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Overview 

Abstract 

This thesis is constituted of five different studies revolving around the 

themes of Mediterranean corals and coralligenous reefs, organism and 

communities ecology and physiology, and all of this is focused from the 

point of view of numerical simulations and quantitative approaches. The 

scales in space and time of the studies presented vary widely, ranging from 

basin-wide multidecadal projections to physiological level processes. Also 

the applications that are presented pertain to different frameworks: 

mechanistic models, empirical models, and statistical analyses. 

The first chapter represents a brief introduction and a literature review on 

how different modelling frameworks can be used to describe coral growth; 

the second chapter is a case study application of many of the concepts 

developed in chapter one to the Mediterranean red coral (Corallium 
rubrum). The third chapter looks into the physiological details of the 

process of calcification in symbiotic corals in order to elucidate the action 

mechanisms of different stressors. The fourth chapter is a basin-wide 

assessment of heat-waves related risk for red coral and other related species. 

Finally chapter five treats a problem of habitat classification, relation to 

environmental variability and mapping, applied to a submerged archipelago 

of rocky outcrops in the Northern Adriatic Sea.  

Quantitative approaches to the fields of biology and ecology are not new, 

though the existing studies about marine calcifiers in general, and 

Mediterranean species in particular, are surprisingly scarce. This thesis 

wants to exemplify how such applications are powerful tools to understand 

the processes that shape unique marine habitats such as the Mediterranean 

coralligenous reefs. 
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1. What this thesis is about 

 

Today's oceans are faced with a novel variety of pressures often related to 

the increase of human population. Land use severely alters thousands of 

kilometers of coastal environments worldwide, the resulting polluting 

activities, especially waste water discharge, have in the sea their ultimate 

sink. The unsustainable harvesting of fish stocks not just hinders our ability 

to effectively exploit resources, but also triggers changes in marine 

ecosystems structure. At the same time the Earth's climate is changing due 

to anthropogenic greenhouse gasses emissions; this has consequences for the 

marine environment also: the world's oceans are expected to become 

warmer on average; episodic extreme events such as heat waves and intense 

weather phenomena are expected to become more frequent and severe; the 

dissolution of atmospheric carbon dioxide decreases seawater pH, a process 

named ocean acidification. All of these issues bear consequences for marine 

life forms which, being adapted to different conditions, may not be able to 

efficiently cope with change. This is especially true if such changes, as it is 

the case, are brought about over very short time periods, compared to 

geological time scales, which rules out the possibility of evolutionary 

adaptation for most organisms.  

Science is engaged in developing tools that allow to evaluate and quantify 

future impacts, either in the hope of reverting current trends, or to be 

prepared for the inevitable. This is clearly no easy task as it implies 

disentangling the many relations that underlie world climate, biological 

organisms and ecosystems and human societies, all of which are, 

undoubtedly, complex and not fully understood items.  

This thesis is intended to address some of these issues, in particular some 

aspects regarding a certain type of organisms (marine calcifiers) from a 

specific ecosystem (Mediterranean coralligenous habitats) and concerning 

certain issues related to the interactions among organisms and their 

environment (ecology). To understand this it is sometimes needed to go 

back to the basics, that is the ways that living things or any of their parts 

function (physiology). All of this will be focused from the point of view of 

numerical analyses, simulations and theory and integrated in computer-

based applications (models). This thesis, the works that compose it, is also 

a collection of points of view on the same topic from different perspectives 
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and distances (scales), from basin-scale projections to physiological level 

processes. 

Biological organisms and ecosystems are complex entities whose dynamics 

and states are continuously set through a full range of processes acting at 

widely different scales in both time and space. The Marine realm is in no 

way an exception to such statement, but also owns a peculiar feature that 

bears two-sided consequences: as the hydrosphere is not mankind's biome, 

aquatic ecosystems are hardly accessible and hardly subdued, so that, 

whereas on land nature has been bent in many ways for farming and 

livestock purposes, marine and freshwater ecosystems are usually exploited 

as such, not so much unlike hunter gatherer societies did with pre-historic 

lands. Though if in the Paleolithic sustainable resources management was 

not people's concern, it is now; and whereas technology provides several 

means for increasing land productivity and buffering the effects of climatic 

variability, this is barely possible with the aquatic environment. Whoever 

means to exploit water-based resources has to deal with their intrinsic 

variability. 

Perhaps for these reasons, quantitative approaches to traditionally softer 

sciences like biology and ecology (which are a central topic of this thesis) 

have been, and still are, largely focused on the aquatic environment since 

the seminal works of Ludwig von Bertalanffy (1938) and Vito Volterra 

(1926). The latter of the two conceived his eponymous equations, that 

describe ecosystem dynamics in terms of predator-prey interactions, by 

looking at the composition of fish landings before and after World War I 

(during which industrial fisheries did not operate) in the Northern Adriatic 

Sea. Curiously enough Volterra devised the piece of science that now serves 

as the archetype for mostly any trophic network model, by looking at such 

a marginal sub-basin, the Northern Adriatic, in an enclosed little sea, the 

Mediterranean.  

All of this thesis case studies are about the Mediterranean Sea (Fig. 1) and 

the Northern Adriatic is featured as well (in chapter 5) as it hosts the 

trezze, a unique kind of reef-like habitat. The Mediterannean Sea is indeed 

a special place within the world ocean; Bethoux et al. (1999) described it as 

a miniature ocean as it features many of the characteristics of larger water 

bodies (dense waters formation, thermohaline circulation in relation to 

climate) on a smaller scale. It is an enclosed basin, located in a temperate 

climate and, due to its segregation, it hosts endemic species and unique 
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habitats; among these the coralligenous reefs, which are the subject of this 

thesis, deserve a special mention. 

 

Fig. 1 The Mediterranean Sea. 

 

2. Mediterranean Coralligenous reefs 

 

Coralligenous habitats (see Ballesteros 2006 for a review) are reef-like 

calcareous bioconstructions unique to the Mediterranean, but, unlike their 

famous tropical counterparts, are not found in shallow waters; instead they 

develop in somewhat deep waters, in the mesophotic zone, usually below 

the summer thermocline, around 20-30 meters, and up to around 100 

meters deep. Mostly for this very reason, and despite their appeal, they 

remain little known to the general public. The other major feature that 

differentiate Mediterranean coralligenous from tropical reefs is that the 

former do not involve corals as main engineering species but instead 

coralline algae (Lithophyllum sp., Mesophyllum sp., Neogoniolithon sp., 
Ballesteros 2006) whose calcareous thalli are laid down and grow on each 

other resulting in massive outcrops (Fig. 2).  
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Besides calcareous algae, the coralligenous habitats host a great deal of 

biodiversity both in sessile species like scleractinians and gorgonian corals, 

bryozoans, sponges, etc. and motile species, such as crustaceans, mollusks 

and fishes, that take advantage of the complex tridimensional environment 

provided by engineering species, for sheltering purposes and for which the 

coralligenous are also important nursery grounds. With a provisional 

species count of 1666 (Ballesteros 2006), coralligenous habitats are 

considered the second biodiversity hotspot of the Mediterranean after 

Posidonia meadows. 

 

Fig. 2 Coralligenous reef from Marseille, France. 

The reason why such similar kinds of bioconstructions, coralligenous and 

tropical coral reefs, develop under such different environmental conditions, 

the mesophotic zone, in relatively cold waters vs. surface warm and 

oligotrophic waters, in the Mediterranean vs. in the tropics was investigated 

by Zabala and Ballesteros (1989); these authors ascribe it to the temperate 

climatology and pronounced seasonality of the surface waters in the 

Mediterranean that results in shallow hard substrates being mostly 

colonized by fast growing generalist species like turf and erect algae and 

sponges that are able to out-compete slow growing calcifiers, like those that 

characterize the coralligenous, in an highly variable environment. On the 

contrary the temperature conditions below the summer thermocline are 

relatively stable all year round and the little light is not sufficient for fast 

growing algae to be competitive. In such conditions slow growing species 
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with frugal food requirements and resistant to grazing (i.e. calcareous 

species) can thrive and develop complex ecosystems. The drawback to it is 

that coralligenous species are specialists; they are adapted to narrow 

temperature ranges (between 10 and 23°C Ballesteros 2006), do not tolerate 

high sedimentation rates, and, as calcifiers, are potentially sensitive to 

ocean acidification. On top of that, the sessile nature of coralligenous 

building species implies that, whenever their environment changes, they 

have limited or no ability to relocate to more suitable places. The 

coralligenous are indeed vulnerable environments. 

These unique biomes are also little understood from the ecological point of 

view. Despite in recent years a substantial deal of research effort has been 

spent in the study of coralligenous reefs, the scientific community has, at 

present, only a partial understanding of the ecological processes that 

happen within them and that ultimately result in the observed variability 

and spatial distribution of the coralligenous along environmental gradients 

within the Mediterranean. Coralligenous reefs across the Mediterranean are 

in fact not homogeneous biocenoses, but rather they differ from region to 

region, as a patchwork of local variants on the theme of mesophotic 

calcareous bioconstructions. This variability is not yet entirely classified. 

The investigation of coralligenous habitats also inevitably implies dealing 

with certain ecological and physiological aspects that are not yet completely 

understood (also like any other research activity) and that are 

characteristic to coralligenous species, such as symbioses, modular and 

colonial growth forms and biocalcification. All of these processes are of vital 

importance for many coralligenous species and, often, also of interest as 

phenomena directly affected by climate change related pressures; as it will 

be shown in this thesis, a modelling perspective is amenable to capture 

their essence and numerical applications are convenient tools to understand 

such processes. 

 

3. Numerical modelling of biological systems 

 

All of this thesis is also about mathematical models of biological systems. 

The introduction of numerical simulation approaches in the fields of biology 
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and ecology is not recent, as exemplified before, though it remains 

somewhat of a niche specialization among biologists and ecologists. The 

main reasons for it (by educated guess) are that the unparalleled 

complexity of life makes it challenging to formulate general laws with high 

predictive power (as it happens for instance in the field of physics), and, on 

the other hand, that living organisms and ecosystems states are very often 

difficult to measure, making it difficult to see the big picture that is needed 

to formulate general laws. In this context, models are regarded as useful 

tools for testing ecological hypotheses and understanding observed patterns, 

and are the prime means for predicting how living beings and ecosystems 

will respond to change. 

In the present work a collection of different modelling approaches is 

presented. Such approaches can be coarsely divided in two main groups: 

data driven models (in chapters 4, 5) and process based models (in chapters 

1, 2, 3). 

Data driven applications make use of techniques, usually statistical, that 

allow the recognition of patterns in, typically large, ecological data sets 

without requiring detailed knowledge of the processes involved. Such 

applications usually rely on numerical regressions, often quite sophisticated, 

and are clearly data-demanding, on the other hand they allow to account 

for most of the possibly available information (multivariate statistics) 

without the strict need for a conceptual understanding of the object of the 

study. The studies presented in chapters 4 and 5 pertain to this class of 

models.  

Instead process based models are that class of applications where the 

system that is object of study is in the first place reduced to a conceptual 

scheme, that is a simplified version of reality, where all the variables and 

processes that are considered relevant are defined and linked together. 

These models typically rely on a physical background, i.e. the application of 

basic physical laws to biological organization. Process based models are 

usually less data-demanding than statistical approaches, yet the amount of 

information needed to adequately constrain a model is often not negligible 

and poor data can result in useless outcomes; on the other hand they can 

provide a mechanistic understanding of the object of the study, allow for 

generality to emerge and are more suitable tools for predictive purposes. 

The works presented in chapters 1, 2 and 3 pertain to such class of models. 
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Biological processes that happen at organism level, can be understood in 

terms of organism energetics. This is done by recognizing that a biological 

entity can be conceptualized as an open system that maintains an high 

level of internal organization at the expenses of a continuous flux of energy 

in and out of it (see chapter 1). An organism has hence a budget of usable 

energy to allocate to the components of its biological machinery, like 

growth, standard metabolism, activity, skeleton deposition, etc. (Fig 3) 

Some of this energy will be retained within the organism as newly formed 

biomass, the rest will be dissipated to the outside. How the available energy 

is allocated to the various processes depends on how the metabolic 

components are organized and connected with each other.  

 

Fig. 3 One possible scheme for an organism energy budget from Brey 2001. 

The cornerstone of this paradigm is very easy: to apply thermodynamics 

principles (mass/energy local conservation) to biological systems. The 

tricky part is to identify organism components and processes (e.g. polyps 

gemmation, symbioses, reproduction, calcification... ) and to find out where 

they may fit from the point of view of metabolic organization. 

During the course of this work it appeared necessary to devise novel 

approaches within well established modelling frameworks meant at 

including relevant processes that happen at organism level, such as colonial 

growth (chapter 1 and 2), biocalcification (chapter 1, 2, 3) and coral 

symbioses (chapter 3), that were overlooked in traditional models. Such 

applications are here used as tools to understand the functioning of 

organisms and ecosystems in relation to their environment. 
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4. Ecological and physiological aspects of    

 coralligenous species from a modelling 

 perspective 

 

Biocalcification 

Biologically mediated deposition of carbonates (biocalcification), is the key 

process that allows the formation of skeletons, shells, and reef habitats. 

Ocean acidification is expected to have impacts on marine calcifying 

organisms because it will negatively affect the saturation state of 

carbonates in seawater, which is in turn related to precipitation and 

dissolution rates. But, whereas the chemistry of carbonate species in 

seawater, including calcium carbonate deposition and dissolution 

phenomena, is rather well known, living organisms are no rocks. A key 

feature of biological organization is to sustain conditions within the 

organism that are far from the thermodynamic equilibrium of the 

surrounding environment; although seemingly trivial, only recently this 

concept has been recognized to be important also in the field of 

biocalcification. Coral skeleton indeed is not in direct contact with seawater 

and recent studies (Al-Horani et al. 2003; Venn et al. 2011) demonstrated 

that corals actively regulate the chemical properties of the internal 

calcifying medium from which the skeleton is secreted, clearly an energy-

requiring activity; this ability is however limited and negative effects of 

acidified seawater on calcification are beyond doubt for many species from 

widely different taxa (not just corals) and habitats. Despite the huge 

research effort seen in recent years, the effects of seawater chemistry on 

marine calcifiers remains an elusive topic, as stated by Allemand et al. 

(2011) in an extensive review on coral calcification; that review opens with 

two quotes, written almost one century apart by scientists engaged with 

coral calcification: 

A question which has common interest both for zoologist and paleontologist 
is the relation of the soft parts of the polyp to the hard calcareous or horny 
skeleton produced in most corals. (Ogilvie 1896) 
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The poor understanding of calcification mechanisms in corals results from a 
lack of information on tissue / skeleton interactions and temporal / spatial 
patterns in skeleton morphogenesis. (Brown et al. 1983) 

Both these authors recognize that the key to understand biocalcification lies 

in the interactions between the living parts of the coral and the skeleton, an 

aspect that is currently often overlooked in many research studies. The 

contributions that will be presented in chapter 1, 2, 3, attempt to approach 

the problem from this very perspective, by considering biocalcification as 

one of the energy requiring processes that are integrated in organism 

metabolism.  

 

Coral Symbiosis and light enhanced calcification 

The symbiotic relationship between coral host and dinoflagellate symbiont, 

that is vital in many species, is known to be disrupted by prolonged 

exposure to high temperature (heat wave), resulting in the condition known 

as coral bleaching (coral expells his symbionts) that, if prolonged, causes 

the death of the coral. Despite coral bleaching events having become sadly 

common in tropical reefs worldwide, still little is known about the 

physiological machinery which holds corals and their symbionts together 

and about the causes that make it fail. 

Symbiotic corals also display a tight link between zooxanthellae 

photosynthesis and skeleton deposition: higher calcification rates (3x on 

average, Gattuso et al. 1999) are consistently observed during daytime, 

when photosynthesis is performed; this phenomenon is called light-enhanced 

calcification. The mechanisms that have been proposed for light-enhanced 

calcification are very diverse and range from inorganic chemistry to 

biological control (Allemand et al. 2011). Nonetheless, whatever the cause 

of this phenomenon, a clear understanding of the physiology of coral-

zooxanthellae symbiosis is required to assess the influence of photosynthesis 

on vital rates in general, including calcification. 

Syntrophic symbioses, like the one that happens in many corals, can be 

conveniently understood in the light of host and symbiont energetics, 

combined with evolutionary reasoning: symbiosis must be beneficial, in 

terms of fitness, for both the host and the symbiont whilst the two actors 
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must retain selfish behavior (sensu Dawkins 1976). These concepts have 

been incorporated in the syntrophic symbiosis model developed by Muller & 

Nisbet (2014). In this model zooxanthellae produce an excess of 

photosyntate that is translocated to the coral host and it thus represents 

additional energy available for whatever metabolic purpose must be 

fulfilled, whilst the coral supplies its symbionts with waste material 

(nutrients) that serve as substrate for algal photosynthesis. The interesting 

outcome of this setup is that, although the regulation mechanism is entirely 

passive, it suffices to obtain a stable relationship; furthermore this 

relationship shifts from mutualism to parasitism as environmental 

conditions change, thus providing a candidate trigger for bleaching events. 

As most of the coralligenous coral species do not bear symbionts, concern 

for bleaching incidence is better spent on tropical reefs than on 

Mediterranean coralligenous; However the topics of symbioses and light 

enhanced calcification are both treated in this thesis, in chapter 3, where 

Muller and Nisbet reasoning is incorporated in a calcification model for the 

Mediterranean scleratinian coral Cladocora caespitosa. 

 

Modular growth 

Modular architecture is a development mode of living organisms where 

body accretion is performed by the iteration of identically planned modules, 

if such modules also are potentially autonomous organisms (like coral 

polyps), the whole is considered a colony. Modular and colonial 

architectures are generally typical of sessile species. Corals, bryozoans 

seaweeds and terrestrial plants, being forced for life in the same place, 

evolved highly adaptive body plans in order to exploit at best the 

surrounding environment. Modular growth also have consequences from the 

organism development point of view: whereas solitary organisms usually 

display asymptotic growth and a maximal attainable size (for reasons that 

will be treated in chapters 1 two 2), growth by module iteration would be 

free from such constraints, resulting in the so-called indeterminate growth. 

Such an unlimited growth would in theory follow an exponential law, 

eventually resulting in very fast growth rates for colonies, which is clearly 

negated by many slow growing, relatively little colonial and modular 

species. It has been proposed that the single modules within a colony are 

subject to intra-colonial competition for available resources, such as food 
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and/or light, that effectively limits their scope for growth as the number of 

modules increases.  

To date very little is known about growth patterns in coral or other 

coralligenous species also. This is due to many reasons: the slow growth and 

long life span of many species makes it very unpractical to compile size at 

age data sets and some measures can be taken just in destructive ways; 

furthermore the size parameter is not as clearly defined as it is in other 

species; in animals with a well defined body plan, metrics like length or 

height bear clear relationships with other measures, such as body weight 

and surface area, that are tightly linked to metabolism and vital rates in 

general. As an example von Beralanffy growth equation parameters 

estimates, that are based on such kind of information, are available for 

most commercial fish species, this isn't true for corals (and not just because 

von Bertalanffy growth equation doesn't fit coral growth). In modular and 

colonial species parameters such as height, diameter, total branches length, 

weight, etc. are not so tightly related because of variable growth forms; and 

whereas the weight of the polyps, as a proxy for the share of an organism 

that is metabolically active, would be an informative measure, weight 

inclusive of the skeleton (that is metabolically inactive) is more often 

measured. 

The topic of modular and colonial growth will be addressed in this thesis 

(chapters 1, 2) from the perspectives of organism energetics and 

populations dynamics; in particular it will be analyzed how per capita food 

availability in a population of polyps, that composes a colony, depends on 

the density of the population and how this changes as the population of 

polyps increases in number. Results show that these processes are 

influenced by colony morphology and may, or may not, result in trophic 

shading and growth determinacy.  
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5. Chapters outline  

 

Modelling coral growth 

The first chapter is theory oriented and serves as an introduction to 

chapters 2 and 3. It was originally conceived as a contribution to the 

marine animal forest handbook (Rossi et al. eds. 2017) where it serves the 

purpose of introducing the basics of organism growth modelling as well as 

treating some peculiarities of coral growth (clonality, biocalcification) that 

are traditionally overlooked in traditional models; also some state of the art 

applications in the field of coral growth modelling are discussed. In this 

thesis this chapter is useful as it introduces the class of process-based 

models that are developed in the following chapters where, on the other 

hand, basic explanation is kept at minimum.  

The chapter treats mainly the basics of the application of general systems 

theory to biological organisms. In such framework a living being is 

conceptualized as an open system that exchanges energy and matter with 

the environment in order to staying alive. Since energy and matter are 

conservative quantities (they obey a local conservation law according to the 

first principle of thermodynamics) the amount of each that is retained 

within the organism equals incoming minus outgoing fluxes. This is an 

holistic perspective: the complexity of the biological machinery is extremely 

reduced, to a single state variable (usually biomass or energy content) or a 

small set of them when different compartments in the organism are 

identified (e.g. living tissue and calcified skeleton).  

In fact it is important to recognize that any model does not mimic reality 

but rather small subsets of reality's properties, often macroscopic properties, 

that are believed to be good enough proxies for the salient traits of the 

modelled system. For instance the weight of an organism and its evolution 

over time may be the goal and also may be modelled without including any 

explicit information on organism anatomy and behavior, let alone the single 

cells and sub-cellular items. 

Such models are defined by systems of differential equations, that is the 

rate of change, over time, of the system properties (state variables) is 

described instead of the properties themselves. The state of the system (the 
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values of its state variables) at a given time is the result of the rates of 

change of the state variables over time and of the initial and boundary 

conditions. This kind of models do have indeed a very strong and general 

rationale, thermodynamics, and in fact similarly formulated compartmental 

models are widespread across different disciplines, from earth systems 

science to engineering, hence the label general systems theory. 

From such simple principles, much interestingly, substantial complexity 

and order can emerge; compartmental models, based on mass and energy 

balance, can effectively mimic seemingly purposeful phenomena by relying 

just on passive control mechanisms; possible examples are the harmonious 

growth of different body parts or the balance of biodiversity components 

that is observed in natural ecosystems. Also the same system may exhibit 

widely different responses (periodic oscillations, chaotic oscillations, 

stability) just by varying some external conditions.  

Because of these aspects, and also because complex emerging behaviors are 

often unexpected, i.e. they may be difficult to foresee before they are 

simulated, the quote the whole is more than the sum of its parts (originally 

from Aristotle) rose as some kind of motto for general systems theory. The 

whole is in fact very often some complex, non-linear, function of its parts. 

 

Modelling red coral (Corallium rubrum) growth in 

response to temperature and nutrition. 

In chapter 2 a bioenergetic growth model especially developed for the 

Mediterranean coral Corallium rubrum, (Red coral, Fig. 4) is presented.  

Until recently studies about coral ecology and physiology have mostly 

neglected the energetic aspect or kept it to minimal complexity (Dubinsky 

& Jokiel 1994; Anthony et al. 2002). It is however important to understand 

how corals allocate energy to the components of their biological machinery 

as the partitioning of a limited resource implies constraints for the organism 

and can result in evolutionary trade-offs between organism goals (e.g. 

growth, survival, reproduction). Living beings devise optimal strategies for 

energy allocation through evolution, though such strategies are 

environment-dependent and may become maladaptive as external 

conditions are altered by, e.g. climate change. 
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Modelling coral growth though presents a number of issues to overcome; 

those arise from the incomplete understanding of coral physiology and 

ecology and from the fact that corals are substantially different from the 

species for which growth models have been traditionally developed (e.g. 

fish): they are sessile, colonial, a large part of their weight is in calcified 

skeleton and sometimes they host photosynthetic symbionts. 

According to Krogh's principle, due to the substantial number of existing 

species, for such a large number of problems there will be some animal of 
choice, or a few such animals, on which it can be most conveniently studied. 

Red coral is in fact an excellent case study for disentangling so many 

aspects of coral ecology and physiology (not symbioses though); because of 

its relatively small size whole colonies can be sampled, measured and 

incubated making it possible to acquire fundamental information on 

organism functioning that are difficult to obtain for, say, large reef building 

species; for instance size at age data sets that are necessary to infer the 

characteristics of colony development are available (Santangelo et al. 2007; 

Priori et al. 2013); It is possible to measure whole colony vital rates 

(respiration, food intake, reproductive output, calcification...), thus 

avoiding the artifacts that may arise from data obtained from fragments. 

Not lastly, Red coral is an highly valued species (it is used for jewelry), so 

that red coral research is more likely to get founded than for other, perhaps 

more ecologically important, species from the same habitats, and this 

reflects into the amount of available information. 

In this model several concepts introduced in the previous chapter are 

developed: Modular architecture is treated by coupling a single polyp 

growth module with a module for the population dynamics of the polyps 

within the colony. A resource acquisition module is developed (see also 

chapter 1), based on solid theoretical reasoning, in which the competition 

for food among the colony's polyps results in an inverse relation between 

food intake per polyp and polyps number (trophic shading). This module, 

together with polyps population dynamics, effectively sets a limit for colony 

size in a system that would otherwise grow indefinitely. This is an 

important result and an improvement over previous studies because trophic 

shading and size limits arise not because they were assumed a priori in the 

model formulation, but rather as a consequence of coral development mode. 
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Fig. 4 Small red coral colony. 

One other major focus of the model are the energetic aspects of skeleton 

formation. Red coral skeleton is composed of Mg-rich calcite and organic 

matter, the two fractions are incorporated in the skeleton at asynchronous 

rates during the yearly cycle, generating growth bandings similar to the 

ones found in trees. Calcareous parts formation process has been 

traditionally neglected in bioenergetic models, even in those for species that 

secrete a substantial amount of it (e.g. bivalves). Though calcifying 

organisms often exhibits dynamics, such as the asynchronous growth of soft 

tissue and calcified structures, that are indicative of a dedicated metabolic 

pathway. Until recently, and much surprisingly, no study addressed this 

issue. This model builds on a recently developed theory of energy allocation 

to calcareous parts (Kooijman 2009; Pecquerie et al. 2012). The results are 

promising as observed patterns are faithfully reproduced and they may help 

setting an unexplored path for future research in the nowadays hot topic of 

biocalcification. 
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Biologically mediated and abiotic mechanisms for light 

enhanced calcification (LEC) and the cost of carbonates 

deposition in corals. 

