were firstly discovered when the 

C-dots coexisted with some oxidants, such as potassium permanganate (KMnO4) and 

cerium(IV) [693]. During this process, the C-dots with surface energy traps serve as electron 

acceptors for the electron donator O2
˙− and strong CL emitter. The electron paramagnetic 

resonance (EPR) reveals that oxidants, such as KMnO4 and cerium(IV), can inject holes into 

the C-dots. This process increases the population of the holes in the C-dots and accelerates 

the electron-hole annihilation, resulting in energy release in the form of CL emission. This 

is the first CL route accounting for the CL (CL1). The other important route (CL2) is the 

Mn(II)* excited state, which returns to the ground state with CL emission at 650 nm (Figure 

82). Moreover, the CL intensity was dependent on the concentration of the C-dots in a certain 

range. It was also found that increasing the temperature had a positive effect on the CL due 

to the thermal equilibrium of electron distribution in the C-dots (Figure 82). It is interesting 
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for this system that the CL properties can be designed by changing their surface groups 

[694]. 

 

Figure 82: Schematic illustration of the FL and CL mechanisms in the C-dots-KMnO4 and C-
dots–cerium(IV) systems. CL1 and CL2 represent two CL routes in the system [693]. 

A novel CL phenomenon was also observed for the as-prepared C-dots in a strong alkaline 

solution (NaOH or KOH). The C-dots exhibited excellent electron donor ability towards 

dissolved oxygen to form the superoxide anion radical (O2
˙−) in a solution of NaOH. These 

results directly provided evidence for the excellent electron-donating ability of C-dots [695]. 

Radiative recombination of the injected electrons by “chemical reduction” of the C-dots and 

thermally excited generated holes was suggested to account for the CL behavior in strong 

alkaline solutions [695]. The dual role of C-dots as an electron donor and acceptor offers 

great potential in optronics and catalysis. 

3.3.3.5. Electrochemiluminescence 

Different from the fluorescence and CL, electrochemiluminescence (ECL) happens when 

the substances produced in an electrochemical reaction transition to an excited state via 

electron injection and then emit light to return back to ground state. The ECL emission of 

C-dots (2.0 nm) produced by Zheng et al. from the electrochemical oxidation of graphite 

was observed as the potential was cycled between +1.8 and −1.5 V (Figure 83A) [617]. The 

suggested ECL mechanism involves the formation of excited-state C-dots (R*) by electron-

transfer annihilation of negatively charged (R.−) and positively charged (R.+) species (ET1 

route in Figure 83B). R.+ is the more stable of the two species, as indicated by the greater 

intensity of the cathodic ECL (Figure 83A). Interestingly, when produced by microwave 

synthesis, 3 nm PEG200-functionalized C-dots also exhibited ECL behavior, but the R.− 

species was found to be more stable in this case [696]. The presence of peroxydisulfate 

(S2O8
2−) enhanced the ECL (ET2 route in Figure 83B) in the cathodic potential range and 
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produced a stable and sensitive (as no other co-reactants tested elicited an ECL 

enhancement) ECL response, thus suggesting the application of C-dots for ECL sensing 

[617]. 

 

Figure 83: (A) ECL responses a) with and b) without C-dots at a Pt electrode in 0.1 M 
phosphate buffer solution (pH 7.0) with a scan rate of 0.1 V s−1; (B) The ECL and PL 
mechanisms in C-dots [617]. 

 

3.3.4. Biological properties of C-dots 

The biocompatibility and low toxicity are two prerequisite properties that facilitate the 

bioapplications of nanomaterials. Although the biocompatibility of C-dots in vitro has been 

demonstrated by many groups [697,698], the evaluation of the biocompatibility of C-dots in 

vivo is still encouraged for the further application of C-dots [31,699–701]. Systematic 

cytotoxicity evaluations were carried out on both raw C-dots and passivated C-dots in the 

past few years [700,702]. Sun's group utilized two kinds of raw C-dots for cytotoxicity assay: 

one was commercially supplied carbon nanopowder; another was produced by the arc-

discharge of graphite rods and then refluxed in HNO3 for 12 h. The bare C-dots were 

apparently nontoxic to cells up to a relatively high concentration of 0.4 mg mL-1. 

Luminescent C-dots synthesized by the electrochemical treatment of graphite were also 

evaluated in terms of cytotoxicity assay using a human kidney cell line, in which the cell 

viability was not affected by the dots [703]. Furthermore, Ray et al. improved a soot-based 

approach for C-dots synthesis with diameters of 26 nm [622]. The experimental results of 

cell viability also confirmed that the C-dots showed negligible cytotoxicity at concentrations 

required for fluorescence bioimaging. 

The cytotoxicity of the C-dots passivated with functional groups, such as PEG [30], PPEI-

EI [32], PEI [700], BPEI (branched poly(ethylenimine)) [704], and PAA (poly(acrylic acid)) 

[705], were also evaluated in cytotoxicity assays. The PEGylated C-dots in all available 
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configurations were non-cytotoxic up to concentrations much higher than that is necessary 

for cell imaging and related applications [31,706]. In addition, C-dots functionalized with 

PEG1500N were injected into mice for toxicity evaluation up to 28 days, and the results 

suggested no significant toxic effects in vivo [31]. Moreover, experimental results indicated 

that the PPEI-EI-passivated C-dots were mostly nontoxic to the cells below a relatively high 

threshold of carbon core-equivalent PPEI-EI concentration [32]. According to the MTT 

assay, a PEI free sample was apparently nontoxic to HT-29 cells even at relatively high 

concentrations. However, the PEI-functionalized C-dots were more cytotoxic than PPEI-EI-

functionalized C-dots. The more ethylenimine (EI) units within the PEI may be associated 

with the lower concentration thresholds for the C-dots to become cytotoxic, as PEI is the 

homopolymer corresponding to PPEI-EI with an extreme EI fraction of 100%. Free PAA in 

a nonaqueous solution was found to be harmful to cells even at relatively low concentrations 

(50 μg mL-1). The PAA-functionalized C-dots were generally comparable to free PAA at the 

same C-dots core-equivalent concentrations, both were toxic to the cells with an exposure 

time of 24 h, but less so when the exposure time was shortened to 4 h. Overall, molecules 

with low cytotoxicity even at high concentrations such as PEG and PPEI-EI are suitable for 

C-dots functionalization for in vivo imaging and biosensing. Molecules with higher 

cytotoxicity including BPEI and PAA, can still be used to functionalize C-dots used in vivo 

if their concentrations are maintained low enough and the incubation time short as well 

[700].  

Huang et al. explored the effect of injection routes on the distribution, clearance, and tumour 

uptake of C-dots. They used the PEG-functionalized NIR dye ZW800-conjugated C-dots to 

investigate the effect of the three different injection routes: intravenous (iv), subcutaneous 

(sc), and intramuscular (im). Firstly, they studied the biodistribution of C-dots by different 

injection routes. The results showed that, after injections via all the three routes, the majority 

of the C-dots were accumulated in kidneys at 1 h. Meanwhile, the signal of the C-dots was 

quantified and ranked based on the injection routes as im > sc > iv. After 24 h, no available 

signal was detected in any organ, which indicated that the C-dots were swept out of the body 

irrespective of the injection routes. Then, a urine clearance analysis of C-dots was 

performed. The results showed that the C-dots were efficiently and rapidly discharged from 

the body after the three injection routes. The clearance rate of C-dots was ranked as iv > im 

> sc. Finally, they investigated the tumour uptake of C-dots by three injection routes, and 

they found that the different injection routes resulted in different tumour uptake efficiencies, 
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ranked as sc > iv > im [699]. Their results clearly showed that injection routes affected the 

distribution, clearance, and tumour uptake of C-dots evidently. 

 

3.3.5. Applications of C-dots 

The novel properties of C-dots make them applicable in a wide range of areas. As C-dots 

are a very new area of research, not many applications have yet been commercialized by 

making use of these nanoparticles. Indeed a lot of research has been done on the applicability 

of these particles to different areas. 

 

3.3.5.1. Photocatalysis 

Advanced materials for electrocatalytic and photoelectrochemical (PEC) hydrogen 

evolution reaction (HER) are central to the area of renewable energy. C-dots modified P25 

TiO2 composites (C-dots/P25) were prepared via a facile, one-step hydrothermal reaction 

[707]. C-dots/P25 exhibited improved photocatalytic H2 evolution under irradiation with 

UV-Vis and visible light (λ > 450 nm) because of the C-dots acting as an electron reservoir 

to improve the efficient separation of the photoinduced electron–hole pairs of P25 and a 

photosensitizer to sensitize P25 into a visible light response structure for H2 evolution. It is 

expected to utilize the NIR region of sunlight for its large share of sun's energy. C-dots with 

the UCPL properties can improve the PEC properties of C-dots/CdSe/TiO2 NR photoanodes 

at the NIR region (over 750 nm) (Figure 84) [708]. The one-dimensional ordered TiO2/CdSe 

core/shell heterostructural network (Figure 84A) not only provides a large surface area for 

efficient loading of up-conversion C-dots, but also allows an excellent interfacial chemical 

reaction between the CdSe and electrolyte. Subsequently, C-dots were electrodeposited on 

the surface of the TiO2/CdSe core/shell nanorods (NRs) to construct a C-dots/CdSe/TiO2 

composite photoanode. Figure 84B is the schematic diagram illustrating the whole PEC 

process under NIR illumination. The C-dots can absorb NIR photons and emit visible 

photons through the up-conversion effect to excite CdSe. Subsequently, the excited electrons 

in the conduction band of CdSe would rapidly inject into the conduction band of TiO2, and 

then transfer along the axial direction of the TiO2 NRs to the FTO substrate. The electrons 

would finally be transferred to the Pt counter electrode under the assistance of a little external 

bias voltage, and then drive the hydrogen evolution reaction. The holes remaining in the 

valence band of CdSe would be consumed by the sacrificial agent. 



