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Abstract 

 

Dissemination of cancer cells from the primary tumors to distant organs represents the 

main cause of death in cancer patients. GTSE1 over-expression has been reported as a 

potential marker for metastasis in various types of malignancies including breast cancer 

where GTSE1 expression levels associate with tumor grade, enhanced invasive potential 

and negative prognosis. Given the strong association between GTSE1 deregulation and 

bad clinical outcome the aim of this work was to clarify how GTSE1 is regulated in  

triple negative breast cancer and to elucidate the mechanism underlying GTSE1-

dependent cell movement. Here, I identified GTSE1 as a novel direct TEAD4 and E2F1 

transcription factors target gene, highlighting a role for YAP and TAZ co-activators in 

GTSE1 transcriptional regulation. Frequently deregulated in cancers, TEAD4 and the 

co-activators YAP and TAZ  have been reported to promote tumorigenesis, invasion 

and metastasis in breast cancer. I demonstrated that the effect of the TEAD transcription 

factor on cell migration and invasion is GTSE1-dependent. Moreover, I found that 

TEAD controls cell protrusions formation, required for cell migration, through GTSE1 

protein, unveiling a relevant effector role for GTSE1 in the TEAD-dependent cellular 

functions. 
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Introduction 

 

Breast cancer 

 

Breast cancer is one of the most frequently diagnosed form of cancer and the second 

leading cause of death in Western women (Weigelt et al., 2005). It is a very complex 

and heterogeneous disease  including subtypes with different molecular alterations and 

clinical outcome (Stingl and Caldas, 2007). According to a classical molecular 

classification based on the gene expression profiles, breast tumours can be distinguished 

in five different subtypes: luminal A, luminal B, normal-like, HER2-positive and basal-

like breast cancers (Perou et al., 2000; Sorlie et al., 2001). 

The most recurring subtype is the luminal A, representing 50-60% of the total cases. It 

is characterized by the expression of oestrogen receptor (ER),  progesterone receptor 

(PgR), low expression of Ki67 and absence of human epidermal growth factor receptor 

2 (HER-2) amplification. The luminal A subtype shows a gene expression pattern 

similar to that of luminal epithelial mammary cells where ER transcription factor is 

activated. In general, this subtype of tumour displays low rate of proliferation, low 

histological grade and is associated with good prognosis (Kennecke et al., 2010). 

The luminal B subtype represents about 10-20% of the total breast cancer cases. Its 

immunohistochemistry (IHC) profile is characterized by ER+/HER2- and high Ki67 or 

ER+/HER2+ or in about 6% of the cases ER-/HER2-. Respect to the luminal A these 

tumors present higher proliferation rate, histological grade and worse clinical outcome 

(Eroles et al., 2012). 

There are few studies about the normal-like breast cancer for two reasons: first of all it 

is a rare form and secondary some groups believe that it is not a real subtype, but a 

technical artefact due to contamination with normal tissue during microarrays (Weigelt 

et al., 2010).  

Of the total cases of breast tumors, 15-20% is represented by the HER2-positive 

subtype. Cancers belonging to this subtype show HER2 gene amplification, over-

expression of genes related to the cell cycle and high proliferation rate. About 75% of 

these cancers have high histological grade (Eroles et al., 2012). HER2 positive breast 
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tumors have been further subdivided in three subtypes, one of which associated with 

higher invasive potential and worse clinical outcome than the others. 158 genes, 

identified as differentially expressed between the subtype related to worse prognosis 

and the other subtypes, have been used to develop a prognostic predictor useful to better 

stratify the patients identifying those belonging to the more aggressive subgroup (Eroles 

et al., 2012; Staaf et al., 2010). Although related to poor prognosis (12% ten year 

survival in patients with the most aggressive subgroup and 50-55% in the other 

subgroups), the development of a targeted therapy anti-HER2 has enabled progress in 

the treatment of this breast cancer subtype (Eroles et al., 2012; Gianni et al., 2011; 

Piccart-Gebhart et al., 2005; Slamon et al., 2001).  

Accounting for about 10-20% of all breast carcinomas, the basal-like subtype is 

characterized by a gene expression pattern similar to that of normal breast myoepithelial 

cells, expressing cytokeratins CK5 and CK17, CD44, P-cadherin, nestin, EGFR and 

caveolin 1 and 2 (Eroles et al., 2012). This subtype tends to occur in premenopausal 

women with the highest incidence among African-American population (Carey et al., 

2006; Millikan et al., 2008) and shows high histological grade and frequent lymph node 

metastasis at diagnosis(Eroles et al., 2012). It is associated with worse prognosis than 

luminal ones showing a very aggressive relapse pattern affecting visceral organs, such 

as lung and central nervous system(Kennecke et al., 2010; Smid et al., 2008).  

About 55-85% of basal-like tumors are triple negative breast cancers (TNBC), lacking 

of the expression of ER, PGR and HER2 gene amplification (Seal and Chia, 2010). 

Basal-like subtype and TNBC are not synonymous, in fact not all TNBC belong to the 

basal-like subtype. 

TNBCs represent about the 15% of all invasive breast tumours (Mayer et al., 2014). 

These cancers seem to be more aggressive than other breast cancer subtypes, leading to 

a high recurrence probability and poor survival rates (Stingl and Caldas, 2007). 

In 2007 the claudin low subtype has been identified as a novel breast cancer subtype 

(Herschkowitz et al., 2007). This type of breast carcinoma has derived its name from the 

low expression of genes involved in tight junctions and intercellular adhesions, 

including claudin-3, -4, -7 cingulin, E-cadherin and ocludin. These tumours display low 

expression of genes related to cell proliferation, over-expression of genes associated to 

EMT and generally are TNBCs and related to poor prognosis (Eroles et al., 2012). 
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In the last twenty years breast cancer treatment has evolved from a baseline therapy 

based on chemotherapy to a more target-directed approach. In fact nowadays, patients 

with hormone receptor positive tumour are generally treated with hormonal therapy, 

such as selective oestrogen-receptor response modulators (SERM) or aromatase 

inhibitors. Endocrine therapies slow or stop the growth of HR-positive tumours by 

preventing the cancer cells from getting the hormone they need to grow in several 

different ways. Some drugs, like tamoxifen, couple and lock to the receptors in the 

cancer cells and prevent ligands from binding to the receptor. Other drugs, like 

aromatase inhibitors, decrease the level of oestrogen in the body. Analogously, patients 

with HER2-positive tumours typically receive an anti-HER2 targeted therapy. HER2 is 

a cell membrane tyrosine kinase receptor member of the epidermal growth factor 

receptor (EGFR) family (Mathew and Perez, 2011). The first commercially available 

HER2 targeting agent was the monoclonal antibody trastuzumab (Herceptin®). The 

humanized monoclonal antibody trastuzumab binds to an extracellular segment of the 

HER2 receptor, leading to inhibition of the proliferation of human tumor cells that 

overexpress HER2 (Leyland-Jones, 2002).  

Breast cancer treatment strategies such as hormonal or targeted therapies are effective 

only when the corresponding receptors or molecular targets are expressed by the tumour 

cells. 

Of course in the TNBC patients the hormonal therapy and anti-HER2 targeted therapy 

are ruled out leading to a difficult treatment scheme and to the need of identifying novel 

therapeutic targets for a more targeted approach. 

 

 

GTSE1 (G2 and S phase expressed 1) 

 

The murine Gtse-1 gene was discovered in our group in 1998 as a p53-inducible gene 

(Utrera et al., 1998). In this study, by using a differential subtractive hybridization 

approach in the murine cell line Val 5 stably transfected with the temperature-sensitive 

Val 135 allele of murine p53, Gtse-1 was isolated as a novel p53 target gene whose 

protein was selectively induced in the G2 fraction of the cell population. A p53 
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responsive element was identified in close vicinity of the Gtse-1 promoter (Utrera et al., 

1998). 

Further characterization of Gtse-1 expression revealed that it is almost undetectable 

during the G1, increases in S phase and peaks during the G2 phase, showing that it is 

tightly regulated during the progression of the cell cycle (Collavin et al., 2000). Wt p53-

containing and p53-null murine cells share the same regulation of Gtse-1 during the cell 

cycle suggesting that other transcription factors may be involved in the control of Gtse-

1 expression. 

Gtse-1 is mainly a microtubules-associated protein, although clear evidence of nuclear-

cytoplasmic shuttling has been observed (Monte et al., 2004; Utrera et al., 1998). Its 

over-expression leads to accumulation of cells with 4N DNA content indicating a 

prolonged G2/M phase of the cell cycle. This suggested that Gtse-1 might play specific 

biological activities in this cell cycle window where it is physiologically expressed 

(Utrera et al., 1998). 

The human homologue of Gtse-1 (GTSE1) shares the same intracellular localization, 

the ability to undergo to nuclear-cytoplasmic shuttling and identical cell cycle regulated 

expression pattern (Monte et al., 2000). Unlike its murine homologue, hGtse-1 gene 

lacks of the p53-responsive element (Monte et al., 2000).  

Murine and human GTSE1 amino acid sequences present 60% of amino acid identity 

and more than 70% of similarity, with N-terminal and C-terminal region highly 

conserved (Monte et al., 2000). Moreover, more than 85% of Ser-Pro motifs and 50% of 

Thr-Pro motifs are conserved between mouse and human GTSE1(Monte et al., 2000). 

GTSE1 harbours a conserved and active NES, located in the C-terminal region and 

required for the shuttle from the nucleus into the cytoplasm, and three putative NLS 

(Monte et al., 2000). 

hGtse-1 gene includes at least 11 exons and 10 introns stretching over about 33Kb of 

genomic DNA (Monte et al., 2000). This gene and its murine homologue mapped on 

chromosome 22 corresponding to band q13.2–q13.3 and chromosome 15 respectively. 

In addition to Gtse-1, different murine genes, such as Cyp2d, G22p1, Ncf4 and others, 

have been reported to localize on chromosome 15 and their human homologues on 

chromosome 22, indicating that these are regions of conserved synteny (Dunham et al., 

1999; Huppi et al., 1998; Monte et al., 2000). 
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GTSE1 biological functions 

 

GTSE1 is mainly an intrinsically disordered protein (IDP), a part from a region of 100 

amino acids located in N-terminal domain expected to fold in an ordered secondary 

structure (Scolz et al., 2012).  

Analysis of the amino acids sequences and secondary structure of IDPs revealed that 

they are characterized by the presence of low complexity of regions, in which there is 

the repetition of one or few amino acids, coupled with low content of bulky 

hydrophobic amino acids and high content of hydrophilic and charged amino acids. As 

result of this, they are unable to spontaneously fold in stable three-dimensional 

structures under normal conditions (Wright and Dyson, 2015). Their peculiar structure 

provides to IDPs great flexibility and the ability to bind different partners with high 

specificity and low affinity, making these regulatory interactions easily reversed. 