The model developed in chapter 3 represents a close look into the 

physiological mechanisms that control calcification in zooxanthellate corals. 

Symbiotic corals are known to increase calcification rates under the light. 

This phenomenon, called light-enhanced calcification (LEC), is believed to 

be mediated by photosynthetic activity (Gattuso et al. 1999). This 

phenomenon is highly debated with hypotheses coarsely divided between 

abiotic and biologically mediated mechanisms. At the same time evidence is 

building up that calcification in corals relies on active ion transport to 

deliver the skeleton building blocks into the calcifying medium, hence it is a 

costly activity. Corals, trough their metabolism, allocate some part of the 

energy budget they obtain from food and photosynthesis to calcification 

(Dubinsky & Jokiel 1994), and convert it to calcium carbonate.  

Besides Light, temperature and water chemistry (ocean acidification) are 

also known to affect calcification rates. 

To understand how much of the variability in calcification that is observed 

under different external conditions is due to biologically mediated and 

abiotic mechanisms, it is necessary to understand how the calcification 

machinery works. 

The description of the processes and compartments that come into play 

during coral calcification (McConnaughey & Whelan 1997; Allemand et al. 

2011; Fig 5), together with the recent discovery that corals exert control 

over calcifying medium chemical properties (Al-Horani et al. 2003; Venn et 

al. 2011) opened the doors to a deeper understanding of physiological and 

environmental control of the process of calcification in corals. 

Seawater is separated from the calcification site by at least a couple of 

layers of bodily tissues: the coelenteron and the calicoblastic epitelium 

(Tambutté et al. 1996). Carbon dioxide, carbonate ions and calcium ions 

move across these layers both trough passive and active mechanisms. 

Active mechanism are responsible for transporting chemical species against 

concentration gradients and they do this at the expenses of a metabolic 

energy investment.  



18 
 

The processes of transport and reaction of chemical species, from seawater 

up to the incorporation into the skeleton are amenable to be simulated with 

box models not dissimilar from those presented in chapters 1 and 2. Such 

models though have a different approach than the holistic one found in 

bioenergetic modelling, their philosophy being instead reductionist: they 

look into the fine scale details of the biological machinery, like anatomical 

organization, CO2 permeation of cell layers and trans membrane transport 

proteins; Clearly, resolving such fine scale details requires a substantial 

amount of data. 

 

Fig. 5 Four hypothesized schematizations of the calcification machinery from Allemand 

et al. 2011. a) ions provided by passive transport pathway only, b) Passive seawater 

diffusion and active protons removal. c) Active ions transport only d) ions provided by 

both active and passive pathways. 

Hohn & Merico (2012; 2015) compared different conceptual models of coral 

calcification to determine which one produced the better agreement with 

experimental observations. The authors found the model that performed 

better was the one that incorporated all three of the proposed metabolic 

pathways (active transport, paracellular diffusion, transcellular diffusion) 

involved in calcification.  
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(Nakamura et al. 2013) used a similar model to test the plausibility of the 

oxygen hypothesis (Allemand et al. 2011) for light enhanced calcification 

(LEC), concluding that Oxygen-boosted respiration may be responsible for 

the increase in calcification during daytime. 

In chapter 3 we developed a calcification model, based on generally 

accepted schematizations of the physiology of calcification and of coral-

zooxanthellae symbiosis, and test it on a dataset for the Mediterranean 

coral Cladocora caespitosa (Rodolfo-metalpa et al. 2010, Fig 6). This model 

is used to test how much of the simulated variability in calcification rates 

under different conditions is due to biologically mediated or abiotic 

mechanisms. We tested the effects of metabolic rates (gross photosynthesis, 

respiration), temperature and seawater chemistry (DIC, TA) and concluded 

that the largest part of the observed effects are due to biologically mediated 

mechanisms, in particular with the energy supply to the active transport 

pathway. Abiotic effects are also present but are about one order of 

magnitude lower than the biologically mediated ones. 

  

Fig. 6 Cladocora caespitosa colony. 

Metabolic activities, and calcification is no exception to that, are indeed 

energy demanding, because building and maintaining the components of a 

living being involves chemical transformations that would not happen 

spontaneously under common environmental conditions. Living organisms 

must allocate the limited amount of resources they are able to fetch among 
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different activities, each one of which serves different purposes and 

contributes differently to organism fitness. This is believed to result in 

trade-offs among different activities that are resolved, trough evolutionary 

mechanisms, with optimal allocation strategies. Such strategies though are 

environment-dependent and may become maladaptive as external 

conditions change. 

 

Increasing frequency of heat waves will cause the 

extinction of red coral shallow banks 

The contribution in chapter 4 is motivated by recent mortality outbreaks in 

Mediterranean hard substrate communities (including coralligenous) that 

affected several species of invertebrates and occurred jointly with summery 

heat waves (Garrabou et al. 2009. Fig. 7). Not unlike tropical corals during 

harmful bleaching events, also Mediterranean species prove to have little 

tolerance to thermal extremes, although no bleaching is involved; in fact 

several taxa were affected, including asymbiotic corals and non corals. The 

asymbiotic gorgonian Corallium rubrum, red coral, which is also a major 

case study in this thesis (see also chapters 1 and 2), was among the most 

affected species. Various hypotheses have been formulated about the causes 

of the mortalities, these include a mismatch between energy supply and 

demand due to high temperatures (increased metabolic rates) and low food 

(typical of Mediterranean climatology in late summer) and harmful 

pathogens outbreak. Though, instead of addressing the mechanisms leading 

to mortality, the contribution in chapter 4 attempts to answer a perhaps 

more sensible question: are the conditions that determined the outbreaks 

likely to appear more frequently in the future, and what are the expected 

consequences for red coral populations in the Mediterranean. 

Temperature exposure thresholds  were determined for red coral by 

Torrents et al. (2008) with laboratory incubations and quantified as 

number of consecutive days at a given temperature that are necessary for 

lethal or sub-lethal (partial mortality of the colony) effects to appear. This 

valuable information was combined with the results of a state of the art 

simulation of Mediterranean thermal regimes under current and future 

conditions (Oddo et al. 2009). For any point in the Mediterranean 

mortality risk criteria were considered met if exposure thresholds were 

exceeded at least once in each reference period (present and future). 
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Fig. 7 Effects of the 2003 mass mortality event on coralligenous species. (a) Paramuricea 

clavata colonies with almost completely denuded axis. (b) Eunicella cavolinii showing 

signs of partial mortality. (c) Red coral colony with signs of partial mortality. (d) The 

sponge Petrosia ficiformis with signs of partial mortality (white area). (e) Spongia 

officinalis with signs of partial mortality. (f) Cladocora caespitosa, detail of polyps 

suffering tissue necrosis. image from Garrabou et al. 2009. 

According to the simulation results, heat waves frequency and intensity will 

substantially rise through all of Mediterranean shallow waters in the near 

future and conditions similar or worse to those that triggered the observed 

mortalities may become commonplace threatening the existence of red coral 

shallow banks. The results also allow to infer future risk not just for red 

coral but also for many other sessile species both from coralligenous 

habitats and not. In fact, as several species were affected by mortality 

under the same conditions, it's easy to conclude they will exhibit similar 

thermotolerance thresholds. 
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The rationale behind this method is indeed very simple and the amount of 

assumptions minimal. This work stands as an example of data-driven model 

of empirical, rather than statistical, nature, with minimal data 

requirements and yet great predictive power as it is deeply rooted in 

observation. Also the presented risk assessment methodology is easily 

portable to different case studies as the only requirements are temperature 

forecasts, that are generally available from model simulations, and 

thermotolerance thresholds that can be assessed in the lab or even deduced 

from real life mortality events. 

 

Calcareous Bio-Concretions in the Northern Adriatic 

Sea: Habitat Types, Environmental Factors that 

Influence Habitat Distributions, and Predictive 

Modelling 

The last work presented is about Northern Adriatic Trezze and the 

relationships between biological communities spatial distribution and 

environmental parameters. In the economy of this thesis it serves as a case 

study for statistical data-driven modelling, both because different 

techniques were employed and integrated, and to exemplify the insight into 

spatial ecology that such methods provide. 

The Trezze are rocky outcrops that are found on the otherwise invariantly 

sandy/muddy bottom of the Northern Adriatic. The geological origin of 

such peculiar features is traced to methane seepage, cementation and 

lithification processes (Gordini et al. 2004). The ecological importance of 

these outcrops is paramount as they represent almost the only hard 

substrates in the western part of Northern Adriatic. Some of them host rich 

communities of sessile invertebrates and coralline algae that are akin to 

coralligenous communities (Casellato & Stefanon 2008, Fig 8), and serve as 

nursery grounds for various species of fish and invertebrates. The Trezze 

are also little studied biocenoses and only recently their ecological 

importance has been recognized. To date there is no complete mapping of 

the outcrops and only some them were sampled. Substantial variability in 

communities composition is known to exist but was never sorted out and 

links to environmental variability remain putative.  
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Fig. 8 detail of Nordalti, one calcareous outcrop from the Northern Adriatic. 

These issues were addressed by matching biological data (species 

abundance on 33 outcrops) with oceanographic physical and chemical data 

in three hierarchical layers of analysis: Habitats classification, identification 

of environmental variables influence on habitats and predictive habitats 

distribution modelling. 

Habitat classification is performed by means of clustering analysis (fuzzy k-

means method), a class of statistical methods capable of grouping the items 

in a dataset based on their similarity. This method identifies an optimal 

number of clusters among which the items in a dataset (species distribution 

on each outcrop) can be grouped and assigns to each data point a 

membership grade value for each cluster. The final classification provides 

important insight into the typologies of Mediterranean hard substrate 

habitats and their succession: Three classes of biocenoses are identified, 

ranging from the less valuable turf algae dominated outcrops, to filter 
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feeders (mainly sponges), to calcareous algae dominated outcrops that are 

closely related to coralligenous but lack upright gorgonians (a fourth stage 

of fully developed coralligenous that is not present in the sampled area).  

Secondly the question of how the environment contributes to shape the 

spatial distribution of habitats is addressed. To do this the clusters 

membership grades were confronted with a spatial set of nine meaningful 

environmental variables by means of direct gradient analysis (redundancy 

analysis, RDA). Benthic habitats distribution clearly follows environmental 

gradients, this is utterly clear when looking at the depth zonation of 

biocenoses; it is however hard to tell which environmental factors 

contribute (temperature, nutrients, water movement...) as most of them 

tend to co-vary with depth. Here the factors that bear statistically 

significant relations with biocenoses distribution are identified with an 

objective procedure, this allows to formulate ecological hypotheses and can 

serve for predictive purposes.  

In fact in the third layer of analysis, clusters membership grades were 

predicted for a large area in the Northern Adriatic where no biological 

sampling is available, based on environmental variables and regression 

coefficients obtained from the RDA analysis. As the knowledge of the 

distribution of outcrops is to date only partial, such predictive model could 

be useful for identifying sites that may host valuable communities for 

future sampling and marine protected areas spatial planning purposes. 
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1. Modelling coral growth 

 

One of the big challenges in the study of animal forests species is to provide 

reliable estimates of their ecological response under current and future 

anthropogenic pressures, such as climate change and the introduction of 

invasive species. 

Growth rate, form, and size are proxies to evaluate the species at the 

organism level, and as such, they provide metrics to assess species 

performance under different environmental conditions. However, in the case 

of corals, colony development can take decades, making most of the 

potential experimental approaches almost impossible to implement. At the 

same time routinely measured vital parameters such as growth rates are 

usually not constant over the entire lifespan, frequently changing with 

organism size and/or age. Consequently, the extrapolation of growth rates, 

experimentally obtained on colony fragments, to whole colonies, or even 

reefs must be carefully considered. 

Numerical simulation techniques provide diverse frameworks for addressing 

these issues. Application scales vary widely, ranging from small scale 

physiological processes (e.g. ion transport across tissues, see chapter 3) to 

whole ecosystem dynamics. The choice of the appropriate scale is a matter 

of the study aims and knowledge available for the targeted species. Even 

though, for conservation purposes, population and ecosystem approaches 

need to be considered, in some cases it is convenient to study simpler and 

smaller scale systems in order to understand their basic functioning and 

scale up to higher, more complex levels. Coral growth lends itself 

particularly well to this approach, as colonies, which are characterized by 

their modular architecture, are a good example of a whole organism that 

results from the iteration of a single, potentially autonomous and relatively 

invariant unit, the polyp. 

In this section we will outline the basics of some modelling applications 

that we believe are relevant for the studies dealing with coral growth, as 

well as present some examples of related literature and own contributions. 

Emphasis will be made on published studies that have already provided 

knowledge on growth processes, as well as, on existing gaps and promising 

research perspectives. 
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1.1 Organism and population growth models 

 

From a modelling perspective, a living organism (either a coral or another 

living being) can be considered an open system that maintains high levels 

of internal organization by a continuous flux of energy through its 

boundary. Classical growth models are the so called bioenergetic models 

whose history dates back to the first half of the XXth century (von 

Bertalanffy 1938, see Kooijman 2009 for an extensive treatise). Such class 

of models describes growth as the evolution of a quantity (usually energy, 

biomass, or mass of a specific compound) over time through the balance of 

input and output fluxes, through the system boundary and between 

compartments within the system. 

The simplest possible formulation (as a differential equation) of a 

bioenergetic growth model considers one single compartment for biomass 

(or energy), one input, and one output flux that depends on the system 

biomass/energy according to power laws (also termed allometric laws, see 

Glazier 2005 for a review): 

 

 
𝑑𝑌

𝑑𝑡
= 𝐼𝑁 − 𝑂𝑈𝑇 = 𝑎𝑌𝛼 − 𝑏𝑌𝛽  (1.1) 

 

Where Y is mass or energy, t is time, a and b are specific rates of Y flow 

(e.g. per unit mass or surface), and α, β are the allometric scaling 

coefficients (typically ≤ 1).  

Positive growth can continue only if the inputs exceed the outputs, 

therefore, if β > α, eventually a value of Y is reached at which the two 

terms on the right hand side are equal, stopping growth. This explains 

growth patterns observed in the majority of known species, including fast 

growth early in life and the existence of a maximal size (Fig. 1.1). 
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Fig. 1.1 a. Growth curve resulting from eq. 1.1, characterized by the existence of an 

asymptotic maximal size. b. IN and OUT fluxes from eq. 1.1 as a function of organism 

size with Y: organism size, a, b: constant coefficients. 

Bioenergetic models are particularly interesting because they are based on 

first principles (mass/energy conservation) and can be applied to any 

species (of course with species-specific formulations), offering a wide array 

of applications. Whilst the bioenergetic modelling framework has been 

successfully applied to a variety of species, both terrestrial and marine, 

colonial and modular architectures(as found in corals, sponges, and 

seaweeds) entail some issues that must be properly addressed. For instance, 

the values of allometric scaling coefficients (in eq. 1.1) that are typically 

observed in solitary organisms may not be valid for colonies (Sebens 1987), 

possibly resulting in indeterminate growth. 

When modelling the growth of a modular organism, it must be considered 

whether the colony will be described as a single organism or as a result of 

the co-existence of single modules. If a colony is described as a 

 ―population‖ of polyps, colony growth, measured as the increment of polyp 

number (N) over time, results from the two processes of (1) new polyps 

being originated by division ( ―births‖), and (if applicable) (2) polyps death. 

The population's birth and death rates are usually considered to be 

dependent on population size. As an example, the famous Verhulst equation 

describing self-limiting growth of a population can be written as: 
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𝑑𝑁

𝑑𝑡
= 𝐵𝑖𝑟𝑡𝑠 − 𝐷𝑒𝑎𝑡𝑠 = 𝑟𝑁 −

𝑟

𝐾
𝑁2 (1.2) 

 

Where r is the population’s specific growth rate, K is the environment's 

carrying capacity, and the term (r/K)N represents the specific mortality 

rate (assumed to depend linearly on population size N). Population 

dynamics may then be coupled with a single polyp growth model (of the 

kind described in eq. 1.1) by making population growth and mortality rates 

functions of polyp biomass. Polyps indeed seem to undergo fission only if 

some threshold size is attained (Sebens 1980; Kooijman 2009), and they will 

arguably die if their biomass falls below a minimal value. The available 

information on these matters is however surprisingly scarce. 

 

1.2 Growth indeterminacy, trophic shading 

 and bioenergetic implications of shape 

 

One of the properties generally attributed to modular organisms is growth 

indeterminacy. For example, colonies may escape the constraints that limit 

maximal size of the single module if colony resource acquisition were to 

scale linearly with the number of modules (Sebens 1980; 1987). At present, 

it is unclear whether modular architecture ensures growth indeterminacy; in 

fact alternative theories have been proposed. It may seem trivial to infer if 

an organism does or does not display a maximal attainable size (size being 

defined as metabolically active biomass); though in corals the parameter 

size is elusive compared to other individual animals whose total mass is 

mostly metabolically active (instead of mostly calcium carbonate) and that 

can be readily weighted or their weight inferred from parameters like length 

or height (e.g. fish). Whereas coenosarc weight would qualify as an 

informative measure of metabolically active biomass, the skeleton, that is 

metabolically inactive, is more often measured. Also, as corals do not have 

defined body plans, parameters such as length, height or diameter, are 

usually scarcely informative for corals.  
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Models offer a valid alternative to test existing hypotheses. Kim & Lasker 

(1998) investigated the potential limits of modular growth with a 

bioenergetic model where colony resource acquisition does not scale linearly 

with the number of modules. The cornerstone of their reasoning was that 

polyps in a coral colony compete for resource acquisition, therefore, as the 

number of modules increase, the availability of food per module decreases. 

This process is known as trophic shading (analogous to self-shading in 

trees), and the authors demonstrated that it may effectively limit the 

maximal size of a colony that would otherwise exhibit indeterminate 

growth. 

A simple process-based model of resource acquisition incorporating the 

phenomenon of trophic shading can be constructed as follows. Let us 

consider a colony surrounded by a conveniently chosen control volume, V, 

of water that is considered, for the sake of simplicity, well mixed. Polyp 

specific consumption rate (assumed to be a non-photosynthesizing 

organism) is assumed to have a Michaelis-Menten type of dependence on 

food concentration, F, in the control volume. This kind of functional 

response is generally considered realistic, and in fact, is extensively found in 

literature, however different kinds of relations (e.g. linear, Holling type III) 

do not change the results substantially. 

Assuming that colony resource acquisition, A, scales linearly with colony 

surface, S, then it can be written as: 

 

 𝐴 = 𝑎𝑚𝑎𝑥

𝐹

𝑘𝐹 + 𝐹
𝑆 (1.3) 

 

Where amax is the maximum resource acquisition rate per unit of surface 

and kF is the semi-saturation constant. If Q is the water flow through the 

control volume and Fb the bulk food concentration, then the variation of 

the mass of food, M, in the control volume over time is: 

 

 
𝑑𝑀

𝑑𝑡
= 𝑄𝐹𝑏 − 𝑄𝐹 − 𝑎𝑚𝑎𝑥

𝐹

𝑘𝐹 + 𝐹
𝑆 (1.4) 
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Assuming stationary conditions (the right side of the equation equals zero) 

and solving for F, gives a second order polynomial in F: 

 

 𝐹2 + 𝐹  𝑘𝐹 − 𝐹𝑏 +
𝑎𝑚𝑎𝑥 𝑆

𝑄
 − 𝑘𝐹𝐹𝑏 = 0 (1.5) 

 

This admits just one positive solution dependent on the values of S and Q. 

This formalization is rather general and can be used to study the variation 

of F, (hence of resource acquisition), with colony size once the relationship 

between flow and colony surface is established. It is possible to further 

specify the value of Q if we let the control volume V be cubic so that the 

area of a side is AS= V2/3, and let the flow be oriented normally to two 

faces so that, Q = v·AS = v·V2/3, where v is flow speed. 

We distinguish now two ideal cases, one in which the colony is spherical, 

the other in which it grows according to a space-filling pattern so that the 

surface area contained per unit of volume is constant at all sizes. The 

second case approximates branching and fractal geometries typical of many 

marine sessile species. In the spherical geometry case we have S = π·V2/3, 

whilst for space-filling growth the relation reads, S = k·V, with k constant. 

By substituting the relations for S and Q in eq. 1.5 we obtain, 

 

 𝐹2 + 𝐹 ∙  𝑘𝐹 − 𝐹𝑏 +
𝑎𝑚𝑎𝑥 ∙ 𝜋

𝑣
 − 𝑘𝐹 ∙ 𝐹𝑏 = 0 (1.6) 

and, 

 𝐹2 + 𝐹 ∙  𝑘𝐹 − 𝐹𝑏 +
𝑎𝑚𝑎𝑥 ∙ 𝑘 ∙ 𝑉

1
3 

𝑣
 − 𝑘𝐹 ∙ 𝐹𝑏 = 0 (1.7) 

 

for spherical and space-filling geometries, respectively. It is readily noted 

that the value of F for the spherical case is constant and independent on 

colony size, whilst in the space-filling case, the result is related to the size 
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of the control volume, therefore, the size of the colony is to the power of 

1/3. By plotting the solutions of eq. 1.6 and 1.7 with respect to a measure 

of colony size (Fig. 1.2), it is evident that space-filling growth specific 

resource acquisition diminishes with colony size, whilst this doesn't happen 

in the spherical case. 

 

Fig. 1.2 Model of the specific resource acquisition rate (per unit surface area) according 

to the size of the control volume for space-filling (a) and spherical (b) colony shape. 

The presented model uses a number of simplifications, above all the 

assumption of a well mixed volume of water around the coral and ideal 

geometries. Nonetheless, the results indicate that the process of trophic 

shading is mediated by the geometry of resource acquisition. This has 

consequences also for the size of the polyps: in branching forms the polyps 

will be less and less fed as the colony grows bigger, as a consequence they 

will lose weight, resulting in an inverse relationship between colony size and 

polyp size (Kim and Lasker 1998, see also chapter 2). On the other hand 

massive forms, for which food availability doesn't depend on colony size, 

would be characterized by polyps of relatively invariant size; massive forms 

would also generally feature larger polyps than branching forms. 

Furthermore, if we accept that polyps division rate is mediated by polyp 

size (i.e. only large enough polyps can undergo fission, Sebens 1980), polyps 

in branching forms will eventually get too thin to undergo fission and 

colony growth will stop, i.e. trophic shading may effectively limit polyps 

number, hence maximal colony size. Spherical forms on the other hand 

would be characterized by indeterminate growth (see later in this chapter 

for a case study application). These conclusions are derived for idealized 
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geometries, however, it is reasonable to predict that actual growth forms 

will fall somewhere between the two extremes. 

 

1.3 Growth of calcified structures and skeletal 

 rings formation 

 

In classical bioenergetic models, the distinction between living biomass and 

skeleton is usually neglected, however, this is an important issue to deal 

with when attempting to describe the growth of organisms that are in high 

proportion calcium carbonate. A general quantitative theory linking 

biogenic carbonates formation to organism metabolism is currently lacking 

(Allemand et al. 2011). In particular, it is unclear which part of coral 

energy budgets are devoted to skeleton formation (but see Anthony et al. 

2002), how much CaCO3 is yielded per amount of energy invested (Palmer 

1992; Anthony et al. 2002), and how those quantities are affected by the 

external environment and organism status. 

Some calcification models exploit the rather well known inorganic chemistry 

of carbonates and calcium carbonates in seawater. Hohn & Merico (2012; 

2015) developed a model of single coral polyp calcification based on the 

trans-calcification concept that describes the path of the chemical species 

relevant for inorganic CaCO3 deposition from seawater to the calcification 

site. Nakamura et al. (2013) further expanded this model by incorporating 

a link between active ion transport and the rate of zooxanthellae 

photosynthesis. The aim of these models is to provide a mechanistic 

understanding of the physiological scale processes that are involved in the 

deposition of the skeleton. Colony growth is not resolved, however, a 

general framework is developed that could be fruitfully scaled up to 

describe whole organism accretion. Anthony et al. (2002) dealt with the 

comparative analysis of energy allocation to tissue and skeletal growth in 

corals by using a bioenergetic growth model based on colony/branch 

geometry (branching or hemispherical). Results were consistent with the 

observed weak correlation between calcified and organic tissue growth 

across environmental conditions, suggesting that tissue properties (e.g. 

biomass, energetic content), rather than skeletal growth, are a better proxy 

for health or stress in corals. Furthermore, the authors found the existence 
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of threshold dimensions (quantified as the radius of the colony/branch) 

below which energy investment is tissue dominated and above which most 

of the organism’s budget is devoted to the skeleton. Since these threshold 

radii are small (on the order of centimeters), the authors conclude that the 

energy investment of most branching corals is tissue dominated, whilst 

massive forms are skeleton dominated for most of their life history. 

Skeleton deposition and accretion ring patterns can be linked to organism 

metabolism and environmental conditions (modeled in a bioenergetic 

framework) as demonstrated in Fablet et al. 2011 and Pecquerie et al. 2012 

for fish otoliths. The authors recognized that carbonates deposition is 

decoupled from living tissue growth as the two processes originate from 

separate metabolic pathways; also, two distinct pathways are identified 

accounting for the organic and inorganic fractions of the skeleton. As such 

pathways are differently affected by the organism’s status and external 

variables (temperature, food, etc.), the ratio between CaCO3 and organic 

matter flow follows a seasonal cycle. Such studies demonstrate how it is 

possible to infer one of the three variables: ring appearance, thermal 

history, and feeding history, if two of them are known. 

 

Fig. 1.3 a. Model of the time dynamics of skeleton chemical composition expressed as 

mass of organic matter over total skeleton mass; b. Same data as in panel a, but with a 

different graphic representation that makes seasonal accretion bands apparent; color bar 

values are organic matter mass over total skeletal mass as in a. 
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This kind of reasoning is not species specific and can be applied to corals as 

well. In the next chapter it is presented a model for the Mediterranean 

octocoral Corallium rubrum where the growth of the organic component is 

an energetic cost linked to food assimilation, and influenced by seasonality 

in food availability and temperature, whereas the growth of the inorganic 

component, is an energetic cost which does not depend directly on food 

(rather depending on past feeding history), but does vary with temperature, 

although with a different kinetic. The differences between organic and 

inorganic component dynamics give rise to accretion rings (Fig. 1.3) whose 

aspect and timing matches already published observations. For example 

Marschal et al. 2004 showed that yearly patterns observed for C. rubrum 

consists of thin rings rich in organic matter, which alternate with thick 

rings with low organic matter (OM) content. The thickness of rings is 

related to high or low inorganic matter deposition. Thick rings are laid 

down during summer when temperatures are relatively high and food levels 

are low, whilst thin rings are deposited in winter when temperatures are 

low and food availability is high. 