127 
 

 

 

 

Figure 84: (A) A schematic diagram showing the C-dots (CQD)/CdSe/TiO2 NR photoanode, 
(B) A schematic diagram to illustrate how up-conversion of the C-dots (UCQDs) served as 
spectral converters for the CdSe/TiO2 NR photoanode [708]. 

Dey et al. showed the fabrication of C-dots from a bio-precursor and used them for the 

reduction of PdCl4
2− salts leading to the formation of Pd@C-dots core–shell nanostructures. 

Although bare C-dots were not capable of preventing the agglomeration of the Pd 

nanoparticles during the Suzuki and Heck reactions, addition of a co-stabilizer in the form 

of poly-(N-vinyl-2-pyrrolidone) (PVP) led to an efficient composite that showed high 

catalytic activity towards the formation of C–C bonds. The Pd@C-dots-PVP catalysts were 

reused in subsequent reactions and the results showed efficient catalytic activity after the 

third cycle even with obvious structural changes [709]. 

 

3.3.5.2. Optoelectronics 

3.3.5.2.1. Light-emitting diodes 

As new kinds of luminescent materials, C-dots are expected to replace phosphors in white 

light emitting diodes (LEDs) with rear earth metals and toxic elements such as cadmium and 

lead because of their low cost, high quantum yield (QY), high stability and eco-friendliness. 

Consequently, some efforts have been paid to fulfill the applications of C-dots in LEDs. 

They can work both as phosphors in white LEDs or active layers in electroluminescent 

devices. Large-scale (20 × 20 cm) free-standing luminescent films of the C-dots embedded 

PMMA matrix were fabricated. The polymer matrix provides mechanical support and 

disperse the C-dots to prevent solid-state quenching. The obtained films are cost-effective, 

fully flexible, easily scalable, thermally stable, eco-friendly, and mechanically robust, and 

they show great potential in large-scale flexible solid-state lighting systems. White LEDs 

consist of the obtained films as the color-converting phosphors and InGaN blue LEDs as the 

illuminators were also demonstrated. C-dots-based LEDs with a driving current controlled 
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color change have been reported [710]. These devices consist of a C-dots emissive layer 

sandwiched between an organic hole transport layer and an organic or inorganic electron 

transport layer (Figure 85A) fabricated by a solution-based process. By tuning the device 

structure and the injecting current density (by changing the applied voltage), it is possible to 

obtain multicolor emission of blue, cyan, magenta, and white from the same C-dots (Figure 

85B). It is the first observation of switchable EL behavior with white emission in single 

emitting layer structured nanomaterial LEDs. This interesting current density-dependent 

emission was useful for the development of colorful LEDs. The pure blue and white 

emissions were obtained by tuning the electron transport layer materials and the thickness 

of the electrode. 

 

Figure 85: (A) Sandwiched structure of LEDs using C-dots as a single emitting layer. (B) 
Electroluminescence (EL) spectra and true color photographs of the blue, cyan, magenta, and 
white emissions [710]. 

Chen et al. prepared C-dots with broad yellow fluorescence by a one-step pyrolysis from N-

acetylcysteine (Figure 86A) [711]. The as-prepared C-dots are well-dispersed in various 

hydrophilic and hydrophobic solvents and possess high QY of 13 % without further surface 

treatment. The emission spectra of the white LED consists of two emission bands, blue 

emission centering at 460 nm from the LED chip and broad yellow emission from C-dots 

(Figure 86B). These two emission bands are combined to give a spectrum that produces 

white light. As seen in Figure 86C, the device provided a bright white illumination. The as-

prepared white LEDs exhibit white light with the Commission Internationale d’Eclairage 

(CIE) chromaticity coordinates of (0.34, 0.35) (Figure 86D), which is very close to the 
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balanced white light emission (0.33, 0.33), and hence it exhibits warm white light 

approximating natural sunlight. 

 

Figure 86: (A) Schematic of the formation of C-dots (CDs) from N-acetylcysteine and 
application in white LEDs, (B) Emission spectrum of a prototype white LED, (C) The 
photograph of a prototype white LED operated at 3.0 V, (D) Placement of the LED emission 
spectrum on the CIE 1931 chromaticity chart [711]. 

 

3.3.5.2.2. Photovoltaics 

C-dots have recently emerged as viable alternatives to traditional semiconductor quantum 

dots (QDs) because of their facile and low cost synthesis, long term colloidal stability, and 

low environmental and biological toxicity. The compatible surface chemistry, good 

solubility in polar solvents and extensive optical absorption throughout the visible and NIR 

wavelength regions render C-dots as potentially useful for photovoltaic applications [712]. 

Many kinds of solar cells have been reported, such as organic solar cells (OSCs) [713,714], 

and dye-sensitized solar cells (DSSCs) [715,716]. The C-dots can play different roles of 

photo absorption agents, sensitizers and transporting layers and the efficiency varied from 

0.1 to 9%. 

Organic and dye sensitized solar cells have attracted much attention because of their low 

cost, large area, random substrate and facile and scalable engineering such as spin-coating, 

inject printing and roll-to-roll methods. These devices can also benefit from the broad 

absorption, special band structure and electron transportation ability of C-dots. Li et al. 

fabricated a bulk heterojunction (BHJ) OSC based on an composite layer of poly(3-

hexylthiophene) (P3HT) and C-dots (Figure 87A) [35]. The LUMO energy level of C-dots 

is in the range of 4.2-4.4 eV, which is just between the LUMO of P3HT and the work 

function of Al (Figure 87B), forming an electron transport cascade. This band structure will 

facilitate the dissociation of excitons and good crystallinity of C-dots will improve the 

charge transport through the active layer. Thus, a photo conversion efficiency of 1.28% was 
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obtained and such structure without C60 was accepted by other groups to fabricate OSCs 

[717,718]. Though the efficiency of these devices is still low compared to conventional 

organic solar cells, it is expected that C-dots can be promising alternatives to the expensive 

C60 as electron acceptors. 

 

Figure 87: (A) Schematic and (B) energy band diagram of the C-dots (GQDs) based organic 
solar cell [35]. 

Organic/inorganic hybrid solar cells combined with metal oxides and organic 

semiconductors have also achieved researchers’ attention while it remains challenges to 

match the energy levels of the donor-acceptor system. Qin et al. demonstrated the insertion 

of C-dots in organic/inorganic layers or combination with organic semiconductors, which 

led to an enhancement of the power conversion efficiency [719]. As shown in Figure 88A, 

a cascaded alignment of energy levels similar to that of above discussed devices is obtained, 

facilitating the separation of photogenerated carriers. On the other hand, most of the applied 

oxides and organics can only absorb the solar energy partially and the insertion of C-dots 

with broad absorption spectra enhances the harvest of incident light. All of these factors 

contribute to the performance of solar cells (Figure 88B). 

 

Figure 88: (A) Energy band diagram of organic/inorganic hybrid solar cell. (B) Current-
Voltage curves with and without C-dots [719]. 



131 
 

 

 

Dye-sensitized solar cells (DSSCs) is another kind of photovoltaic device that utilizes dyes 

to absorb sun light. DSSCs have aroused intense attention due to their diversity, low cost 

and easy processing. Though DSSCs benefit from the diversity of organic dyes and get 

respectable efficiency, the photobleaching of organic dyes or the high cost and toxicity of 

ruthenium containing dyes, even the volatile electrolyte may hamper its widely application. 

C-dots with stable light absorption made from broad and cheap sources show its potential in 

DSSCs. After the first attempt by Mirtchev et al., who introduced C-dots as a sensitizer to 

capture sunlight in DSSCs [716], much research work has been performed to use this 

emergent nanolight to improve the performance of DSSCs. As the charge recombination of 

photogenerated electrons in the porous electrode with either the oxidized dye or the 

electrolyte will reduce the efficiency of DSSCs. Inspired by natural photosystems, Ma et al. 

developed a C-dots-bridged dye/semiconductor complex system for the fabrication of highly 

efficient photoelectric conversion systems. C-dots not only enhanced the UV-vis absorbance 

of rhodamine B (RhB) solutions due to the synergistic hyperchromic effect between RhB 

and C-dots (Figure 89), but also effectively suppressed the recombination of photogenerated 

electrons, thereby leading to a significantly enhanced photoelectric conversion efficiency 

[720]. Doping of C-dots into the dye/semiconductor complex significantly improved the 

photoelectric conversion efficiency of the complex by 7 times. 

 

Figure 89: (A) Scheme of electron transfer from RhB to C-dots (CQDs). (B) C-dots serve as an 
electron transfer intermediary for bridging the photogenerated electrons and suppressing 
their recombination [720]. 

 

3.3.5.3. Bioimaging 

Bioimaging is an essential tool in the field of biology. It is basically necessary for targeted 

drug delivery and discovering a defective site in a body. The field of nanotechnology is 

rapidly advancing for its application in biology. Fluorescent nanomaterials are of basic 
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interest for the purpose of bioimaging. C-dots have multiple advantages over semiconductor 

quantum dots (QDs), including comparable optical properties and good chemical and 

photochemical stability. Most importantly, carbon is largely non-toxic and environmentally 

friendly. An important parameter for bioimaging is photoluminescence (PL). This important 

property is exhibited by C-dots that are synthesized from various materials. C-dots are 

known for their tunable PL and also multicolor PL properties. These properties make C-dots 

very desirable as alternatives to semiconductor QDs for application in bioimaging both in 

vitro and in vivo [721]. 