IDPs transiently interact with multiple different targets in dynamic regulatory networks 

exerting a key role in the regulation of signalling pathways and cellular processes such 

as transcription, translation, cell cycle, chromatin remodelling and assembly and 

disassembly of microfilaments and microtubules (Galea et al., 2008; Guharoy et al., 

2013; Iakoucheva et al., 2002; Liu et al., 2006; Wright and Dyson, 2015). 

Looking at GTSE1 sequence we identified different protein binding sites such as p53, 

p21 and EB1 binding domains (Bublik et al., 2010; Monte et al., 2003; Scolz et al., 

2012), see fig. A.  

 

 

 

Fig. A Cartoon representing p53, p21 and EB1 protein binding sites in GTSE1 

sequence 
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In a previous work, carried out in our group, we reported that in response to DNA 

damage GTSE1 is stabilized and accumulates into the nucleus and, controlling p53 

stability and function, regulates the DNA damage-induced apoptosis (Monte et al., 

2003). In fact, GTSE1 knock-down sensitizes cells to p53-dependent apoptosis after 

DNA damage. Under stress conditions p53 undergoes to post-translational 

modifications that lead to its stabilization and accumulation into the nucleus. Instead, in 

the post-damage recovery phase, the activity of negative regulators is required to down-

regulate p53 protein levels and activity and to restore its steady-state functions. Time-

course experiments demonstrated that GTSE1 accumulates into the nucleus at slower 

rate than p53, suggesting that it could play a critical role in the post-damage recovery 

phase (Monte et al., 2003; Monte et al., 2004). In fact, we demonstrated that GTSE1 

interacts with p53 through its C-terminal domain and shuttles it from the nucleus into 

the cytoplasm promoting its proteasome-dependent degradation(Monte et al., 2003; 

Monte et al., 2004). It has been reported that p53 cytoplasmic localization enhances 

during the S and G2 phases of the cell cycle (David-Pfeuty et al., 1996; Shaulsky et al., 

1990), coincident with GTSE1 increased expression, suggesting that GTSE1 could play 

a key role in the control of p53 stabilization and activity also in unstressed cells in 

physiological conditions (Monte et al., 2003).   

It has been reported that GTSE1 has a critical role in cisplatin resistance in gastric 

cancer cells, in fact, its loss associates positively with increased sensitivity to the 

treatment. As seen for other DNA-damage inducing agents, cisplatin treatment up-

regulates GTSE1 and its nuclear localization. Furthermore, in line with its previously 

reported function of negative regulator of p53, in cisplatin treated cells, GTSE1 

depletion increases p53 expression levels. This, in the end, leads to enhanced sensitivity 

to p53-mediated cisplatin induced apoptosis (Subhash et al., 2015). Moreover, increased 

GTSE1 expression consequent to cysplatin treatment has been observed not only in 

gastric cancer cells, but also in multiple myeloma cell lines, suggesting that the GTSE1-

mediated mechanism of acquired  resistance to this drug could be shared (Spanswick et 

al., 2012).  

As mentioned above, another partner of GTSE1 is p21. p21 is a p53-responsive gene 

and a member of the family of CDKs inhibitors (CKI) able to halt the cell cycle 

progression by binding cyclin-CDKs complexes. Interacting with different partners, it 
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has a critical role in biological processes such cell cycle arrest in response to stress, 

apoptosis, differentiation and senescence, and for this reason its expression levels must 

be tightly regulated (Brugarolas et al., 1995; Kagawa et al., 1999; Li et al., 1999; Parker 

et al., 1995). It has been demonstrated that p21 stability is regulated by the proteasome 

system through both ubiquitin-dependent and -independent mechanisms. In a previous 

work, our group have shown that GTSE1 stabilizes p21 protecting it from the 

proteasome-dependent degradation (Bublik et al., 2010). GTSE1 interacts with p21 

through its N-terminal domain and together with Hsp90 and WISp39 proteins forms a 

chaperone complex that controls p21 turnover. As functional consequence, GTSE1 up-

regulation stabilizing p21 confers chemoresistance to paclitaxel-induced cell death. In 

fact, GTSE1 silencing sensitizes cancer cells to paclitaxel, its overexpression leads to 

resistance to paclitaxel-induced apoptosis and p21 knock-down restores the sensitivity 

to the treatment (Bublik et al., 2010).  

 

 

GTSE1 and cancer 

 

GTSE1 deregulation has been reported to occur in different types of cancer indicating 

that this protein has a role in cancer progression (Scolz et al., 2012). We demonstrated 

that GTSE1 protein levels are very low in non-transformed cell lines and dramatically 

up-regulated in tumorigenic cell lines. Noteworthy, GTSE1 expression in transformed 

cells is elevated across all the cell cycle phases, including G1, phase in which its 

expression levels are almost undetectable in non-transformed cell lines (Scolz et al., 

2012). It has been reported that invasion of cancer cells occurs mainly in this cell cycle 

phase (Iwasaki et al., 1995). In a previous work we demonstrated that GTSE1 not only 

binds directly the microtubule lattice, but is also localized at the growing microtubules 

plus ends in an end-binding protein 1-dependent manner (Scolz et al., 2012). 

End-binding protein 1 (EB1) recruits many different microtubule plus end tracking 

proteins (+TIPs) at microtubules (MT), to do this it binds MT through its N-terminal 

calponin homology domain and  +TIPs via the EBH (EB-homology) domain located in 

its C-terminal region. 
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The majority of EB1-binding proteins interacts with it through short interaction motifs 

called SKIP. 

We demonstrated that GTSE1 interacts with EB1 through SKIP motifs located in its 

disordered regions (Scolz et al., 2012). Among the different cellular functions regulated 

by the EB1-dependent +TIPs there is cell migration. Some +TIPs act at the leading edge 

of migrating cells promoting microtubules stabilization, actin polymerization and cell 

adhesion (Kaverina and Straube, 2011; Stehbens and Wittmann, 2012). Moreover, it is  

known that the disassembly of focal adhesions (FAs), necessary for cell migration, is 

microtubules-dependent and occurs when MTs physically interact with FAs, indicating 

that MAPs have a critical role in this process (Ezratty et al., 2005; Kaverina et al., 1999; 

Rooney et al., 2010).  

We have reported that GTSE1 regulates cell migration promoting microtubule-

dependent focal adhesions disassembly in EB1-dependent way (Scolz et al., 2012). In 

fact, serum-starved U2OS cells have few focal adhesions, but GTSE1 knock-down 

increases their number. The treatment with nocodazole, a drug inhibiting microtubule 

polymerization, causes persistence of focal adhesions, when the drug is washed out the 

polymerization of MTs is restored and FAs are disassembled. GTSE1 depletion affects 

negatively FAs disassembly after nocodazole wash out suggesting a deficiency in their 

microtubule-mediated dismantlement (Scolz et al., 2012). Moreover, EB1-dependent 

MT plus ends localization of GTSE1 is required for focal adhesions turnover. In fact, 

the expression of a RNAi resistant wild-type GTSE1 is able to rescue the reduced FAs 

disassembly in GTSE1 depleted cells, instead the expression of a GTSE1 construct 

mutated in the SKIP motifs is not able to produce the same effect (Scolz et al., 2012).        

GTSE1 is an interphase specific microtubule plus-ends binding protein. In fact, during 

prophase/ prometaphase transition GTSE1 +TIP activity stops and restarts in anaphase. 

De facto, it has been suggested that during mitosis the hyperphosphorylation of CDK1 

phosphorylation sites, located around GTSE1 SKIP motifs, leads to the disruption of 

EB1-GTSE1 interaction and the loss of  the MTs growing ends localization of GTSE1 

(Scolz et al., 2012). 

It has been reported that during mitosis GTSE1 together with clathrin and TACC3 takes 

part to the formation of a multiprotein complex at the mitotic spindle pole. In particular, 

during the assembly of this complex, clathrin is first recruited to the spindle, and then 



Introduction 

9 

 

TACC3, after its Aurora A-mediated phosphorylation, interacts with clathrin and allows 

the recruitment of GTSE1 at the spindle pole (Hubner et al., 2010).  

Very recently it has been suggested that the TACC3-Clathrin-GTSE1 complex 

promotes the microtubules stability through the GTSE1-dependent inhibition of the 

mitotic centromere associated kinesin (MCAK) (Bendre et al., 2016). Due to its potent 

microtubules depolymerase activity, MCAK has a critical role in MT stability and must 

be tightly regulated to avoid defects in chromosome alignment and segregation. 

Continuous alterations in these two processes lead to an enhanced rate of gain or loss of 

chromosomes, a phenomenon known as chromosome instability (CIN), frequently 

observed in cancers. Hyperstabilization of kinetochore-MT attachments has been related 

to enhanced chromosome missegragation and CIN. GTSE1 interacts with MCAK via its 

N-terminal domain and this binding abolish MCAK MTs depolymerase activity in vitro. 

It has been suggested that the up-regulation of GTSE1, frequently observed in tumours, 

may lead to the inhibition of MCAK activity, enhanced MTs stability and consequently 

CIN (Bendre et al., 2016). In fact, GTSE1 overexpression in chromosomally stable cell 

lines induces chromosome missegregation and CIN, instead GTSE1 depletion in highly 

CIN cancer cell lines reduces the defects in chromosome segregation (Bendre et al., 

2016).  

The recruitment of GTSE1 to the mitotic spindle is Aurora A-dependent and recently it 

has been demonstrated that the overexpression of this latter is associated with increased 

kinetochore-MT stabilization and CIN in cancer (Ertych et al., 2014; Hubner et al., 

2010). This has suggested that Aurora A deregulation could enhance GTSE1 

localization to the spindle, promoting the inhibition of MCAK activity and the MT 

stability leading to CIN (Bendre et al., 2016).       

GTSE1 is over-expressed in various types of malignancies, including breast cancer 

(Canevari et al., 2016; Scolz et al., 2012). In a previous study carried out in our lab, we 

demonstrated that GTSE1 protein levels correlate with invasive potential, indeed higher  

expression of this protein is found in the most aggressive and invasive breast cancer cell 

lines (Scolz et al., 2012). Moreover, GTSE1 over-expression enhances the motility of 

the poor invasive breast cancer cell line MCF7, instead its depletion reduces the ability 

to migrate of the highly invasive and metastatic breast cancer cell line MDA-MB-231.  
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Furthermore, GTSE1 protein levels correlate with bad clinical outcome and tumour 

grade, with patients with higher protein expression levels showing shorter time to 

distant metastasis and shorter survival time (Scolz et al., 2012).    

Interestingly, GTSE1 up-regulation was identified as a potential marker for metastasis 

not only in breast cancer, but also in hepatocellular carcinoma, gastroenteropancreatic 

neuroendocrine tumour and oral tongue squamous cell carcinoma (Guo et al., 2016; Lee 

et al., 2012; Zhou et al., 2006). 