 

1.4 An application of a growth model to the 

 case study of Corallium rubrum 

 

Possible applications for some of the concepts described above, are featured 

in a recently developed model for Corallium rubrum (see chapter 2) and are 

reported here. The model consists of two coupled modules: one accounting 

for single polyp growth dynamics, including both soft tissue and calcified 

structures, and the other for population dynamics of polyps within the 

colony, considering the polyps as individuals and the colony as a 

population. Trophic shading is implemented as described above for the 

space-filling case, as C. rubrum is characterized by a branching 

morphology. Polyp division rate is assumed to depend on polyp biomass 

according to a sigmoid function, no mortality term was considered because 

there is no conclusive evidence for polyps dying before the colony for this 

species (but see Vielzeuf et al. 2008). Skeletal growth is described above in 

the accretion ring formation section. The model uses monthly total organic 

carbon (TOC) concentrations from the NW Mediterranean (Rossi & Gili 
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2005) and uses it as a proxy for food concentration. In order to fit the 

model, colony weight, polyp number and age were considered (Santangelo 

et al. 2003; Priori et al. 2013). As no clear correlation has been found 

between polyp number and age, nor between colony weight and age, we 

tested the model’s performance against both weight and polyp number at 

the same time. This resulted in a 3D space (weight, polyp number, and 

age) in which, instead of a growth curve, we have a growth surface 

representing all possible combinations of weight, polyp number, and age. 

Growth surface is generated in the model by multiple growth trajectories 

obtained by varying the sole water flow speed parameter in the trophic 

shading module. This choice is intended to mimic the high variability in 

local hydrodynamic conditions that colonies experience and that are 

dictated by small scale patch morphology and water flow. 

In Fig. 1.4, some results of the model are displayed. Model results show 

good adherence with the experimental sets from Santangelo et al. (2003) 

and Priori et al. (2013). The trophic shading module has the effect of 

limiting maximal polyp number (Fig. 1.4a) and total polyp mass (Fig. 

1.4d), effectively resulting in determinate growth of soft tissue and polyps 

population. These effects arise because polyp size diminishes with polyp 

number (Fig. 1.4c). CaCO3 mass (Fig. 1.4b) on the other hand shows 

unlimited growth due to the absence of maintenance costs for the skeleton. 
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Fig. 1.4 a. Model of the polyp number over time under different flow rates and 

experimental data points; b. Total colony mass under different flow rates and 

experimental data points, c., d. Single polyp mass (ash free dry weight) and total polyp 

mass (ash free dry weight) over time at a single flow regime. In plots a, b, solid lines are 

simulated growth trajectories under different flow regimes, filled dots in all plots are 

data included in Priori et al. (2013), empty dots are results included in Santangelo et al. 

(2003). 
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1.5 Morphogenesis models 

 

The modelling applications that have been mentioned so far describe 

growth as a zero-dimensional process (i.e. spatial dimensions are only 

implicitly considered or not at all). Whereas, coral polyps are relatively 

similar among different species (at least from a body plan perspective), and 

coral growth forms (branching, encrusting, massive...) are widely different 

among species and even within the same species. 

Morphological plasticity is interpreted as an adaptation of sessile growth 

that allows an organism to exploit, at best, the micro environment of the 

patch where it once settled, and from where it is very unlikely to ever move 

(Bradshaw 1965). Although some part of morphological variability is 

arguably mediated by genetics, a considerable part of it is believed to be 

determined by environmental conditions.  

As mentioned before, at small scales trophic and, in photosynthesizing 

species, light shading affect each module differently. Exposed modules, such 

as those in apical branches, have more scope for growth and reproduction 

than sheltered ones. This in turn determines differential growth rates for 

different portions of the colony and, ultimately, growth form (Kaandorp 

1999). 

Based on these premises, tridimensional coral morphogenesis models were 

developed by Kaandorp and co-workers (see Kaandorp 1999; 2013 for an 

introduction). Such models work by coupling polyp-oriented models of coral 

growth with hydrodynamic simulations. Colony growth forms are not 

known a priori nor defined by the user, but rather emerge from the 

interplay between flow regime and processes of resource acquisition and 

shading among modules. Simulations show that under high flow conditions, 

the diffusive boundary layer around the coral surface is thin with short 

residence times; hence the variability in food particles concentration is 

relatively small among different portions of the colony. This determines 

similar growth potential for all polyps that in turn results in massive 

growth forms. On the other hand, branching forms, which are characterized 

by high surface to volume ratio and a thick boundary layer, arise in low 

flow conditions with high diffusive boundary layer residence times. These 

effects increase the variability of resource allocation for different portions of 
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the colony, producing unequal growth and the emergence of branching 

patterns. It is important to note that these results are strictly valid only 

within the same species (same vital parameters) and with all environmental 

conditions (different from flow speed) being equal; the terms 'branching' 

and 'massive' are thus to be interpreted relative to the range of growth 

forms in a species. 

The growth forms that can be obtained by these means bear striking 

similarity with their real life counterparts. Moreover the models are 

developed with a remarkably low number of species-specific parameters 

and, due to the ubiquity of the processes involved, can be applied to a wide 

variety of species including sponges and seaweeds. 
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2. Modelling red coral (Corallium rubrum) 

growth in response to temperature and 

nutrition. 

 

Abstract 

Corals are marine modular organisms and are important from both 

ecological and economical points of view. Here we developed and applied a 

numerical model for describing the growth of Red Coral (Corallium 
rubrum), This species is a stony octocoral endemic of the Mediterranean 

Sea, where it has been exploited for jewelry for centuries. Red coral does 

not host photosynthetic symbiotic organisms, and therefore is not subject 

to bleaching. Nevertheless, red coral growth and survival do depend on sea 

water temperature, as well as on trophic conditions and other physico-

chemical parameters. The model follows a bioenergetic approach to 

describes the growth of a colony (polyps number, polyps and gametes 

biomass, skeletal CaCO3 and skeletal organic matter) as a function of food 

availability and seawater temperature. The model is calibrated vs available 

experimental observations. Model results highlight that red coral suitability 

decreases for increasing temperature, larger colonies are more sensitive to 

high temperature and actual limits of corals ecological niche also depend on 

food availability as influenced by seston concentration in water, 

hydrodynamic condition and coral morphology. Bioenergetic considerations 

also support the conclusion that, tough modular, red coral exhibits 

constrained growth because of the competition for available food among the 

colony's polyps. The model can be used also to map red coral suitability 

along the Mediterranean Sea, so highlighting vulnerability hot spots. 
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2.1 Introduction 

 

Corals are charismatic marine organisms and are important from both 

economic and ecological perspectives. They are composed of a number of 

small polyps attached to a calcium carbonate skeleton (in hard corals); the 

skeletons often present complex morphologies and serve as a refuge for a 

number of other species; this enhances marine biodiversity and contributes 

to shape marine environments which are beautiful and very attractive to 

divers. Also the skeleton of some species is harvested to produce jewels.  

The octocoral Corallium rubrum, or red coral, is a stony gorgonian coral 

endemic of the Mediterranean. Is commonly found on hard substrates, on 

steep walls and overhangs, below 20 m deep and up to >100 m and it 

probably is the most charismatic among Mediterreann corals, which are key 

components of hard substrate benthic ecosystems of prime ecological 

importance, such as the coralligenous reefs (Ballesteros, 2006). Red coral is 

a slow growth, long lived species (Bramanti et al., 2005); it doesn't host 

photosynthetic symbiotic organisms and therefore is not subject to 

bleaching (heat-triggered expulsion of symbionts, often with lethal 

consequences), however, its growth and survival do depend on seawater 

temperature (Torrents et al., 2008), as well as on trophic conditions and 

other physico-chemical parameters. In fact, colonies acquire the energy they 

need to live by filtering particulate matter in the water though the polyps. 

Furthermore, both filtering activity and respiration depend on temperature 

(Previati et al., 2010). Red coral has been exploited by the jewelry industry 

since ancient times for its glossy red skeleton and is currently considered 

over-harvested (Santangelo & Abbiati 2001; Tsounis et al. 2010; 2013).  

Besides fishing, shallow red coral populations have been subject in recent 

years (1999, 2003, Garrabou et al. 2001; Garrabou et al. 2009; Bramanti et 

al. 2005) to mass mortalities that occurred jointly with positive summer 

temperature anomalies. A cause and effect relationship is advocated in 

which mortalities are triggered by a combination of increased metabolic 

demands, due to high temperature, and summery food shortage (Rossi et 

al., 2006; Rossi & Tsounis, 2007; Coma et al., 2009), this condition may 

also have been exacerbated by pathogens outbreaks (Martin et al., 2002). 

In fact Red coral is believed to be subject to seasonal feeding constraints, 

with the winter/spring period being more favorable than summer/autumn 
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period (Rossi & Tsounis, 2007). This might be related to the seasonal 

change in Mediterranean waters (Cebrian et al., 1996), which is 

characterized by the development of oligotrophic waters above the 

thermocline during summer, whilst in winter the water column is mixed 

and nutrients are abundant. Anyway, being strictly heterotrophic, red coral 

growth must be dependent on water trophic conditions. As other calcifying 

organisms, Red coral is also sensitive to acidification which impairs skeleton 

deposition (Bramanti et al., 2013; Cerrano et al., 2013). 

The interactions among different stressors, already  observed in other 

Mediterranean corals, is likely to be ecologically relevant for red coral also. 

Rodolfo-Metalpa et al. (2010) found that the seasonal change in 

temperature, over pCO2, was the predominant factor controlling physiology 

and growth of the scleractinian C. caespitosa; Coma et al. (2009) reported 

that high nutritional levels can delay the appearance of necrosis in the 

gorgonian P. clavata exposed to elevated temperatures. Yet the 

understanding of the cause and effect mechanisms that underlie coral 

response to the environment is still fragmentary (e.g. Jokiel 2011 and 

references therein). Pörtner (2008), in a paper about the physiological bases 

of marine organisms sensitivity to acidification and warming, points out 

that the development of a cause and effect understanding is required 

beyond empirical observations, for a more accurate projection of ecosystem 

effects and for quantitative scenarios. The same study highlights that 

marine calcifiers sensitivity to ocean hypercapnia is a matter of several 

physiological processes being concomitantly affected. We argue this is 

equally true for the full set of relevant environmental parameters. 

Here we develop and apply a mechanistic model for describing red coral 

colonies growth. The model describes the growth of the average coral polyp 

and colony accretion by polyps division and skeleton deposition, as a 

function of water temperature and food availability. The model is tested 

against available data and observed growth patterns and the calibrated 

model used to define fundamental properties of red coral potential niche, to 

quantify carbon fluxes, and it can be helpful in predicting productive and 

unproductive stocks. 

In fact the only other models addressing red coral (also the only models 

addressing a Mediterranean coral species) are the matrix population models 

developed in Santangelo et al. 2007 and 2012 and Bramanti et al. 2009, 

which explore red coral demography and mass mortalities impacts on 
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populations. These models, although informative, assume constant colony 

growth rates and make no attempts to quantify polyps and colonies growth 

as a function of environmental conditions. Also considering other corals 

species, the few existing models mainly focus on specific processes (and 

related scales), such as calcification or morphogenesis. For instance, Hohn 

& Merico (2012; 2015) and Nakamura et al. 2013 all developed models for 

calcification in symbiotic corals, which describe the path of carbonate 

compounds from the seawater to coral skeleton on time scales from seconds 

to hours. Anthony et al. (2002) used energetic reasoning to assess the 

differential allocation of energy to soft tissue and skeleton across coral 

growth forms. From a quite different perspective, Merks et al. (2003) and 

Chindapol et al. (2013) looked into the morphogenesis of stony corals as the 

result of the collective behavior of many coral polyps subject to different 

local hydrodynamic conditions but didn't consider the differentiation of 

metabolic activities apart from generic growth. Hoogenboom & Connolly 

(2009) used a process-based model to characterize the fundamental niche of 

reef corals in flow-light space and for different colony sizes but didn't 

consider several aspects of organism energetics. Finally rough habitat 

suitability models have been proposed based on empirical or semi-empirical 

reasoning (McCulloch et al., 2012; Guan et al., 2015). The first and only, as 

far as we know, attempt to model a whole colony considering organism 

energetics and food limitation was carried out by Kim & Lasker (1998) to 

explore factors (trophic shading) that may constrain growth in colonial 

organisms. 

From a modelling perspective, our approach relies on the coupling of a 

bioenergetic individual growth model, a type of model already successfully 

applied to a variety of organisms, including filter feeders, with a population 

dynamic model and a colony resource acquisition model that accounts for 

competition between polyps of the same colony.  A similar approach has 

already been applied for other benthic filter feeders (Solidoro et al. 2000; 

2003) to model animals response to different scenarios of environmental 

conditions.  

The final goal is to simulate changes in coral calcareous mass, biomass and 

polyps number over time under different environmental conditions and, by 

using growth as a proxy for organism well-being, to identify favorable and 

unfavorable settings. Moreover our model allows for the interpretation of 

growth patterns such as skeleton accretion rings formation and the 

properties of modular growth, in the light of organism energetics. 
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2.2 Materials and methods 

 

Red coral model 

The soft tissue of red coral body, which covers the axial skeleton, is 

composed of polyps, the fundamental modular units that filter, ingest and 

digest food particles, and of the mesoglea, an acellular collagen matrix. 

Polyps are  potentially autonomous units, but a network of gastrovascular 

channels runs through the mesoglea and along the skeleton distributing 

resources to the entire colony.  Calcareous spicules are also found within 

the mesoglea. Both skeleton and spicules are composed of Mg-rich calcite 

and organic matter (OM). The role of the organic part is unclear and 

various hypotheses have been formulated, ranging from calcification control 

to passive incorporation (Allemand et al., 2011). The axial skeleton cross 

section shows annual growth rings composed of thin dark bands, alternated 

by thick pale bands, corresponding to slow and fast growth respectively. 

According to Marschal et al., (2004) thin bands, that are richer in OM, are 

deposited during winter/spring, whilst thick bands are deposited during 

summer/autumn; i.e. it appears the most of the calcium carbonate is 

deposited during the period that is regarded as trophically unfavorable. 

The model is organized in two levels/scales (Fig. 1); one accounts for the 

growth of a single coral polyp, including organic tissues and skeletal 

growth, the other accounts for the population dynamics of polyps within a 

colony. Model currencies are energy (in kJ) for polyp growth dynamics, 

converted to mass when appropriate, and number of polyps (NP) for colony 

accretion. 

 

Individual polyp growth model 

The core structure of the polyp growth sub-model (Fig. 2.1) relies on the 

approach proposed by von Bertalanffy (1938) for describing the relation 

between growth and metabolism in a living organism. Accordingly, the 

energy gained by food intake  (Ein) is used to support metabolic costs (basal 

metabolism Rb and energetic costs related to skeletal deposition, Rs), and to 
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build coral polyp biomass (bP, comprising both polyp body and mesoglea) , 

gametes (bG) and skeletal organic matter (bOM). 

 

Fig. 2.1 Polyp growth sub-model scheme. Picture from the richly illustrated Histoire 

Naturel by Henri de Lacaze-Duthiers; graphic elaboration by Valentina Mosetti. 

The anabolic flux, i.e. energy inflow, is therefore defined as  

 

 𝐸𝑖𝑛 = 𝐶𝑚𝑎𝑥 ∙ 𝑓𝑐 𝐹 ∙ 𝑓𝑎𝑐𝑡  𝑇 ∙ 𝑏𝑃
𝑛  (2.1) 
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where Cmax is the maximum energy assimilation rate, n is an allometric 

parameter which accounts for the fact that energy inflow is proportional to 

polyps surface rather than weight, fact(T) describes the influence of 

temperature on polyps filtering activity, and fC(F) describe the influence of 

food concentration F in filtered water.  

As for metabolic processes, we defined as basal metabolism the ensemble of 

processes supporting vital functions in the corals, such as basal respiration. 

By definition this processes cannot be stopped and related energy 

investments cannot be diverted to support other functions. Following 

common modeling practice and current ecophyisology theory we assume 

that Rb is a function of living biomass bP, and  Temperature, T. It can be 

measured by oxygen consumption in  ―resting‖ conditions. We assume 

skeletal and gametes biomass (once built) do not have maintenance costs, 

and therefore do not contribute to Rb. 

 

 𝑅𝑏 = 𝑅𝑏 ,𝑚𝑎𝑥 ∙ 𝑓𝑟(𝑇) ∙ 𝑏𝑃
𝑚  (2.2) 

 

Where m = 1. A formal theory of energy allocation to skeleton versus tissue 

growth in calcifying organisms is currently lacking. However, Anthony et 

al. (2002) found that basal metabolic rates are the main descriptors of 

energy investment into skeleton in two species of reef corals. Furthermore, 

specific literature indicate that red coral skeleton is laid down continuously 

though all the coral lifespan (Santangelo et al. 2007, Pirori et al. 2013, 

Bramanti et al,  2013). Therefore we considered skeletal deposition to be a 

permanent cost, similarly to basal metabolism. However, since skeletal 

deposition might be considered proportional to the surface of a coral, rather 

than to its biomass, we assumed Es (the energy per polyp allocated to 

skeletogenesis) to be a function of T and bP to the power of n.  

 

 𝐸𝑠 = 𝐸𝑠,𝑚𝑎𝑥 ∙ 𝑓𝑟(𝑇) ∙ 𝑏𝑃
𝑛  (2.3) 
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Where Es,max is the maximal energy flux per unit surface area. This energy 

can then be converted in skeletal mass (scarb, calcite) by using the 

calcification cost, e, proposed in Anthony  et al (2002): 

 

 
𝑑𝑠𝑐𝑎𝑟𝑏
𝑑𝑡

= 𝑒 ∙ 𝐸𝑠 (2.4) 

 

Skeleton dissolution is not possible within the model as Es is always 

positive. 

As already remarked, the skeleton also includes an organic fraction, but 

skeletal organic fraction has to be formed with a different kinetic (with 

respect to the inorganic one) in order to generate the yearly accretion rings 

patterns seen in C. rubrum (Marschal et al. 2004, Priori et al. 2013). 

Marschal et al. (2004) found that OM rich bands develop during the cold 

season and with high food abundance (Rossi and Gili 2005). After such 

evidence we inferred that red coral relies on some compounds supplied by 

food in order to acquire the building blocks for new OM synthesis; EOM is 

then considered to be a feeding related cost: 

 

 𝐸𝑂𝑀 = 𝛼 ∙ 𝐸𝑖𝑛   and    
𝑑𝑠𝑂𝑀

𝑑𝑡
= 𝜀 · 𝛼 ∙ 𝐸𝑖𝑛  (2.5) 

 

where α is an energy partitioning coefficient (fraction of Ein allocated to OM 

formation) and ε the energy to mass conversion coefficient. 

Incidentally, it is possible to notice that our approach is not too different 

from the one proposed in a dynamic energy budget model (Fablet et al. 

2011, Pacuerie et al. 2012) for describing the energetic costs related to 

deposition of calcareous otoliths in fish, there defined as  a weighted sum of 

anabolic and catabolic fluxes. 
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The difference between energy intake, Ein, and the permanent energetic 

costs (Rb, Es, EOM) defines the energy surplus, sometime also called scope 

for growth, sfg, which is partitioned between energetic costs related to the 

synthesis of polyps and gametes, with a partitioning coefficient β. In 

particular we assume that energy is invested in reproduction only when a 

surplus is available (sfg⩾0); In this case EG=(1-β)sfg.  In fact Tsounis et al. 

(2006b) surveyed the yearly cycle of gametes development in red coral and 

found little development took place from approximately September to 

December, coinciding with the lowest seawater carbon concentrations 

(Rossi and Gili 2005).  

Conversely, if permanent catabolic costs exceed the anabolic ones and sfg is 

lesser than zero, then gametogenesis is stopped (EG=0) and permanent 

energetic costs are balanced by a reduction in polyp biomass. Accordingly, 

energy partitioning is described by, 

 

 𝑠𝑓𝑔 = 𝐸𝑖𝑛 − 𝑅𝑏 − 𝐸𝑠 − 𝐸𝑂𝑀 (2.6) 

   

 𝐸𝑃 = 𝑚𝑖𝑛 𝑠𝑓𝑔, 𝛽 · 𝑠𝑓𝑔  (2.7) 

   

 𝐸𝐺 = 𝑚𝑎𝑥 0,  1 − 𝛽  𝑠𝑓𝑔  (2.8) 

 

while the biomass counterpart reads,  

 

 
𝑑𝑏𝑃
𝑑𝑡

= 𝜀 · 𝑚𝑖𝑛 𝑠𝑓𝑔, 𝛽 · 𝑠𝑓𝑔  (2.9) 

   

 𝑑𝑏𝐺
𝑑𝑡

= 𝜀 · 𝑚𝑎𝑥 0,  1 − 𝛽 · 𝑠𝑓𝑔  
(2.10) 

 

Similarly gametes and organic matter cannot lose weight due to the absence 

of maintenance costs. However, once a year, in August, gametes are 

released and bG resets to bG=0 (Vighi 1972, Santangelo, 2003, Tsounis et al. 

2006b). 
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Influence of temperature 

Water temperature affects all biological processes. We modelled the 

influence of temperature on polyps filtering activity, fact(T), after 

experimental observations on polyps activity, measured as percentage of 

open polyps in a colony (the underlying hypothesis is that open polyps feed 

whilst closed ones do not). The curve parameters are derived by fitting 

data from Previati et al. (2007), which measured polyp activity rates in red 

corals over the range 14 - 25°C. The function is a sigmoid shaped function 

ranging from 0 to 1. for parameters description and values see table 2.1. 

 

 𝑓𝑎𝑐𝑡  𝑇 = 1 + 𝑒𝑥𝑝  
𝑇𝑎
𝑇𝑎

−
𝑇𝑎
𝑇
  (2.11) 

 

Respiration and metabolic costs depend upon T in agreement with an 

unimodal, asymmetric curve. Among possible choice we decided to use the 

formulation proposed in Heitzer et al. (1991). The function has been fitted 

against the data on O2 consumption rates measured for red coral over the 

range 14 - 25°C (Previati et al. 2007). O2 fluxes have been converted to 

energetic equivalents according to Gneiger (1983). for parameters 

description and values see table 2.1. 

 

 𝑓𝑟 𝑇 =

𝑇

𝑇1
∙ 𝑒𝑥𝑝  

𝑇𝑟

𝑇1
−

𝑇𝑟

𝑇
 

1 + 𝑒𝑥𝑝  
𝑇𝑟𝑙

𝑇𝑙
−

𝑇𝑟𝑙

𝑇
 + 𝑒𝑥𝑝  

𝑇𝑟

𝑇
−

𝑇𝑟

𝑇
 
 (2.12) 

 

Influence of trophic condition 

The actual energy intake can be reduced  also by a lack of particulate 

matter in the filtered water. Following a very common modelling practice, 

here we assume that actual energy inflow is the product of the maximum 

amount of energy a polyp can process, Cmax, and  a Monod-Michaelis-

Menten function on the food concentration, F, experienced by the polyps: 
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 𝑓𝑐 𝐹 =
𝐹

𝑘𝐹 + 𝐹
 (2.13) 

 

where kF is the semi-saturation constant. Please note that F might be 

different from bulk food concentration (see trophic shading paragraph 

below). 

 

Polyps population dynamics 

Polyps population dynamic, i.e. the evolution of polyps number, NP, over 

time, is modelled as: 

 

 
𝑑𝑁𝑃

𝑑𝑡
= 𝑟𝑚𝑎𝑥 ∙ 𝑓𝑔𝑒𝑚 (𝑏 𝑃) ∙ 𝑁𝑃

𝑥 (2.14) 

 

Where b̅P is the average polyp biomass (see below), rmax is the maximum 

net population growth rate and x is an empirical coefficient, both derived 

from fitting the data (polyps at age) in Santangelo et al. 2007. 

fgem [0:1] is a sigmoid shaped function of polyp mass, b̅P, that describes the 

dependency of polyp gemmation rate from polyp size (see table 2.1); the 

underlying assumption is that polyps can undergo asexual reproduction 

only when a minimal size is attained (Sebens 1980), it is defined as: 

 

 𝑓𝑔𝑒𝑚  𝑏 𝑃 =
1

1 + 𝑒𝑥𝑝  
𝑏𝑠𝑠

𝑏𝑎
−

𝑏 𝑃

𝑏𝑎
 
 (2.15) 
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No mortality term has been considered in the formulation of polyps 

population dynamics because although partial mortality events due to 

external causes (predation, disease, starvation, breaking) seem to be quite 

common among red coral (Garrabou and Harmelin 2002), there's no 

conclusive evidence for polyps dying of old age before the colony (but see. 

Vielzeuf et al. 2008). 

 
Control function Parameters Value Units Source 

Food assimilation kF 0.0184 μgC cm
-3 Estimated by the fitting procedure 

Activity rate 

Tah 92014 K Fitting from Previati et al. 2010 

Τa 
294.4 K Fitting from Previati et al. 2010 

Respiration rate 

Tr 3170 K Fitting from Previati et al. 2010 

T1 293.15 K Fitting from Previati et al. 2010 

Trl -57547 K Fitting from Previati et al. 2010 

Tl 287.55 K Fitting from Previati et al. 2010 

Trh 96549 K Fitting from Previati et al. 2010 

Th 296.75 K Fitting from Previati et al. 2010 

Gemmation rate 
bss 1.68e-4 kJ Estimated by the fitting procedure 

bah 1.07e-5 kJ Estimated by the fitting procedure 

Table 2.1 Control functions parameter values and sources 

 

Sub-models coupling 

The integration of the population dynamic model and the individual polyp 

model permits to upscale the red coral model from the individual to the 

colony level. This integration would call for a development of age class 

model. However here we considered all the colony's polyps equal to an 

average individual and variables pertaining to the single polyp are averaged 

over the colony. This choice should be considered as a first approximation 

only, but it is useful to describe the interaction between a colony and its 

environment, also considering that polyps are relatively small and reach the 

adult size pretty quickly, possibly also using colony’s shared resources.  