The possibility of using C-dots as fluorescent labels for cellular imaging was first 

demonstrated by Cao et al. who used PPEI-EI passivated C-dots for two-photon 

luminescence microscopy using human breast cancer MCF-7 cells [32]. After incubation of 

the cells with C-dots for 2 h at 37 °C followed by washing to remove any extracellular C-

dots, they exhibited bright luminescence in both the cell membrane and cytoplasm regions 

when imaged using a fluorescence microscope with excitation by 800 nm laser pulses 

(Figure 90). The ability of the cells to uptake C-dots was found to be temperature-

dependent, with no C-dots internalized at 4 °C.  

 

Figure 90: Two-photon luminescence image of human breast cancer MCF-7 cells with 
internalized C-dots passivated with PPEI-EI [32]. 

In another study, fluorescent C-dots were synthesized from several carbohydrates such as 

glucose, glucosamine, sucrose, dextrans of different molecular weights, cellulose and 

ascorbic acid. The obtained nanoparticles were then incubated with HeLa cells for 3–6 hours 

and imaged using fluorescence microscopy. The C-dots exhibited very low binding to the 

cells due to their small size and low surface charge. As seen in Figure 91, the particles 

fluoresced different colors based on their size [598]. All these findings suggest that few C-

dots are capable of penetrating into the cell membrane and a few just help in staining the 

cells and cell nuclei. Hence, the size and surface functionalization of C-dots play a major 
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role for applications in bioimaging. Also, the results mentioned above suggest that C-dots 

are nontoxic and biocompatible in nature.  

 

Figure 91: C-dots are incubated with HeLa cells for 3–6 hours and labeled cells are imaged 
under fluorescence microscope. Cells are imaged under bright field (BF) and fluorescence (FL) 
mode [598]. 

C-dots are able to exhibit multicolor emissions, which is a huge advantage that sets them 

apart from the majority of labelling agents. This allows researchers to control and choose 

the excitation and emission wavelengths [722,723]. 

Zhai et al. synthesized photoluminescent C-dots with a QY of 30.2% to label L929 cells 

[723]. The C-dots incubated cells emitted blue, green, and red fluorescence upon excitation 

at 405, 488, and 543 nm, respectively (Figure 92). Those areas from which the fluorescence 

was emitted reflected the presence of C-dots, which were distinctly located in the cell 

membrane and cytoplasm, around the cell nucleus. Until now, nearly all C-dots without 

specific modifications basically label the cell membrane and cytoplasm areas without 

reaching the nuclei mainly through passive endocytosis [602]. 

 

Figure 92: Laser scanning confocal microscopy images of ethylenediamine (EDA)-C-dots 
labeled L929 cells [723]. 
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If the excitation wavelength is red-shifted enough, C-dots could emit in the NIR region. 

Although the emission in the NIR region is relatively weak, C-dots have great potential for 

in vivo fluorescence tracking studies because the animal body is practically transparent in 

the NIR region [722]. 

Yang et al. was the first to explore the viability of C-dots as contrast agents in live mice. 

They obtained C-dots and ZnS-doped C-dots from chemical processing of raw nanomaterial 

by laser ablation. After PEG1500N modifications, they were used for in vivo optical imaging 

of mice. C-dots or ZnS-doped C-dots solutions were injected in the mice body with various 

injection methods and high fluorescence was observed in the parts where the C-dots were 

injected but fluorescence faded away after 24 h [30].  

As seen in Figure 93, C-dots were intravenously injected into the bladder of mice. The 

images also show fluorescence imaging of the dissected kidneys and liver. It was also 

observed that the injected C-dots were removed from the body via the urine excretion 

pathway. 

 

Figure 93: Intravenous injection: (a) bright field, (b) as-detected fluorescence (Bl: bladder and 
Ur: urine), and (c) color-coded images. The same order for the images of the dissected kidneys 
(a'–c') and liver (a”–c”) [30]. 
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3.3.5.4. Biosensing 

In addition to their superior biocompatibility, C-dots possess the ability to serve as either 

excellent electron donors or electron acceptor. Therefore, C-dots can be used for intracellular 

detection of ions, biological pH value, protein, enzymes, vitamins, and nucleic acid. By 

monitoring the changes in their fluorescence intensity under external physical or chemical 

stimuli, C-dots were used to detect substances such as DNA [724], PO4
3− [725], thrombin 

[726], nitrite [727], glucose [728], biothiol [36], Cr3+ [37], Fe3+ [678,729], pH [730], Ag+ 

[731], Hg2+ [36,732,733], Cu2+ [607,644], and Cd2+ [729]. The surface functional groups on 

C-dots indicate distinctive affinities to different target ions, which results in the quench of 

PL intensity through an electron or energy transfer process and high selectivity to other ions.  

The detection of heavy metals is of importance because of their hazardous effect on the 

environment and human health. One of the first attempts of utilizing C-dots in sensing is the 

selective detection of Hg2+ in aqueous solutions [655,734] and live cells [735].  

Based on the quenching effect of Hg2+ on the fluorescence of C-dots, Yan et al. adopted the 

Hg2+–C-dots system for selective detection of Hg2+ in aqueous solution as well as in live 

cells [735]. The authors reported the synthesis of two types of C-dots using citric acid with 

1,2-ethyldiamine (C-dots-1) and N-(b-aminoethyl)-g-aminopropyl (C-dots-2) that possess 

high QY of 65.5 and 55.4%, respectively. They studied the effective and selective quenching 

of fluorescence emissions of C-dots-1 and C-dots-2 by Hg2+. Both C-dots acted as selective 

and sensitive fluorescent probes for the detection of traces of Hg2+ in both aqueous solutions 

and live cells. Upon the addition of 20 mM of Hg2+, the fluorescence intensity of C-dots-1 

was rapidly quenched by 80%, while that of C-dots-2 was quenched by 55%, and both 

remained stable after 1 h of observation (Figure 94). This substantiates the viability of using 

C-dots-1 and C-dots-2 as chemical sensing probes for Hg2+. The selectivity of C-dots-1 and 

C-dots-2 toward Hg2+ was then assessed by comparing the extent of fluorescence quenching 

of C-dots-1 and C-dots-2 by the addition of 20 mM of different metal ions. As shown in 

Figure 94, among all metal ions tested, Hg2+ quenched both the fluorescence of C-dots-1 

and C-dots-2 to the largest extent. Such quenched fluorescence was reversible and could be 

recovered by adding a strong chelating agent such as ethylene diamine tetraacetic acid 

(EDTA), making these C-dots reversible fluorescent probes. Furthermore, successful 

attempts were made in detecting Hg2+ in cultured cells [735]. 
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Figure 94: UV-vis (black lines) and fluorescence spectra of (A) C-dots-1 and (B) C-dots-2 
aqueous solutions in the absence (blue lines) and presence (red lines) of Hg2+; fluorescence 
responses of (C) C-dots-1 and (D) C-dots-2 aqueous solutions in the presence of 20 mM of 
different metal ions. (λex = 360 nm) [735]. 

Qu et al. reported a preparative route toward distinctive fluorescent C-dots from dopamine 

(DA). Such C-dots exhibit excellent PL properties, and they can be used for multicolor 

bioimaging. More importantly, these C-dots were used as a new type of sensor for label-free 

detection of Fe3+ and dopamine (DA) with high sensitivity and selectivity [736]. The method 

relies on the fact that Fe3+ can oxidize the hydroquinone groups on the surfaces of C-dots to 

the quinone species, which can quench the fluorescence of the C-dots and DA can effectively 

shelter the fluorescence quenching due to their competition with C-dots to react with Fe3+ 

(Figure 95). It offers a convenient “mix-and-detect” protocol for rapid detection of Fe3+ and 

DA and can be easily accomplished with a rapid one-step (within 10 min) operation. 

Moreover, this sensing platform exhibits high sensitivity and selectivity toward Fe3+ and DA 

versus other metal ions and the other DA analogues. Furthermore, no further chemical 

modification of the C-dots was required, which offers the advantages of simplicity, cost 

efficiency and environmentally friendliness. 
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Figure 95: (A) Schematic representation of fluorescent C-dots for the detection of Fe3+ ions and 
dopamine (DA). (B) Representative fluorescence emission spectra of C-dots in the presence of 
increasing Fe3+ concentration (0–700 μM) in a HEPES buffer (10 mM) at pH 7.0. (C) 
Fluorescence emission spectra of C-dots containing Fe3+ (600 μM) with increase in DA 
concentration (0–100 μM) [736]. 

Dong et al. designed branched poly(ethylenimine)-functionalized C-dots (BPEI-C-dots) as 

a fluorescence sensor for copper ion (Cu2+) detection (Figure 96). On account of the inner 

filter effect, in that the excitation and emission wavelengths of the C-dots were absorbed by 

the cupric amine complex formed on the surface, a quenching phenomenon would happen. 

Under the optimum experimental conditions, the C-dots show a good sensitivity and 

selectivity towards Cu2+ and the limit of detection and linear response range were determined 

to be 6 nM and 10-1100 nM, respectively [704].  
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Figure 96: (A) Fluorescence response of BPEI–C-dots upon the addition of various 
concentrations of Cu2+ in a pH 4 PBS solution. Inset: Semilogarithmic plot of F0/F of BPEI–C-
dots vs. the concentration of Cu2+. (B) Schematic illustration of the fluorescence of the BPEI–
C-dots quenched by Cu2+. (C) Selectivity of the BPEI–C-dots sensor for Cu2+ over other ions in 
a pH 4 PBS solution. The concentrations of C-dots and metal ions are 16.8 μg ml−1 and 10 μM, 
respectively [704].  