It has been reported that GTSE1 is up-regulated in hepatocellular carcinoma (HCC) and, 

as seen in breast cancer, has a key role in the promotion of cancer cell migration and 

invasion. Moreover, its expression levels correlate with venous invasion, tumour grade, 

tumour size and shorter survival time, suggesting that GTSE1 has a proto-oncogenic 

role in the development of hepatocellular carcinoma and may be considered a 

therapeutic target in this type of cancer (Guo et al., 2016). 

In the study of Lee J and colleagues, GTSE1, together with ATM, CCND2, RBL2, 

CDKN3 and CCNB1 genes, was identified as differentially expressed in metastatic 

neuroendocrine tumours (NET) versus the non metastatic ones. In particular, the 

expression of ATM protein has been reported as down-regulated in more than 80% of 

metastatic NET and its mRNA expression levels negatively associate with GTSE1, 

CDKN3 and CCNB1 levels that are, instead, up-regulated in metastatic NET (Lee et al., 

2012). Moreover, in head and neck squamous cell carcinomas it has been demonstrated 

that GTSE1 is differently expressed in patients with lymph-nodes metastasis versus 

individuals metastasis-free (Zhou et al., 2006). All together these data underline the 

strong correlation existing between misregulation of GTSE1, tumor invasiveness and 

bad prognosis. For this reason the goals of the work presented in this thesis were to 

clarify how GTSE1 is regulated, in particular in TNBC, the pathways involved and the 

mechanism underlying GTSE1-dependent cell functions. 

Taking advantage of a multidisciplinary approach, we unveiled a key role for the 

TEAD4 and E2F1 transcription factors (TFs) in the regulation of GTSE1 expression in 

TNBC. The TEAD family TFs are the main partners of the YAP and TAZ 

transcriptional co-activators in the control of epithelial to mesenchymal transition, 

cancer cells migration, invasion, tumour progression and metastasis (Lamar et al., 2012; 

Wang et al., 2014; Zhang et al., 2009). YAP (Yes-associated protein) and its homolog 
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TAZ (also known as WWTR1, WW domain-containing transcription regulator protein1) 

are the downstream effectors of the Hippo signaling transduction pathway, a tumour 

suppressor pathway frequently deregulated in cancers. Here, I demonstrated that the 

YAP/TAZ-TEAD4 axis plays a pivotal role in the transcriptional regulation of GTSE1, 

showing that the effect of TEAD on cell migration is, at least partially, GTSE1-

dependent. Moreover, I showed that TEAD regulates the formation of cell protrusions 

necessary for cancer cells migration through GTSE1, providing, for the first time, a 

mechanistic explanation of how it affects cell migration. 

 

 

 

Fig. B Cartoon summarizing the role of GTSE1 protein in cancer 
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The Family of TEAD Transcription Factors 

 

The TEAD transcription factors were discovered in 1987 by Xiao et al. as nuclear 

proteins able to bind the B1 domain in the SV40 enhancer and to activate transcription 

in a cell-specific way (Xiao et al., 1987). In mammals, this family of transcription 

factors includes four highly conserved proteins, named TEAD1-4, that share a common 

N-terminal TEA DNA binding domain and a C-terminal immunoglobulin-like ß-

sandwich fold transactivation domain (Tian et al., 2010).  

Anbanandam et al. described for the first time the structure of  TEAD1 as a folded 

globular protein composed by three α-helices H1,H2,H3, the last of which is the DNA-

Recognition helix (Anbanandam et al., 2006). The N-terminal domain recognizes and 

bind the sequence 5’-GGAATG-3’ presents in the SV40 enhancer and in the promoter 

regions of target genes. 

The TEAD TFs lack of a real transcription activation domain and require the interaction 

with co-activators to promote the transcription of target genes (Xiao et al., 1991). In 

fact, the co-activators, generally, present an activation domain that allow them to 

interact with the basal transcription and chromatin remodeling machineries controlling 

transcription (Pobbati and Hong, 2013). Their interaction with the TEAD TFs is 

mediated by the TEAD transactivation domain. TEAD-interacting co-activators 

comprise YAP and TAZ, p160s and  vestigial proteins (Vgll) (Pobbati and Hong, 2013). 

The co-activators YAP, TAZ and p160s present a TEAD-binding motif located in their 

N-terminal domain, instead the vestigial proteins interact with TEAD through the 

Vestigial motif (Vg) whose localization is different in the various isoforms (Pobbati and 

Hong, 2013). 

In mammals it has been reported that about 75% of purified TEAD2 is associated with 

YAP (Vassilev et al., 2001). In fact, TEAD TFs represent the main platform through 

which YAP/TAZ interact with DNA at genome-wide level (Zanconato et al., 2015) and 

are essential for YAP/TAZ-dependent gene expression (Ota and Sasaki, 2008; 

Zanconato et al., 2015; Zhao et al., 2008).   

Li et al. described, for the first time, the three-dimensional structure of the TEAD1-

YAP2 complex, showing  that YAP2 is wrapped around the globular structure of TEAD 
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leading to the formation of three highly conserved interfaces, one of which essential for 

the formation of the complex (Li et al., 2010). Mutations regarding the residues S94 of 

YAP or Y406 of TEAD1 abolish YAP/TEAD interaction and suppress YAP-mediated 

gene expression (Zhao et al., 2008). 

 

 

The role of TEAD TFs in physiological processes 

 

TEAD TFs are expressed in almost all tissue, although they differ for the expression 

pattern. Some functions of TEAD TFs have been deduced from gene inactivation 

studies carried out in mice. In particular, TEAD1 has been reported as essential for the 

differentiation of the cardiac muscle and its null mutation is lethal in embryos (Chen et 

al., 1994), instead in TEAD4 null embryos the development of the trophoectoderm is 

impaired and they fail to implant (Yagi et al., 2007). It has been demonstrated that 

TEAD TFs have a key role in development and differentiation, in fact they are 

necessary for cardiogenesis, myogenesis and notochord and neural crest development 

(Pobbati and Hong, 2013). Furthermore, TEAD1 is required for the transcription of  E6 

and E7 oncogenes of HPV-16 in human keratinocytes (Ishiji et al., 1992).  

In the last decade the interest in the study of the TEAD family TFs is notably increased 

due to multiple evidences that involve these TFs in tumorigenesis and cancer 

progression. 

 

 

TEAD TFs and Cancer 

 

It has been reported that TEAD TFs are up-regulated in different types of tumours 

including breast cancer, gastric cancer, colorectal cancer and prostate cancer in which 

they are considered prognostic markers (Zhou et al., 2016). 

TEAD TFs together with YAP/TAZ transcriptional co-activators regulate the expression 

of multiple genes involved in tumorigenesis such as survivin, Cyr61, CTGF, Myc and 

Axl receptor tyrosine kinase (Dong et al., 2007; Schutte et al., 2014; Xu et al., 2011; 

Zhao et al., 2008).  
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As mentioned above, YAP and its paralog TAZ are known to be the down-stream 

effectors of the Hippo tumour suppressor pathway (Hong and Guan, 2012). First 

discovered in the fruit fly Drosophila melanogaster, this signalling pathway has a 

crucial role in cell proliferation and organ size control (Huang et al., 2005; Justice et al., 

1995; Wu et al., 2003; Xu et al., 1995). The first evidence in this direction appeared 

with the work of Dong et al. showing that YAP overexpression caused an increase in 

mouse liver size. This effect was reversible, in fact, the liver returned to normal size 

when YAP overexpression was turned off (Dong et al., 2007). The Hippo pathway 

exerts its regulatory role also in other organs such as heart, where its inactivation 

promoting the proliferation of cardiomyocytes causes cardiomegaly, and central 

nervous system in which it controls the expansion of neural progenitors (Cao et al., 

2008; Heallen et al., 2011).   

Conserved in mammals, this pathway has a tumour suppressor function (Harvey et al., 

2013; Zhao et al., 2010). In mammals, the core of the Hippo pathway is composed by 

the kinases Mst1/2 and LATS1/2 and by the two adaptor proteins Sav1 and MOB (Zhao 

et al., 2010). When this pathway is activated, the kinases Mst1/2 interact with Sav1, a 

scaffold protein, forming a complex that facilitates the phosphorylation of LATS1/2 

kinases. The latter are further activated by the adaptor protein MOB and in turn 

phosphorylate the terminal effectors YAP and TAZ (Hao et al., 2008; Lei et al., 2008; 

Zhao et al., 2007). The phosphorylated co-activators are sequestered into the cytoplasm 

and, consequently, the transcription of their target genes is inhibited (Dong et al., 2007; 

Zhao et al., 2007). When this pathway is not activated, YAP/TAZ co-activators are 

dephosphorylated and can shuttle from the cytoplasm into the nucleus promoting the 

expression of target genes, see fig. C. 
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Fig. C Cartoon summarizing the YAP/TAZ regulation by the Hippo Pathway 

 

 

Evolutionary study revealed that an advanced Hippo pathway, structured as seen in 

human, appeared concurrently to the emergence of an organized body plan with 

different tissues and organs in basal metazoans (Hilman and Gat, 2011). The first YAP 

progenitor was identified in the placozoan Trichoplax adhaerens, unlike its paralog 

TAZ appeared only in vertebrates (Hilman and Gat, 2011). The evolutionary distances 

of YAP and TEAD orthologs revealed that their genes have coevolved and the residues 

required for their interaction are evolutionary conserved (Hilman and Gat, 2011), 

further highlighting the importance of the YAP/TEAD interaction . 

As TEAD TFs, YAP and TAZ co-activators are frequently up-regulated in cancers and 

are considered bona fide oncogenes. In mice, sustained YAP over-expression leads to 

increased liver size and hepatocellular carcinoma (Dong et al., 2007). Also in ovarian 

cancer the expression levels of YAP and TAZ are up-regulated and correlate with poor 

prognosis (Chen et al., 2016; Zhang et al., 2011). In breast cancer and melanoma the 

interaction between YAP and TEAD is required to promote cell proliferation, 

transformation, migration and invasion, furthermore the enhanced transcriptional 

activity of TEAD TFs correlates with metastatic potential (Lamar et al., 2012). In 

addition, it has been demonstrated that RHAMM, a YAP/TEAD4 target gene, regulates 

breast cancer cell migration in a ERK-dependent manner (Wang et al., 2014).  

Enhanced stiffness of extracellular matrix (ECM) is an hallmark of many solid tumours 

including breast cancer (Paszek et al., 2005). It has been demonstrated that a rigid ECM 

Hippo Pathway on Hippo Pathway off 
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promotes the YAP/TAZ nuclear localization and activity. These co-activators are 

considered not only the “molecular readers” of matrix elasticity, but essential mediators 

of biological responses to these mechanical cues (Dupont et al., 2011). Moreover, it has 

been demonstrated that YAP is activated in cancer associated fibroblasts (CAFs) and 

itself is required to promote CAFs-mediated matrix stiffening, cancer cells invasion and 

angiogenesis (Calvo et al., 2013). In breast cancer, tumour stiffness correlates with 

histological grade, with higher stiffness values in the most aggressive subtypes (Chang 

et al., 2013). In line with this, YAP/TAZ activity is increased in high histological grade 

breast tumours and it is associated with shorter survival time, enhanced probability to 

develop metastasis and enrichment in stem cell signature (Cordenonsi et al., 2011).  