The coupling of the polyp growth and polyps population dynamics implies  

that the average gamete and polyp biomass, b̅P and b̅G, change as, 
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𝑑𝑏 𝑃
𝑑𝑡

=
𝜕𝑏𝑃
𝜕𝑡

−
𝐵𝑃

𝑁𝑃

𝜕𝑁𝑃

𝜕𝑡

= 𝜀 · 𝑚𝑖𝑛 𝑠𝑓𝑔, 𝛽 𝑠𝑓𝑔 −
𝑏 𝑃
𝑁𝑃

𝑟𝑚𝑎𝑥 ∙ 𝑓𝑔𝑒𝑚 (𝑏𝑃) ∙ 𝑁𝑃
𝑥 

(2.16) 

   

 

𝑑𝑏 𝐺
𝑑𝑡

=
𝜕𝑏𝐺
𝜕𝑡

−
𝐵𝐺

𝑁𝑃

𝜕𝑁𝑃

𝜕𝑡

= 𝜀 · 𝑚𝑖𝑛 𝑠𝑓𝑔, 𝛽 𝑠𝑓𝑔 −
𝑏 𝑃
𝑁𝑃

𝑟𝑚𝑎𝑥 ∙ 𝑓𝑔𝑒𝑚 (𝑏𝑃) ∙ 𝑁𝑃
𝑥 

(2.17) 

Conversely, the skeleton related fluxes, Es and EOM, join a single pool 

common to all polyps so that total calcite weight, Scarb, and total OM 

weight, SOM, behave linearly with NP and became: 

 

 
𝑑𝑆𝑐𝑎𝑟𝑏
𝑑𝑡

= 𝑒 · 𝑁𝑃 · 𝐸𝑠  (2.18) 

   

 
𝑑𝑆𝑂𝑀
𝑑𝑡

= 𝜀 ∙ 𝑁𝑃 ∙ 𝛼 · 𝐸𝑖𝑛  (2.19) 

 

The set of differential equations is solved at monthly time steps with Runge 

Kutta 4th order method. Whole colony weight (WCol) at time t results from 

the sum of the various components once proper conversion coefficients (see 

Table 2.2) have been applied: 

 

 𝑊𝐶𝑜𝑙 (𝑡) = 𝑆𝑐𝑎𝑟𝑏 (𝑡) + 𝑆𝑂𝑀(𝑡) + 𝑁𝑃(𝑡) ∙  𝑏 𝑃(𝑡) + 𝑏 𝐺(𝑡)  (2.20) 
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Intra-colonial competition and trophic shading 

The actual food concentration experienced by a polyp might differ from the 

bulk concentration away from the colony, because of competition among 

polyps from the same colony.  In fact, in colonial organisms inner polyps 

might filter water that has been already partially filtered by outer polyps 

(Kim and Lasker 1998). This effect have been parameterized as following. 

Let Q be the water flow through a colony and Fb the bulk food 

concentration. Then the variation of the mass of food, M, in a control 

volume V around a colony of surface area S is: 

 

 
𝑑𝑀

𝑑𝑡
= 𝑄 ∙  𝐹𝑏 − 𝐹 − 𝐶𝑚𝑎𝑥 ∙ 𝑓𝑎𝑐𝑡 (𝑇) ∙ 𝑓𝑐(𝐹) ∙ 𝑆 (2.21) 

 

where F is the food concentration in the control volume and the surface S is 

dimensionally related to NP·b̅P
2/3. Assuming that stationary conditions are 

reached rather quickly, we can equate the right hand side of the equation to 

zero and solve for F, which gives, 

 

 𝐹2 + 𝐹 ∙  𝑘𝐹 − 𝐹𝑏 +
𝐶𝑚𝑎𝑥 ∙ 𝑓𝑎𝑐𝑡 (𝑇) ∙ 𝑆

𝑄
 − 𝑘𝐹 ∙ 𝐹𝑏 = 0 (2.22) 

 

that admits just one positive solution: 

  

 𝐹 =
− 𝑘𝐹 − 𝐹𝑏 + 𝑮 +   𝑘𝐹 − 𝐹𝑏 + 𝑮 2 + 4𝑘𝐹𝐹𝑏

2
 (2.23) 

 

where 

 𝑮 =
𝐶𝑚𝑎𝑥 ∙ 𝑓𝑎𝑐𝑡 (𝑇) ∙ 𝑆

𝑄
 (2.24) 
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is the ratio between maximal colony assimilation rate at a given 

temperature and water flow per unit area. 

This way, if the polyps processing capability is much lower than water 

supply, G is small and F roughly equal to Fb, whereas in the opposite case, 

F is greatly reduced. Now let the control volume V be cubic so that the 

area of a face is AS= V2/3, and let the flow be oriented normally to two 

faces so that, 

 

 𝑄 = 𝑣 ∙ 𝐴𝑆 = 𝑣 ∙ 𝑉
2

3  (2.25) 

 

where v is flow speed. If we assume that a branching coral grows according 

to a space filling pattern (Kruszyński et al. 2007) so that the colony surface 

area S per unit of control volume V is roughly constant, 

 

 
𝑆

𝑉
= 𝑘1 (2.26) 

 

we can express G also as a function of water velocity and coral surface area: 

 

 𝑮 =
𝐶𝑚𝑎𝑥 ∙ 𝑓𝑎𝑐𝑡 (𝑇) ∙ 𝑆

𝑄
=

𝐶𝑚𝑎𝑥 𝑓𝑎𝑐𝑡  𝑇 𝑆
1

3 

𝑣 𝑘1

−2
3 

 (2.27) 

 

Boundary conditions and initialization 

The baseline simulation is forced with monthly average water temperature, 

recorded at l'Estartit, Catalan coast, over the period 1973 - 1997, (Cebrián 

et al. 1996, Fiorillo et al. 2013) and monthly average total Carbon, Ctot , 
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measured at 20m depth above the benthic community, considered as a 

proxy for available food (Medes islands, Catalan coast, 1997 - 1998, Rossi 

and Gili 2005). Temperature recorded at 35m depth is used in most of the 

simulations. The initial value for b̅P and NP are set to 10-5 kJ and one polyp 

respectively whilst Scarb, SOM and b̅G initial values are set to zero. The 

simulation begins in August, when spawning usually takes place (Tsounis et 

al. 2006b). 

 

Model calibration 

Model calibration is performed on data sets where the three variables 

polyps number, colony weight and age were measured in red coral 

populations. The sets are from Santangelo et al. 2007 (13 data points 

averaged from a larger sample of 1802 colonies, polyps and age data, fig 4a, 

blue dots) and Priori et al. 2013 (n = 69 colonies, polyps, dry weight and 

age data, Fig. 2.2a, b and Fig. 2.3a, b, red dots). The two sets of accretion 

data reflect a number of red coral growth features. Santangelo et al. 2007 

data, that were obtained from a single red coral population and for a rather 

large sample are very regular and point at exponential growth of the colony 

(via polyps gemmation) during at least the first decade of a colony's life. 

On the other hand Priori et al. 2013 data depict growth features that are 

highly dependent on life history traits, possibly microclimatic conditions 

and/or partial mortality events, to the point that no clear correlation 

emerges between age and polyps nor age and weight. If the two sets are 

compared, it can be inferred that the initial phase of exponential growth 

must cease as colony grows bigger, possibly due to competition for food 

and/or space between polyps of the same colony (Kim and Lasker 1998) 

and/or with neighbouring organisms, including red coral itself. 

Given the variability of the calibration sets no single growth curve can 

satisfactorily approximate all the experimental data. Thus we assumed they 

represent the time trajectories of different colonies grew in different trophic 

conditions. The scope of parameterization was thus to fit the data against a 

set of model runs (that generate a growth surface in NP, WCol, time space), 

obtained by changing the flow speed v in eq. (2.27), This is equivalent to 

setting lower Fb values or decreasing polyps activity, or any other 

combination of factors that change the number G. The hypothesis we 
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tested with this approach is that local trophic conditions alone are capable 

of producing most of the observed variability in growth.  

Model fitting is performed on eight selected uncertain parameters (α, β, kF, 

Rb,max, Es,max, b̅ss, b ̅ah, k1, see Tables 2.1, 2.2) with a monte carlo simulation. 

The algorithm minimizes of the sum of squared distances between each 

experimental point in NP, WCol, time space and the generated growth 

surface. The distances are computed on standardized data coordinates as 

units on NP, WCol and time axes are different. Both simulated and 

experimental data are standardized with mean and standard deviation of 

the experimental set to maintain the ratio between the two sets. Also The 

sum of the Rb and Es terms is converted to oxygen consumption and 

confronted with the respiration rates measured in Previati et al. 2007. The 

sum of squared distance between measured and simulated respiration is also 

minimized by the fitting procedure. 

 

Red coral grazing intensity 

To estimate the grazing intensity of a typical red coral population we used 

data on age classes areal distribution from Santangelo et al., 2007 and the 

carbon intake rates per colony calculated by the model for the same age 

classes. 

 

Suitability estimation 

The calibrated model is also used to estimate the fundamental niche of red 

coral with respect to available food and temperature. We use the variation 

of coenenchyme biomass (b̅P·NP) over a time period t - t0, ΔBcoen, as a proxy 

for organism-level fitness (Maltby 1999, Hoogenboom and Connolly 2009). 

 

 𝛥𝐵𝑐𝑜𝑒𝑛 =
𝑁𝑃 𝑡 ∙ 𝑏 𝑃 𝑡 − 𝑁𝑃 𝑡0 ∙ 𝑏 𝑃 𝑡0 

𝑁𝑃 𝑡0 ∙ 𝑏 𝑃 𝑡0 
 (2.28) 
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ΔBcoen is computed over a range of (constant) temperatures and bulk food 

concentrations and for different colony sizes, defined by initializing the 

model with different b ̅P(t0), NP(t0) pairs from a baseline simulation. ΔBcoen is 

computed over 10 years as we are looking for long term effects on species 

distribution. The resulting zero ΔBcoen isoclines are indicative of 

fundamental niche borders in T, Fb space for the specified size class at a 

fixed flow speed. The model was coded in MatLab and the code is available 

from the authors upon request. 
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Parameter Description Value Units Source 

n scaling exponent 2/3 - - 

m scaling exponent 1 - - 

α 
bOM allocation 

coefficient 
0.1482 - 

Estimated by the 

fitting procedure 

β 
b ̅P allocation 

coefficient 
0.7606 - 

Estimated by the 

fitting procedure 

v flow speeds [0.8 : 4] cm h-1 - 

k1 shape coefficient 0.5191 cm2 cm-3 
Estimated by the 

fitting procedure 

Rb,max 

max. respiration 

rate 
0.1107 kJ gAFDM

-1 month-1 
Estimated by the 

fitting procedure 

Es,max 
max. CaCO3 energy 

allocation rate 
0.0982 kJ cm-2 month 

Estimated by the 

fitting procedure 

Cmax 

max. assimilation 

rate 
0.1408 kJ month-1 cm-2 

Tsounis et al. 2006, 

Picciano & Ferrier-

Pagès 2007 

rmax 

max. gemmation 

rate 
2.664 y-1 

Fitted from 

Santangelo et al. 

2007 

x 
allometric scaling 

exponent 
0.563 - 

Fitted from 

Santangelo et al. 

2007 

- 
conversion 

coefficient 
45.7 kJ gC

-1 
Brey 2001 and refs 

therein 

- 
molecular weight of 

O2 
3.2e4 mg mol-1 - 

- 

oxyenthalpic 

equivalent 
473 kJ molO2

-1
 Gnaiger, 1983 

ε 
biomass energy 

content 
27.203 kJ gAFDM

-1 
Brey 2001 and refs 

therein 

e 
CaCO3 metabolic 

cost 
0.152 kJ gCaCO3

-1
 Anthony et al. 2002 

Table 2.2 Model parameters values and conversion coefficients and relative sources. 
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2.3 Results 

 

Fitting to experimental data, polyps and colony weight 

The model generates growth trajectories (a growth surface in NP, WCol, time 

space, Fig. 2.2a, b and Fig. 2.3a, b) that approximate most of the 

calibration data points just by varying flow speed (or equivalently G). This 

result is in line with the conjecture, suggested by calibration sets and 

expert's opinions, that colonies accretion depends strongly on the local 

environment and point at hydrodynamic and trophic conditions as major 

factors affecting colonies growth. 

Polyps population dynamics(Fig 2.3a) follow an initial phase of exponential 

growth that closely matches Santangelo et al. 2007 data for high flow 

speeds. This exponential growth is dampened as NP increases, as it can be 

also inferred from the experimental data. This behaviour is due to 

decreasing b̅P with age, negatively affecting the fgem function that controls 

gemmation rate. 

Whole colony mass is mostly composed of CaCO3. New skeleton is produced 

trough all the lifetime, the simulated growth curves (Fig. 2.3b) are initially 

exponential but approach linearity as b ̅P decreases with age. 

 

Features of live tissue growth 

The simulated live tissue (b ̅P) shows a marked seasonal cycle (Fig. 2.3c, d): 

positive growth lasts approximately from January to June, when energy 

gain exceeds losses, and is followed by a negative growth phase from 

approximately July to December. This effect depends strongly on 

temperature regimes affecting both the gain and loss terms and on 

seasonality of food supply. In fact the biomass seasonal cycle is more 

marked when the model is forced with temperature records from relatively 

shallow (up to 35m) waters, that are characterized by wide temperature 

variations; Biomass oscillations are instead dampened if the less variable 

deep waters records (50 to 80m) are used to force temperature (not shown). 
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The same seasonality is present also in skeletal organic matter, SOM (Fig 

2.2d), and gametes, b ̅G, dynamics. 

 

Fig. 2.2 Model results and fitting. (a),(b): two views of the colony growth surface, model 

results (green surface) and experimental data (red dots, Priori et al. 2013). (c): Total 

respiration, gray circles: model results, red squares: data from Previati et al. 2010. (d): 

Representation of skeletal banding as a stylized branch cross section, colorbar units are 

OM weight over total skeleton weight (SOM + Scarb). 
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The single polyp (Fig. 2.3c) and gametes (not shown) simulated growth 

trajectories are characterized by a maximum within the first decade of life, 

followed by an exponential decay with an horizontal asymptote reached 

after about 20-30 years. The position of the maximum varies depending on 

external conditions (feeding, temperature). Two major processes contribute 

to this pattern. One concerns the trophic shading effects that limit food 

intake per polyp for high polyps number, resulting in decreasing EP and EG 

after the maximum; the other concerns fgem limiting polyps gemmation at 

low Ep, thus slowing down biomass decrease. 

Coenosarc and gametes biomass per colony (= NP·b̅P and NP ·b̅G 

respectively, Fig 2.3d, gametes dynamics not shown) are characterized by 

determinate growth. Decreasing growth rates with colony size are mostly 

due to polyps population dynamics via fgem that limits new polyps 

production at low b̅p and is thus closely tied to the b̅P evolution. 

 

Fig. 2.3 Simulation results (multiple runs with varied v). red dots: experimental data 

from Priori et al. 2013, blue dots: data from Santangelo et al. 2003. (a): Polyps number. 

(b): Colony weight (skeleton and organic tissues). (c): Average polyp weight. (d): 

Coenosarc biomass (=NPb ̅P). 
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Features of skeleton growth 

CaCO3 deposition (Fig. 2.2d) also follows a seasonal pattern but with 

reverse order with respect to organic tissues, including EOM. Most of the 

skeleton is deposited during the warmer period, when the Es term is 

maximum due to high temperatures. And whilst live tissue growth slows 

down as a result of the balance between energetic intake and losses, the 

skeleton grows at a mostly constant pace. 

The model simulates the differential incorporation of CaCO3 and organic 

matter in the coral skeleton described in Marschal et al. 2004. During cold 

months environmental conditions are favourable for tissue growth, hence 

much organic matter is deposited whilst CaCO3 flux is low due to low 

respiration rates; since organic matter flux is larger than CaCO3 flux, this 

results in the deposition of little material (thin band), relatively rich in 

organic matter. On the contrary during warm months trophic conditions 

are poor and little organic matter is produced whilst CaCO3 flux is high 

due to high respiration rates, resulting in the deposition of a thick band 

poor in organic matter. The average proportion of SOM to Scarb in the 

skeleton is underestimated with respect to the values reported in Allemand 

and Tambutté 1996 (0.012 - 0.017).  

 

Suitability Plots/ Niche estimation 

As far as fundamental niche estimation is concerned (Fig. 2.4) our model 

predicts that smaller colonies have potential for positive growth over a 

wider region in Fb -T space than large colonies do, especially at low food 

concentrations. This means a large colony is more demanding in terms of 

food  requirements to sustain its size when temperatures are also high, 

whilst small colonies can thrive over a broader range of conditions. In Fig. 

2.4 the zero isocline (ΔBcoen = 0) is indicative of the niche borders for 

different size classes and, unlike the rest of the isoclines, its position is not 

affected by the time window over which ΔBcoen is computed. 
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Fig. 2.4 Suitability diagrams computed as coenenchyme biomass change (ΔBcoen) over 10 

y simulation. ΔBcoen values are plotted against different temperatures and bulk food 

concentrations, at fixed flow speed (v = 3.03 cm h-1) and for different colony sizes. (a): 

small colony: 11 polyps, 0.1e-4 gafdm/polyp, (b): medium colony: 70 polyps, 0.2e-4 

gafdm/polyp, (c): large colony: 847 polyps, 0.05e-4 gafdm/polyp). The zero isoclines (in red) 

represent the distribution limits for the specified colony size. Other isoclines are merely 

indicative of trends as their position depends on simulation time. 

 

Grazing Intensity 

The estimated grazing intensity of a typical red coral shallow population 

composed mainly of relatively young colonies, such as the one sampled in 

Santangelo et al., 2007 is of 0.17 mgC m
-2 d-1 which is within the range 

estimated in Tsounis et al., 2006b (0.15 - 1.5 mgC m
-2 d-1). 

 

2.4 Discussion 

 

In the present work we developed a colony growth model to better 

understand the influence of environmental variables, temperature, food 

concentration, hydrodynamic regime, on the accretion of C. rubrum 

colonies. We produced simulations that match measured growth patterns as 

well as multiple observed features of red coral development and of its 



72 
 

interactions with the environment. Furthermore the model allows for the 

interpretation of those features in the light of red coral metabolic 

organization. The originality of the approach lies in the choice of modelling 

C. rubrum as a colony of individuals, where single polyp and colony 

dynamics influence each other and the outcomes emerge from the interplay 

of the two. 

  

Niche Estimation 

By using growth potential as a proxy for organism well-being, we derived 

an estimation of red coral requirements, in terms of average water 

temperature and food concentration, to sustain positive growth, i.e. its 

fundamental niche in temperature-food space. 

We found the limits of C. rubrum distribution (as identified by the zero-

growth isoclines in Fig. 2.4) to be dependent on colony size: large colonies 

are more demanding than small ones with regard to temperature and food 

availability. These findings may help explain the observations made by 

Garrabou et al. (2001) that medium and large-sized colonies of C. rubrum 

from shallow waters suffered higher mortality incidence than small ones 

during a mass mortality event that occurred jointly with a positive 

temperature anomaly and summery food shortage. 

Results also have implications regarding the size distribution of red coral 

colonies: as noted by many, shallow populations are usually composed of 

crowded patches of small individuals while larger colonies are found at 

higher depths (Santangelo & Bramanti, 2010; Garrabou et al., 2001, 400-

600 colonies/m2 and Tsounis et al., 2006a, 150-250 colonies/m2 in shallow 

waters, compared to Priori et al., 2013 and Rossi et al., 2008, 10-50 

colonies/m2 in deep waters); this appears to be primarily a consequence of 

overharvesting of the shallow, easily accessible populations that selectively 

removes the large specimens (Santangelo and Bramanti 2010). Our findings 

indicate that large colonies are also more likely to undergo negative growth 

in shallow waters, where they experience both high temperatures and food 

shortage at the same time during late summer, and are thus less likely to 

be found near the upper limits of C. rubrum distribution. A similar size 

gradient with small individuals dominating the upper distributional limit 

has been reported by Sebens (2002) concerning the distribution of sea 
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anemones in relation to environmental parameters. If this temperature 

effect on size distribution is superimposed to the harvesting effect, large 

colonies occurrence could be further limited to elevated depths as mean sea 

temperatures increase. Increasing trend of harmful heat waves events will 

also increase this risk. 

Differently Hoogenboom and Connolly (2009) found that the niche size of 

reef corals in flow-light space, as calculated with a process-based model, 

was positively related to colony size. Hogenboom and Connolly model uses 

daily integrated energy acquisition (photosynthesis) as a proxy for fitness, 

but since organism energy budget is not computed, it is not possible to 

assess if such rate is enough to sustain positive growth across different 

colony sizes; also size dependence of photosynthesis rate is calculated solely 

according to mass exchange kinetics from fluid mechanics theory, thus 

neglecting possible trophic shading effects, which the authors aknowledge. 

For the sake of simplicity we imposed a fixed fraction of growth to be 

devolved to gametes development over a colony's life. Numerous studies 

(Tsounis et al., 2006a; Cupido et al., 2012; Priori et al., 2013) found 

fertility (gametes size/number per polyp) to be positively related to colony 

size in different Mediterranean gorgonians, including red coral. This 

suggests a greater energetic investment in reproductive output for the 

bigger specimens. The hereby predicted summery budget deficit issues may 

thus be further exacerbated in large colonies due to increased spawning 

investments. 

 

Seasonality, trophic shading and constraints to growth 

The simulated live tissue biomass displays seasonal cycles of positive and 

negative growth which are strongly dependent on temperature regimes and 

are thus more marked when the model is forced with shallow waters 

thermal records. Similarly Rossi and Tsounis 2007 and Tsounis et al. 2006b 

uncovered a seasonality in energy storage molecules concentrations 

(proteins, carbohydrates, lipids) and gametes development in shallow (16-18 

m) red coral colonies, whilst in deep populations (45m) seasonality was 

detectable only for proteins and gametes development. The same seasonal 

pattern is also typical of other Mediterranean colonial benthic invertebrates 
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(Coma et al., 1994 and 1998) and appears to be related to NW 

Mediterranean climatology.  

The simulated evolution of the whole colony live tissue biomass (Fig. 2.3d) 

is indicative of determinate growth, i.e. there exists an upper limit to 

colony size. The point is not trivial, in fact it is generally assumed that 

colony resource acquisition is simply a linear function of the number of 

modules, colonies would thus be free from the constraints that limit the size 

of the single modules and could growth indefinitely, simply adding new 

modules (Sebens, 1987). It is presently unclear whether colonial organisms 

are determinate or indeterminate growers, but data red coral size and age 

classes distribution (Priori et al. 2013) show that red coral has the 

characteristics of constrained growth. 

In our model colony size limits, instead of being imposed with allometric 

constraints (as done in Kim and Lasker 1998), emerge as a consequence of 

trophic sahding, i.e. the competition for a limited resource (food) between 

the polyps of a same colony. This is in line with the argument found in 

Kim and Lasker 1998 that density dependent effects on resource capture 

rates, analogous to self shading in trees, may effectively limit maximal size 

in modular species that would otherwise exhibit indeterminate 

(exponential) growth. We also found that this result is not generally 

extendable to any colonial organism as the assumption in eq. (2.26) does 

not apply to any growth shape (e.g. it does not apply for a sphere), and 

will result in uptake rates that scale linearly with modules number, hence 

in unconstrained growth, for massive growth forms. Our implementation 

provides thus a theoretical background for a conjecture (the existence and 

relevance of trophic shading phenomena and their implications for growth 

determinacy or indeterminacy in colonial and modular organisms) that to 

date rests on anecdotal evidence and speculative arguments. 

The model predicts the average polyp biomass to decrease with age once a 

maximal value is reached early in life as a result of competition between 

polyps. In support of our findings an inverse relationship between the two 

quantities have been described by Porter (1976) for Caribbean corals; Kim 

and Lasker (1998) proposed that such negative correlation can result from 

the additive effects of module size and colony size on self-shading and thus 

the ability of a colony to capture resources. 
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Features of Skeletal growth 

Despite current research is increasingly shedding light on the processes 

involved in biomineralization, the present understanding of the mechanisms 

of integration between coral major metabolic processes and skeleton 

formation remains very weak (Allemand et al. 2013). In the present work 

we addressed this issue by relating skeleton formation to coral energy 

budget with the fraction of metabolism devoted to calcite deposition and 

the (proposed) energetic cost required per unit of CaCO3 deposited. This 

modelling choice has been proven effective in reproducing observed 

patterns. At the same time it remains thrifty with respect to assumptions 

and parameters requirements, relatively to the finer-scale modelling 

approaches to biocalcification found in Hohn and Merico 2012 and 

Nakamura et al. 2013. Our approach aims at modelling calcified structures 

growth at whole organism level and can be considered as a simplification of 

such models. 

Skeletal growth modelling choices are similar to those in Fablet et al. 

(2011) and Pecquerie et al. (2012). In such works, and in this one as well, 

the temperature dependences affecting skeletal deposition are those 

affecting the relevant physiological rates and temperature effects on CaCO3 

precipitation kinetics are neglected. The question whether inorganic 

deposition kinetics that are observed in seawater stay valid in the gel-like 

extracellular calcifying medium is currently debated (Allemand et al. 2013). 

However, the observation that the most of the CaCO3 (the thick bands in 

the skeleton) is laid down during the warmest months, is easily linked to 

inorganic CaCO3 precipitation being favoured at high temperatures (Zeebe 

and Wolf-Gladrow 2001). Our study suggests an alternative, perhaps 

complementary, mechanism for the observed seasonality in CaCO3 

deposition. Also the underestimation of the proportion of OM to CaCO3 in 

the skeleton may suggest that the mechanism of OM incorporation is not 

entirely passive, as implemented here, in fact many studies (see Tambutté 

et al. 2007 for a review) suggest that OM plays a structural role in skeleton 

formation, so that the two fractions should obey some kind of 

stoichiometric law. 

Whilst live tissue growth slows down with age, our results point at 

indeterminate skeletal growth, seemingly leading to the unrealistic 

condition of the coenosarc getting thinner and thinner over a colony's life. 