More interestingly, a tunable ratiometric pH sensor was developed for the quantitative 

measurement of the intracellular pH of cells based on C-dots [737]. The amino-coated C-

dots were functionalized with pH-sensitive fluorescein isothiocyanate (FITC) and pH-

insensitive rhodamine B isothiocyanate (RBITC), resulting in the dual-emission probe upon 

a single excitation. The pH sensor exhibited low cytotoxicity, good cell-permeability, and 

an excellent reversibility between pH 5-9. Thus, real-time quantitative determination of 

intracellular pH of intact HeLa cells and the pH fluctuations associated with oxidative stress 

were successfully performed [737]. Zhu et al. developed a dual-emission nanohybrid system 

consisting of C-dots and CdSe/ZnS QDs for intracellular sensing and imaging of Cu2+ ions 

[738]. As shown in Figure 97A, prior to the addition of Cu2+, the emission at 485 nm due 

to the presence of C-dots is more intense than that at 644 nm due to the presence of QDs, 

and thus a blue fluorescence is observed from the solution under excitation. After the 

addition of Cu2+, the molecular receptors on the C-dots surface bind with Cu2+ ions 

specifically to quench the fluorescence of C-dots. Since the emission at 644 nm remained 
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constant, the decrease of the blue fluorescence results in an observable fluorescent color 

change to pink. Even though there is little change in the detection performance 

spectroscopically, the involvement of the second signal as reference does improve the 

sensing sensitivity visually (Figure 97B). As an extension of the fluorescent sensing 

platform, the same group immobilized the molecular receptor-functionalized C-dots on the 

electrode, developing a highly selective electrochemical strategy for the determination of 

Cu2+ ion in complex brain system with a detection limit of 100 nM [739]. 

 

Figure 97: (A) Diagram for the dual-emission fluorescent sensing of Cu2+ ion based on a 
CdSe/ZnS-C-dots nanohybrid. (B) Comparison between fluorescent spectra and fluorescent 
colors of the nanohybrid probe and C-dots probe after exposure to CuCl2. The concentrations 
of CuCl2 from 1 to 6 for the spectra and from left to right for the colored solutions both 
correspond to 0, 10, 20, 30, 40, and 50 μM, respectively [738]. 

The π–π stacking interactions between C-dots and DNA (Figure 98) can also be used as 

binding strategy for detection of DNA [724]. The fluorescence from dye-labeled single-

stranded DNA probe is quenched after adsorption onto the C-dots surface via π–π 

interaction. When the target DNA matches the dye-labeled DNA to form double-stranded 

DNA, the fluorescence is recovered. This strategy is also employed for determination of 
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metal ions such as Hg2+ and Ag+ through T-Hg2+-T and C-Ag+-C base pairs, respectively 

[731,732]. 

 

Figure 98: π–π stacking interaction between dye-labeled ss-DNA probe and the surface of the 
C-dots [724]. 

Apart from utilizing the fluorescence of C-dots as an analytical signal, recent studies have 

revealed that C-dots exhibit good chemiluminescence (CL) [740] and 

electrochemiluminescence (ECL) [741]. For example, Wang et al. developed a paper-based 

DNA biosensor by using C-dots as CL signals and nanoporous gold (NPG) as a signal 

amplification agent. First, they constructed microfluidic paper-based analytical devices 

(μPADs) that were modified with N,N′-disuccinimidyl carbonate (DSC). Then, the capture 

DNA (S1) with thiol groups on its terminal was immobilized onto the μPADs. Furthermore, 

in the presence of target DNA (S2), the signal DNA (S3) could fix on the surface of μPADs 

through hybridization with S2. Finally, by injecting KMnO4, the CL reaction was triggered 

and the concentration of target DNA S2 could be easily measured in the luminescence 

analyzer (Figure 99). The detection limit of the sensor was estimated to be 8.56 × 10-19 M 

with a linear range of 10-18–10-14 M [740]. 

 

Figure 99: The C-dots-based CL sensor for the detection of DNA [740]. 

Wu et al. constructed an assay for cancer cell detection by using modified C-dots as ECL 

sensors and graphene as signal amplification agents (Figure 100) [741]. The sensors was 
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developed as following: first, the electrode was modified with amino-functionalized 

graphene that had been covalently grafting poly(allyl amine hydrochloride) (PAH) on it. 

Then the C-dots@Ag composite was introduced onto the surface of the electrode. After 

linking cysteine, folic acid was further conjugated with cysteine to modify the electrode. 

Each modifying process played a unique and important role in the sensitivity/selectivity of 

the sensor: (1) The graphene conjugation could facilitate electron transfer due to its good 

conductivity and large surface area. (2) Folic acid could specifically target folate receptors 

with high affinity, which enabled them to act as a bridge between the electrode and cancer 

cells. (3) The metal shell on C-dots accelerated the electron transfer between C-dots@Ag 

and graphene. Due to the specificity and affinity of folic acid, the fabricated electrode could 

selectively recognize the surface of human cervical cancer cells (HeLa) and human breast 

cancer cells (MCF-7) by targeting folate receptor (FR). The presence of cancer cells caused 

remarkable decrease in the ECL signal which originated from blocking of the C-dots@Ag 

nanocomposite surface and preventing them from coming into contact with the ECL 

coreactant N2S2O8. The detection limit was calculated to be 10 cells per mL at 3σ. 

 

Figure 100: The C-dots-based ECL platform for detection of cancer cells [741]. 

 

3.3.5.5. Drug delivery and Therapy 

Drug delivery systems (DDSs) based on nanotechnology are increasingly developed in 

recent years. The most widely investigated DDSs are based on AuNPs, but the issue of 

toxicity limits their applications in clinical therapy [349]. AuNPs also require thiol groups 

for drug loading through Au-thiol interaction, which imposes a further limitation of drug 

choice [742]. In addition, AuNPs are difficult to track in in vivo systems because they cause 
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the quenching of fluorophores [743]. Therefore, C-dots serve as good alternatives to AuNPs 

since different functionalization could result in many possibilities for conjugation with drug 

molecules in combination with targeting agents, expanding the drug choices for delivery 

[742]. Tang et al. reported a Förster resonance energy transfer (FRET)-based C-dots drug 

delivery system that could perform real-time monitoring of drug release (Figure 101) [744]. 

They used the fluorescent drug molecule doxorubicin (DOX) as model to illustrate the 

system. The DOX adsorbed onto the surface of C-dots via π–π stacking. Then the FRET 

occurred between the C-dots and DOX, which resulted in a decrease of the FL of C-dots and 

increase of the FL of DOX. With the release of DOX from the surface of C-dots, the FRET 

between C-dots and DOX was weakened while the FL of C-dots increased, which could be 

used to monitor the release of DOX [744]. 

 

Figure 101: (a) The drug delivery system that could perform real-time monitoring of drug 
release based on PEG-functionalized C-dots. Doxorubicin (DOX) was used as a drug molecule, 
which was adsorbed onto the surface of C-dots through π–π stacking. (b) Proposed mechanism 
of real-time monitoring of DOX release based on the FRET process between DOX and C-dots 
[744]. 

The obtained system showed excellent targeted delivery and drug release efficiency towards 

cancer cells at acidic pH environments. At pH 7.4, the fluorescence barely increases over 

the course of the 72 h, exhibiting a very low value of total release (<10% fluorescence 

intensity of the original C-dots-FA-DOX conjugates); this indicates a negligible DOX 

release at the neutral condition (Figure 102). A substantial increase of drug release rate is 

observed for acidic solutions, in which the release rate in pH 5.0 solution is higher than that 
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in pH 6.0 solution. In addition, compared with those of free DOX molecules, which complete 

release within ≈10 h, the release accumulation profiles for both pH 5.0 and 6.0 solutions 

show sustained release over a long period (>72 h). The percentages of accumulated release 

in the pH 5.0 solution are 55%, 72%, and 78% after 24, 48, and 72 h, respectively [744]. 

 

Figure 102: Time-dependent release profiles of DOX from C-dots-FA-DOX at different pH 
values: 7.4, 6.0, and 5.0. The release profile of free DOX molecules at a pH of 7.4 is also 
displayed for comparison [744]. 

This enhanced drug release rate at low pHs is particularly advantageous for cancer treatment. 

The slow DOX release at neutral environments can minimize the extracellular loss of drug 

molecules before reaching the tumour targets, as well as potential damage to normal cells. 

However, most of the DOX can persistently be released when the drug delivery capsules are 

internalized by tumour cells at low pHs (4.5-6.0), leading to enhanced cancer therapy.  

Recently, Zeng et al. developed a green-emitting C-dots with a carboxyl-rich surface which 

can be utilized as a trackable drug delivery agent for localized cancer treatment in a mouse 

model. The C-dots are conjugated with DOX, via non-covalent bonding, utilizing the native 

carboxyl groups on C-dots and the amine moiety on DOX molecules. The pH difference 

between cancer and normal cells was exploited as the triggering mechanism for DOX 

release. An in vivo study demonstrated that the fluorescent C-dots can serve as a targeted 

drug delivery system for localized therapy, and the stimuli-responsive non-covalent bonding 

between the C-dots and DOX molecule is sufficiently stable in complex biological systems 

(Figure 103) [491]. 
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Figure 103: Schematic illustration of the design overview. (a) The amines (–NH2) on DOX bind 
with the carboxylic acid (–COOH) on C-dots (CDs) via electrostatic interactions or hydrogen 
bonding. (b) Delivery of CD–DOX conjugates to HepG2 cancer cells and HL-7702 normal cells 
with strong green signal imaging tracking. The CD–DOX conjugates are expected to release 
DOX in HepG2 cancer cells, but not HL-7702 normal liver cells, due to low pH in cancer cells 
[491]. 