It is believed that cancer stem cells (CSCs) drive tumour initiation and progression. In 

fact, the CSCs population is enriched in poorly differentiated tumours than well-

differentiated ones supporting this hypothesis (Pece et al., 2010). It has been 

demonstrated that TAZ expression levels are elevated in CSCs and it is necessary to 

sustain self-renewal and tumour-initiation abilities in this cell population (Cordenonsi et 

al., 2011). Moreover, TAZ has been reported as up-regulated in invasive infiltrating 

ductal breast carcinomas where it is required for breast cancer cell migration, invasion 

and tumorigenesis. Its over-expression induces the fibroblast-like morphology in 

MCF10A, an hallmark of cell transformation (Chan et al., 2008). It has been 

demonstrated that TEAD TFs control the nuclear accumulation of TAZ and its 

transforming capability, moreover TEAD4 itself is able to induce cell transformation 

with the same efficiency of TAZ, suggesting that this TF could be considered an 

oncogene (Chan et al., 2009).  

Furthermore, TEAD4, together with KLF, promotes cell proliferation and tumour 

growth and it has been identified as a prognostic marker and a novel potential 

therapeutic target in TNBC (Wang et al., 2015). Recently, it has been reported that 

TEAD4 cooperates with AP1 to carry out a transcriptional program required to promote 

migration and invasion in cancer (Liu et al., 2016). 

91% of YAP/TAZ bound cys-regulatory regions are represented by enhancer elements 

(Zanconato et al., 2015). The majority of these regulatory elements harbours both the 

TEAD and AP1 binding sites, suggesting the formation of a transcription factors 

complex for the promotion of the transcription of target genes (Zanconato et al., 2015). 



Introduction 

17 

 

In fact, the gain of AP1 strongly increases the YAP/TAZ/TEAD mediated gene 

expression and the YAP-dependent oncogenic growth (Zanconato et al., 2015). 

It has been demonstrated that about 67% of the promoters of YAP/TAZ target genes 

involved in cell proliferation harbours the E2F TFs binding sites and both the 

YAP/TAZ-TEAD and Rb-E2F1 pathways are required to promote the progression of 

the cell cycle from G1 to S phase (Zanconato et al., 2015). Zanconato et al. have 

suggested an interesting model according to YAP/TAZ are recruited on distant 

enhancers through TEAD and cooperate with E2F TFs bound to the promoters  via 

chromatin looping (Zanconato et al., 2015).  

It has been reported that Yki, Scalloped and dE2F1, the homologues of YAP, TEAD 

and E2F1 in fruit fly respectively, act synergically to induce the activation of a 

transcriptional program necessary to bypass cell cycle exit and to promote cell 

proliferation in Drosophila (Nicolay et al., 2011). Moreover, in pancreatic ductal 

adenocarcinoma the YAP1/TEAD2 complex cooperates with E2F1 in the execution of a 

transcriptional program inducing KRAS-independent tumour relapse (Kapoor et al., 

2014), further underlining the importance of a crosstalk between these two pathways. 

 

 

E2F transcription factors family 

 

The E2F family of transcription factors comprises eight proteins (E2F1-E2F8) playing a 

key role in processes like cell cycle progression, DNA repair, apoptosis, chromosome 

stability and development (Chen et al., 2011; Kel et al., 2001; Lazzerini Denchi and 

Helin, 2005; Li et al., 2003; Luo et al., 2016).  

According to their functional proprieties and structure, E2F TFs are divided into three 

groups: transcriptional activators (E2F1, E2F2, E2F3a), repressors (E2F3b, E2F4, 

E2F5) and inhibitors (E2F6, E2F7, E2F8). The transcriptional activators control the 

transcription of target genes essential for the cell cycle progression from G1 to S phase. 

The E2F TFs repressors accumulate into the nucleus during the G0/G1 transition and 

induce cell cycle exit and differentiation (Attwooll et al., 2004). E2F6 turns off the 

transcription of E2F targets during the G1/S phase transition (Bertoli et al., 2013), 

instead, E2F7/E2F8 inhibit the expression of E2F target genes during the S and G2 
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phases and are also involved in the repression of cell cycle related genes during DNA 

damage (Westendorp et al., 2012). Although the E2F TFs inhibitors and repressors play 

similar functions, their transcriptional activity is regulated in a different way. In fact, 

with the exception of the E2F TFs inhibitors, all members of the E2F TFs family 

interact with the pocket proteins family that controls their functions (Zhan et al., 2014). 

The pocket proteins family includes: the retinoblastoma protein (Rb), p107 and p130. 

All the pocket proteins family members share a conserved central domain, called pocket 

domain, required for the interaction with different cellular proteins. It has been reported 

that the E2F1-E2F3 TFs interact mainly with Rb, E2F4 binds all members of the pocket 

proteins family and E2F5 associates mainly with p130 (Zhan et al., 2016). In general, 

the binding of pocket proteins leads to the inhibition of the E2F TFs functions. The 

cyclin-dependent kinases (CDKs) can regulate this interaction through the 

hyperphosphorylation of pocket proteins that leads to the E2F TFs release (Zhan et al., 

2016).  

Moreover, the E2F TFs can be classified in typical (E2F1-E2F6) and atypical (E2F7-

E2F8) on the basis of their DNA-binding domain. Typical E2F TFs require the 

interaction with the dimerization partner proteins (DP) to form a functional DNA-

binding domain, instead in atypical members the DNA-binding domain is duplicated 

and this allow them to bind DNA in a DP-independent manner (Zhan et al., 2014).  

E2F1 is the most studied and founding member of this TFs family. The name of this TF 

derives from its ability to bind the E2 promoter of adenovirus and to act as 

transcriptional activator (Yee et al., 1987). Its sequence consists of 437 amino acids 

organized in a N-terminal DNA-binding domain, a dimerization partner binding domain 

including a leucine zipper (LZ) and a marked box domain (MB) and a C-terminal 

transactivation domain. The latter contains a pocket protein Rb binding domain. 

Moreover, the N-terminal region of E2F1 includes the nuclear localization signals 

necessary for its nuclear accumulation (Zhan et al., 2016). 

E2F1 is a crucial regulator of cell cycle. This transcription factor modulates the 

progression of cell cycle from G1 to S phase through the control of the transcription of 

its target genes and, for this reason, its expression and activity must be tightly regulated 

(Ishida et al., 2001; Kel et al., 2001; Muller et al., 2001; Wells et al., 2000). In fact, the 

deregulation of CDKs/Rb/E2F1 network may result in tumourigenesis. In the last 
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decade the number of evidence that correlates E2F1 misregulation to tumour 

progression is notably increased. In fact, it has been reported that E2F1 up-regulation 

promotes cell proliferation and correlates with poor prognosis in non-small lung cell 

carcinoma, esophageal squamous cell carcinoma and ovarian cancer (Ebihara et al., 

2004; Huang et al., 2007; Zhan et al., 2016). The role of E2F1 in hepatocellular 

carcinoma is still controversial, in fact it acts as pro-apoptotic or anti-apoptotic factor in 

different stages of this disease (Zhan et al., 2014). Breast cancer patients with low 

expression of E2F1 have better clinical outcome (Vuaroqueaux et al., 2007). Moreover, 

in patients with lymph node positive breast cancer treated with doxorubicin, fluorouracil 

or cyclophosphamide E2F1 overexpression is associated to poor prognosis (Han et al., 

2003). 

It has been demonstrated that in melanoma the eugenol, the main component of the oil 

of clove, inhibits E2F1-dependent cell proliferation (Ghosh et al., 2005) and in breast 

cancer the eugenol-dependent anti-cancer effect is at least partially E2F1-mediated, 

suggesting the potential use of E2F1 as therapeutic target (Al-Sharif et al., 2013). 

Furthermore, in different types of cancer E2F1 expression correlates with metastatic 

potential. In melanoma cell lines E2F1 down-regulation reduces their invasive potential 

(Alla et al., 2010). Instead, RHAMM (hyaluronan-mediated motility receptor), a direct 

E2F1 target gene, acts as co-activator of E2F1 itself and, together with it, stimulates the 

expression of fibronectin required to promote the cell migration through the endothelial 

layer (Meier et al., 2014).    

The main regulator of E2F1 activity is the retinoblastoma protein (Martelli and 

Livingston, 1999).  Rb acts as transcriptional modulator binding E2F family members 

and recruiting co-repressors to regulate the transcription of target genes (Bosco and 

Knudsen, 2007). It is a central regulator of cell cycle progression. In early G1 phase, Rb 

is hypophosphorylated and by binding to E2F1 inhibits the progression of the cell cycle. 

In late G1, Rb is sequentially phosphorylated by cyclin D-CDK4/6 and cyclin E-CDK2 

complexes, these events lead to E2F1 release and cell cycle progression (Martinsson et 

al., 2005). Loss of RB expression has been reported in 20-30% of all breast cancers 

(Bosco and Knudsen, 2007) and its somatic mutations promote the development of 

different types of tumour including lung carcinoma, osteosarcoma and bladder 

carcinoma (Hickman et al., 2002). Moreover, cyclin D1 amplification, commonly 
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reported in cancers, promoting Rb aberrant phosphorylation can further contribute to its 

negative regulation (Takano et al., 1999; Watts et al., 1995). Currently inactivation of 

Rb pathway is considered an obligatory step in cancer development (Hanahan and 

Weinberg, 2000). In fact, Rb-E2F1 axis controls the expression of about 150 genes 

involved in processes associated with tumour suppression, for this reason the 

deregulation of this pathway has a critical role in cancer progression (Bosco and 

Knudsen, 2007).  
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Aim of the Thesis 

 

In the last years the number of evidence supporting a strong connection between GTSE1 

deregulation and cancer progression is notably increased, despite this the GTSE1 

transcriptional regulation and the cause of its misregulation are poorly understood. For  

these reasons the aims of the work presented in this thesis were: 

 

 To unveil the pathways responsible for the control of GTSE1 expression; 

 To identify the transcription factors and the co-activators involved; 

 To clarify the mechanism underlying GTSE1-dependent cell movement in triple 

negative breast cancer.  
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Results 

 

Regulation of GTSE1 expression by the YAP/TAZ-TEAD axis  

 

The first objective of this work was to elucidate how the GTSE1 protein was regulated 

at the transcriptional level and the transcription factors involved. Hence, taking 

advantage of published TCGA Breast cancer gene expression data, we performed a 

bioinformatics analysis in order to identify the transcription factors (TFs) co-expressed 

with GTSE1. The list of 36 TFs that we obtained should comprise, among others, those 

that are able to modulate GTSE1 expression. In order to obtain the best candidates to 

the role of regulators of GTSE1 transcription we overlapped these results with the 

output generated by the TRANSFAC/Matchtool (Matys et al., 2006), listing the TFs 

exhibiting at least one binding site (TFBS) in the genomic region corresponding to the 

GTSE1 promoter. Interestingly, the outcome showed a very short TFs list including 

TEAD, E2F1 and the chromatin modifier HMGA1(Fig.1a). 