This could have been changed by lowering energy allocation to skeleton as 
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colony grows, this fix however seemed too much of an artefact. Indeed 

constant basal diameter growth rates have been observed in red coral by 

Santangelo et al. (2007), Priori et al. (2013), Bramanti et al. (2014) over 

wide sets of ages, and Bramanti et al. (2014) found the surface area 

increment in C. rubrum skeleton cross sections to be well fitted by a linear 

equation, indicating constant increment along colony life span. Other 

explanations are possible: 1. the coenosarc thinning actually happens but is 

so slow it isn't such a big deal over a colony's lifespan. 2. additional cortex 

mineralization compensates for coenosarc thinning; in fact Weinbauer et al. 

(2000) reported levels of cortex mineralization as high as 76±6% on weight 

basis for red coral. 

Our model agrees with observations by Marschall et al. (2004) in placing 

maximal CaCO3 deposition during the warm months, when biomass, on the 

contrary, displays negative growth. The same seasonal pattern has been 

described by Rodolfo-Metalpa et al. (2009) in the Mediterranean coral 

Cladocora Caespitosa. Although seemingly paradoxical, weak coupling 

between tissue and calcified structures growth is known to occur in bivalves 

(Hilbish 1989), fish otoliths (Neat et al. 2008) and has been reported for 

scleractinian corals by Anthony et al. (2002) that measured positive skeletal 

growth rates even in experimental treatments where tissue growth was 

negative.  

Even though CaCO3 deposition is regarded as energetically cheap (Palmer 

1992, Anthony et al. 2002, McCulloch et al. 2012), it clearly entails some 

metabolic cost for the coral. We suggest that Skeletogenesis is sustained 

during energy shortage times at the expenses of the reserves accumulated 

during the previous favourable period. 
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3. Biologically mediated and abiotic 

mechanisms for light enhanced calcification 

(LEC) and the cost of carbonates deposition in 

corals. 

 

Abstract 

Zooxanthellate corals are known to increase calcification rates under the 

light, a phenomenon called light enhanced calcification, that is believed to 

be mediated by symbionts photosynthetic activity. There is a lot of 

controversy on the mechanism behind this phenomenon with hypotheses 

coarsely divided between abiotic and biologically mediated mechanisms. At 

the same time evidence is building up that calcification in corals relies on 

active ion transport to deliver the skeleton building blocks into the 

calcifying medium, hence it is a costly activity.  

Here we build on generally accepted conceptual models of the coral 

calcification machinery and of the energetics of coral-zooxanthellae 

symbiosis to develop a model that can be used to separate the biologically 

mediated and abiotic effects of metabolic rates (respiration and 

photosynthesis), temperature and seawater chemistry. 

We tested this model on a dataset relative to the Mediterranean 

scleractinian Cladocora caespitosa (an acidification resistent species) and 

we conclude that most of the variation in calcification rates due to 

photosynthesis and temperature can be attributed to biologically mediated 

mechanisms, in particular to the metabolic energy supplied to the active 

ion transports. Abiotic effects are also present but of smaller magnitude, 

though they could be more relevant for acidification sensitive species. 

Based on these findings and on a literature review we suggest that the 

energetic aspect of coral calcification has been so far overlooked, and that a 

key parameter that should be measured in order to test this is the 

metabolic cost of calcification. 
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3.1 Introduction 

 

As argued by Pörtner (2008), marine organisms sensitivity to acidification 

is a matter of several physiological processes being concomitantly affected. 

Despite the huge research effort seen in recent years, the effects of seawater 

chemistry on marine calcifiers remains an elusive topic, as stated by 

Allemand et al. (2011) in an extensive review on coral calcification; that 

review opens with two quotes, written almost one century apart by 

scientists engaged with coral calcification: 

A question which has common interest both for zoologist and 
palaeontologist is the relation of the soft parts of the polyp to the hard 
calcareous or horny skeleton produced in most corals. (Ogilvie 1896) 

The poor understanding of calcification mechanisms in corals results from a 
lack of information on tissue / skeleton interactions and temporal / spatial 
patterns in skeleton morphogenesis. (Le Tissier 1987) 

Both these authors recognize that the key to understand biocalcification lies 

in the interactions between the living parts of the coral and the skeleton, an 

aspect that is currently often overlooked in many research studies. 

Few doubts exist coral calcification is an energy demanding process. Corals, 

trough their metabolism, allocate some part of the energy budget they 

obtain from food and photosynthesis to calcification (Dubinsky & Jokiel 

1994), and convert it to calcium carbonate. The conversion rate (in the 

economic sense) of energy invested to calcium carbonate deposited is the 

[unitary] metabolic cost of calcification. 

Jokiel (2011) proposed that the observed effects of acidified seawater on 

coral calcification are mediated by diffusion limitation of net H+ transport 

away from the coral. This is equivalent to the argument from Cohen & 

Holcomb (2010) that under acidified conditions corals must spend more 

energy to remove protons from the calcifying medium in order to maintain 

calcification rates. These arguments point at an increase in the cost of 

calcification under acidified conditions. 
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Many studies make use as input parameter proposed metabolic costs of 

calcification (Anthony et al. 2002; McCulloch et al. 2012). The exact value 

of such cost is in fact unknown (Allemand et al. 2011). The only 

experimental estimate to date was carried out by Palmer (1992) on a 

mollusk and yielded an estimated cost of 100 to 200 kJ/mol. More recently 

the cost of calcification has been identified with the difference in chemical 

potential between coelenteron and ECM (about 3-6 kJ/mol, McCulloch et 

al. 2012), the Gibbs free energy of ATP hydrolysis coupled with membrane 

transport proteins stoichiometry (about 30 kJ/mol, Anthony et al. 2002) or 

the Gibbs free energy of ATP hydrolysis coupled with membrane transport 

proteins stoichiometry and other transport mechanisms (about 20 kJ per 

mol, Hohn & Merico 2015). Though these estimates fall short in that they 

do not account for the inefficiencies that any real life transport process 

entails and so can result in unphysical behaviors. Furthermore it could be 

argued that if the cost of building one mole of skeleton was that low, 

calcifiers would face little trouble in compensating for acidification effects.   

To understand how much energy is needed per amount of skeleton it is 

crucial to understand how the coral allocates energy to calcifiction. The 

problem is not trivial as it involves both the coral host physiological 

activity and that of its algal symbionts which are also involved in the 

phenomenon of light enhanced calcification (LEC). Higher calcification 

rates (3x on average, Gattuso et al. 1999) are consistently observed during 

daytime and this effect is believed to be mediated by symbionts 

photosynthetic activity (Gattuso et al. 1999; Allemand et al. 2011). LEC is 

an highly debated topic and various non mutually exclusive hypotheses 

exist (reviewed in Gattuso et al. 1999). All the hypotheses can be coarsely 

grouped into the two categories of biologically mediated and abiotic 

mechanisms.  

Three major environmental parameters are believed to play crucial roles in 

calcification: seawater chemistry, temperature and light. All three of these 

parameters are believed to act in a two-fold fashion on the process of 

calcification with biologically mediated and abiotic effects: light bears a 

clear relation with photosynthetic activity, hence with coral energy budget 

and investment in calcification, but also photosynthesis alters the carbon 

budget in the coelenteron, producing changes in chemical gradients that 

ultimately affect carbonates deposition. Temperature is clearly a major 

determinant of metabolic rates, but it also has effects on carbonates 

chemistry, including calcification rates which are favoured at high 
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temperatures. Carbonates chemistry is universally considered a major 

determinant of chemical gradients within the coral but also is believed to 

affect photosynthesis (which may be carbon-limited) and respiration (that 

is depressed in case of hypercapnia, Pörtner 2008). 

Whilst most studies focus on what we here defined abiotic effects, some 

authors (Goreau & Goreau 1959; Chalker & Taylor 1975) mention the 

energetic coupling between symbionts and host as a possible cause of LEC. 

Syntrophic symbioses, like the one that happens in many coral species, can 

be conveniently understood in the light of host and symbiont energetics, 

combined with evolutionary reasoning: symbiosis must be beneficial, in 

terms of fitness, for both the host and the symbiont whilst the two actors 

must retain selfish behaviour (sensu Dawkins 1976). These concepts have 

been incorporated in the syntrophic symbiosis models developed by 

Dubinsky & Jokiel (1994) and Muller et al. (2009). In these models 

zooxanthellae produce an excess of photosyntate that is translocated to the 

coral host and it thus represents additional energy available for whatever 

metabolic purpose must be fulfilled, whilst (in the Muller & Nisbet model) 

the coral supplies its symbionts with waste material (nutrients) that serve 

as substrate for algal photosynthesis. The interesting outcome of this setup 

is that, although the regulation mechanism is entirely passive, it suffices to 

obtain a stable relationship; furthermore this relationship shifts from 

mutualism to parasitism as environmental conditions change, thus 

providing also a candidate trigger for bleaching events. 

We believe the key to understand the biological mechanisms involved in 

LEC lies in the energetic coupling between coral and zooxanthellae 

metabolism and calcification. It is however also likely that purely abiotic 

mechanisms play major roles in determining calcification response to 

seawater chemistry. Arguably both abiotic and biological phenomena may 

be relevant and it would be interesting to be able to discern the effects. 

The experimental results from Al-Horani et al. (2003) and Venn et al. 

(2011) and the conceptual models of the calcification physiological 

machinery from McConnaughey & Whelan (1997) opened the gates to a 

deeper understanding of the cause and effect mechanisms that regulate 

coral sensitivity to acidification. Still lot though remains to be understood; 

the small spatial and temporal scales of the processes involved make many 

possibly useful experiments impractical: many studies couldn't resolve some 

aspect due to lack of knowledge about some state variable (e.g. Schneider & 
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Erez 2006 and refs therein). Carbonates chemistry is considered to be a key 

factor involved in coral calcification. The system of carbonates in seawater 

is completely determined with any two of its variables, though measuring 

such variables into the sub micrometric ECM is demanding, so that it's 

chemical characteristics are to date mostly unknown. 

Models represent a viable way to test existing hypotheses and suggesting 

new experiments.  

Hohn & Merico (2012; 2015) compared different conceptual models of coral 

calcification to determine which one produced the better agreement with 

the experiments from Al-Horani et al. (2003). The authors found the model 

that performed better was the one that incorporated all three of the 

proposed metabolic pathways (active transport, paracellular diffusion, 

transcellular diffusion) involved in calcification. Coincidently it was also 

possible to test hypotheses on the contributions of the different metabolic 

pathways to calcification: in their model Calcium reaches the skeleton 

mainly rough the active pathway and Carbon trough transcellular CO2 

diffusion, whilst trough the paracellular pathway solutes diffuse back from 

ECM to coelenteron. 

Nakamura et al. (2013) used a similar model to test the plausibility of the 

oxygen hypothesis (Allemand et al. 2011) for light enhanced calcification 

(LEC), concluding that oxygen-boosted respiration may be responsible for 

the increase in calcification during daytime. 

Here we propose a model of coral calcification built on the conceptual 

scheme developed in McConnaughey & Whelan 1997, Hohn & Merico 2012 

and 2015, Nakamura et al. 2013, and implement realistic kinetics of active 

trans-membrane transport (Smith & Crampin 2004). The model is applied 

on experimental data for the Mediterranean coral Cladocora caespitosa 

(Rodolfo-metalpa et al. 2010) and used to (1) assess the cost of calcification 

and it's response to external parameters and physiological rates, (2) 

compare the biologically mediated and abiotic contributions to LEC from 

temperature, metabolic rates (Photosynthesis and respiration) and seawater 

chemistry. 
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3.2 Materials and methods 

 

Case study 

The model is applied on the dataset provided in Rodolfo-Metalpa et al. 

2010. This very valuable study assessed the differential influence of 

Temperature and pCO2 on the metabolic rates (gross photosynthesis, dark 

respiration, calcification) in the Mediterranean coral Cladocora caespitosa. 

The data set constitutes of four treatments: 1. Baseline temperature 

(according to replicate) and baseline pCO2 (400 ppm), 2. Baseline 

temperature and increased pCO2 (700 ppm), 3. Increased temperature 

(+3°C with respect to the corresponding baseline temperature replicate) 

and baseline pCO2, 4. increased temperature and increased pCO2. Each 

treatment comprises six replicates assessed in different seasons. For this 

study only the summer and winter replicates were used because both gross 

photosynthesis and dark respiration were measured. A table of the 

experimental conditions used in the model is provided in Table 3.1. 

 

Model Topology, State Variables and Scales 

This model's rationale is to follow the paths of the chemical species and 

metabolic fluxes physiologically relevant to biocalcification (either in a 

direct or indirect way) from seawater to coral skeleton trough 

compartments within the coral living body. We make the simplifying 

assumption (after Nakamura et al. 2013) that seawater is separated from 

the skeleton by two consecutive compartments: the coelenteron and the 

calcifying medium (ECM). A scheme of the model is provided in Fig. 3.1., 

all model parameters and sources are listed in Table 3.2.  
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Treatment Temperature TA DIC pH Gross photosynthesis Dark respiration Calcification 

 
°C umol kg-1 umol kg-1 - nmol cm-2 h-1 nmol cm-2 h-1 nmol cm-2 h-1 

a 21.7 2538 2201 8.06 0 -606.618 102.7 

b 21.7 2538 2201 8.06 1455.883 -606.618 247.8 

c 13.4 2540 2262 8.1 0 -121.324 36.4 

d 13.4 2540 2262 8.1 165.4416 -121.324 80.2 

e 24.5 2541 2203 8.01 0 -816.176 143.3 

f 24.5 2541 2203 8.01 1555.147 -816.176 266.8 

g 16.4 2540 2254 8.06 0 -595.588 45.2 

h 16.4 2540 2254 8.06 1113.97 -595.588 101.2 

i 21.7 2543 2317 7.87 0 -452.206 99.7 

j 21.7 2543 2317 7.87 1466.916 -452.206 232.0 

k 13.4 2538 2378 7.87 0 -121.324 35.0 

l 13.4 2538 2378 7.87 341.912 -121.324 71.8 

m 24.5 2546 2315 7.84 0 -716.912 106.3 

n 24.5 2546 2315 7.84 1731.622 -716.912 241.0 

o 16.4 2545 2374 7.85 0 -419.118 42.4 

p 16.4 2545 2374 7.85 694.853 -419.118 108.4 

Table 3.1 experimental data from Rodolfo-Metalpa et al. 2010 used in this study, 

calcification rates are measured with the alkalinity anomaly technique. 

The chemical species considered are the Ca2+ ion and those pertaining to 

the carbonates system, whose chemistry in seawater is rather well known. 

The reported presence of the enzyme carbonic-anhydrase, which speeds up 

the equilibration of the carbonates system, in corals ECM (see Bertucci et 

al. 2013 for a review) may hinder the validity of kinetics derived for 

seawater (Zeebe & Wolf-Gladrow 2001), whilst, at the same time, suggests 

that the carbonate system should be reasonably close to equilibrium within 

the model compartments. Given this reasoning and due to the fact that the 

whole carbonates system has two degrees of freedom (i.e. is completely 

determined by any two of the variables involved), we chose as state 

variables to describe the carbonates system the two conservative quantities 

dissolved inorganic carbon (DIC) and total alkalinity (TA), as done in 

Nakamura et al. (2013), and use equilibrium relations (as explained later in 

this section) to calculate the other (dependent) state variables: H+, OH-, 

CO2, HCO3
- and CO3

2-. Whenever some model process involves the 

dependent state variables, the resulting flux is converted in DIC and/or TA 

fluxes as explained through this section.  
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Fig. 3.1 Model conceptual scheme, PP: paracellular diffusion pathway. 

 

 

 

 

 



91 
 

parameter description value units source 

hcoe coelenteron height 3000 um assumed 

hecm ECM height 5 um assumed 

kp aragonite precipitation rate constant 1.1 e-3 umol cm-2 s-1 Burton & Water 1990 

np aragonite precipitation rate constant 1.63 - Burton & Water 1990 

kd aragonite dissolution rate constant 2.7 e-2 umol cm-2 s-1 Walter & Morse 1985 

nd aragonite dissolution rate constant 2.5 - Walter & Morse 1985 

- Oxyenthalpic equivalent 473 kJ mol-1 Gnaiger & Forstner 1983 

ΔGATP Gibbs free energy of ATP hydrolysis 30.5 kJ mol-1 - 

- Respiratory quotient 1 molC molO2
-1 assumed 

Sal Salinity 38.1 psu Rodolfo-metalpa et al. 2010 

kCO2 CO2 permeability constant 2.04 e-4 cm s-1 estimated 

kpp paracellular pathway permeability 2.96 e-4 cm s-1 estimated 

s diffusion coefficient 1.02 e-02 cm s-1 estimated 

alpha fraction of Pg allocated to calcification 0.29068 - estimated 

beta fraction of R allocated to calcification 0.2383 - estimated 

vH proportionality constant 5.41 e-3 cm s-1 estimated 

E0c Ca-ATPase concentration 3.57 e+3 umol cm-2 estimated 

k1fc Ca-ATPase rate constant 5.56E+00 cm2 umol-1 estimated 

k2fc Ca-ATPase rate constant 4.03E+02 s-1 estimated 

k3fc Ca-ATPase rate constant 5.97E+01 s-1 estimated 

k1bc Ca-ATPase rate constant 5.27E-01 cm2 umol-1 estimated 

k2bc Ca-ATPase rate constant 3.85E+01 s-1 estimated 

k3bc Ca-ATPase rate constant 3.12E-01 cm2 umol-1 estimated 

E0b BAT concentration 4.71E+00 umol cm-2 estimated 

k1fb BAT rate constant 4.70E+00 cm2 umol-1 estimated 

k2fb BAT rate constant 4.82E+01 s-1 estimated 

k3fb BAT rate constant 3.58E+00 s-1 estimated 

k1bb BAT rate constant 6.71E-05 cm2 umol-1 estimated 

k2bb BAT rate constant 7.49E+00 s-1 estimated 

k3bb BAT rate constant 1.55E-02 cm2 umol-1 estimated 

Table 3.2 All model parameters and sources. 

All transport processes are computed per unit surface area and the growth 

of the colony is not resolved. As shown in chapter 1 the massive growth 

shape of Cladocora caespitosa would ensure that vital rates do not depend 

colony size.  
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Photosynthesis and respiration 

Gross photosynthesis, Pg, and respiration, R, are forced in the model with 

the values measured by Rodolfo-Metalpa et al. (2010) as mol O2 per unit 

area per unit time. Photosynthesis removes one mol DIC from the 

coelenteron per mol O2 produced whilst respiration increases coelenteron 

DIC by one mol per mol O2 consumed. 

 

Carbonate system equilibria and physico-chemical 

constants 

The components of the carbonate system, H+, CO2, HCO3
- and CO3

2-, are 

calculated in each compartment from DIC, TA, temperature and salinity, 

assuming that chemical equilibrium is reached at each time step, according 

to the equilibrium relation in (Zeebe & Wolf-Gladrow 2001). For the sake 

of simplicity we consider just the carbonates contribution to alkalinity and 

neglect, e.g. borates.  

The carbonic acid dissociation constants and solubility product of water are 

calculated from temperature and salinity according to Millero 2007. 

Aragonite solubility constant is calculated from temperature and salinity 

according to  Zeebe & Wolf-Gladrow 2001. Water density, ρ, is also 

calculated from temperature and salinity according to (Millero & Poisson 

1981) and used trough the model to convert volumes to masses when 

needed. 

 

Passive transport processes 

The exchanges from seawater to coelenteron are modelled as an advection 

process governed by concentration gradients: 

 

 𝐽 𝑠𝑤−𝑐𝑜𝑒𝑙 = 𝑠(𝑆𝑉      𝑠𝑤 − 𝑆𝑉      𝑐𝑜𝑒𝑙 ) (3.1) 
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Where 𝐽 𝑠𝑤−𝑐𝑜𝑒𝑙  is the vector of the fluxes of the state variables from 

seawater to coelenteron (mass/ surface · time), 𝑆𝑉      𝑠𝑤  and 𝑆𝑉      𝑐𝑜𝑒𝑙  are the 

vectors of the state variables, 𝑆𝑉𝑖 =  𝐷𝐼𝐶𝑖 ,𝑇𝐴𝑖 ,𝐶𝑎𝑖
2+ , in seawater and 

coelenteron respectively (concentrations), s is the advection coefficient 

(with units of speed).  

Also the exchanges of state variables between coelenteron and ECM trough 

the paracellular pathway and the permeation of CO2 trough cell layers are 

described as advective/diffusive phenomena: 

 

 𝐽 𝑐𝑜𝑒𝑙 −𝑒𝑐𝑚 = 𝑘𝑝𝑝 (𝑆𝑉      𝑐𝑜𝑒𝑙 − 𝑆𝑉      𝑒𝑐𝑚 ) (3.2) 

 

 𝐽𝐶𝑂2 = 𝑘𝐶𝑂2(𝐶𝑂2,𝑐𝑜𝑒𝑙 − 𝐶𝑂2,𝑒𝑐𝑚 ) (3.3) 

 

Where 𝐽 𝑐𝑜𝑒𝑙 −𝑒𝑐𝑚  is the vector of the fluxes between coelenteron and ECM 

trough the paracellular pathway, 𝐽𝐶𝑂2 is the CO2 flux from coelenteron to 

ECM trough the living tissue, CO2,coel and CO2,ecm are CO2 concentrations in 

coelenteron and ECM respectively, and kpp, kCO2 are permeability 

coefficients (with units of speed). The 𝐽𝐶𝑂2 flux exchanges 1 mol DIC per 

mol CO2 transported. 

 

Aragonite precipitation and dissolution 

Aragonite precipitation and dissolution kinetics are modelled after Burton 

& Water 1990 and Walter & Morse 1985 as: 

 

 𝐽𝐶𝑎𝐶𝑂3 = 𝑘𝑝 𝛺 − 1 𝑛𝑝  𝛺 ⩾ 1 + 𝑘𝑑 1 − 𝛺 𝑛𝑑 (𝛺 < 1) (3.4) 
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where 𝐽𝐶𝑎𝐶𝑂3 is the Aragonite precipitation or dissolution flux (mass per 

unit time per unit area), kp, np are empirical coefficients for precipitation 

kinetics, kd, nd are empirical coefficients for dissolution kinetics and Ω is the 

saturation state of aragonite defined as, 

 

 𝛺 =
𝐶𝑎𝑒𝑐𝑚

2+  𝐶𝑂3,𝑒𝑐𝑚
2−

𝐾𝑎𝑟
 (3.5) 

 

where Kar is the solubility constant of aragonite calculated from 

temperature and salinity according to Zeebee & Wolf-Gladrow (2001). 

𝐽𝐶𝑎𝐶𝑂3 flux consumes 1 mol DIC and 2 mol TA from the ECM per mol 

CaCO3 precipitated and vice-versa in case of dissolution. 

 

Active transport processes 

Two active transport processes are present: A Ca-ATPase (McConnaughey 

& Whelan 1997; Allemand et al. 2004) pump that exchanges 1 mol Ca2+ for 

2 mol H+ at the cost of 1 mol ATP (Gattuso et al. 1999) between 

coelenteron and ECM, and a bicarbonate active transport (BAT, Furla et 

al. 2000;  Zoccola et al. 2015) that exchanges 1 mol HCO3
- between 

coelenteron and ECM at the cost of 1 mol ATP. According to Zoccola et al. 

(2015) other ions such as Cl- and/or Na+ are likely involved in the BAT 

functioning, though those have been neglected as they are not relevant for 

skeletogenesis and unlikely to be rate-limiting due to high concentrations in 

seawater. 

Pumps functioning is modelled after Smith & Crampin (2004) whom 

proposed a biophyisically-based model of a sodium-potassium antiporter as 

a four steps cyclic enzymatic reaction comprising both the forward and 

backward cycles. Such model is based on a reduction scheme from a 15-

stage kinetic model that lumps together the fast reactions. To limit the 

number of unknown parameters we further simplified Smith and Crampin 

model by assuming that 1. the binding of two H+ ions in the Ca-ATPase is 

lumped together in a single reaction, 2. the binding reactions of Ca-ATPase 

with Ca2+ and of BAT with ions other than HCO3
- are much faster than the 
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other steps due to high Ca2+, Cl-, Na+, etc. concentrations and can therefore 

be neglected. This leaves us with two 3-stage reactions that can be written 

as: 

 

 𝐸1𝑐 + 2𝐻𝑒𝑐𝑚
+ ⇌ 𝐸2𝑐 (3.6) 

 

 𝐸2𝑐 + 𝐴𝑇𝑃 ⇌ 𝐸3𝑐 (3.7) 

 

 𝐸3𝑐 ⇌ 𝐸1𝑐 + 2𝐻𝑐𝑜𝑒𝑙
+  (3.8) 

 

and, 

 𝐸1𝑏 + 𝐻𝐶𝑂3,𝑐𝑜𝑒𝑙
− ⇌ 𝐸2𝑏 (3.9) 

 

 𝐸2𝑏 + 𝐴𝑇𝑃 ⇌ 𝐸3𝑏 (3.10) 

 

 𝐸3𝑏 ⇌ 𝐸1𝑏 + 𝐻𝐶𝑂3,𝑒𝑐𝑚
−  (3.11) 

 

for CaATPase and BAT respectively. Where E1, E2, E3 are the three 

possible states of Ca-ATPase (subscript c) and BAT (subscript b), whose 

total concentration is conservative and equals E0 = E1+E2+E3.  