Similarly, a theranostic nanomedicine (C-dots-Oxa) was synthesized by condensation 

reaction between the amino groups on the surface of fluorescent C-dots and the carboxyl 

group of the oxaliplatin derivative Oxa(IV)-COOH. The C-dots-Oxa were taken up by 

cancer cells through endocytosis and the drug was released upon the reduction of Oxa(IV)– 

COOH to oxaliplatin(II) because of the highly reducing environment in cancer cells. It was 

also demonstrated that the distribution of the C-dots-Oxa can be closely tracked by 

monitoring the fluorescence signal of the C-dots, thereby offering great help in the 

customization of the injection time and dosage of the medicine (Figure 104) [745]. 
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Figure 104: Synthetic scheme for C-dots-Oxa (CD-Oxa) and its applications in bioimaging and 
theranostics [745]. 

In an attempt to enhance the loading capacity of C-dots, Mewada et al. tested the drug 

carrying and folic acid-mediated delivering capacities of highly fluorescent swarming C-

dots. Folic acid on the C-dots surface was used as a navigational molecule thanks to its 

widespread association with most types of cancer cells. The drug loading capacity for an 

anti-cancer drug DOX was estimated to be 86% and the release of DOX from the DOX-

loaded C-dots followed first order release kinetics at physiological pH – an ideal drug release 

profile. More interestingly, due to the better targeting ability of the folic acid molecule, the 

DOX-loaded C-dots showed a higher killing rate of cancer cells than free DOX and were 

less toxic to normal cells [746].  

Based on the ability of C-dots to absorb NIR light, Wu et al. first conducted photoacoustic 

(PA) imaging of sentinel lymph nodes (SLN) in vivo by using C-dots passivated by 

macromolecules. Observable signal enhancement of the SLN was exceptionally rapid within 

2 min after injection of the agent. This nanoprobe exhibited strong optical absorption in the 

NIR region, small size, and rapid lymphatic transport, offering valuable potential for faster 

resection of SLN and may lower complications caused by using dyes or low-resolution 

imaging techniques [747]. 

The C-dots can be used for photodynamic therapy (PDT). PDT is an approved therapeutic 

treatment for a number of cancers. In the presence of oxygen and light, photosensitizer (PS) 

can transfer the absorbed photon energy to surrounding oxygen molecules to form reactive 

oxygen species (ROS) such as singlet oxygen (1O2) and free radicals, resulting in cell death 

and tissue destruction. Huang et al. designed a PS-conjugated Cdots system featured by 

FRET for both enhanced fluorescence imaging and PDT therapy. Chlorin e6 (Ce6) was 
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selected as the PS, which emitted bright red fluorescence at 668 nm upon excitation at 430 

nm due to the efficient FRET process with carbon dots. The feasibility of the system for 

fluorescence imaging-guided PDT was investigated in nude mice. After intravenous 

injection, the fluorescence from Ce6 became visible in tumour sites at 2-4 h post-injection 

and reached a plateau at 4-8 h post-injection, and thus the suitable time point to implement 

PDT was selected at 8 h (Figure 105) [748]. 

 

Figure 105: (A) Förster (fluorescence) resonance energy transfer (FRET) process between C-
dots and Ce6. (B) (A-C) Subcellular localization of C-dots-Ce6, monitored by fluorescence 
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imaging. MGC803 cells were incubated with C-dots-Ce6 at a concentration of 10 μM for 2 h at 
37 °C (scale bar is 25 μm). (C) A: Real-time in vivo NIR fluorescence images after intravenous 
injection of C-dots-Ce6 in nude mice at different time points; B: ex vivo images of mice tissues 
(from top to bottom: heart, liver, spleen, lung, kidneys, tumour); C: the average fluorescence 
intensities from the tumour area at 24 h post-injection (n = 5); D: MGC803 tumour growth 
curves after various treatments (n = 5). (*, P < 0.05 for other groups versus C-dots-Ce6 + laser 
group) [748]. 

In addition to phototherapy, C-dots can be used for radiotherapy. Kleinauskas et al. 

developed a PEG-C-dots coated with a silver shell (C-Ag-PEG C-dots) which could be used 

as radiosensitizers in Du145 cells. When irradiated with low energy X-rays, electrons were 

ejected from the C-Ag-PEG C-dots, which in turn generates free radicals and damages the 

cancer cells surrounding the C-dots, reducing the damage of normal cells and increasing 

therapeutic selectivity [749]. 
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Chapter 4: 

Experimental Section 
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OBJECTIVES OF THE THESIS 

The Aims of the thesis is to create a novel drug delivery system based on CNPs to ameliorate 

the antitumour effect of doxorubicin (doxo).  

 In the first part of the work, the attention has been focused on a simple and economic 

synthesis of CNPs from a green source, “black tea” by nitric acid (HNO3) oxidation; and on 

the characterizations of the synthesized CNPs. The CNPs has been characterized by TEM to 

identify their sizes and morphology, by zeta potential to measure the charge, by FT-IR and 

XRD to determine the functional groups and the phase of CNPs, by XPS to identify the 

elemental composition of CNPs.  

The optical properties were studied by UV-Vis absorption and fluorescence. As we have 

discussed and shown in the chapter 3, fluorescent CNPs were used for drug delivery and 

for the imaging of cells. Due to the increasing number of papers focused on exosome biology 

and the possibility of utilizing exosomes in liquid biopsies, the CNPs were tested for use as 

potential fluorescent probes. Exosomes are extracellular vesicles with a diameter range of 

30-200 nm and diagnostic and therapeutic potential. Exosomes were incubated with CNPs, 

collected and verified by NTA analysis. 

 The second part of the thesis was to study in vitro the toxicity of the CNPs synthesized 

on HeLa, MDA-MB-231, LoVo and DLD-1 cancer cell lines. After that, CNPs were loaded 

with doxorubicin (doxo) and study the kinetics of drug release under neutral and acidic pH 

to demonstrate the ability of creation of a drug delivery system, which exhibit controlled 

release under acidic conditions, as in the tumour microenvironment. In this part, the 

cytotoxicity of CNPs on MDA-MB-231, LoVo and DLD-1 cancer cell lines treated with 

Cdoxo were also tested. 

 The third part of the thesis was to study in vivo the toxicity on a mouse model of breast 

cancer and study the biodistribution and the pharmacokinetics of Cdoxo. 

 

4. EXPERIMENTAL SECTION 

4.1. Materials and Instrumentations 

4.1.1. Reagents 

Commercially available Brooke Bond Taaza tea was utilized. HNO3 (70%) and sodium 

hydroxide (NaOH) were purchased from Sigma Aldrich (St. Louis, Missouri, US), 

doxorubicin (doxo) was obtained from Accord Healthcare Ltd. (Durham, NC, US) and 

daunorubicin was purchased from Teva Pharmaceutical Industries Ltd. (Petah Tikva, Israel). 
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All reagents were used as received without further purification. Minisart® syringe filters 

with a pore size of 0.2 µm were from Sartorius Stedim Biotech (Concord, CA, US), and a 

dialysis membrane (MWCO 0.5-1 kDa) was purchased from Spectrum Laboratories 

(Rancho Dominguez, CA, US) for CNP purification. LysoTracker® deep red probe was 

purchased from Life Technologies (Carlsbad, CA, US). Exosomes were prepared from 

exosome-depleted medium conditioned for 48 hours and purified with an AB cell culture-

nanovesicle solution according to the instructions (AB ANALITICA, Padova, Italy). 

DLD-1 and LoVo (colon) and MDA-MB-231 (breast) and HeLa (cervical) cancer cells were 

grown as indicated by the supplier (ATCC, Manassas, VA, US). Nude and FVB mice were 

purchased from Harlan Laboratories (Udine, Italy); the procedures were approved by the 

Italian Ministry of Health n°788/2015-PR and performed in accordance with the institutional 

guidelines. Data are reported as the mean and standard error. 

4.1.2. Equipments 

Water was obtained from a Milli-Q water purification system (18.2 Ω; EMD Millipore, 

Billerica, MA, US). UV-Vis absorption spectra were collected using a NanoDrop 2000c 

(Thermo Fischer Scientific, Waltham, MA, US). Fluorescence spectra were collected on an 

Infinite M1000 PRO and cell viability analyzed using an Infinite 200 PRO (Tecan, 

Männedorf, Switzerland). X-ray diffraction (XRD) data were collected on a Philips X’Pert 

vertical goniometer with Bragg-Brentano geometry. Transmission electron microscopy 

(TEM) was carried out using a Philips EM 208 microscope (Philips, Amsterdam, 

Netherlands). Fourier transform infrared (FT-IR) spectra were obtained on a NEXUS FT-IR 

spectrometer implementing a Nicolet Avatar diffuse reflectance accessory. X-ray 

photoelectron spectroscopy (XPS) was performed on a PHI Quantera SXM spectrometer 

using monochromatic Al-Kα X-ray sources at 1486.6 eV and 24.8 W with a beam diameter 

of 100.0 μm, a 1.2 V and 20.0 μA neutralizer, and FAT analyzer mode. Zeta potential (ζ) 

measurements were collected on a Zetasizer ZS90 (Malvern Instruments, Malvern, UK) 

using a 632 nm He-Ne laser as the light source. Fluorescence microscopy was carried out 

using a Nikon microscope at 20x and 40x magnification (Nikon, Chiyoda, Tokyo, Japan). 