Initially, I decided to focus my attention on the regulation of GTSE1 expression by the 

TEAD family of TFs. We mapped the TEAD consensus binding sequence 

(“GGAATG”) on the GTSE1 promoter, finding that it harbored two putative binding 

sites located 1162 and 1097bp upstream from the transcription start site (TSS) (Fig.1b). 
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Fig.1 TEAD, E2F1 and HMGA1 transcription factors are the putative regulators of GTSE1 expression. 

(A) Comparison of the TCGA GTSE1 co-expressed genes, Transfac and “all TFs” predicted transcription 

factors regulating GTSE1 expression. (B) Mapping of the TEAD4 binding sites in the GTSE1 promoter 

region. Graphical representation of GTSE1 promoter region from Ensemble database (modified). In 

particular tracks regarding the conserved regions, GC content, CDSs information and gene structure are 

shown. The position of TEADs binding sites are shown ; please note that in order to make the TFBS 

representation clear the corresponding box width is increased. 

 

 

 This strengthened the possibility for the TEAD family of transcription factors to play a 

role in the regulation of GTSE1 expression. To test this hypothesis, I evaluated the 

effect of TEAD1/3/4 knock-down on GTSE1 expression levels. To do this, I performed 

A 

B 
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TEAD1/3/4 silencing by siRNA in MDA-MB-231 cell line and assessed GTSE1 protein 

levels after 72 hours. Under these conditions, GTSE1 expression levels dramatically 

decreased confirming my previous assumption (Fig.2a). 

As mentioned above, all members of the TEAD family contain a DNA-binding and a 

transactivation domain but lack a real transcriptional activation domain, present instead 

in the structure of the YAP and TAZ transcriptional co-activators. For this reason, the 

interaction of TEAD with these co-activators is required to promote the transcription of 

target genes. In line with this, I decided to assess the effect of YAP/TAZ silencing on 

GTSE1 protein levels. As shown in Fig.2a, GTSE1 expression significantly dropped 

after the double silencing compared to the control. 

To clarify if the YAP/TAZ-TEAD axis exerted its regulation on GTSE1 at the 

transcriptional level, I silenced TEAD1/3/4 and YAP/TAZ by siRNA in the MDA-MB-

231 cell line and evaluated GTSE1 mRNA levels after 72 hours. 

As shown in picture Fig.2b, GTSE1 mRNA expression levels dramatically diminished 

in cells silenced for TEAD1/3/4 and YAP/TAZ. As positive controls, I measured the 

mRNA levels of the known YAP/TAZ-TEAD target genes BIRC5, RHAMM and 

CTGF. The knock-down of YAP/TAZ and TEAD significantly decreased the mRNA 

levels of all these target genes. 

To evaluate if other TNBC cell lines shared the regulation of GTSE1 expression by the 

YAP/TAZ-TEAD axis, I carried out TEAD1/3/4 and YAP/TAZ silencing in MDA-MB-

157 cell line and measured GTSE1 protein (Fig.2c) and mRNA levels (Fig.2d). Under 

this experimental setting, GTSE1 expression levels significantly decreased in silenced 

cells compared to the control ones confirming the results achieved in MDA-MB-231 

cell line. The obtained results suggest that the YAP and TAZ transcriptional co-

activators regulate GTSE1 expression at the transcriptional level through their 

interaction with the TEAD family of transcription factors. 
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Fig.2 The YAP and TAZ transcriptional co-activators promote GTSE1 transcription through the TEAD 

family of transcription factors.  

GTSE1 protein and mRNA levels decrease after knockdown of TEAD1/3/4 and YAP/TAZ in MDA-MB-

231 (A and B) and MDA-MB-157 (C and D) cell lines. Data are shown as mean ± SEM of at least three 

independent experiments. For the statistical analysis, Student two-tailed T-test was applied. *p-

value<0.05; **p-value<0.01; *** p-value<0.001. 

 

 

GTSE1 is a novel direct target gene of TEAD4 Transcription Factor 

 

As mentioned above, the GTSE1 promoter region harbors two possible TEAD binding 

sites, named S1 and S2, respectively located 1162 and 1097bp upstream from the 

transcription start site (Fig.3a). Among the different members of the TEAD family of 

TFs, TEAD4 has been previously shown up-regulated in breast cancer cell lines, in 

particular in TNBC, and able to control the expression of genes involved in breast 

cancer cell migration and invasion like RHAMM (Wang et al., 2015; Wang et al., 

2014). For these reasons we decided to perform a ChIP assay to verify its modulatory 

potential on GTSE1 transcriptional levels, assessing if TEAD4 physically interacted 
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with GTSE1 promoter and hence identifying its real binding site in the analyzed 

genomic region. As shown in Fig.3b, TEAD4  occupies both the S1 and S2 binding sites 

on the GTSE1 promoter region, physically interacting with it. These results demonstrate 

that GTSE1 is a target gene of TEAD4 that directly promotes GTSE1 transcription 

through the binding to the GTSE1 promoter region.  

 

 

 

Fig.3 TEAD4 physically interacts with the GTSE1 promoter region.  

(A) Position of the TEAD4 consensus binding sequences in the GTSE1 promoter. (B) IgG (control) or 

TEAD4 antibodies were used in ChIP assays of MDA-MB-231 cell line. The human muscarinic receptor 

gene was used as negative control (AChR). Data are shown as mean ± SEM of three independent 

replicates. For statistical analysis Student’s t-test was applied. *p-value<0.05; **p-value<0.01. 
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GTSE1 expression is regulated by the Mevalonate Pathway 

 

Previous studies showed that breast cancer cell migration is inhibited by statins (Mandal 

et al., 2011), molecules frequently used to treat hypercholesterolemia because of their 

ability to block the mevalonate pathway and cholesterol biosynthesis. Cerivastatin, a 

molecule belonging to the statins family, is an inhibitor of the HMG-CoA reductase, an 

enzyme that catalyzes the synthesis of mevalonate from HMGCoA. The mevalonate 

pathway regulates YAP/TAZ localization and activity (Sorrentino et al., 2014; Wang et 

al., 2014). In fact, the inhibition of this pathway promotes YAP/TAZ cytoplasmic 

retention and in this way stops the transcription of YAP/TAZ target genes. 

Consequently, I decided to test the effect of the inhibition of the mevalonate pathway on 

GTSE1 expression. MDA-MB-231 and MDA-MB-157 cell lines were treated with 

cerivastatin and GTSE1 expression levels were assessed at both the mRNA and protein 

levels. As shown in Fig.4, GTSE1 protein (Fig.4a,b) and mRNA levels (Fig.4 c, d) 

dramatically decrease in cerivastatin treated cells with respect to control ones. The 

addition of mevalonate to cerivastatin treated cells, promoting YAP/TAZ nuclear 

localization and activity, is able to completely rescue the effect of cerivastatin 

(Fig.4a,b,c, d). 

These results indicate that the mevalonate pathway regulates the expression of GTSE1, 

as shown for other YAP/TAZ targets, further suggesting the involvement of these 

transcriptional co-activators in the control of GTSE1 transcription. 
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Fig.4 The mevalonate pathway regulates GTSE1 expression.  

GTSE1 protein levels after treatment with cerivastatin 1µM alone or in combination with mevalonic acid 

0.5mmol (MVA) in MDA-MB-231 for 24 hours(A) and in MDA-MB-157 (B) for 72 hours. (C) and (D) 

Real-time RT-qPCR analysis of GTSE1 mRNA levels after cerivastatin or cerivastatin and mevalonate 

treatment. Data are represented as mean ± SEM of three independent replicates. Student two-tailed t-test 

was applied for the statistical analysis. *p-value<0.05; **p-value<0.01; ***p-value<0.001. 

 

 

TEAD4 regulates breast cancer cells migration through GTSE1 

 

YAP, TAZ and TEAD4 are well-known regulators of breast cancer cell migration and 

invasion. In fact, the ability of TNBC cell lines to migrate and to invade decreases after 

TEAD, YAP and TAZ silencing (Chan et al., 2008; Wang et al., 2014). As previously 

mentioned, GTSE1 activity is another feature required for breast cancer cells migration. 

Indeed, the ability of MDA-MB-231 cell line to migrate is reduced after GTSE1 knock-

down and GTSE1 up-regulation dramatically increases the migratory capability of the 

poorly invasive MCF7 breast cancer cell line (Scolz et al., 2012). Consequently, I 
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decided to investigate whether the effect of TEAD on cell migration and invasion is 

mediated by GTSE1. 

As shown in Fig.5, over-expression of GTSE1 is able to rescue the reduced ability of 

TEAD-silenced TNBC cell lines to migrate, in wound healing and transwell migration 

assays (Fig.5a and 5b), and to invade (Fig.5 d), as measured through transwell invasion 

assay, without any significant effect on cell proliferation in the considered time interval 

(Fig.6). 

 

Fig.5 TEAD regulates breast cancer cell migration and invasion through GTSE1.  
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(A) Wound-healing motility assay showing the capability of GTSE1 to rescue the reduced cell migration 

followed to TEAD silencing. The scratch assay was carried out in MDA-MB-231 and MDA-MB-157 cell 

lines containing a stably integrated GTSE1 over-expressing construct (pBABE-GTSE1) or empty vector 

(pBABE). (B) The transwell migration assay was performed in MDA-MB-157 cell line. Histograms show 

the mean number of cells/area  that migrated through the transwell inserts after 16 h. Error bars represent 

the standard error of the mean from three independent experiments. Student two-tailed T-test was applied 

for statistical analysis. *p-value<0.05; **p-value<0.01; ***p-value<0.001. (C) Western blot of the MDA-

MB-231 and MDA-MB-157 cell lines containing a stably integrated construct over-expressing 

GTSE1(pBABE-GTSE1) or empty vector (pBABE). (D) The transwell invasion assay was performed in 

the same cell lines of wound-healing and tranwell migration assays. Histograms show the mean number 

of cells/area that invaded through the transwell inserts after 18 h. Error bars represent the standard error 

of the mean from three independent experiments. Student two-tailed T-test was applied for statistical 

analysis. *p-value<0.05; **p-value<0.01; ***p-value<0.001.  

 

Fig.6 GTSE1 rescues the reduced motility observed after TEAD 1/3/4 silencing without any effect on cell 

proliferation. 