In the model we do not compute ATP concentration within the cell but 

rather we define the metabolic flux that is devoted to running the active 

transports (see next section). Given this constraint we chose to model 

reaction kinetics based on fluxes rather than concentrations, as proposed by 

Kooijman (2009); the fluxes of chemical species (indicated with dots over 

variable names) reaching the pumps are considered to be linearly 

proportional to concentrations: e.g. 𝐻 𝑖
+ = 𝑣𝐻𝐻𝑖

+ with vH a proportionality 

constant with units of speed. Forward and backward reactions are 

considered as 1st order kinetics with reaction constants k1f, k2f, k3f and 
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k1b, k2b, k3b for the forward and backward cycles respectively and the 

whole system for the Ca-ATPase can be written as:  

 

 
𝑑𝐸1

𝑑𝑡
= −𝑘1𝑓  𝐸1 2𝐻 𝑒𝑐𝑚

+ + 𝑘1𝑏  𝐸2 + 𝑘3𝑓  𝐸3 − 𝑘3𝑏  𝐸1 2𝐻 𝑐𝑜𝑒𝑙
+  (3.12) 

 

 
𝑑𝐸2

𝑑𝑡
= 𝑘1𝑓  𝐸1 2𝐻 𝑒𝑐𝑚

+ − 𝑘1𝑏  𝐸2 − 𝑘2𝑓  𝐸2 𝐴𝑇𝑃 + 𝑘2𝑏  𝐸3 (3.13) 

 

 
𝑑𝐸3

𝑑𝑡
= 𝑘2𝑓  𝐸2 𝐴𝑇𝑃 − 𝑘2𝑏  𝐸3 − 𝑘3𝑓  𝐸3 + 𝑘3𝑏  𝐸1 2𝐻 𝑐𝑜𝑒𝑙

+  (3.14) 

 

By solving at stady state, the expression for the flux trough Ca-ATPase is 

derived: 

 

 𝐽𝐶𝑎𝐴𝑇𝑃𝑎𝑠𝑒 =  
𝐸0  𝑘1𝑓  𝑘2𝑓  𝑘3𝑓  𝐴𝑇𝑃  2𝐻 𝑒𝑐𝑚

+ − 𝑘1𝑏  𝑘2𝑏  𝑘3𝑏  2𝐻 𝑐𝑜𝑒𝑙
+  

𝑑𝑒𝑛
 (3.15) 

 

 

𝑑𝑒𝑛 = 𝑘2𝑓  𝑘3𝑓𝐴𝑇𝑃 + 𝑘2𝑓  𝑘3𝑏  2𝐻 𝑐𝑜𝑒𝑙
+  𝐴𝑇𝑃 + 𝑘1𝑓  𝑘2𝑓  2𝐻 𝑒𝑐𝑚

+  𝐴𝑇𝑃 

+ 𝑘1𝑓  𝑘3𝑓  2𝐻 𝑒𝑐𝑚
+ + 𝑘2𝑏  𝑘3𝑏  2𝐻 𝑐𝑜𝑒𝑙

+ + 𝑘1𝑏  𝑘3𝑏  2𝐻 𝑐𝑜𝑒𝑙
+

+ 𝑘1𝑓𝑘2𝑏  2𝐻 𝑒𝑐𝑚
+ + 𝑘1𝑏  𝑘2𝑏 + 𝑘1𝑏  𝑘3𝑓 

(3.16) 

  

So that each cycle transports two mol protons from ECM to coelenteron 

and one mol Ca2+ from coelenteron to ECM while consuming 1 mol ATP; 

flow is in opposite direction if the pump functions in reverse. The 𝐽𝐶𝑎𝐴𝑇𝑃𝑎𝑠𝑒  

flux moves 2 mol TA from coelenteron to ECM per mol 2H+, and vice-versa 

if the pump functions in reverse.  

BAT flux (JBAT) expression is analogous to that of CaATPase and can be 

derived by substituting 2𝐻 𝑐𝑜𝑒𝑙
+  with 𝐻𝐶𝑂 3,𝑒𝑐𝑚

−  and 2𝐻 𝑒𝑐𝑚
+  with 𝐻𝐶𝑂 3,𝑐𝑜𝑒𝑙

−  in 
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eq. 15 and 16. The kinetic constants for the two transports are of course 

different so that the BAT and Ca-ATPase have separate parameterizations. 

the JBAT flux moves 1 mol DIC and 1 TA from coelenteron to ECM under 

normal functioning and vice-versa if the pump functions in reverse. 

 

ATP flux to Ca-ATPase and BAT 

The energetic flux that is used to run the active transports is considered to 

be a weighted sum of respiration and photosynthesis metabolic fluxes. Even 

though zooxanthellae clearly do not directly supply energy to Ca-ATPase 

and BAT, we assume, after Dubinsky & Jokiel 1994 and Muller et al. 2009, 

they produce some excess photosintate that is translocated to the host and 

can be used for whatever purpose, including running the ion transport 

machinery. This mechanism is clearly a simplification, the translocation of 

photosynthetic energy to the coral host would imply an increase in light 

respiration and the energy consumed by the active transports will indeed 

appear solely in the respiratory flux, though it should suffice as a first 

approximation assuming that the machinery operates at steady state. The 

ATP flux is: 

 

 𝐴𝑇𝑃 = ∆𝐺𝐴𝑇𝑃 𝛼 ∆𝐻𝑃𝑔  𝑃𝑔 +  𝛽 ∆𝐻𝑅  𝑅  (3.17) 

 

Where Pg and R fluxes are converted from O2 to energy with the 

oxyenthalpic equivalents according to (Gnaiger & Forstner 1983) and then 

to mol ATP by assuming a Gibbs free energy of 30.5 kJ per mol ATP; α 

and β are the fractions of Pg and R that are devoted to the active 

transports. ATP flux is then partitioned between Ca-ATPase and BAT 

according to their concentrations: 

 

 𝐴𝑇𝑃 𝐵𝐴𝑇 =
𝐸0𝑏

𝐸0𝑏 + 𝐸0𝑐
𝐴𝑇𝑃  (3.18) 
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 𝐴𝑇𝑃 𝐶𝑎𝐴𝑇𝑃𝑎𝑠𝑒 =
𝐸0𝑐

𝐸0𝑏 + 𝐸0𝑐
𝐴𝑇𝑃  (3.19) 

 

Model master equations 

Surface based fluxes are converted to concentrations by dividing for the 

height of the relevant compartment, hcoel and hecm so that the whole system 

of differential equations can be written as: 

 

 
𝑑𝐷𝐼𝐶𝑐𝑜𝑒𝑙

𝑑𝑡
=  −𝐽𝐵𝐴𝑇 + 𝐽 𝑠𝑤−𝑐𝑜𝑒𝑙 ,1 − 𝐽 𝑐𝑜𝑒𝑙 −𝑒𝑐𝑚 ,1 − 𝐽𝐶𝑂2 − 𝑃𝑔 + 𝑅 /𝑐𝑜𝑒𝑙  (3.20) 

 

 
𝑑𝑇𝐴𝑐𝑜𝑒𝑙

𝑑𝑡
=  −𝐽𝐵𝐴𝑇 − 2𝐽𝐶𝑎𝐴𝑇𝑃𝑎𝑠𝑒 + 𝐽 𝑠𝑤−𝑐𝑜𝑒𝑙 ,2 − 𝐽 𝑐𝑜𝑒𝑙 −𝑒𝑐𝑚 ,2 /𝑐𝑜𝑒𝑙  (3.21) 

 

 
𝑑𝐶𝑎𝑐𝑜𝑒𝑙

𝑑𝑡
=  −𝐽𝐶𝑎𝐴𝑇𝑃𝑎𝑠𝑒 + 𝐽 𝑠𝑤−𝑐𝑜𝑒𝑙 ,3 − 𝐽 𝑐𝑜𝑒𝑙 −𝑒𝑐𝑚 ,3 /𝑐𝑜𝑒𝑙  (3.22) 

 

 
𝑑𝐷𝐼𝐶𝑒𝑐𝑚

𝑑𝑡
=  𝐽𝐵𝐴𝑇 + 𝐽 𝑐𝑜𝑒𝑙 −𝑒𝑐𝑚 ,1 + 𝐽𝐶𝑂2 − 𝐽𝐶𝑎𝐶𝑂3 /𝑒𝑐𝑚  (3.23) 

 

 
𝑑𝑇𝐴𝑒𝑐𝑚

𝑑𝑡
=  𝐽𝐵𝐴𝑇 + 2𝐽𝐶𝑎𝐴𝑇𝑃𝑎𝑠𝑒 + 𝐽 𝑐𝑜𝑒𝑙 −𝑒𝑐𝑚 ,2 − 2𝐽𝐶𝑎𝐶𝑂3 /𝑒𝑐𝑚  (3.24) 

 

 
𝑑𝐶𝑎𝑒𝑐𝑚

𝑑𝑡
=  𝐽𝐶𝑎𝐴𝑇𝑃𝑎𝑠𝑒 + 𝐽 𝑐𝑜𝑒𝑙 −𝑒𝑐𝑚 ,3 − 𝐽𝐶𝑎𝐶𝑂3 /𝑒𝑐𝑚  (3.25) 

 

This system is solved with a Runge-Kutta-Fehlberg variable step-size 

method with error control tolerance 10-6 and initialized with a 0.01s 

timestep. 
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Model calibration 

The model was run for a simulation time of 500s, largely sufficient to reach 

a steady state, with external conditions corresponding to the experimental 

setups (T, Sal, DIC, TA) and vital rates measurements (Pg, R) in Rodolfo-

Metalpa et al. 2010 and was calibrated by minimizing the sum of squared 

errors between the measured and simulated calcification rates (those 

measured with the alkalinity anomaly technique, see Rodolfo-Metalpa et al. 

2010). The data set was also used to run simulation experiments (see 

below). 

 

Cost of calcification 

The instantaneous metabolic cost of calcification can be calculated as the 

ratio between the sum of the energy fluxes reaching Ca-ATPase and BAT 

and the calcification rate. 

 

Simulation experiments 

After determining the set of parameter values that approximates at best 

the measured calcification rates, the model was used to run simulation 

experiments.  

To evaluate how the compartments and transport rates behave under light 

and dark conditions (i.e. in the presence or absence of photosynthesis), the 

model was run for a total simulation time of 2000 s with alternating light 

and dark conditions lasting for 500 s each and other conditions as from the 

b setup (see Table 3.1). 
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Abiotic and biologically mediated effects on 

calcification 

The model was also used to discern between the biologically mediated and 

abiotic effects of photosynthesys (light), respiration, seawater chemistry 

and temperature on calcification rates and calcification costs. 

We assume that the only effect of light is that of stimulating 

photosynthesis (but see Cohen et al. 2016); this in turn alters the DIC 

balance in the coelenteron (abiotic effect) and the ATP flux to the active 

transports (biologically mediated effect). Thus increasing photosynthesis in 

the model should simulate the LEC phenomenon. To separate the 

biologically mediated effect of photosynthesis the model was run at all light 

setups with ATP fluxes derived with Pg values ranging from 0.5 to 1.5 the 

baseline setup value. To separate the abiotic effect of light instead the 

model was run at all setups with Photosynthetic DIC and TA fluxes 

derived with Pg values ranging from 0.5 to 1.5 the baseline setup value. We 

adopted the same procedure also to separate the biologically mediated and 

abiotic effects of respiration, but here all setups were used. 

The model doesn't incorporate any law of temperature dependence for Pg 

and R, thus to separate the biologically mediated effects of temperature the 

model was run at all setups with Pg and R values from increased 

temperature setups substituted with Pg and R values from the 

corresponding baseline temperature setup and vice versa. This method is 

constrained by the experimental dataset and permits the assessment of two 

temperature differences only: -3 and +3 °C. Please note that here, contrary 

to what done for Pg, R, the effects of modified rates on coelenteron 

carbonates budget are included in the biologically mediated group. In fact 

we consider that the abiotic effects of temperature are those for which 

seawater phyisco-chemical constants account for. To separate the abiotic 

effect of temperature instead the model was run at all setups with all 

physico-chemical constants calculated from Temperatures ranging from -5 

°C to +5 °C the baseline setup value.  

To separate the abiotic effects of different components of carbonates 

chemistry (DIC, TA) the model was ran at all setups with either DIC or 

TA values ranging from 0.9 to 1.1 their original setup value. Same as for 

Temperature, the model doesn't incorporate any law that ties Pg nor R to 

seawater chemistry, also Rodolfo Metalpa et al. (2010) state there's no 
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significant correlation between pCO2 and Pg nor pCO2 and R. Nonetheless 

it is possible to assess potential biologically mediated effects of pCO2 

(suggested to exist in Pörtner 2008) by running the model at each setup 

with Pg and R values of baseline setups equal to those of the corresponding 

acidified setup and vice versa. This method is constrained by the 

experimental setup and permits the assessment of two pCO2 differences 

only: -300 and +300 ppm, corresponding to a change in DIC of roughly 

±5%. 

 

3.3 Results 

 

Calibration 

The model correctly simulates the observed calcification rates under all of 

the experimental conditions (Fig 3.2a). 

 

Fig. 3.2 (a) Calcification rates at all experimental setups, observed vs. simulated values. 

(b) Calcification costs at all model setups. 
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Compartments behaviour 

The model compartments behaviour under light and dark conditions (Fig. 

3.3) agrees with the experimental observations from Al-Horani et al. 2003 

and with the modelling results from Hohn & Merico 2012 and 2015 and 

Nakamura et al. 2013: the ECM pH is always higher than external pH and 

higher in the light than in the dark. ECM Ca2+ concentration is also higher 

than the external value and higher in the dark than in the light. Active ion 

pumping has the effect of increasing both DIC and TA in the ECM with 

respect to the coelenteron. Ω in the ECM is also higher than in seawater, 

ranging from about 13 in the light to about 8 in the dark, this reflects on 

the related calcification rates. Under dark conditions DIC coming mainly 

from respiration accumulates in the coelenteron due to the absence of the 

photosynthesis sink, so that it diffuses back to seawater; on the contrary 

under light conditions coelenteron DIC drops as it is used for photosyntetic 

activity, so that the diffusive flux is directed from seawater into the 

coelenteron. Transcellular CO2 flux is always directed from coelenteron to 

ECM but is consistently smaller than the rest of the fluxes and has little 

overall effect. 

 

Cost of light and dark calcification under different 

temperatures and pCO2 

The estimated costs of calcification under the experimental conditions used 

in Rodolfo-Metalpa et al. 2010, Fig 3.2b, ranges between about 88 

kJ/molCaCO3 or 2.9 molATP/molCaCO3 to about 196.5 kJ/molCaCO3 or 6.4 

molATP/molCaCO3. At each temperature and pCO2 dark calcification is more 

cost effective than light calcification, even though the calcification rates are 

smaller in the dark; also the costs under acidified conditions are always 

higher with respect to control. The biggest differences between costs in 

control vs acidified treatments are seen under dark conditions, on the 

contrary light calcification is only slightly more costly under acidified 

conditions except for the 13.4 °C treatment where the difference is 

substantial. 
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Fig. 3.3 State variables behaviour under alternating light (0:500 and 1000:1500 s) and 

dark (500:1000 and 1500:2000 s) conditions. (a) DIC, (b) TA, (c) Ca2+, (d) pH, (e) 

aragonite saturation, (f) Calcification rate. 

 

For instance at 21.7 °C the cost of dark calcification under control pCO2 is 

about 125.3 kJ/molCaCO3 or 4.1 molATP/molCaCO3, whereas under acidified 

conditions is about 148.1 kJ/molCaCO3 or 4.8 molATP/molCaCO3. At the same 

temperature light calcification costs about 175.4 kJ/molCaCO3 or 5.8 

molATP/molCaCO3 under control conditions and about 187 kJ/molCaCO3 or 6.1 

molATP/molCaCO3 under acidified conditions. 
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The analysis of the material fluxes between the models compartments 

permits to interpret these patterns bearing in mind that the final costs are 

the ratio between the ATP flux that reaches the active transports (or the 

sum of Ca-ATPase and BAT transport rates) and the calcification rates. 

High transport rates and low calcification rates both have the effect of 

increasing costs and vice versa. 

 

Influence of photosynthesis (light) and respiration 

The overall effect of increased photosynthesis is that of increasing both 

calcification rates and costs. The observed difference in light and dark 

calcification rates (LEC) is largely due to photosynthesis boosting the 

energetic flux that reaches the active transports (biologically mediated 

effect, Fig 3.4a,b). An increase in photosynthesis causes a substantial 

increase in both calcification rates and costs. The abiotic component (Fig 

3.4c,d) is also present and is related to the different carbon budget of the 

coelenteron with or without photosynthesis, it has the effect of increasing 

calcification rates and decreasing costs for increasing photosynthesis rates, 

thus it acts in synergy with the biologically mediated effect, but its effects 

are roughly one order of magnitude lower. The biologically mediated effects 

of respiration (Fig. 3.5) are similar to those of Pg, whilst the abiotic effects 

are entail decreasing calcification rates and increasing costs for increasing 

R. 

The difference between light and dark costs is due to the high active 

transport rates under light conditions, stimulated by photosynthetic energy, 

that overload the ECM with Ca2+, DIC and TA with respect to the 

coelenteron, so that these ECM solutes move back to the coelenteron 

trough the paracellular pathway following the concentration gradient; this 

also happens under dark conditions but to a lesser extent due to the lower 

active transport rates. As a consequence calcification in the light is less 

cost-effective than in the dark, because a substantial fraction of the 

skeleton building blocks that are transported to the ECM at the expense of 

energy do not end up in the skeleton but diffuse back to the coelenteron 

instead; Nonetheless light calcification still can be sustained at higher rates 

due to a substantial excess of metabolic energy from photosynthesis.  
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Fig. 3.4 biologically mediated (a, b) and abiotic (c, d) effects of photosynthesis on 

calcification. 

 

Effect of temperature on calcification rates and costs 

The overall effect of temperature is that of a substantial increase in 

calcification rates and related costs. The largest part of the variation is 

biologically mediated (Fig 3.6a,b): increasing temperatures stimulate Pg 

and R and provide additional energy for the active transcellular pathway. 

This of course within the temperature variation range of the experimental 

setups. Arguably as the limits of C. Caespitosa thermortolerance range are 

approached metabolic rates will drop. As for the abiotic effect of 

temperature (Fig 3.7c,d), calcification rates increase and calcification costs 

decrease with increasing temperature, according to CaCO3 deposition 

kinetics, though the abiotic effects, even if present, are one order of 

magnitude lower than the biologically mediated ones. 



106 
 

 

Fig. 3.5 biologically mediated (a, b) and abiotic (c, d) effects of respiration on 

calcification. 

 

Influence of seawater chemistry 

The overall effects of pCO2, as already remarked in Rodolfo Metalpa et al. 

2010, are low with respect to those of temperature and light. The 

biologically mediated component (Fig 3.7a,b) is the less important of the 

two contributions and results in a decrease in calcification for increasing 

pCO2, coupled with a decrease in costs. This contribution is due to 

respiration and photosynthesis rates being respectively slightly decreased 

(always, Tab 3.1) and slightly increased under acidified conditions. As for 

the abiotic effects of carbonates chemistry (Fig 3.7c,d,e,f), an increase in 

seawater DIC causes a decrease in calcification rates and an increase in 

costs, whilst an increase in seawater TA causes an increase in calcification 

rates and a decrease in costs. 
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Fig. 3.6 biologically mediated (a, b) and abiotic (c, d) effects of temperature on 

calcification. 

 

3.4 Discussion 

 

Our model successfully simulates the experimental calcification rates 

determined by Rodolfo-Metalpa et al. (2010), as well as the qualitative 

compartments response to external conditions described in Al-Horani et al. 

2003. The resulting material fluxes are also qualitatively in agreement with 

the modelling results from Hohn & Merico 2015. 
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Fig. 3.7 (a, b) Biologically mediated effects of DIC, (c, d) abiotic effects of DIC (e, f) 

abiotic effects of TA. 

 

Calcification Cost 

Our estimates of the metabolic cost of calcification (ranging around 100- 

200 kJ/mol) are much larger than the values previously proposed based on 

theoretical reasoning and more in line with Palmer (1992) experimental 

estimate. We obtained such estimates by implementing realistic 

biophisically-based active transport kinetics (Smith & Crampin 2004) where 
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the transport rates are influenced by both concentration gradients and 

available energy. In our opinion the commonly assumed values for the cost 

of calcification have a number of limitations as they do not account for 

transport inefficiencies and may produce unphysical behaviour: for instance, 

if the cost for transporting 1 mol of solute was invariantly 1 mol ATP, it 

would suffice to set the chemical gradient greater than ΔGATP to obtain a 

perpetual motion engine. Also the previously reported costs are (in our 

opinion) suspiciously low if compared to common biomass synthesis costs 

(Gnaiger & Forstner 1983). With such low costs many corals would face 

little trouble in allocating some extra energy to calcification when 

acidification kicks in. Our result instead is indicative of a conspicuous 

investment into skeleton and may be important to understand the relations 

between biocalcification and climatic variability. Since to date only one 

experimental estimate of the cost of calcification is available, and none for 

corals, we suggest further experiments to test this. However we also stress 

that most studies target tropical species whilst we use data from a 

Mediterranean one which is also little sensitive to acidification.  

Regardless the exact value of the calcification cost we also found it to have 

an overall positive relation with calcification rates: the more the coral 

calcifies the less efficient is the conversion of energy to calcium carbonate. 

This may seem paradoxical though it can be understood bearing in mind 

that the cost in the absence of a metabolic investment would be zero and 

rates would still be positive due to seawater oversaturation.  

 

Contribution of the different pathways to calcification 

We found that both calcium and carbon enter the ECM mainly through the 

active transcellular pathway; this is in line with the findings from Furla et 

al. (2000) that found calcification rates in the reef coral Stylophora 
pistillata to be impaired by both Ca-ATPase and BAT selective inhibitors. 

As found by Hohn & Merico (2015), the passive paracellular pathway is a 

sink rather than a source of carbon and calcium in the ECM. Finally the 

transcellular diffusion pathway is scarcely influential. 
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LEC and contributions to calcification. 

In our model the main factor contributing to LEC is the excess metabolic 

energy provided by photosynthesis that stimulates active transcellular 

transport activity. The other major contribution to calcification rate is 

temperature which acts in a similar fashion as light does, by stimulating 

photosyntesis and respiration. Abiotic contributions are also present but are 

largely minoritary with respect to biologically mediated effects. The effects 

of seawater chemistry, both abiotic and biologically medited, on the other 

hand, are less pronounced than those of temperature and light. This was 

however expected because the original experiments from Rodolfo-Metalpa 

et al. 2010 concluded that C. Caspitosa is an acidification resistant species. 

Our model builds on an accredited conceptual model of the physiology of 

coral calcification (McConnaughey & Whelan 1997), already tested for 

different purposes trough modelling applications (Hohn and Merico 2012; 

2015, Nakamura 2013), and incorporates realistic kinetics for the active 

transcellular pathway (Smith & Crampin 2006) that depend both on 

concentration gradients and available energy. Our coupling between 

metabolic rates (Pg, R) and the calcification machinery is based on the 

models of syntrophic simbioses developed in Dubinsky & Jokiel 1994 and 

Muller et al. 2009; in such models, and in ours as well, the zooxanthellae 

translocate some excess photosynthate to the coral host that can use it for 

whatever purpose, and some of this energy is indeed used to run the active 

transports. 

The hypothesis that calcification in corals is energy limited and that LEC is 

due to photosyntate translocation from symbionts to host has already been 

formulated (Goreau & Goreau 1959; Chalker & Taylor 1975) but is rather 

overlooked (e.g. Allemand et al. 2011 and Gattuso et al. 1999 and 

references therein). A positive correlation between photosynthesis and 

calcification is beyond doubt, but LEC is more often attributed to the 

photosynthetic uptake of CO2 which would increase carbonate ion 

concentration and facilitate precipitation of CaCO3 (Cohen et al. 2016). 

However also increased respiration rates (a source of CO2) are widely 

reported to be correlated with enhanced calcification: Holcomb et al. (2014) 

found that addition of glucose or glycerol, coupled with increased oxygen 

stimulated both respiration and dark calcification in bleached S. pystillata 

microcolonies (but not in un-bleached ones), and concluded that dark 
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calcification may be oxygen limited in zooxanthellate corals. (Anthony et 

al. 2002) found respiration rates to be the main factor affecting calcification 

in two species of reef corals. Also in the data used for this study (Rodolfo-

Metalpa et al. 2010) both photosynthesis and respiration rates correlate 

positively with photosynthesis. 

Since photosynthesis consumes carbon and respiration produces it, the two 

processes should, most of the times, display opposite effects if the prevailing 

mechanism was abiotic. 

Evidence is building up that calcificaton in corals relies on active transport, 

hence it is an energy demanding process. This suggests calcification should 

be energy limited at least under some conditions. 

Biological processes are indeed renown for being energy demanding (life, at 

least usually, doesn't happen spontaneously); The practice of studying 

biocalcification solely from a carbonates chemistry perspective is indeed 

very popular, perhaps because carbonates chemistry in seawater is rather 

well known and all the tools are at hand. This approach undoubtedly lead 

to a much deeper understanding of coral calcification and its relations with 

environmental parameters, especially in recent years; however ambiguous 

results are still abundant and many mechanisms have yet to be elucidated. 

We suggest that the energy limitation of active transport rates in corals 

may be much more important than previously thought and that further 

experiments should test this hypothesis. 
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4. Increasing frequency of heat waves will 

cause the extinction of red coral shallow banks 

 

Abstract 

Frequency and severity of heat waves is expected to increase as a 

consequence of climate change with important consequences on human and 

ecosystems health (Seneviratne et al. 2013). However, while many studies 

explored heat wave impacts on terrestrial systems (Fischer et al. 2007, 

Schär et al. 2004), few studies dealt with marine systems, so that both the 

expected changes in marine heat waves occurrence and effects on marine 

organisms and ecosystems remain less understood and surprisingly poorly 

quantified. 

Here we quantify how much more frequent, severe, and depth-penetrating 

marine heat waves will be in the next decades, and show that this will 

impact on many organisms that live in shallow water or have reduced 

motility (e motility, and related economic activities. In particular, shallow 

(up to 40 meters) banks of red coral - a commercially exploited benthic 

species endemic of the Mediterranean Sea and already subjected to heat-

related mass mortality events - are doomed to extinction. Results also 

provide essential information to assess heat wave impacts on other species 

with no or reduced motility (e.g. bivalves), ecologically important habitats 

(e.g. coralligenous) and aquaculture activity. 
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4.1 Study 

 

Climate change is expected to alter not only the average values of 

environmental properties, but also the extreme ones, as well as the 

frequency of occurrence of conditions nowadays considered as extreme (Fig. 

4.1). This has the potential to significantly impact the state and dynamics 

of biological organisms by exposing them to conditions that are different 

from those they are adapted to and possibly outside their tolerance limits 

(Thompson et al. 2013). Furthermore, while many organisms have the 

capabilities to cope with and adapt to new conditions, this is not fast, nor 

free. Biological adaptation takes time, and coping with adverse conditions 

requires an energetic cost and leaves an organism stressed and more 

vulnerable to other pressures. Therefore acclimation mechanisms are likely 

to be effective for slow gradual changes, such as those occurring to averages 

values, but less effective in buffering the impact of extreme or episodic 

events. 