The PK and biodistribution were evaluated by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) on a 4000 QTRAP MS/MS system equipped with a Turbo ESI 

source (AB Sciex, MA, USA). The exosome particle size was determined with an L10 

NanoSight instrument (Malvern Instruments Ltd, UK). 
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4.2. Synthesis of CNPs 

CNPs were synthesized from tea in the following steps: (1) carbonization of commercial tea 

followed by (2) oxidation with HNO3. The carbonized carbon was prepared by heating the 

commercial black tea at 200 °C for approximately 3 hours, followed by evaporation of water 

and heating again at 200 °C for approximately 5 hours. The so-formed carbonized tea 

powder was cooled to room temperature, dried on rotary evaporator and stored in a glass 

bottle. Then, 500 mg of the carbonized carbon was dispersed in HNO3 (0.065 mol, 5 M, 13 

ml) and refluxed at 80 °C for 20 hours under vigorous stirring. Then, the orange solution 

was cooled to room temperature and centrifuged (4300g, 25 min, room temperature) to 

separate out any unreacted carbon. The orange supernatant was collected, neutralized by 5 

M NaOH and filtered through a 0.2 µm Minisart® syringe. To remove salts and impurities, 

the raw solution was dialyzed against Milli-Q water using a dialysis membrane (MWCO 

0.5-1 kDa) for at least 2 days. Finally, the obtained golden-yellow solution was dried on a 

rotary evaporator and used for further characterization (yield: 26%).  

4.3. Fluorescence imaging 

A droplet of an aqueous CNPs dispersion (25 mg/ml) was imaged on a Nikon fluorescence 

microscope under different filter sets (nm), Ex 350/Em 460 (blue), Ex 490/Em 520 (green), 

Ex 550/Em 570 (red) and Ex 630/Em 670 (violet), at 20x magnification. 

4.4. CNPs cellular localization 

The CNPs cellular internalization was evaluated by plating HeLa cells at a density of 7.5 x 

104 cells/slide. The next day, the cells were marked with 50 nM LysoTracker® deep red 

probe (Thermo Fisher, MA, US) for 2 h at 37 ºC. After incubation, the cells were washed 

twice with 1X PBS and incubated for 24 h with 2 mg/ml CNPs. After incubation, the cells 

were washed twice with 1X PBS and fixed with 4% PFA for 10 min, and the slides were 

mounted with Alexa FluorSave solution (Thermo Fisher Scientific, Waltham MA, US). The 

images were obtained on a Nikon fluorescence microscope at 40x magnification using Ex 

630/Em 670 nm filters for the lysosomes and Ex 350/Em 460 nm filters for the CNPs. 

4.5. Imaging of CNPs-loaded exosomes 

To load exosomes with CNPs, HeLa cells were grown until 70% confluence, treated with 2 

mg/mL CNPs for 2 h, washed and then incubated in exosome-free medium for 24 h. The 
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medium was collected, and the exosomes were extracted using an AB cell culture-

nanovesicle solution. The next day, the medium was centrifuged at 103,000g and 4 °C for 

80 min, and the pellet was resuspended in 1X PBS. The exosomes were characterized by 

NTA analysis (nanoparticle tracking analysis, Malvern, UK). For imaging, the exosomes 

loaded with CNPs were spotted on a slide and analyzed with a Nikon fluorescence 

microscope at 40x magnification under different filter sets (nm): Ex 350/Em 460 (blue), Ex 

490/Em 520 (green), Ex 550/Em 570 (red) and Ex 630/Em 670 (violet). 

4.6. Doxorubicin loading efficiency and release 

CNPs (0.5 mg/ml) were incubated with doxo (0.25 mg/mL) in 1X PBS for 2 h at room 

temperature. The unbound doxo was eliminated by centrifugation at 13000g for 10 min and 

washed twice with 1X PBS. The drug loading capacity for doxo was calculated as follows: 

(weight of loaded doxo)/(weight of CNPs). The weight of free doxo was measured on a UV-

Vis spectrophotometer from the absorbance at 450 nm based on a doxo standard curve, and 

the weight of CNPs was measured from the absorbance at 289 nm based on a CNPs standard 

curve. The release of doxo and Cdoxo (50 μg/500 μL) was evaluated using a dialysis 

membrane (15,000 MWCO) dipped into 1 L of 1X PBS at pH 7.4 or pH 5.5. 

4.7. Toxicity, cytotoxicity and apoptosis tests 

The toxicity of the CNPs was tested in HeLa, MDA-MB-231, LoVo and DLD-1 cancer cell 

lines. The cytotoxicity of the free doxo, CNPs and Cdoxo was tested in MDA-MB-231, 

LoVo and DLD-1 cancer cell lines. Toxicity and cytotoxicity were evaluated by the 

CellTiter-Glo® luminescence assay (Promega, Madison, Wisconsin, US) using an Infinite 

200 PRO instrument (Tecan, Switzerland). Cells were seeded in 96-well plates (Falcon BD, 

San Jose, CA, US) at a density of 103 cells/well and incubated for 24 h to allow for cell 

attachment. The cells were incubated with doxo, CNPs, and Cdoxo at the same drug 

concentrations for 96 h. The experiments were performed in triplicate. Apoptosis was 

evaluated after 24 hours by fluorescence-activated cell sorting (FACS; BD Biosciences, San 

Jose, CA, US) utilizing the PE Annexin V Apoptosis Detection Kit I (BD Biosciences, San 

Jose, CA, US). 

4.8. In vivo CNPs toxicity and efficacy 

This experiment was carried out using 8 weeks old female nude mice, which were 

administered by i.v. (intravenous) injection of 4 concentrations of CNPs diluted in PBS 1X 
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(5, 10, 20 and 40 mg/kg). The body weights of the mice were monitored for more than 45 

days. 

To evaluate the anti-tumour efficacy of Cdoxo compared to doxo, 3 x 106 MDA-MB-231 

cells diluted in DMEM w/o phenol red/30% matrigel HC (Corning, New York, US) were 

inoculated in the mammary fat pad of nude mice. 

Histopathology: The organs of the mice were collected and fixed in 10% formalin buffered 

with PBS, embedded in paraffin, sectioned at a thickness of 3 μm and stained with 

hematoxylin and eosin (H&E). The tissues were analyzed with light microscopy using 

different magnifications. 

4.9. Pharmacokinetics (PK) and biodistribution 

The PK experiments were performed in 8 weeks old FVB mice treated with 3 mg/kg (i.v.) 

of the drug diluted in PBS 1X, and approximately 100 μl of blood was collected after 0.5, 1, 

3, 6, 24, 48, 96 and 192 hours. Blood was collected from each mouse twice: from the 

mandibular vein (live mouse) and the right ventricle of the heart (sacrificed mouse). A total 

of 12 mice were utilized. Serum samples were stored at -80 °C. For analysis of the drug 

tissue distribution, the mice were sacrificed at 3 and 24 hours, and their organs were washed 

with 10 ml of cold PBS/heparin before collection. The organs were diluted in 500 μl of 4% 

PBS/BSA and homogenized with a Qiagen TissueRuptor for 20 sec at power 4 in ice 

(Qiagen, Hilden, Germany). 

The doxo concentrations in serum and tissues were measured by LC-MS/MS. The proteins 

were precipitated with 2 volumes of cold acetonitrile containing 20 ng/ml daunorubicin as 

an internal standard. After vortexing and spinning at 13000 rpm for 15 min at 4 °C, the 

cleared supernatant was diluted with 2 volumes of 0.2% formic acid, and 10 μl of the dilution 

were injected into the LC-MS/MS system. Chromatographic separation was performed on 

an Accucore 150-C18 column (2.6 μm, 30x2.1 mm; Thermo Scientific, Waltham, MA USA) 

equilibrated with 0.2% formic acid/acetonitrile (95:5) at 0.7 ml/min and maintained at 50 

°C. An elution gradient B from 5% to 80% acetonitrile was applied over 5 min. A 4000 

QTRAP MS/MS system equipped with a Turbo ESI source (AB Sciex, Framingham, MA, 

USA) was equilibrated for 3 min in positive-ion mode. The transitions of doxo and 

daunorubicin were monitored in multiple reaction monitoring mode at m/z 544.1→397.2 

and 528.2→321.1, respectively. The spray voltage was set at 5000 V, with a source 
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temperature of 400 °C. The curtain gas, nebulizer gas (gas1) and auxiliary gas (gas 2) were 

set at 20, 50 and 50 arbitrary units, respectively. The declustering potential and collision 

energy voltages were set at 45 V and 16 V, respectively, for both doxo and daunorubicin. 
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Chapter 5: 

Results and Discussions 
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5. RESULTS AND DISCUSSIONS 

5.1. Characterization of CNPs prepared from black tea 

The CNPs were prepared from tea by HNO3 oxidation and characterized by UV-Vis 

absorption spectroscopy, fluorescence spectroscopy, powder XRD, FT-IR spectroscopy and 

TEM. The zeta potential of the CNPs was also measured at -16.6 mV, indicating a negative 

charge on the CNP surface due to the presence of carboxylic groups.  

Figure 106 shows the UV-Vis absorption and fluorescence spectra of CNPs excited at 360 

nm. The UV-Vis absorption spectrum contained two distinct peaks: one at 300 nm that could 

be assigned to the n-π* transition of the C=O groups on the surface of the CNPs and one at 

242 nm that could be assigned to π-π* transitions of the polycyclic aromatic systems (C=C) 

contained in the polyphenols of the tea [750]. The CNP solution produced a maximum 

emission peak centered at 470 nm when excited at 360 nm (Figure 106A). To investigate 

the optical properties of the CNPs, emission spectra were recorded at various excitation 

wavelengths from 300 to 570 nm; the emission peaks were red-shifted from 390 to 570 nm 

while the intensities decreased (Figure 106B and C). These optical properties mainly result 

from the different sizes and different distributions of emissive sites, which is generally a 

characteristic of fluorescent carbon nanomaterials [493]. The fluorescence properties of 

CNPs are always dependent on the size and the presence of organic functional groups in the 

carbon source [751].  