 The cell proliferation assays were carried out in MDA-MB-231 (A) and MDA-MB-157 (B) cell lines 

containing a stably integrated GTSE1 over-expressing construct (pBABE-GTSE1) or empty vector 
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(pBABE). 48 hours after TEAD1/3/4 silencing, 1X10
5
 cells were plated and counted 16 hours later. Data 

are shown as mean ± SEM of three independent experiments. For statistical analysis Student two-tailed t-

test was applied. 

 

 

These results indicate that the effect of TEAD on cell migration and invasion is GTSE1-

dependent, unveiling a relevant effector role for GTSE1 in TEAD-dependent cellular 

functions.  

The next step was to elucidate the mechanism by which TEAD controls cell migration 

through GTSE1. 

It is thought that the transition from an epithelial-like to a mesenchymal-like with a 

higher migratory migratory ability (Thiery, 2002), represents an early step in the 

development of metastasis. The establishment of a front-back cell polarity is required 

for cell migration of mesenchymal-like cells (Etienne-Manneville, 2008). The front is 

characterized by F-actin rich filaments, called cell protrusions, that allow the cell to 

extend forward to adhere to the substrate, while the rear is retractile and generates the 

force necessary to push up the cell body in the direction of the movement (Sahai and 

Marshall, 2003). Cell protrusions are classified on the basis of their shape as: 

pseudopodia (round), filopodia (needle shape), lobopodia (cylindrical) and lamellipodia 

(flat veils) (Taylor and Condeelis, 1979). During chemotaxis, fast moving amoeboid 

cancer cells present F-actin rich pseudopodia that drive them toward blood vessels 

before intravasation (Condeelis and Segall, 2003; Gligorijevic et al., 2012). 

Since cell protrusions represent a common feature of moving cells in tumors, I 

examined whether GTSE1 controls breast cancer cells migration through the regulation 

of cell protrusions formation. As shown in Fig.7a and b the knock-down of GTSE1 

reduces the number of cell protrusions/cell. 

Afterward I evaluated if TEAD regulates the formation of the GTSE1-dependent cell 

protrusions. As shown in Fig.7c,d and e TEAD silencing impacts negatively on the 

number of cell protrusions/cell, while GTSE1over-expression is able to rescue this 

effect. 

The obtained results suggest that TEAD controls the formation of cell protrusions 

through GTSE1, providing, for the first time, a mechanical explanation of how it 

controls breast cancer cell migration. 
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Fig.7 TEAD4 modulates the formation of cell protrusions through GTSE1.  

(A)and (B) Histograms represent the number of cell protrusions/cell in TNBC cell lines after control or 

GTSE1 silencing. (C) and (D) The protrusion assay was performed in MDA-MB-157 and MDA-MB-231 

cell lines containing an empty vector (pBABE) or a stably integrated GTSE1 over-expressing construct 

(pBABE-GTSE1). Histograms show the number of cell protrusions/cell after control or TEAD 

silencing.Dataare shown as mean ± SEM of three independent experiments. For statistical analysis 

Student two-tailed T-test was applied. *p-value<0.05; ***p-value<0.001 (E) Three-dimensional 

representation of the cell protrusions (MDA-MB-231) showing the differences between conditions also in 

term of cell surface extensions. 
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The E2F1 transcription factor controls the expression of the GTSE1 protein 

 

As mentioned above, TEAD4 is not the only possible transcription factor regulating 

GTSE1 expression. In fact, based on the E2F1 consensus binding sequence 

(“TTTSSCGS”, where S = C/G), we identified five possible E2F1 binding sites in the 

GTSE1 promoter region respectively located 58 (G1), 201 (G2), 344 (G3), 360 (G4) 

and 389 (G5) nucleotides upstream from GTSE1 transcription start site (Fig.8a).  

 

Fig.8 E2F1 physically binds the GTSE1 promoter region.  

(A) Picture representing the position of E2F1 binding consensus sequences in the GTSE1 promoter. (B) 

For the ChIP assays IgG(control) or E2F1 antibodies were used in MDA-MB-231 cell line. The AChR 

was used as negative control. Data are shown as mean ± SEM of  at least three independent replicates. For 

statistical analysis Student’s t-test was applied. *p-value<0.05; ***p-value<0.001. 
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By performing a chip analysis, I found that E2F1 directly binds the G1 and G2 sites in 

the GTSE1 promoter region, suggesting its involvement as an additional regulator of 

GTSE1 transcription (Fig.8b).  

Therefore, I decided to test the effect of E2F1 knockdown on GTSE1 expression. As 

shown in Fig.9a and b, after E2F1 depletion both protein and mRNA levels of GTSE1, 

similar to other known E2F1 target genes, notably decreased. The obtained results, 

further confirming the involvement of this TF in the control of GTSE1 expression, 

identify GTSE1 as a novel E2F1 target gene. 

 

 

Fig.9 E2F1 modulates the GTSE1 expression. 

 GTSE1 protein  and mRNA levels after knockdown of E2F1 in MDA-MB-231 and MDA-MB-157 cell 

lines (A) and (B). Data are shown as mean ± SEM of at least three independent experiments. For 

statistical analysis Student two-tailed T-test was applied. *p-value<0.05; **p-value<0.01; ***p-

value<0.001 
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Similarly, BIRC5 (Baculoviral IAP Repeat Containing 5) and RHAMM (hyaluronan-

mediated motility receptor) have been reported to be E2F1 target genes, too (Kan et al., 

2013; Meier et al., 2014). In fact, as seen in other cancer cell lines, after E2F1 silencing 

the expression levels of Birc5 and RHAMM significantly decreased also in my model. 

Most of YAP/TAZ target genes promoters harbor both TEAD and E2F TFs binding 

sites (Nicolay et al., 2011; Zanconato et al., 2015), and it has been demonstrated that 

these two pathway cooperate synergistically for the implementation of a transcriptional 

program required to bypass the cell cycle exit and to promote cell proliferation both in 

fruit fly and human (Kapoor et al., 2014; Nicolay et al., 2011). 

Here, I showed that these two transcription factors regulate the expression of genes 

involved not only in cell proliferation, such as BIRC5, but also of genes (e.g. GTSE1 

and RHAMM) involved in other aspects of cancer progression such as migration, 

invasion and metastasis, further highlighting the importance of E2F1 and TEAD 

cooperation in cancer. 

In order to further functionally corroborate the GTSE1 regulation by E2F1, I tested the 

effect of the drug Palbociclib (PD0332991), a well-known inhibitor of the Rb-E2F1 

pathway (Fry et al., 2004), on GTSE1 expression. Palbociclib is a selective inhibitor of 

CDK4 and CDK6 that causes Rb hypophoshorylation and block of E2F1 activity (Fry et 

al., 2004). As shown in Fig.10a and b, after treatment with palbociclib GTSE1 

expression levels, as well as other E2F1 target genes, dramatically decrease at both the 

protein and the mRNA level. Taken together these data further confirm the involvement 

of the E2F1 TF in the transcriptional regulation of GTSE1 protein. Interestingly, under 

these conditions and in both cell lines, I observed not only a reduction in Rb 

phosphorylation, but also a concomitantly decrease in total Rb and E2F1 levels 

suggesting that the Rb-E2F1 pathway became dramatically altered. These observations 

are further supported by the recent work of Pollutri D et al. (unpublished data) that 

demonstrates that the treatment with CDK4/6 inhibitors inhibits this pathway through 

both Rb hypophosphorylation and E2F1 proteasome-dependent degradation. In fact, the 

ubiquitin-proteasome system represent a critical regulator of Rb-E2F1 pathway 

(Sengupta and Henry, 2015). However, further study are required to clarify the 

mechanism of E2F1 degradation in the model investigated. 
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Fig.10 GTSE1 expression levels decrease after palbociclib treatment. 

 GTSE1 protein and mRNA levels in MDA-MB-231 (A) and MDA-MB-157 (B) treated respectively with 

palbociclib 0.5µM and 1µM for 72h (B). Data are shown as mean ± SEM of at least three independent 

experiments. For statistical analysis Student two-tailed T-test was applied. *p-value<0.05; **p-

value<0.01; ***p-value<0.001   
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Discussion 

 

In the last years, the involvement of the TEAD family of transcription factors together 

with YAP and TAZ co-activators has strongly emerged in the development of different 

types of tumors (including breast cancer). In fact, both TEAD4 and TAZ over-

expression in breast cancer correlates with poor prognosis (Bartucci et al., 2015; Wang 

et al., 2015). Moreover, the YAP and TAZ co-activators interact with the TEAD TFs to 

promote epithelial to mesenchymal transition, migration and invasion, events that are 

critical for cancer progression and metastasis formation(Wang et al., 2014; Zhang et al., 

2009). 

Despite the great interest and the vast literature, less is known about the YAP/TAZ 

downstream effectors and how they exert their functions. 

In this study, through the use of a multidisciplinary approach, I identified GTSE1 as a 

novel YAP/TAZ-TEAD4 regulated protein. The YAP/TAZ co-activators and the 

TEAD4 transcription factor exert their regulation at the transcriptional level promoting 

GTSE1 transcription. In fact, both the TEAD and the YAP/TAZ knock-downs lead to a 

decrease of GTSE1 mRNA level. Moreover, TEAD4 was chipped on the GTSE1 

promoter indicating that it directly controls GTSE1 expression. 

Given its role in tumorigenesis, chemoresistance and metastasis, many studies 

suggested a promising role for the YAP/TAZ-TEAD axis as therapeutic target in cancer 

treatment. Different inhibition strategies have been proposed among which: preventing 

the YAP-TEAD interaction, targeting F-actin, controlling the mevalonate pathway (Guo 

and Teng, 2015; Johnson and Halder, 2014).    

Verteporfin (VP) is a porphyrin compound able to bind YAP and to interfere  with the 

TEAD association (Liu-Chittenden et al., 2012). Vp, already used as photosensitizer in 

the treatment of neovascular macular degeneration, efficiently suppresses YAP-driven 

tumorigenesis in liver cancer mouse model (Liu-Chittenden et al., 2012). However, this 

compound binds YAP at micromolar concentration, higher affinity porphyrin drugs 

could be more effective in cancer treatment (Johnson and Halder, 2014).    

Another known regulator of YAP activity is F-actin. In fact, it has been demonstrated 

that F-actin accumulation, promoting YAP nuclear localization, sustains the expression 
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of genes controlling cell proliferation and survival (Fernández et al., 2011; Sansores-

Garcia et al., 2011). Cytochalasin D and latrunculin A/B, destabilizing  F-actin, support 

YAP/TAZ nuclear export (Johnson and Halder, 2014). On the other hand the actin 

cytoskeleton is essential for many cell functions, so the possibility of toxic side effects 

should be considered (Johnson and Halder, 2014).  