Marine heat waves are events during which sea temperature exceeds a given 

threshold for a number of consecutive days. They might be severe because 

of the level of temperature, the duration of the event, or both. Obviously 

different organisms present different vulnerabilities to a given event, 

depending on species-specific thermal tolerance limits. 

The effects of heat waves on land have been extensively analyzed 

(Wernberg et al. 2013, Garrabou et al. 2003, Marba & Duarte 2010), also 

because of consequences on human health and agriculture. The effects of 

heat waves on ocean properties and marine life have been less explored, 

possibly because of the buffering effect of ocean water, which confines the 

impacts to the upper part of the sea. However, marine heat waves effects 

can be quite relevant in shallow waters and for organisms which - being 

sessile or having reduced motility - cannot move to colder water. Similarly, 

heat waves will impact on organisms which - being exploited by 

aquaculture activities - are kept in surface water by floating cages (e.g. 

fishes) or devices (e.g. bivalves). Notable examples of significant impacts of 

heat waves on Mediterranean marine ecosystems are provided by the 1999 

and 2003 summers, which caused mass mortality events in a variety of 

organisms (Garrabou et al. 2001, 2009) and caused relevant economic 

damages to aquaculture activities. 
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Fig. 4.1 Idealized present (a) and future (b) frequency distribution of temperature; 

under future conditions average and extreme temperatures will be higher, as well as the 

number of days exceeding a given threshold temperature (shaded area). 

In this paper we: a) quantified the changes in spatial distribution, 

frequency and severity of marine heat waves in the Mediterranean Sea by 

analyzing projections from a state of the art, high resolution, physical 

oceanography model off-line forced by a standard IPCC climate change 

scenario; and b) produced risk assessment maps for red coral (Corallium 
rubrum), by integrating the information on 3D spatial distribution of 

marine heat waves with a mortality model derived from experimental 

findings and knowledge on red coral physiology.  

C. rubrum is a slow growing, long lived, gorgonian coral endemic of the 

Mediterranean. It is commonly found on hard substrates, on steep walls 

and overhangs, below 20 m depth and up to more than 100 m, and it is 

associated with the coralligenous communities (Tsounis et al. 2010). It is 

exploited by the jewelry industry since ancient times for its glossy red 

skeleton and currently considered over-harvested (Tsounis et al. 2010, 
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2013). Besides fishing, shallow red coral populations have been subject in 

summers 1999 and 2003 to mass mortalities that occurred jointly with 

positive summer temperature anomalies(Garrabou et al. 2001, 2009, 

Torrents et al. 2008). 

Rossi and Tsounis (2007) and Coma et al. (2009) advocated that mass 

mortalities are triggered by a combination of increased metabolic demands, 

due to high temperature, and summery food shortage; however, prolonged 

exposure to high temperature is known to substantially increases mortality 

risk, as shown in Torrents et al. 2008. 

We explored the potential effect of the forecasted increase in heat wave 

frequency and magnitude on natural banks of red coral. The response of 

such organisms, however, provides indications on the response of 

coralligenous communities too and, possibly, of other organisms. 

Furthermore, and importantly, our projections of heat wave occurrence can 

be readily used - in conjunction with specie specific thermal tolerance 

information - to assess the impact on marine heat waves on any marine 

organism for any point and any depth of the Mediterranean sea. 

We quantified the spatial distribution of marine heat waves with reference 

to three temperatures: 25, 27 and 30°C. Model projections show that the 

number of consecutive days per year with temperature exceeding those 

thresholds expands under future conditions (Fig. 4.2). The change is not 

spatially homogeneous, with the eastern basin showing the highest 

increments. The surface layers undergo the largest change, whereas below 

40m depths the differences between present and future conditions are 

negligible. Generally, the 25°C threshold is exceeded far more often than 

the 27°C threshold. Conversely, if heat waves are assessed against the 30°C 

threshold, the differences between present and future conditions are 

appreciable only in easternmost (and southernmost) coasts of the Levantine 

basin. 

The spatial distribution of red coral mortality risk is illustrated in Fig. 4.3, 

which shows the classification of sites in no mortality, partial mortality, 

and total mortality risk classes, for different depths and under both 

contemporary and future conditions. The figure also indicates the sites in 

which red coral banks are observed (green dots). Mortality risk estimates 

were derived also for zones where red coral banks are currently not present, 

because we aim to map potential rather than realized distribution. 
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Fig. 4.2 Max yearly number of consecutive days with temperature above 25, 27 and 

30°C, for present (2006-2010) and future (2046-2050) conditions at sample depths of 5, 

and 24 m. 
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Fig. 4.3 Estimated red coral mortality risk under present and future conditions at 

different depths. 
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Results show how the presence records of red coral banks are spatially 

confined to the area currently classified as no mortality, or - in few cases - 

partial mortality.  

Under present conditions extensive partial mortality zones are present in 

shallow waters in South Western Mediterranean and Western Tyrrhenian 

Sea. The extent of these zones becomes negligible below 34 m depth, which 

is consistent with the reported presences of deep banks. On the contrary no 

mortality risk is detected in the basins where red coral shallow banks have 

been most often signaled: Eastern Tyrrhenian Sea, Ligurian Sea and coastal 

zones of North Western Mediterranean. Extensive total mortality zones are 

a common feature of shallow waters in the eastern basin, including the 

Ionian and Aegean seas where red coral is present but extremely rare and 

found at depths greater than those interested by the heat waves related 

mortality here analyzed (Salomidi et al. 2009). 

Under future conditions, the extensions of both the partial and total 
mortality areas increase. At 20m depth, in the North and Central Adriatic 

and North Tyrrhenian (currently classified as no mortality area) the higher 

occurrence of heat waves will significantly reduce the extension of no 
mortality areas, and the chance of survival of red coral shallow banks. 

Negative effects are projected also for banks along the Sardinia coast, the 

Sicily coast and the Greek seas. 

As expected, the adverse impacts of heat waves markedly decrease with 

water depth, so that at around 40m the changes in mortality risk classes 

distribution are negligible, with the only exception of the coastal zones in 

the Levantine basin where red coral presence has - however - never been 

reported yet. 

Future potential total mortality zones extend through all the Levantine and 

Ionian basins, up to the southern costs of Italy and Eastern Aegean Sea. 

South Tyrrhenian and South Western Mediterranean are also heavily 

impacted in the shallower portion of the bathymetric range (up to 35 - 

40m). The Balearic Islands appear to be a particularly vulnerable zone 

within Western Mediterranean. Large mortality zones, mostly partial 
mortality, are present also in the Northern Tyrrhenian Sea and North 

Western Mediterranean, where shallow red coral banks are currently 

abundant, and in the Eastern Adriatic Sea at depths up to 35m. Few 

coastal zones do not present mortality risk at shallow depths; those include 
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the gulf of Marseille, the Alboran Sea and the coast affected by the 

Algerian current originated by cool Atlantic waters. 

Our results support that summer heat waves of magnitude capable to cause 

massive mortality in red coral banks may become commonplace in the near 

future and could affect red coral as well as other typical coralligenous 

species. In fact, even though the exposure thresholds used in this study 

were determined for red coral, mortality events similarly affected several 

coralligenous species (Garrabou et al. 2001, Coma et al. 2009), pointing at 

comparable thermotolerance thresholds. Demographic studies (Santangelo 

et al. 2012) pointed out that, despite of recolonization phenomena, should 

these adverse events become more frequent, populations might not be able 

to recover. 

The physiological mechanism underlying mortality has not yet been 

elucidated. Whilst some studies suggest a combined effect of increased 

metabolism and summery food shortage (Rossi & Tsounis 2007, Coma et al. 

2009), recent studies point to a mismatch between oxygen supply and 

demand (verberk and Bilton 2011, Kleypas 2015). Although not mutually 

exclusive, we argue the second hypothesis may better explain the short time 

scales (few days) over which mortality events took place.  

Impacts are predicted in geographical zones where shallow red coral banks 

are known to be present, including Eastern Tyrrhenian coasts, Sardinia and 

Corsica and the Spanish coast of Western Mediterranean. Few refuge zones 

will remain along the French and Algerian coasts and Alboran Sea. On the 

other hand populations dwelling below 40m depth are not predicted to be 

impacted significantly. 

Several studies highlight that ectothermic species, such as corals or mussels, 

have the capability to tolerate exposure to temperatures close to the their 

upper limits, and even to adapt their thermal limits (Middlebrook et al. 

2008, Buckley et al. 2001). However, it must be considered that acclimation 

might not be very effective for episodic exposures to extreme conditions, 

and thermal acclimation limits anyway exist. In fact, other studies reported 

a decrease in tolerance to high temperature after repeated exposures (Jones 

et al. 2008), and raised concerns about the capability of marine organisms 

to cope with a trend of increasing frequency of heat wave events. On the 

other hand, the recent extinction of vermetids along the Israeli coast (Galil 

2013) already provides an example of the impact of temperature on 
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sensitive organisms. Furthermore, besides heat waves impacts, red coral is 

also subjected to other stressors, such as acidification and intense 

harvesting, so that heat waves impact will sum up, especially for the largest 

specimen that are the primary target of fisheries and also display the 

highest vulnerability to heat (Garrabou et al. 2001). 

The impacts on red coral also exemplify analogous impacts that will occur 

to other species that have reduced motility or are confined to surface layers. 

Notably, aquaculture activities - which exploit the growth of organisms in 

floating devices - will surely be impacted by an increase in frequency of 

marine heat waves. As an example, temperature levels of 25°C have been 

identified as an upper limit for mussels normal physiological activities 

(Anestis et al. 2010), indicating that Mediterranean mussels already live 

close to their thermal acclimation limits. Furthermore total mortality of 

mussels has been observed when seawater temperature reached 28°C for 

more than 10 days (Ramon et al. 2007). Consequently, the projections in 

Fig. 4.2 (surface water) clearly suggest a significant reduction in the 

number of suitable farming sites, which are currently distributed all over 

the Mediterranean coasts. Similarly, coralligenous outcrops - a collective 

term referring to complex biogenic structure made by the outgrowth of 

encrusting calcareous algae on hard substrate in relatively shallow waters - 

would also suffer. Also in this case, mortality events might cause -besides 

ecological damages - a direct economic cost, because of the impacts on 

scuba diving tourism (Rodrigues et al. 2013). 

 

4.2 Methods  

 

Results of a 50 years (2000-2050) numerical simulation performed with a 

state of the art ocean model under RCP8.5 IPCC climate change scenario 

have been post-processed to assess physical properties of the Mediterranean 

Sea under contemporary (2006-2010) and future (2046-2050) conditions. 

The physical model used for the projection is the NEMO model (Madec 

2008, see also http://www.nemo-ocean.eu) already used in the 

Mediterranean Sea (Oddo et al. 2009, Lazzari et al. 2014), and also 

routinely used to produce short term forecast of the Mediterranean Sea 

http://www.nemo-ocean.eu/
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since 2007 (http://www.myocean.eu). For these specific simulations, the 

transport is computed with a horizontal resolution of 1/16 of degree (which 

corresponds to about 5 km) and with a vertical z-coordinate discretization 

in 43 levels with a grid spacing ranging from 3 meters in surface layers to 

350 meters in the bottom layers (MED16 OGCM model, Béranger et al. 

2005). A comparison of model output with projections made by an 

ensemble of five physical models of the Mediterranean Sea (Gualdi 2013) 

confirmed that our projections fall within the range projected by an 

ensemble of state of the art regional models of the Mediterranean Sea, and 

highlights how there is an high consensus in expecting a significant 

warming of the Mediterranean Sea in the next decades. 

Post-processing of model output permitted us to reconstruct the spatial 

distribution (maps) of heat waves occurrence, by recording - for each point 

of the Mediterranean Sea and for each considered time period - the 

maximal number of consecutive days above a given temperature thresholds. 

Upper thermal limits for red coral specimen have been estimated by 

Torrents et al. (2008), and are reported in Table 1. These authors exposed 

corals to different treatments (24, 25,27,30 °C) and concluded that exposure 

to different temperature thresholds result in partial or total mortality of the 

colonies, as summarized in Table 1. As an example, exposure for 3 

consecutive days at 27°C would cause partial mortality, and exposure for 5 

days to the same temperature will cause total mortality. Furthermore, 

different mortalities have been observed for specimen collected from shallow 

populations vs. deep populations. Deep corals result to be more sensitive to 

warming than the shallow ones, likely because the latter are acclimated to 

warmer temperature than the former.  

 

 

 

 

 

 

http://www.myocean.eu/
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Thresholds Shallow population Deep population 

Days before partial mortality at 24°C - - 

Days before partial mortality at 24°C - - 

Days before partial mortality at 25°C 14 9 

Days before total mortality at 25°C - 19 

Days before partial mortality at 27°C 3 2 

Days before total mortality at 27°C 5 3 

Days before total mortality at 30°C 1 1 

Table 4.1 Upper thermal thresholds of Corallium rubrum adapted from Torrents et al. 

(2008). 

Current and future mortality risk estimates have been derived by 

combining the spatial distribution of heat waves occurrence (Fig. 4.3) and 

the vulnerability information summarized in Table 4.1.   

We assessed the mortality risk of colonies in the 0-30 meters depth range 

against thresholds derived from experiments on shallow specimen, and the 

mortality risk of deeper colonies against deep specimen thresholds. To 

minimize the effect of inter-annual variability two five-year periods have 

been considered (2006-2010 and 2046-2050). Mortality criteria were 

considered met if exposure threshold were exceeded at least once in each 

five-year period.  
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Abstract 

Habitat classifications provide guidelines for mapping and comparing 

marine resources across geographic regions. Calcareous bio-concretions and 

their associated biota have not been exhaustively categorized. Furthermore, 

for management and conservation purposes, species and habitat mapping is 

critical. Recently, several developments have occurred in the field of 

predictive habitat modeling, and multiple methods are available. In this 

study, we defined the habitats constituting northern Adriatic biogenic reefs 

and created a predictive habitat distribution model. We used an updated 

dataset of the epibenthic assemblages to define the habitats, which we 

verified using the fuzzy k-means (FKM) clustering method. 

Redundancy analysis was employed to model the relationships between the 

environmental descriptors and the FKM membership grades. Predictive 

modelling was carried out to map habitats across the basin. Habitat A 

(opportunistic macroalgae, encrusting Porifera, bioeroders) characterizes 

reefs closest to the coastline, which are affected by coastal currents and 

river inputs. Habitat B is distinguished by massive Porifera, erect Tunicata, 

and noncalcareous encrusting algae (Peyssonnelia spp.). Habitat C (non-

articulated coralline, Polycitor adriaticus) is predicted in deeper areas. The 

onshore-offshore gradient explains the variability of the assemblages 

because of the influence of coastal freshwater, which is the main driver of 
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nutrient dynamics. This model supports the interpretation of Habitat A 

and C as the extremes of a gradient that characterizes the epibenthic 

assemblages, while Habitat B demonstrates intermediate characteristics. 

Areas of transition are a natural feature of the marine environment and 

may include a mixture of habitats and species. The habitats proposed are 

easy to identify in the field, are related to different environmental features, 

and may be suitable for application in studies focused on other geographic 

areas. The habitat model outputs provide insight into the environmental 

drivers that control the distribution of the habitat and can be used to guide 

future research efforts and cost-effective management and conservation 

plans. 
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5.1 Introduction 

 

Coralligenous outcrops are among the most diverse and representative 

Mediterranean benthic ecosystems, and they are produced by the interplay 

between calcareous organism building processes and physical and biological 

erosional processes (Ballesteros 2006). Several types of coralligenous 

morphologies have been identified in the literature (Ballesteros 2006, 

Bosence 1983, 1985, Di Geronimo et al. 2001a, 2001b, 2002, Bracchi et al. 

2015). The main recognized morphologies are reef banks, which are flat 

structures (ranging from 0.5 to 4 m in height) built over more or less 

horizontal substrates, and coralligenous rims, which are structures that 

grow on vertical cliffs and are generally located in shallower waters 

(Ballesteros 2006, Bracchi et al. 2015, Pérès & Picard 1964, Laborel 1987). 

Most scientists consider coralligenous outcrops to be seascapes or 

community mosaics rather than a single community. These biogenic 

structures are complex and contain areas dominated by algae, suspension 

feeders, borers, or even soft-bottom fauna living in the sediment deposited 

in cavities and holes (UNEP-MAP-RAC/SPA 2008). Certain dominant 

species that characterize the calcareous bio-concretions are long-lived 

engineering species, which makes this habitat extremely vulnerable to 

disturbances (Ballesteros 2006, UNEP-MAP-RAC/SPA 2008, Kipson et al. 

2011, Salomidi et al. 2012). 

Because of their extent, biodiversity, and implications for fisheries and 

carbon regulation, calcareous biogenic habitats are considered priority 

habitats at the European and regional levels (UNEP-MAP-RAC/SPA 2008, 

Canals & Ballesteros 1997, Martin et al. 2014). 

Marine habitat classifications are performed to provide standard 

nomenclature and guidelines for describing, mapping, and comparing 

marine environments and associated assemblages across geographic regions 

(Costello 2001). Moreover, habitat classifications assist in the management 

of marine resources and the quantification of ecosystem processes and 

services at different temporal and spatial scales. Finally, habitats can be 

used as a surrogate for biodiversity, and they provide guidance for 

monitoring programs (Diaz et al. 2004). For example, the identification of 

thresholds between the ecological statuses of priority habitats in the 
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European Marine Strategy Framework Directive (MSFD, 2008/56/EC) of 

 ―Good‖ and  ―Not Good‖ is based on  ―Habitat Distribution,‖  ―Habitat 

Extent‖, and  ―Habitat Condition.‖ The geomorphological features of 

coralligenous build-ups and their associated biota have not been 

exhaustively categorized. In particular, coralligenous build-ups that occur in 

areas where boulders are associated with sand and mud, such as in the 

northern Adriatic Sea to the Apulia region, should be considered a specific 

type (Costello & Emblow 2005). According to the European Habitats 

Directive (92/43/EEC), the marine rocky outcrop classification is included 

in the Annex I habitat types as  ―1170-Reefs‖ (36). In the context of the 

Barcelona Convention (UNEP/OCA/ MED WG149/5 Rev. 1, 2006), which 

is an elaboration of the CORINE biotopes nomenclature (Moss & Wyatt 

1994), coralligenous biocoenosis (IV.3.1) is included within the circalittoral 

hard beds and rocks categories and contains 15 different facies (UNEP-

MAP-RAC/SPA 2008). Finally, according to the MSFD, coralligenous 

biocoenoses fall into the categories  ―Facies and associations of coralligenous 

biocoenosis (III.6.1.35)‖ and  ―Shallow sublittoral rock and biogenic reef‖. 

However, these bulk categories are not appropriate for management 

purposes because they each encompass a large range of biogenic natural 

habitats that can differ significantly in their ecological and conservation 

features (Borg & Schembri 2002). Europe generally employs the European 

Nature Information System (EUNIS) habitat classification scheme (Davies 

& Moss 1999; http://eunis.eea.europa.eu); however, the development of the 

marine EUNIS classification is primarily based on Atlantic ecosystems, 

whereas Mediterranean ecosystems are roughly incorporated into the 

EUNIS list using habitats from the Barcelona Convention. Thus, 

coralligenous habitats are currently classified as  ―A4.26: Mediterranean 

coralligenous communities moderately exposed to hydrodynamic action‖ 

and  ―A4.32: Mediterranean coralligenous communities sheltered from 

hydrodynamic action‖ in the EUNIS system. 

Despite their ecological, aesthetic, and economic value, complete and up-to-

date baseline information on coralligenous outcrops is not available (Kipson 

et al. 2011), and most of the current information is derived from the 

western Mediterranean (Martin et al. 2014), where coralligenous outcrops 

are unlikely to occur in sedimentary zones, enclosed estuarine 

environments, and sandy areas with low salinities, such as river mouths 

(Martin et al. 2014). However, hundreds of calcareous bio-concretions are 



133 
 

scattered on the muddy-detritic bottom of the northern Adriatic Sea. These 

biogenic outcrops are considered to have a significant degree of similarity 

with coralligenous outcrops (Casellato & Stefanon 2008, Ponti et al. 2011, 

Curiel et al. 2012), although their composition and overall structure show 

striking differences (Curiel et al. 2012), and according to the EUNIS 

classification, they should be classified as a different habitat. 

The increasing awareness of the importance and fragility of these habitats 

has led to global efforts to conserve these ecosystems according to several 

legally binding or voluntary international initiatives. For environmental 

research, resource management, and conservation planning, mapping is 

critical, although it is not an easy task in marine habitats that might be 

distributed over hundreds of square kilometers. In recent decades, many 

developments have occurred in the field of species and habitat distribution 

modeling, and multiple methods are now available (Elith et al. 2011, 

Guisan & Zimmermann 2000). The construction of a geographical 

distribution model requires observations of species/habitat occurrences and 

environmental variables that are considered to influence habitat suitability 

(Franklin & Miller 2009). The quantification of such species–environment 

relationships represents the foundation used to predict the likelihood of a 

species occurring at a given location (Guisan & Zimmermann 2000). 

Currently, predictive habitat modeling is performed at regional or global 

scales and appears to be a cost-effective method of identifying the location 

of vulnerable marine habitats, such as coralligenous reefs, although this 

modeling does not provide habitat maps. Predictive habitat modeling 

provides insight into the environmental drivers that control the distribution 

of vulnerable marine habitats and can be used to guide research efforts 

(Martin et al. 2014, Davies & Guinotte 2011, Giakoumi et al. 2013). 

In this study, we intend to provide (1) a definition of the different habitats 

constituting northern Adriatic biogenic reefs, (2) an assessment of the main 

physical and environmental variables accounting for their distribution and 

(3) a predictive habitat map to indicate the occurrence of biogenic reef 

habitats in the northern Adriatic Sea. 
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5.2 Material and Methods 

 

Study area 

The northern Adriatic Sea is the most dynamic sub-basin of the 

Mediterranean Sea (Artegiani et al. 1997, Russo & Artegiani 1996), and it 

is characterized by strong river runoff and wide seasonal and interannual 

variability in temperature and salinity. The Adriatic Sea is surrounded by 

mainland areas that exhibit sharp contrasts in tectonism, topography, 

climate, and fluvial inputs. Northwestern Adriatic shores are sedimentary 

and contain a continuous line of coastal lagoons. The water density 

gradient between the northern and the southern Adriatic Sea is the most 

important factor that triggers the movement of water in a primarily 

counterclockwise current that flows down to the Otranto Strait and into 

the Mediterranean Sea (Zore-Armanda 1969). River discharges show a 

remarkable seasonality, with the highest flow rates usually occurring in late 

spring and autumn. The concentration of inorganic nutrients is highly 

variable and is mainly related to river inputs (Burba et al. 1994). 

From the Gulf of Trieste to the Po River delta, biogenic outcrops, locally 

known as  ―tegnùe‖ or  ―trezze‖, are scattered on the soft bottom, and they 

were first identified as beach rocks (Braga et al. 1969, Stefanon 1967, 

Stefanon 1970, Newton & Stefanon 1975). Recent studies have related their 

genesis to seeping methane, cementation, and lithification processes 

(Colantoni et al. 1998, Conti et al. 2002, Gordini et al. 2004, 2012, Stefanon 

& Zuppi 2000). These rocky outcrops are  ―calcareous bio-concretions‖ 

derived from the building action of calcareous organisms on hard substrata 

of diverse geological origins. The origins of the complex primary substrata 

consist of a carbonatic conglomeration of sandy sediments mixed with shells 

and other exoskeletons. The buildup process may be accelerated by the 

seepage of methane through the sediments and by subtidal freshwater 

streams (Gordini et al. 2012). The calcareous bio-concretions display a 

broad range of geomorphologies and extend from a few to several thousands 

of square meters. The offshore bio-concretions situated in front of the 

Venice Lagoon are sloped and stretch parallel to the coast. Several outcrops 

show large horizontal surfaces, whereas others are composed of scattered 

conglomerates of small rocks. The surrounding sea floor is mainly detritic 
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because it accumulates skeletons of species growing either in the sediment 

or in the neighboring outcrops. 

 

Habitat typology 

We used an updated spatial dataset based on information provided by peer-

reviewed articles, regional, national, and international reports and by 

recently unpublished data obtained by the authors to produce an overview 

of the epibenthic assemblages associated with the northern Adriatic 

calcareous bio-concretions. Data on macroalgal assemblages were obtained 

from studies performed over an approximately 30-year period (Ponti et al. 

2011, Curiel et al, 2012, Curiel et al. 2001, 2010a, 2010b. Curiel & Molin 

2010, Ponti & Mescalchin 2008, Solazzi & Tolomio 1981) as well as from 

recent studies. 

Data on benthic invertebrates were obtained from peer-reviewed articles 

(Casellato & Stefanon 2008, Ponti et al. 2011, 2014, Gabriele et al. 1999, 

Casellato et al. 2005, 2007, Mizzan 1992) and national unpublished reports 

(Faresi 2010, ARPAV 2010, Magistrato Alle Acque di Venezia–Corila-

SELC 2006). 

Habitat typology was established by expert judgment based on knowledge 

of the assemblages and the updated dataset. This typology was then 

verified on a large scale using 33 outcrops for which comparable data were 

available (Fig 5.1). 
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Fig. 5.1 Occurrences of the 3 habitat typology outcrops across the northern Adriatic Sea 

(original copyright 2015). 

 

Fuzzy clustering methods 

To evaluate the habitat typology produced through  ―a priori expert 

judgment,‖ we used the fuzzy k-means (FKM) clustering method (Bezdek 

1981) and performed the clustering with the parameter of fuzziness set to 2 

and the number of random initializations set to 1000. All FKM calculations 

were performed using the fclust package for R (Ferraro & Giordani 2015). 

 

Environmental database 

Data on water temperature, salinity, dissolved oxygen and chlorophyll a, 

and ammonium, nitrate and phosphate concentrations were extracted from 
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the dataset of vertical seawater profiles collected by Solidoro et al. (2009) 

from 1986–2006; ii) the Regional Water Authority (ARPA Veneto, 1985–

2004) in monthly or biweekly measurements performed along 20 transects 

orthogonal to the Veneto coast and extending offshore up to 5 nautical 

miles; and iii) the Regional Water Authority (ARPA-FVG, 2009–2012) in 

monthly measurements performed at 21 monitoring stations along the 

Friuli-Venezia Giulia coastline (Table 5.1). The surface (shallowest record) 

and bottom (deepest record) values of all variables were extracted for 

winter (January, February, and March), spring (April, May, and June), 

summer (July, August, and September) and autumn (October, November, 

and December). 