 

Figure 106: (A) UV-VIS absorption spectrum (Black line) and fluorescence spectrum of CNPs 
excited at 360 nm (Red line). (B) Fluorescence emission spectra and (C) normalized spectra of 
CNPs obtained at different excitation wavelengths progressively increasing from 300 nm to 
570 nm with 30 nm increments. F.I. fluorescence Intensity; a.u Arbitrary Units.  
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We applied XRD and FT-IR analyses to identify the functional groups and the phase of the 

CNPs. The powder XRD spectrum (Figure 107) contained a broader peak at 2θ = 24.8°, 

revealing an amorphous carbon phase in the CNPs.  

The FT-IR spectrum (Figure 108) indicated that the CNPs have many oxygen- and nitrogen-

containing functional groups on their surface. The broad peak centered at 3294 cm-1 revealed 

O-H/N-H bonding, and the absorptions at 2937 and 2866 cm-1 could be attributed to C-H 

stretching vibrations. Moreover, the absorption peaks at 1652 and 1752 cm-1 are indicative 

of C=O bonds. The absorptions at 1110 and 1195 cm-1 could be attributed to C-O-C bonds, 

and the absorptions at 1318 and 1337 cm-1 confirm the presence of C-O bonds. Furthermore, 

the absorption peaks at 1594 cm-1 could be attributed to the C=N and C=C groups of 

aromatic hydrocarbons, indicating the presence of sp2 hybridization, whereas the absorption 

peaks at 1406 and 1431 cm-1 could be related to C-N bonds. These data suggest that the 

CNPs were functionalized with hydroxyl, alkyl, carbonyl, carboxylic, and amine groups 

derived from the organic molecules in the black tea and the use of HNO3. 
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Figure 107: Powder XRD of CNPs (X axis = 2 theta (2θ) Bragg angle (°); Y axis = Intensity
(arbitrary units)). 
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Figure 108: FT-IR spectrum of CNPs. 

XPS analysis was used to confirm the functional groups on the CNPs surface. From the XPS 

spectrum (Figure 109), C, N and O were detected from the peaks at 285 eV (C1s), 400.2 eV 

(N1s), and 532 eV (O1s), respectively, with 62.56% carbon, 31.43% oxygen, and 6.01% 

nitrogen. The C1s peaks at 283.5, 284, 285.3, and 287.2 eV could be assigned to carbon in 

the form of C-H, sp2 (C=C), C-O/C-N and C=O/C=N, respectively [752–754]. The N1s 

peaks consisted of three Gaussian peaks centered at 399, 408.8 and 405 eV, corresponding 

to C=N-C, C-NH-C, and oxidized N-species such as N-O/N=O, respectively [753,754]. The 

O1s peaks could be deconvoluted into three Gaussian peaks centered at 530.4, 532.2 and 

534.7 eV, corresponding to C-O/N-O, C=O/N=O, and COO-, respectively [754]. The surface 

components of the CNPs are in agreement with the FTIR results. It is well known that HNO3 

oxidation produces hydroxyl and carboxylic groups on CNP surfaces, which makes the 

particles water soluble and negatively charged. In addition, this oxidation can also induce 

nitration [755].  

 

Figure 109: C1s, N1s, and O1s XPS spectra of CNPs. 
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Our experimental data suggest that refluxing the carbonized carbon derived from tea with 

HNO3 induces partial oxidation of the carbons; introduces functional groups, such as OH, 

COOH, and NO2; and causes nitrogen doping into the CNPs. The introduction of functional 

groups imparts water solubility and a surface charge to the CNPs. This oxidation step could 

also be considered a chemical route to incorporating nitrogen into the CNPs, as observed 

from the chemical composition analysis. 

The morphology and size of the CNPs were investigated by TEM. As shown in Figure 110, 

the CNPs had a narrow size distribution and were spherical with an average diameter of 17 

nm. 

 

Figure 110: (A) TEM image and (B) particle size distribution histogram of CNPs (17.3 ± 7.6 
nm). Arrows indicate CNPs. 

 

5.2. CNPs were biocompatible and suitable for bioimaging of cellular and subcellular 

(exosomes) compartments 

The CNPs were reported to be not toxic in different experimental set-ups [31,616]. In vitro 

experiments showed that CNPs do not alter cell viability at concentrations up to 200 μg/ml 

[682]. A toxicity test was performed with HeLa, MDA-MB-231, LoVo and DLD-1 cells. 

Our CNPs were not toxic at up to 1 mg/ml, illustrating very high biocompatibility (Figure 

111), and sustained further testing in in vivo experiments.  
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Figure 111: Toxicity of CNPs on (A) HeLa, (B) MDA-MB-231, (C) LoVo and (D) DLD1 cell 
lines. Cells were treated with increasing the concentration of CNPs as indicated on the X axis 
(μg/ml). L.I.: luminescence intensity. a.u.: Arbitrary Units. 

To strengthen these results, an apoptosis test was performed and the results are presented in 

Figure 112. Cells were treated with 1 mg/ml CNPs, and the expression of Annexin V on the 

surface of the cells was measured by FACS after 24 hours. No change in the percentage of 

apoptotic cells was observed in the CNPs-treated cells over the control. 

 

Figure 112: Annexin V assay. Cells were treated with 1 mg/ml of CNPs and marked with 
annexin V antibody. 
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Although the CNPs were designed and synthetized for drug delivery applications. A droplet 

of CNPs (25 mg/ml) was deposited on a cover slip under a fluorescent microscope and 

imaged under different excitation wavelengths commonly utilized for biological 

experiments. Fluorescence of the CNPs was detected in all the ranges utilized (Figure 113). 

For biological applications, a wavelength range over 600 nm is more suitable (Figure 113D) 

and does not overlap with the fluorescence of doxo, which has a maximal 

excitation/emission of approximately 490/590 nm. 

 

Figure 113: (A-D) Fluorescence microscopy photographs of an aqueous solution of CNPs under 
different excitation filter sets: (A) 350 nm, (B) 490 nm, (C) 550 nm and (D) 630 nm. 

Due to the increasing number of papers focused on exosome biology and the possibility of 

utilizing exosomes in liquid biopsies, the CNPs were tested for use as potential fluorescent 

probes. Exosomes are extracellular vesicles with nanometric dimensions (30-200 nm) and 

diagnostic [756] and therapeutic potential [757]. Exosomes incubated with CNPs were 

collected after 24 hours and verified by NTA analysis (Figure 114).  
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Figure 114: NTA of exosomes extracted from MDA-MB-231 cell culture medium. 

Equal quantities of exosomes were evaluated under fluorescence microscopy from CNPs-

treated and untreated cells. A clearly noticeable dotted appearance of CNPs-loaded 

exosomes can be observed in Figure 115, suggesting that these CNPs can be utilized to 

probe exosomes for biological applications. 

 

Figure 115: Exosomes isolated from the cell culture medium of MDA-MB-231 cells treated 
with CNPs (2 mg/ml) for 2 h and collected after 48 h. Images were acquired with different 
excitation filter sets: (A) 350 nm, (B) 490 nm, (C) 550 nm and (D) 630 nm. Scale bar: 20 μm. 
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5.3. CNPs avoided lysosomal entrapment and delivered doxo efficiently in in vitro 

experiments 

Lysosomal degradation is a natural process by which cells eliminate unnecessary 

endogenous and exogenous materials [758]. The failure of many nanomaterials is due to 

their accumulation inside lysosomes [759]. Escaping lysosomal degradation is a desirable 

functional property for drug delivery applications. Under this scope, HeLa cells were probed 

with LysoTracker for 2 hours and incubated with 2 mg/ml CNPs for 24 hours. Under 

fluorescence microscopy, the CNPs (green) had a clearly uniform distribution in the 

cytoplasm and nucleus, and the typically punctuated appearance of lysosomal accumulation 

(red) was not apparently observed (Figure 116). 

 

Figure 116: HeLa cells (A) treated with 2 mg/ml CNPs after 24 h and marked with (C) 
LysoTracker. (B) and (D) Zoom-in of (A) and (C). Scale bar: 20 μm. 

A desirable property of nanomaterials is an intrinsic ability for loading therapeutic drugs and 

a controlled release over time under physiological conditions [760,761]. To demonstrate this 

concept, the CNPs were loaded with doxo, and the kinetics of drug release was calculated 

from a dialysis experiment in PBS at 37 °C at different pH values. For drug loading, the 

CNPs were mixed with doxo at room temperature, and the drug loading was calculated to 

be approximately 60% (Figure 117).  
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Figure 117: Loading capacity of Cdoxo. The graph displays the percentage of doxo loading (y-
axis). 

Doxo is a weak amphipathic base with pKa= 8.3. At physiological pH (7.4), the protonated 

fraction of doxo is still 10-fold that of the free base, while the carboxylic acid moieties on 

the CNPs surface are nearly completely dissociated to their negative carboxylate form (pKa 

range: 3-5) [762,763]. Thus, the doxo molecules retain their electrostatic interactions with 

the CNPs at physiological pH. At pH 4, the carboxylic acid groups on the CNPs are partially 

dissociated, decreasing the negative charge on the CNPs and reducing the electrostatic 

interactions of the drug carrier with protonated doxo. To support our conclusion, CNPs were 

loaded with doxo at different pH levels: 4, 5.5 and 7.4 (Figure 118). The percentage of 

loading positively correlated with the pH.  