Previously it has been demonstrated that the mevalonate pathway promotes the 

YAP/TAZ transcriptional program and its inhibition is sufficient to block YAP/TAZ 

nuclear accumulation and activity (Sorrentino et al., 2014; Wang et al., 2014). Rho 

family of GTPases is a positive regulator of YAP/TAZ functions and the 

geranylgeranylation of these proteins is essential for their plasma membrane 

localization and activity (Dupont et al., 2011; Sansores-Garcia et al., 2011; Wada et al., 

2011; Yu et al., 2012). Geranylgeranyl pyrophosphate is a metabolic intermediate of 

mevalonate pathway and the treatment with statins blocking its production leads to the 

inhibition of both the Rho GTPases activity and YAP/TAZ gene expression program 

(Sorrentino et al., 2014). In line with this GTSE1 protein and mRNA levels markedly 

decrease  after the cerivastatin treatment, but  the addition of mevalonate totally rescues 

this effect further confirming the involvement of these co-activators in the control of 

GTSE1 expression. 

Recently statin use has been associated with decreased risk of death in a nationwide 

cohort study of 31,236 Finnish breast cancer patients (Murtola et al., 2014). Moreover, 

different studies linked statin usage to lowered probability of breast cancer recurrence 

(Ahern et al., 2011; Chae et al., 2011). 

The next step of my work consisted in identifying the TEAD-dependent cellular 

functions mediated by GTSE1 and the underlying mechanism. We previously reported 

that GTSE1 is required for TNBC cell migration and it was also demonstrated that 

YAP, TAZ and TEAD down-regulation impacts negatively on the ability of breast 

cancer cells to migrate (Wang et al., 2014). For these reasons, I decided to verify if 

TEAD controls breast cancer cells migration through GTSE1. 

Here, I found that GTSE1 over-expression is able to rescue the reduced migration 

following TEAD silencing in TNBC cell lines, suggesting that the effect of TEAD on 

cell motility is, at least partially, GTSE1-dependent. 
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A common feature of migrating cells required for cell migration is the formation of cell 

protrusions at the leading edge. Here, I highlighted a role for TEAD and GTSE1 in the 

control of cell protrusions formation. In fact, the number of cell protrusions/cell 

markedly decreases after TEAD depletion, with GTSE1 expression rescuing, at least 

partially, this effect. The achieved results suggest that TEAD regulates cell protrusion 

formation via GTSE1 providing, for the first time, a mechanical explanation on how this 

pathway regulates cell migration. 

TEAD4 is not the only transcriptional regulator of GTSE1 expression; in fact, we found 

that the GTSE1 promoter region contains not only the TEAD4 consensus sequence, but 

also the E2F1 and HMGA1 binding sites. 

Similarly to TEAD4, E2F1 is required for the transcriptional regulation of GTSE1. Its 

depletion, in fact, causes the lowering of both GTSE1 mRNA and protein levels. As 

demonstrated by ChIP assay, E2F1 directly binds the GTSE1 promoter region, further 

supporting its role in the control of GTSE1 transcription and making GTSE1 a novel 

direct E2F1 target gene.  

The Rb protein is the main regulator of E2F1 activity and its signature includes 159 

genes, most of which are E2F regulated genes, that are up-regulated after RB1 deletion 

or repressed by RB1 activation (Ertel et al., 2010). As reported by Ertel et al., the 

signature associated with RB1 loss presents the highest expression values in ER-

negative tumors, reflecting a deep deregulation of RB1 in this type of cancers. It has 

been showed that GTSE1 is part of the RB1 loss signature (Ertel et al., 2010), further 

confirming the involvement of the Rb-E2F1 pathway in the control of GTSE1 

expression. Moreover, the treatment with drugs targeting this pathway such as 

palbociclib decreases the expression of GTSE1 as well as other known targets.  

Recently this inhibitor was approved for use in combination with letrozole in 

postmenopausal women with ER-positive, HER2-negative locally advanced or 

metastatic breast cancer. Furthermore, it has been demonstrated that the palbociclib 

treatment has anti-metastatic activity in both ER-positive and –negative breast cancer 

cell lines suggesting the exploration of its potential use in also this breast cancer 

subtype (Qin et al., 2015).  

GTSE1 expression levels are higher in the most aggressive and invasive breast cancer 

subtypes. Both Rb-E2F1 and YAP/TAZ-TEAD4 pathways are deregulated in TNBC, 
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leading us to speculate that these two pathways could cooperate to promote GTSE1 up-

regulation, in combination with other genes. 

Similarly to GTSE1, RHAMM is regulated by both TEAD4 and E2F1 and has a critical 

role in breast cancer cell migration (Meier et al., 2014; Wang et al., 2014). These 

observations suggest that these two transcription factors may cooperate in orchestrating 

a transcriptional program of genes involved in breast cancer cell migration, invasion and 

metastasis. An independent regulation of GTSE1 and RHAMM expression by E2F1 and 

TEAD4 is still possible, although less probable, therefore further studies are required to 

verify if they act synergistically or not. 

Previous studies suggested that breast cancer cells migration is reduced after treatment 

with palbociclib in a COX2 mediated manner (Qin et al., 2015). However, COX2 up-

regulation alone is not able to completely rescue the reduced migration that follows the 

treatment, suggesting the involvement of other pathways. Here, I demonstrated that the 

palbociclib treatment leads to a reduction of the expression of both GTSE1 and 

RHAMM, suggesting that they may contribute to the reduced breast cancer cell 

migration. 

Interestingly, the third regulator of GTSE1 expression that emerged from our 

bioinformatics analysis is the chromatin modifier HMGA1(high mobility group A). The 

HMGA1 protein regulates the transcription of target genes through the architectural 

remodeling of chromatin, allowing the formation of multi-protein complexes on 

promoter and enhancer regions (Brocher et al., 2010). It was reported that GTSE1 is 

part of the HMGA1 loss signature and that this TF regulates GTSE1 expression at least 

at the transcriptional level (Pegoraro et al., 2013). This suggests an attractive hypothesis 

in which HMGA1 could mediate the chromatin modification required for GTSE1 

transcription. In the future, additional studies are required to investigate HMGA1 role in 

GTSE1 expression regulation.  

In conclusion, the work of this thesis allowed to delve deeper into the understanding of 

GTSE1 transcriptional regulation, identifying the co-activators and transcription factors 

involved and establishing a role for both the YAP/TAZ-TEAD4 and the Rb-E2F1 

pathways in the control of GTSE1 expression. The observation that GTSE1 is not the 

only protein involved in cell migration regulated by these two pathways suggests that 

they are profoundly interconnected in the regulation of processes required not only for 
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cell proliferation but also for other aspects of tumor progression such as invasion and 

metastasis. Further work is required to validate my hypothesis that these two pathways 

cooperate synergistically in the promotion of a transcriptional program required for 

metastasis, if it will be confirmed, the combinatorial use of drugs targeting both the 

YAP/TAZ-TEAD4 and the Rb-E2F1 pathways could be tested for the treatment of 

TNBC. 

 

 

 

Fig.11 Final model summarizing GTSE1 transcriptional regulation in TNBC 

 

 

Future perspectives 
 

 

YAZ/TAZ silencing heavily affects the G1/S transition of the cell cycle, this in turn 

impacts on E2F1 transcriptional activity (Enzo et al., 2015). To further confirm that the 

transcriptional regulation of GTSE1 by the YAP/TAZ-TEAD4 axis is direct and not 

mediated by E2F1 inhibition in the future I’m planning to perform a reporter luciferase 

assay. I’m going to clone the GTSE1 promoter upstream of the luciferase reporter gene 

in an expression vector and to introduce mutations in the TEAD4 and/or E2F1 binding 

sites. It enables us to understand if both these two transcription factors are required to 

directly control GTSE1 expression. 
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The in vivo recapitulation of the in vitro phenotype of reduced migration and invasion 

after GTSE1 knockdown is also important. Previously the zebrafish model was used to 

study the YAP dependent cell vascular invasion (Sharif et al., 2015). Therefore, I’m 

going to use this well-established model to evaluate cancer cells invasiveness upon 

GTSE1 shRNA. Cancer cells labeled with a color tracer will be injected in the zebrafish 

circulation and their extravasation and colonization of peripheral tissues monitored.  

 

Moreover, I would test the effect of the combination of drugs targeting both Rb-E2F1 

and YAP/TAZ-TEAD4 pathways on metastasis formation. Nude mice represent a 

validated model to study tumorigenesis. For this reason I’m planning to inject TNBC 

cells into the tail veins of nude mice and then to compare the presence/absence of 

metastasis and the tumor growth rate in mice untreated to that of mice receiving the 

single treatment and the combination of two drugs. 

 

In addition I’m planning to perform a high throughput fluorescent-based drug screening 

with FDA approved molecules in order to detect drugs able to down-regulate GTSE1 

protein levels. This could enable us to identify novel compounds potentially able to 

control Rb-E2F1 and/or YAP/TAZ-TEAD4 pathways. 
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Materials and Methods 

 

Cell culture and chemicals 

 

MDA-MB-231 and MDA-MB-157 cell lines were obtained from ATCC. All cell lines 

were grown in DMEM with 4.5 g/L glucose (Lonza) and L-glutamine, supplemented 

with 10% fetal bovine serum (Euroclone), 100 U/ml penicillin and 100 U/ml 

streptomycin (Lonza) at 37°C in a humidified atmosphere of 5%CO2.  

Palbociclib (PD0332991, PZ 0199, Sigma Aldrich) was dissolved in H2O at a 1mmol/L 

concentration. Cerivastatin (SML0005, Sigma Aldrich) and DL-mevalonic acid 5-

phosphate (79849, Sigma Aldrich,) were prepared in dimethyl sulfoxide at a 10mmol/L 

concentration and 0,5mol/L, respectively. 

 

 

Western blot analysis and antibodies 

 

The TEAD1/3/4 transcription factors (TFs) and YAP/TAZ silencing was performed by 

transfecting the siRNA in MDA-MB-231 and MDA-MB-157 cell lines for 72 hours. 

For cerivastatin treatment, cells were incubated with DMSO or 1µM cerivastatin alone 

or with 0,5mmol mevalonic acid (MVA) for 24 hours (MDA-MB-231) or 72 hours 

(MDA-MB-157). 

For palbociclib treatment, cells were treated with 0,5µM (MDA-MB-231) or 1µM 

(MDA-MB-157) PD0332991 for 72 hours.  

Western blot analysis was performed according to the standard procedures. 