 

Table 5.1 Environmental descriptors, measurement units, and data sources. All of the 

variables except depth were extracted at the surface and the bottom. 

A minimum depth of 5 m was imposed for the bottom values. We 

calculated the median seasonal values of each parameter on a 2.5 x 2.5 km 

grid, and we calculated a yearly median only if data were present for all 4 

seasons to prevent biases caused by different sampling efforts in different 

seasons. Because the data were spatially sparse and a number of grid cells 

were left empty, we extrapolated information to grid cells without data by 

means of the moving window method (Solidoro et al. 2009). For each cell, 

the median for at least 10 data points within the surrounding cells in a 

search radius of 20 km was calculated to determine the missing 

temperature, salinity, and chlorophyll a values. For the remaining variables, 

we used a search radius of 30 km and at least 6 data points. The same 

procedures were applied to derive ranges of variation between the 95th and 
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5th percentiles of distribution for each parameter at the surface and the 

bottom. We used the 95th and 5th percentiles instead of the absolute 

maximum and minimum values, respectively, to prevent occasional extreme 

data from biasing the range calculations. The gridded results of the median 

and value ranges for each surface and bottom variable were exported and 

geo-referenced as geographic information system (GIS) raster layers. 

Hydrodynamic data were extracted from a high-resolution numerical model 

of the northern Adriatic Sea. The simulation was performed by customizing 

theMITgcm (Massachusetts Institute of Technology general circulation 

model), which is a three-dimensional, finite-volume general circulation 

model. The numerical experiment presents a higher resolution (4-fold 

higher, which is ~750 m in the horizontal direction) version of the 

simulation described in Querin et al. 2013, and it is focused on the northern 

Adriatic Sea for the year 2008. The computational grid is composed of 30 

vertical levels. The model neglects tides and short gravity waves (wind 

waves). 

For the bottom velocities, we sampled the first grid elements above the 

deepest cells to produce a fully developed velocity field and avoid boundary 

layer effects at the bottom. The velocities were averaged over a 2.5 x 2.5 

km grid and then geo-referenced as GIS raster layers. 

For the bathymetry, we downloaded the GEBCO 30 arc-second grid from 

the General Bathymetric Chart of the Ocean (GEBCO 2014. Database: 

GEBCO_2014 Grid version 20150318; http://www.gebco.net/) and 

extracted data at the coordinates of the outcrops as well as data on the 2.5 

x 2.5 km grid to ensure consistency among the explanatory variables. 

All of the GIS computations were performed using QGIS (QGIS 

Development Team 2015). 

 

Direct gradient analysis method 

A redundancy analysis (RDA) (van den Wollenberg 1977, Rao 1964) was 

used to model the relationship between the environmental descriptors and 

the FKM membership grades (Bandelj et al. 2012). The biotic data table 

was transformed using the Hellinger transformation (Legendre & Gallagher 
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2001) prior to performing the RDA to avoid the species abundance paradox 

(Legendre & Legendre 2012). 

The number of environmental predictors was the same as the number of 

samples; therefore, an RDA with all of the environmental variables would 

not be constrained. Furthermore, it has been shown that explained variance 

continues to increase when including variables, even if they are random or 

insignificant (McCune 1997, Peres-Neto et al. 2006). To reduce the number 

of explanatory variables while still preserving their explanatory power, we 

chose a two-step procedure and divided the explanatory variables into 3 

subsets: a subset including the median and value ranges for 7 water quality 

parameters at the surface; a subset including the median and value ranges 

for 7 water quality parameters at the bottom subset; and a hydrodynamic 

subset including values for 4 variables. For each of these subsets, an RDA 

was performed, the axes were tested for significance, and the significant 

explanatory variables were selected by forward selection using a double 

stopping criterion (Blanchet et al. 2008). The significant explanatory 

variables of each subset were then used along with the depth values as the 

explanatory variables of the final RDA model. Variation partitioning 

(Brocard et al. 1992) was applied to the 3 groups of variables and the 

depth values in the final RDA model to study their mutual relationships. 

To predict the fuzzy cluster membership grades over a grid covering the 

Italian sector of the northern Adriatic, we applied canonical coefficients 

from the final RDA model to the values of the selected environmental 

variables in each of the 2.5 x 2.5 km bins. The results were projected in 

GIS as geo-referenced raster maps. 

All of the analyses were performed using the vegan (Oksanen et al. 2015), 

ade4 (Dray & Dufour 2007) and packfor (Dray 2013) packages for R. 
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5.3 Results and Discussion 

 

Habitat classification: Biodiversity  

Most of the studies conducted on the epibenthic assemblages of the 

northern Adriatic bio-concretions are qualitative. Only the most recent 

research (Ponti et al. 2011, 2014, Curiel et al. 2012; unpublished data) has 

reported quantitative data, although these studies are generally restricted 

to small or medium spatial scales or consider the flora and fauna 

separately. A total of 573 taxa have been reported, which includes a 

relatively high number of macroalgae (191 taxa) (Supplementary 

information, Checklist) considering the biogeographical context and the 

dispersal of outcrops on muddy sandy bottoms far from coastal sources of 

spores and propagules. More shallow bio-concretions are mainly 

characterized by taxa that are widespread in nearby lagoons (Falace et al. 

2009a, 2009b, Sfriso & Curiel 2007, Sfriso et al. 2009, Curiel et al. 1999, 

2009) and the Gulf of Trieste shoreline (Falace et al. 2010), and they 

include turf-forming or laminar taxa. All of the calcareous species of 

macroalgae, which are acknowledged as the most important coralligenous 

bioconstructors (Boudouresque 1973, Ballesteros 1992, Hong 1980), have 

been reported, even if most have low coverage. The highest coverage of 

bioconstructors, particularly Lithophyllum incrustans and Mesophyllum 

spp., is found on the outcrops located at a depth of 23–25 m and at a 

distance _10 km from the coast. 

However, a number of common coralligenous taxa (UNEP-MAP-RAC/SPA 

2008) are found in low amounts or at extremely rare frequencies (i.e., 

Palmophyllum crassum, Flabellia petiolata, Halimeda tuna). 

The most numerous of the 382 animal taxa are Mollusca (107 taxa), 

Polychaeta (92 taxa), Porifera (59 taxa), and Crustacea (50 taxa) 

(Supplementary information, Checklist). Most of these epibenthic 

invertebrates are filter feeders. The high number of Porifera appears to be a 

common feature of eastern Mediterranean coralligenous assemblages, which 

is most likely because of the absence of alcyonarians and gorgonians (Pérès 

& Picard 1958). The  ―large animal builders‖ (sensu, Hong 1980) reported 

here include the Serpulidae Serpula vermicularis and Serpula concharum, 
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the Vermetidae Thylacodes arenarius, and the Anthozoa Leptopsammia 

pruvoti, Caryophyllia inornata, and Caryophyllia smithii. Cladocora 

caespitosa is rare on Italian outcrops, whereas it is an important builder in 

Slovenia (Orlando-Bonaca et al. 2012). On the Veneto outcrops, the fossil 

record testifies to the historical relevance of this bioconstructor (Ponti et al. 

2008). The most common animals with  ―reduced builder activity‖ (sensu, 

Hong 1980) are the Serpulidae Hydroides spp. and the Verrucidae Verruca 

stroemia. Finally, the  ―agglomerative builders‖ (sensu, Hong 1980) include 

the Anthozoa Epizoanthus arenaceus and the Demospongia Geodia 

cydonium. Another characteristic feature of these northern Adriatic 

outcrops is the absence of large Bryozoa (i.e., Margaretta cereoides, Cellaria 

salicornioides, Pentapora fascialis, and Reteporella grimaldii), which are 

abundant in Mediterranean coralligenous environments. 

In the bioconstruction buildup an important counterpart to the biological 

carbonate deposition is the bioeroders activity (Bianchi 2001). A total of 11 

bioeroders were found, which include 4 Porifera, 1 Sipuncula, 4 Bivalvia, 

and 2 Polychaeta (Supplementary information, Checklist). Cliona viridis 

and Cliona celata are the more common taxa, whereas Cliona rhodensis and 

Cliona thoosina were only found by Ponti et al. (Ponti et al. 2011). 

Microborers (i.e., fungi and cyanobacteria) have not been considered, 

whereas among the macroborers, the most frequent were the Mollusca 

Hiatella arctica, Rocellaria dubia, Lithophaga lithophaga, and Petricola 

lithophaga. 

The most frequent and widespread taxa found on the northern Adriatic 

calcareous bio-concretions are reported in Table 5.2. 

 

Habitat classification: Habitat types  

According to expert judgment, 3 dominant epibenthic assemblages have 

been distinguished (Fig 5.2). 

The first group of reefs (Habitat A) is distinguished by opportunistic and 

tolerant macroalgal species that are resistant to mud and organic matter 

(i.e., turf-forming algae such as Cladophora sp., Antithamnion sp., and 

Pseudochlorodesmis furcellata); encrusting Porifera [i.e., Antho (Antho) 

inconstans, Dictyonella incisa and Mycale (Mycale) massa]; and bioeroders 
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(i.e., Cliona spp. and Rocellaria dubia). A second group of reefs (Habitat B) 

is dominated by massive Porifera (i.e., Chondrosia reniformis, Tedania 

anhelans, and Ircinia variabilis); erect Tunicata (Aplidium conicum and 

Aplidium tabarquensis); and non-calcareous encrusting algae (Peyssonnelia 

spp.). The third group of reefs (Habitat C) is located in deep offshore 

waters and is dominated by non-articulated calcareous macroalgae and, to a 

lesser extent, by the tunicate Polycitor adriaticus. 

 

Table 5.2 Common and abundant taxa on northern Adriatic calcareous bio-concretions. 
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Fig. 5.2 Dominant epibenthic assemblages of calcareous bio-concretions (Habitat A, 

Habitat B, and Habitat C) (original copyright 2015). 

 

Habitat classification: Fuzzy clustering 

A comparison between the FKM results and the reef types based on expert 

knowledge is consistent (Table 5.3). Only 5 sites (ChioL2, Lastre, Corvine, 

Nordalti, and TR2-Pinnacoli) are assigned to a different type by the FKM 

cluster with the highest fuzzy membership. In all these cases, the expert 

type assignation is more  ―conservative‖ (Fig 5.2) compared with that of the 

FKM, i.e., the sites that were assigned by expert knowledge fell in the 

category immediately below the maximum membership category assigned 

by the FKM. Furthermore, two of these mismatches occur for sites that the 

FKM assigned high levels of fuzziness (ChioL2 and Nordalti). Thus, the 

three FKM clusters have been renamed according to the expert typology. 

High fuzziness levels, i.e., no membership >0.50, is observed in one-third of 

the studied sites. Among the remaining sites, 8 have FKM_A>0.50, 7 have 

FKM_B>0.50, and 8 have FKM_C>0.50. The FKM_B cluster shows the 

most restricted membership range (min 0.14 –max 0.60); however, both the 

FKM_A (0.07–0.70) and FKM_C (0.11–0.78) clusters clearly prevail at 
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certain sites, while they show low membership values at other sites. These 

results supports the interpretation of the FKM_A and FKM_C clusters as 

the extremes of a gradient that characterizes the epibenthic assemblages on 

the outcrops. There is also a difference in the mean depth of the reefs of 

each cluster; the FKM_A and FKM_B clusters are found in shallower 

waters (17.6 m and 18.0 m, respectively), whereas the FKM_C reefs are 

found in deeper areas (22.6 m). 

 

Table 5.3 Results of the FKM membership grades (FKM_A, FKM_B, and FKM_C) and 

habitat typology (Typ) to which the outcrop has been assigned based on expert 

knowledge (Habitats A, B, and C). The mismatches between the expert typology and 

the FKM results are in bold. 

 

Direct gradient analysis according to the RDA 

The surface chemical-physical model constructed with 14 variables (the 

median and value ranges for the surface TEMP, SAL, DOX, NTRA, 

AMON, PHOS, DOX, and CPHL) had an adjusted R2 (Blanchet et al. 
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2008, Bianchi 2001) of 0.78 (0.63 on the first axis, 0.15 on the second axis, 

both p<0.001, 999 permutations). Many of the variables were not 

statistically significant because they presented high collinearity. The 

forward selection only retained four variables (PHOS, SAL, CPHL, and 

value range for CPHL) and had an adjusted R2 = 0.67 and first axis R2 = 

0.60 (both axes p<0.01, 999 permutations) (Supplementary information, 

Fig). 

The bottom chemical-physical RDA of 14 variables (the median and value 

ranges for the bottom TEMP, SAL, DOX, NTRA, AMON, PHOS, DOX, 

and CPHL) had an adjusted R2 of 0.58. The majority of the variance was 

explained by the first axis (0.49), although both axes were significant 

(p<0.001, 999 permutations). The forward selection only retained two 

variables (value ranges for TEMP and PHOS). The reduced model 

explained 0.58 of the variance on the first axis and 0.05 of the variance on 

the second axis (both axes p<0.05, 999 permutations) (Supplementary 

information, Fig). 

The hydrodynamic model was built with all 4 hydrodynamic variables 

(Vmean and Vmax of the surface and bottom). The adjusted R2 was 0.23 

on the only significant axis (p<0.001, 999 permutations). The forward 

selection retained only the two surface velocities, and the adjusted R2 was 

0.26 on the only significant axis (p<0.001, 999 permutations) 

(Supplementary information, Fig). 

The final RDA was built using the selected variables of the three RDA 

subsets: the median surface PHOS, SAL, and CPHL; value ranges for the 

surface CPHL; and value ranges for the bottom TEMP and PHOS, surface 

Vmean and Vmax, and depth. The entire model had an adjusted R2 of 

0.79; 0.64 of the variance was explained by the first axis, and 0.14 of the 

variance was explained by the second axis, with both of these values highly 

significant (p<0.001, 999 permutations). This result was obtained using only 

9 variables out of the initial 33. A further forward selection retained only 3 

variables (range of phosphate at bottom, mean surface velocity, and surface 

phosphate), with an adjusted R2 of 0.74 on the two significant axes 

(p<0.001, 999 permutations). In the following, we discuss the final model 

with 9 partially redundant variables because many of them are of great 

ecological importance and might be available for comparison in other study 

areas. For the FKM_A cluster, 0.66 and 0.13 of the variance was explained 
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by the first and second axis, respectively, whereas for the FKM_B cluster, a 

greater amount of variance was explained by the second axis (0.55) relative 

to the first axis (0.15). For the FKM_C cluster, almost all of the variance 

was explained by the first axis (0.93). The high FKM_A and high FKM_C 

values were observed on opposite ends of the main gradient (Fig 5.3). 

 

Fig. 5.3 Final RDA model. Entire model adjusted to R2 = 0.79, first axis adjusted R2 = 

0.64, second axis adjusted R2 = 0.14. Both axes are significant at p<0.001 after 999 

permutations (original copyright 2015). 

This gradient was primarily from high median surface PHOS and high 

bottom PHOS range values, which are associated with high FKM_A values, 

toward high depth and high surface salinity values, which are associated 

with high FKM_C values. The FKM_C sites were positioned offshore at a 

distance from the effects of river inputs, whereas the FKM_A sites were 

those closest to the coastline and river inputs. The FKM_B sites were 

somewhat in the middle of this gradient, but only a rather small fraction of 

their variance was explained by this gradient. 

The high range of PHOS may have been related to more shallow areas, 

where occasional inputs of high river flow can affect the entire water 

column. Moreover, the bottom sediments in the shallow areas may be easily 
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resuspended by vertical mixing and turbulence caused by waves and wind. 

The high concentrations of PHOS at depth, which is a signature of 

remineralization, have previously been described for the northern Adriatic 

Sea (Solidoro et al. 2007b, 2009). 

The second axis gradient mainly included the surface Vmean and Vmax, 

the median surface CPHL, the surface CPHL range, and the bottom TEMP 

range, with high FKM_B membership grades associated with low values of 

these variables and FKM_A membership grades associated with high values 

of these variables. The sites with high FKM_B memberships presented 

more of an offshore distribution relative to the FKM_A sites; thus, they 

were less influenced by riverine waters, which cause strong fluctuations in 

primary production because of seasonal fluctuations in river flow. 

A portion of the variance could not be explained by our model, especially 

for the FKM_B membership grades (Supplementary information,  Table). 

The distribution of high FKM_B values (Fig 5.1) revealed that several sites 

showing high FKM_A and FKM_B are located close to each other and 

many are also in the same cell within the 2.5 x 2.5 km grid on which the 

model was applied. Our resolution was constrained by the scarcity of 

available data; thus, it could not explain the observed differences between 

these sites. Moreover, the sites that were poorly fit by our model were 

found at a distance from each other in different parts of the study domain. 

This result suggests that certain local factors (e.g., fishing, sedimentation 

regimes, and endogenous factors such as autocorrelations caused by the 

clumping/dispersion of organisms) might have contributed to the observed 

variance in the outcrops. 

Our results show that the surface and bottom dynamics are not always 

decoupled because of the limited depth of the water column in the study 

area. Thus, appropriate surface or bottom environmental descriptors can 

provide nearly equivalent explanations of the observed gradients in the 

outcrops (Table 5.4) notwithstanding possible causal relationships, which 

are not accounted for by the RDA. The depth range of the study sites was 

between 12.4 and 26 m, and even the deepest layers of the water column 

can be influenced by surface dynamics. Moreover, the height of the 

outcrops ranged from 0.5 to 4.5 m, and biotic data were collected on 

horizontal surfaces on top of the outcrops, which further reduced the 

possible effects of depth on the assemblages. In the study area, surface heat 
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loss and wind-driven mixing in autumn and winter tend to homogenize the 

water column, but intense pulses of freshwater from rivers can induce 

relevant vertical stratification due to a layer of less saline water at surface. 

In spring and early summer, the vertical profile of temperature and salinity 

is strongly stratified with a noticeable thermocline; however, after strong 

wind events, the stratification can be broken and the mixed layer can reach 

the deepest parts of the water column. These wind events are less frequent 

in spring/summer than in autumn/winter. 

The high correlation of depth with selected surface and bottom 

environmental descriptors (Table 5.4) reveals that coastal-related processes, 

such as river inflows, play an important role in structuring the assemblages 

of the outcrops, whereas other processes, such as coastal pollution and 

recreational and commercial fishing, might also have an important role. In 

particular, the outcrops are threatened by mechanical damage related to 

trawling, heavy bottom gear disturbances, and anchoring. These practices 

are particularly destructive because of their direct effects, and they also 

increase the turbidity and sedimentation rates, which negatively affect the 

structure and composition of the assemblages. Encrusting calcareous 

macroalgae and Polycitor adriaticus, which are species that characterize 

Habitat C, are negatively correlated with the mud content of sediment 

(Ponti et al. 2011, Naranjo et al. 1996). In particular, P. adriaticus is found 

in undisturbed environments, and its populations are reduced or disappear 

at increased stress rates. Other tunicates, such as Aplidium conicum, which 

characterize Habitat B, are adversely affected by excessive sediment 

deposition, which causes burial and clogging of the siphons and the 

branchial wall (Naranjo et al. 1996). Finally, the additive action of silting 

and high hydrodynamism has injurious consequences because the suspended 

inorganic particles have a mechanically abrasive effect on living organisms 

(Carballo & Garcia-Gomez  1994). However, turfs are dominant in areas 

with increased sedimentation rates (Curiel et al. 2012, Falcae et al. 2010, 

Balata et al. 2005). The abundance of encrusting sponges (i.e., Dictyonella 

incisa), which, together with turf algae, characterize Habitat A, increased 

with the mud and organicmatter content of nearby sediment, whereas it 

decreased with increasing distance from the coast and increasing longitude 

and salinity (Ponti et al. 2011). 
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Table 5.4 Portions of the variance explained by the three groups of variables (surface 

parsimonious model, bottom parsimonious model, and hydrodynamic parsimonious 

model) and depth. Only the effects of single groups, combinations of groups, and single 

groups conditioned to single groups and combinations of groups are shown. The (+) sign 

indicates that the variance is explained by that combination of variables. The (|) sign 

indicates that the variance explained by the group on the left is conditional on the 

variance explained by the group(s) on the right of the sign. 

Hydrodynamism appears to play an important role that is not shared 

among any of the other groups of variables (Table 5.4), and this result 

might be related to water renewal, advection in nutrient rich waters, 

variations in organism dispersal, and physical constraints on species that 

can cling onto the substrate. The sites with high FKM_A memberships are 

found close to the coast; thus, they are strongly affected by coastal currents 

that flow westward and south-westward in the study area and are 

seasonally enhanced by surface river inputs and meteorological conditions 

(easterly winds). These shallower areas display more energetic 

hydrodynamics throughout the year, whereas the areas characterized by 

high FKM_C membership appear to be occasionally affected by strong 

surface velocities that most likely do not affect the bottom assemblages 
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because of the greater bottom depth. The FKM_B sites appear to be 

related to areas of weaker hydrodynamism; however, an inspection of the 

hydrodynamic subset RDA (Supplementary information Fig) revealed that 

the FKM_B variance explained by the hydrodynamic variableswas 

negligible. Thus, we can conclude that hydrodynamic variables do not play 

a role in differentiating FKM_B sites from the other two site clusters. 

The onshore-offshore gradient is the most important gradient for explaining 

the variability of the assemblages growing over northern Adriatic biogenic 

outcrops because of the extent of coastal freshwater influence, which is the 

main driver of nutrient dynamics in the Northern Adriatic Sea, and the 

deepening of the water column in offshore sites, which lessens the 

sensitivity of the bottom population to certain surface dynamics (waves, 

surface) and is a proxy for the available light provided to the organisms 

growing on the outcrops. A less important gradient that is more difficult to 

explain according to the variables used in this study is confined to a coastal 

belt and differentiates two habitat types, FKM_B and FKM_A, with 

FKM_A experiencing greater exposure to environmental variability. 

 

Predictive model 

The final RDA model that was produced with 9 variables was used to 

predict the fuzzy membership grades of the three clusters over the entire 

study domain. The high predicted values for each fuzzy membership grade 

were generally consistent among the areas where they were observed (Figs 

5.4, 5.5 and 5.6). 

High FKM_A memberships are predicted along the coast, particularly in 

the north-western and south-western study area (Fig 5.4). The coastal belt 

in front of the Venice Lagoon and the Grado-Marano Lagoon are predicted 

to be less suitable for habitats in FKM_A. A few cells with high predicted 

FKM_A values are positioned in the Gulf of Trieste close to the mouth of 

the Isonzo River. In general, high FKM_A memberships appear to favor 

areas close to freshwater sources and areas at shallow bottom depths. 
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Fig. 5.4 Predicted FKM_A memberships over the entire study area. Points show the 

sampling sites used in the present study. White = low membership and dark red = high 

membership. 

High FKM_C values are predicted offshore, at far distances from rivers and 

in deeper areas (Fig 5.5). In addition, the majority of the Gulf of Trieste as 

well as the coastal belt in front of the Venice Lagoon appear to be suitable 

for this cluster. The higher suitability of FKM_C compared with FKM_A 

in front of the Venice Lagoon might be a result of the buffer effect of the 

lagoon, which acts as a filter for high-nutrient loads transported to the 

lagoon from freshwater and from industrial and residential wastes (Solidoro 

et al. 2004, 2007a). 

FKM_B is predicted to occur close to the areas where this cluster has been 

observed, particularly in front of the Grado-Marano Lagoon (Fig 5.1). 

Nevertheless, the  ―intermediate‖ characteristics of the macrobenthic 

populations on the reefs of this cluster and its lower fit in the final RDA 

model compared with that of the other two clusters increase its likelihood 
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in areas of the study domain where FKM_A or FKM_C (or both) are not 

predicted at high values (Fig 5.6). 

 

Fig. 5.5 Predicted FKM_C memberships over the entire study area. Points show the 

sampling sites used in the present study. White = low membership and dark green = 

high membership. 

Areas of transition are a natural feature of the marine environment and 

may include a mixture of habitats and species. 

The proposed model, that applies to the Italian side of the Northern 

Adriatic, and the actual occurrence of Habitat A, B, or C in the areas 

predicted by the model should be assessed with new samplings. 

Nevertheless, a major constraint that was not included in the model is the 

presence of a hard substrate. The presence or absence of a hard substrate is 

critical for the development of epibenthic communities; however, a complete 

cartography of substrate types in the study area is not available. Thus, our 

results might be helpful for defining areas worthy of exploration in further 

research projects. 
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Fig. 5.6 Predicted FKM_B memberships over the entire study area. Points show the 

sampling sites used in the present study. White = low membership and jellow = high 

membership. 

Because mapping and comparing habitats across geographic regions is a key 

component of the classification process (Costello 2001, 2005), the habitats 

derived from this study may be suitable for application in studies focused 

on other geographic areas. The Apulia continental shelf coralligenous 

outcrops fall into the  ―bank‖ category, which is similar to those in the 

northern Adriatic, and both contain the same features: isolated blocks 

randomly scattered on the soft bottom and clusters of blocks or ridges with 

several meters of lateral continuity. These features could represent distinct 

phases of morphological development (Bracchi et al. 2015). Outcrops with 

columnar shapes resembling small patch reefs also characterize the bottom 

off southeast Sicily (Di Geronimo et al. 2002). If we consider the biotic 

component, the Apulian outcrops are colonized by coralline algae associated 

with organisms that also characterize the proposed habitats of the northern 

Adriatic; however, some of these outcrops show an additional  ―erect 

ramified‖ animal layer, thus representing a fourth complex habitat. The 

absence of larger bryozoans and gorgonians in the studied area is most 
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likely related to the increased sediment resuspension, the reduced surface of 

colonization, and the high water turbidity. 

Information on marine habitats must play a major role in ecosystem-based 

management promoted at national and international levels (Connor et al. 

2002, DEFRA 2002). The three habitats proposed here are easy to identify 

in the field, and we have related these habitats to different environmental 

features (i.e., geography, nutrients, salinity, and temperature). We have 

also developed a predictive model based on environmental features, thus 

providing a large-scale probabilistic model of the presence of these different 

habitats in the northern Adriatic basin. 

 

Supporting Information 

Available at: 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140931#

sec015 
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