 

Figure 118: Loading capacity of CNPs at different pH (4, 5.5 and 7.4). 

The extracellular pH (pHe) of tumour tissues is acidified by the metabolism of tumour cells 

[764]. Cell survival is conditioned by maintenance of a favorable acid-base balance (pH). 

Because of cellular metabolism, which produces CO2 and lactic acid, cancer cells are 

continuously exposed to large acid-base fluxes, which would disturb the pH. In contrast to 



168 
 

 

 

normal cells, most tumour cells preferentially convert glucose and other substrates to lactic 

acid, even under aerobic conditions. This phenomenon, termed “the Warburg effect”, was 

reported by Warburg and co-workers in the 1920s [765–767]. Due to increased glucose 

metabolism, tumours possess a greater capacity to pump lactic acid and protons out to the 

extracellular spaces to maintain an appropriate neutral-alkaline intracellular pH (pHi), which 

is essential for cell vitality. The inefficient removal of protons and lactic acid from 

extracellular spaces creates a reversed gradient characterized by an acidic pHe and alkaline 

pHi [768–770]. In vitro and in vivo studies revealed that tumour cells have a pHi ranging 

from 7.1 to 7.6 (pHi of normal cells: 7.0 to 7.2) and a pHe of 6.2-6.9 (pHe of normal 

extracellular space: 7.3-7.4) [771]. The intravesicular pH along the endocytic pathway 

ranges from pH 6.0–6.5 in early endosomes to pH 4.5–5.5 in late endosomes and lysosomes 

[772].  

A drug delivery system that is able to release its cargo more efficiently around the tumour 

site at low pH (approximately pH 6) represents an intelligent system to specifically target 

tumour cells [773]. To study the capacity and release of Cdoxo over different pH gradients, 

we carried out a release experiment at pH 5.5 and 7.4 to mimic the bloodstream, tumour 

microenvironments and intracellular endosome/lysosome pathway (Figure 119) [499,774]. 

The release of doxo was derived from a log-log plot of the cumulative release versus time. 

Noticeably, the CNPs maintained a stable interaction with doxo at alkaline pH (pH of the 

bloodstream) with a slow release profile (approximately 15 hours), compared to a fast 

release profile (approximately 1 hour) when the medium was acidified to levels of the 

extracellular space of the tumour and in subcellular compartments. This pH gradient 

increases the ratio of the tumoural/non-tumoural drug concentration, thereby elevating the 

therapeutic index of doxo. 
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Figure 119: Release of doxo from CNPs. The cumulative release of doxo was evaluated by 
measuring the fluorescence of doxo, which resides inside the dialysis membrane at each time 
point at pH 5.5 and 7.4. 

Subsequently, the cell viability of MDA-MB-231, LoVo and DLD-1 cells treated with 

Cdoxo was tested. Cells were treated with 3 different concentrations of free doxo or Cdoxo, 

and the cell viability was assessed after 96 hours (Figure 120). Cdoxo exhibited better 

cytotoxicity than free doxo in MDA-MB-231 and DLD-1 cells (p value < 0.05). Based on 

these results, we further evaluated the CNPs as a drug delivery system in a mouse model of 

breast cancer. 
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Figure 120: Cytotoxic effects of Cdoxo on MDA-MB-231, DLD-1 and LoVo cell lines treated 
with increasing concentrations of doxo (blue) or Cdoxo (red), as indicated on the x-axis (ng/ml). 
*p value <0.05 (y-axis). 

 

5.4. CNPs were not toxic in mice and increased the efficacy of doxo 

In vitro experiments demonstrated that our CNPs were not toxic at concentrations above the 

necessary dosage for drug delivery applications. To better predict toxicity in humans, nude 

mice were treated with a single i.v. injection of 5, 10, 20 and 40 mg/kg CNPs. Their body 

weight was monitored as an objective parameter of mice wellness. The mice were followed 

over a period of approximately 2 months. We did not observe any symptoms of stress or 

clinical illness. The body weight of the mice increased during the observational period 

(Figure 121).  
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Figure 121: Weight of mice treated with different concentrations (mg/kg) of CNPs as indicated. 

After more than 6 months, the mice were sacrificed, and their tissues were 

histopathologically analyzed. No obvious signs of toxicity were observed (Figure 122). 

 

Figure 122: Histopathology analysis of different tissues of mice treated with 40mg/kg of CNPs. 
(A) Liver, (B) lung, (C) intestine, (D) brain, (E) heart, (F) spleen (G) kidney and (H) bone 
marrow. 
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Supported by this encouraging data, MDA-MB-231 cells were orthotopically inoculated in 

the mammary fat pad of nude mice. After the tumours had reached an average volume of 57 

± 8 mm3, the mice were treated 3 times on a weekly base with 3 mg/kg Cdoxo or free doxo. 

Figure 123A demonstrates that the tumour volume of the Cdoxo-treated mice was reduced 

compared to the tumours of mice treated with free doxo (p value < 0.05). The body weight 

of the mice was similar among the groups of mice tested during the experiment (Figure 

123B). 

 

Figure 123: (A) Mice were treated 3 times (arrows) at 3 mg/kg Cdoxo or free doxo, and the 
tumour volume was measured (y-axis). *p value <0.05 (B) Weight of mice treated as in (B). T0: 
time at the beginning of the experiment; Tn: time on day n as indicated. Eight tumours were 
analyzed per data point. 

 

5.5. CNPs altered the biodistribution and prolonged the circulation time of doxo 

Data obtained from well-known and successful liposomal formulations revealed that drug 

efficacy can be increased by a longer circulation time, avoiding rapid clearance [775]. To 

investigate the potential changes in the PK profile, we administered 3 mg/kg doxo (i.v.) and 

Cdoxo to FVB/N mice. The PK profile of doxo in blood and tissues was qualitatively similar 

when administered as the free drug or Cdoxo. Both PK profiles were characterized by fast 
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first-phase elimination. However, in the late phase of elimination, up to 4 days, the 

concentration of doxo in blood remained higher when administered as Cdoxo (Figure 124) 

compared to free doxo. This result is consistent with the increase in the mean residence time 

from 14.1 ± 2 to 20.1 ± 0.5 hours (p value < 0.01) and the apparent constant elimination 

from 0.07 ± 0.01 hour-1 to 0.050 ± 0.01 hour-1 (p value < 0.05) for free doxo and Cdoxo, 

respectively. 

 

Figure 124: PK profile of free doxo and Cdoxo at 0.5, 1, 3, 6, 24, 48, 96 and 192 hours. In the 
insert, the time points 96 and 192 hours were zoomed in. *p value <0.05. 

The tissue distribution of the drug 3 hours post-injection demonstrated a similar profile 

between Cdoxo and free doxo, except in the skin (Figure 125A). After 24 hours, the 

distribution of Cdoxo changed, with an accumulation in the liver and intestine and a 

reduction in the skin (p value < 0.05; Figure 125B). These data suggest that Cdoxo could 

reduce the skin toxicity associated with liposomal formulations of doxo and be utilized to 

treat gastro-intestinal cancers. 
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Figure 125: (A) and (B) Biodistribution of free doxo and Cdoxo at 3 (A) and 24 (B) hours. At 3 
hours, less Cdoxo was present in the skin. At 24 hours, increased accumulation of Cdoxo in the 
liver and intestine was observed. The y-axis is in logarithmic scale (ng/gr of drug/tissue). Li: 
liver, Sp: spleen, He: heart, Lu: lung, In: intestine, Ki: kidney, Br: brain, Sk: skin. Three mice 
were utilized for each data point. 
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Chapter 6: 

Conclusions  
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6. CONCLUSIONS 

CNPs have been widely used in nanomedicine due to their biocompatibility and low toxicity. 

Different synthetic methods, starting materials, and surface modification processes can 

generate a wide variety of CNPs, which have shown immense potential to play a big role in 

nanotechnology for the development of assays, sensors, bioimaging agents both in vitro and 

in vivo, smart drug delivery vehicles, phototherapy, photocatalysis and electrocatalysis. 

Nonetheless, some problems still exist that impede the further bioapplications of CNPs: (1) 

the difficulty to synthesize CNPs with uniform size. Proverbially, the uniformity has a great 

influence on the properties of CNPs, which further disturb their bioapplications. 

Consequently, almost all of the synthesized CNPs need further separation and purification. 

(2) CNPs obtained from different batches often show different properties, such as size, QY, 

and fluorescence. This problem limits the commercialization of CNPs, which needs to be 

settled urgently. (3) Some CNPs obtained at the very start are not fluorescent, which need 

further passivation.  

Despite the fact that many optical and electronic properties of CNPs are not well understood 

yet, there is no doubt that CNPs will play a huge role in bioimaging and biomedical research 

in the near future upon further development. The fact that the advantages of CNPs are being 

recognized by researchers with interest in areas as diverse as materials science, synthetic 

chemistry, drug delivery, nanomedicine and clean energy suggests that research on CNPs 

will continue to grow in synergistic relationship with intellectually adjacent fields. It seems 

clear that the future of CNPs remains promising. 

In this study, we prepared a new nanovector that can be used to image subcellular 

compartments such as exosomes with excellent properties for drug delivery. These CNPs 

can be efficiently loaded with doxo, a widely used chemotherapeutic drug, and exhibit 

controlled release under acidic conditions, as in the tumour microenvironment. Cdoxo was 

more effective in vivo than free doxo due to a different PK profile. Hence, a simple and 

green synthesis starting from tea could produce a tunable and safe drug delivery nanocarrier 

with excellent biocompatible properties. 
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