Briefly, cells were washed twice with PBS and total protein extracted on ice using an 

home-made lysis buffer (50 mM Tris-HCl, pH 8, 150 mM NaCl, 1% Nonidet P-40, 0.1 

mM sodium orthovanadate, 0.1 mM phenylmethylsulfonylfluoride, 5 mM EDTA, 

0.5mM β-glycerophosphate, 0.5mM NaF and Protease Inhibitor Cocktail, Sigma). Total 

protein concentration was measured by Bio-Rad protein assay (5000006, Bio-Rad) and 

25µg of total lysate separated using SDS-PAGE. Proteins are then transferred on a 

nitrocellulose membrane and after blocking incubated with the specific antibodies.   
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Antibodies used: anti YAP/TAZ (sc101199, Santa Cruz Biotechnology), anti-actin 

(C11, Sigma Aldrich), anti pan-TEAD (13295, Cell Signaling), anti-phospho Rb 

(ab76298, Abcam), anti-Rb (554136, BD Pharmingen), anti-BIRC-5 (sc-10811, Santa 

Cruz Biotechnology), anti-E2F1(sc-251, Santa Cruz Biotechnology), anti-RHAMM 

(ab108339,Abcam), rabbit antibody against GTSE1 was previously described [4]. 

Bound primary antibodies were visualized using Pierce ECL Plus (Thermo Scientific) 

after addition of secondary antibodies. 

 

 

RT-qPCR 

 

Total RNA extraction was performed using QIAzol Lysis Reagent (Qiagen) and 

Nanodrop spectrophotometer was used to quantify the nucleic acid extracted and to 

assess its purity.  The integrity of total RNA extracted was verified by agarose gel 

electrophoresis. 

 500 ng of the total nucleic acid extracted were reverse-transcribed into cDNA using  a 

QuantiTect Reverse Transcription Kit (Qiagen), according to the manufacturer’s 

instructions. Briefly, genomic DNA contamination was removed through the incubation 

of purified RNA with gDNA Wipeout buffer at 42°C for 2 minutes, subsequently RNA 

was reverse-transcribed at 42°C for 30 minutes using the Quantiscript Reverse 

Transcriptase, the Quantiscript RT buffer and the RT Primer mix supplied by the kit. 

The enzyme was then inactivated by incubation at 95°C for 3 minutes. 

The obtained cDNAs were diluted 1:20 and real-time qPCR was performed with the 

SYBR Green PCR Master Mix (Applied Biosystems) using a StepOnePlus real time 

PCR machine (Applied Biosystems).Oligonucleotides were used at 5µM final 

concentration and their sequences are reported in the table 1. Each experiment was 

performed at least three times and expression levels were normalized to the B-actin and 

GAPDH mRNA levels. ΔΔCq method was used to calculate relative gene expression.  
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Target gene Primer sequence 

GTSE1 FW 5’-GCCCCGGGTGCTGTCAATGT-3’  

Rev 5’-GCCCACTGCTGGGGATGTGC-3’ 

TEAD4 FW 5'-TTGGAACTGGCTTAGCGCAC-3'  

Rev 5'-CGTCATTGTCGATGGGCTTG-3' 

YAP1 FW 5'-GCCGGAGCCCAAATCC-3' 

Rev 5'-GCAGAGAAGCTGGAGAGGAATG-3' 

TAZ FW 5'-CAGCAATGTGGATGAGATGG-3’  

Rev 5’-TCATTGAAGAGGGGGATCAG-3’ 

E2F1 FW 5’-AACATCGATCGGGCCTTGTTTG-3’ 

Rev 5’-GTGGACTCTTCGGAGAACTTTCAG-3’ 

BIRC5 FW  5'-AGCATTCGTCCGGTTGCGCT-3' 

Rev 5'-TCGATGGCACGGCGCACTTT-3' 

RHAMM FW 5'-AGAACCAACTCAAGCAACAGG-3' 

Rev 5'-AGGAGACGCCACTTGTTAATTTC-3' 

CTGF FW 5'-AGGAGTGGGTGTGTGACGA-3'  

Rev 5'-CCAGGCAGTTGGCTCTAATC-3' 

CCNE1 FW 5’-TGAGCCGAGCGGTAGCTGGT-3’ 

Rev 5’-GGGCTGGGGCTGCTGCTTAG-3’ 

MCM6 FW 5’-ATCCCTCTTGCCAAGGATTT-3’ 

Rev 5’-GAAAAGTTCCGCTCACAAGC-3’ 

ACTB FW5'-CCAACCGCGAGAAGATGA-3'  

Rev 5'-CCAGAGGCGTACAGGGATAG-3' 

GAPDH FW 5’-TCTCTGCTCCTCCTGTTC-3’  

Rev 5’-GCCCAATACGACCAAATCC-3’ 

 

 

Table 1. Primer sequences  
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RNAi interference 

 

siRNAs were purchased from Eurofins Genomics and their sequences were reported in 

the table 2. 

The negative control siRNA was the AllStars negative control siRNA(Qiagen 1027281). 

LipofectamineRNAi-MAX (Invitrogen) was used for siRNA transfections in antibiotic-

free medium according to the manufacturer’s instructions. 

 

siRNA Sequence 

GTSE1 5’-GAUUCAUACAGGAGUCAAATT-3’ 

TEAD1/3/4 5'-UGAUCAACUUCAUCCACAAGC-3' 

YAP 5'-GACAUCUUCUGGUCAGAGA-3' 

TAZ 5'-ACGUUGACUUAGGAACUUU-3’ 

E2F1 5’-CCAACGUCCUUGAGGGCAU-3’,  

5’-CUGCAGAGCAGAUGGUUAU-3’  

5’-GGAAAGUGAGGGAGGGAGA-3’ 

 

Table2. siRNAs sequences 

 

 

ChIP Assay 

 

The ChIP assay was performed by using the ChIP-IT Express Enzymatic Chromatin 

Immunoprecipitation kit (Active Motif) according to the manufacturer’s instructions. 

 Eluted DNA was amplified by qPCR with GTSE1 promoter-specific primers. The 

sequences of the primers used were reported in the table 3. 

We used the anti-TEAD4 (5H3) from Abnova and the anti-E2F1 (KH95 and C-20) from 

Santa Cruz Biotechnology. For statistical analysis Student t-test was applied. *p-

value<0.05; ***p-value<0.001 
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Target Primer sequence 

TEAD4 ChIP site 1 S1-FW 5’-CCACACCTACTATGTGCTGAC 

ATG-3’ 

S1-Rev 5’-CCTCAGCTCATCCTGGGGATGT-3’ 

TEAD4 ChIP site 2 S2-FW 5’-GATCCCTCTGCCATTCTCCCATG 

A-3’  

S2-Rev 5’AGGTGGGTGTGGTCAAACAGCT-3’ 

TEAD4 ChIP site 1 and 2 S1-FW 5’-CCACACCTACTATGTGCTGAC 

ATG-3’ 

S1S2-Rev 5’TGGAAAGAGTTTGGCCTGCTCA-

3’ 

E2F1 ChIP site 1  ES1-FW 5’CTACACACAAGGAGCTGCTAT-3’ 

ES1-Rev 5’-ATCACCCACCCGGAAGT-3’ 

E2F1 ChIP site 2 ES2-FW 5’-ATGAGTCTCCCTCAGGTCTC-3’ 

ES2-Rev 5’-TAAGGGTGTCGATGGGAAGA-3’ 

E2F1 ChIP site 3,4 and 5 ES3,4,5-FW 5’-GCTCTCTCCTCCAACGCA-3’ 

ES3,4,5-Rev 5’AGAGACCTGAGGGAGACTCA 

T-3’ 

 

Table 3. ChIP primer sequences 

 

 

Cell Migration Assays 

 

For the wound-healing assay, silenced cells were plated in 6-well plates and cultured to 

confluence. Cell monolayers were scratched using a pipette tip, washed with PBS to 

remove debris, and incubated for 16 hours in cell culture medium. The wounded areas 

were imaged immediately after wounding and after 16 hours. 

For the transwell migration assay,48 hours after silencing of TEAD 5X10
4 

cells were 

plated in 24well 8µm PET cell culture inserts(BD Falcon) and allowed to migrate for 16 

hours at 37°C.After removing unmigrated cells with a cotton swab, migrated cells were 

fixed in 3% para-formaldehyde (PFA) and stained with crystal violet 0,5%. The 

migrated cells were then counted in ten randomized fields. 

Transwell invasion assays were performed in 24well 8µm PET cell culture inserts (BD 

Falcon) coated with Corning Matrigel Matrix. 48 hours after silencing 8X10
4
 cells were 
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plated in cell culture inserts and allowed to invade for 18 hours at 37°C. The invaded 

cells were fixed in 3% PFA, stained with crystal violet 0,5% and ten randomized fields 

were counted. 

 

 

Cell protrusion assay 

 

The cell protrusion assay was performed as previously described (Shankar and Nabi, 

2011). Briefly, TNBC cells were silenced for GTSE1 or TEAD TF and after 72 hours 

1x10
6
 cells were plated in 24well 1µm PET cell culture inserts (BD Falcon) for 4 hours 

at 37°C. Cells were then fixed in 3% PFA, cell protrusions were stained using F-432 

(Molecular Probes) and nuclei were stained using a propidium iodide solution (P4864, 

Sigma Aldrich). Multiple images of stained nuclei and pseudopodia were taken and 

counted using ImageJ software. The average number of cell protrusions/cell was 

obtained dividing the number of pseudopodia by the number of cell nuclei. Three-

dimensional representation of the cell protrusions was performed using Interactive 3D 

Surface Plot plugin (https://imagej.nih.gov/ij/plugins/surface-plot-3d.html) for ImageJ. 

For statistical analysis Student two-tailed T-test was applied. *p-value<0.05; ***p-

value<0.001. 

 

 

Cell proliferation assay 

 

For cell proliferation assay, 48 hours after TEAD1/3/4 silencing 1X10
5 

cells were plated 

and counted after 16 hours. Data are shown as mean ± SEM of three independent 

experiments. For the statistical analysis, Student two-tailed T-test was applied. 

 

https://imagej.nih.gov/ij/plugins/surface-plot-3d.html


 

50 

 

Abbreviations: 

 

BIRC5 (Baculoviral IAP Repeat Containing 5); 

CAFs (Cancer Associated Fibroblasts); 

CCNE1 (Cyclin E1); 

CIN (Chromosome Instability); 

CSCs (Cancer Stem Cells); 

CTGF (Connective Tissue Growth Factor); 

E2F1 (E2F transcription factor 1); 

ECM (Extracellular Matrix); 

GTSE1 (G2 and S phase expressed1); 

MCAK (Mitotic Centromere Associated Kinesin); 

MCM6 (Minichromosome Maintenance Complex Component 6); 

MVA (Mevalonic Acid); 

Rb (Retinoblastoma protein); 

RHAMM (Hyaluronan-Mediated Motility Receptor); 

TAZ (Transcriptional co-Activator with PDZ-binding motif); 

TEAD (TEA Domain transcription factor); 

TF (Transcription Factor); 

TFBS(Transcription Factor Binding Site); 

TNBC (Triple Negative Breast Cancer); 

TSS (Transcription Start Site); 

VP (Verteporfin); 

YAP (Yes-Associated Protein). 
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