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1 Introduzione	
Questa tesi di dottorato riassume i principali risultati ottenuti durante il mio dottorato di ricerca. L’attività di 
ricerca si è focalizzata sulla determinazione di metodi analitici e analitico-numerici per la soluzione di alcuni 
problemi “aperti” di interesse nella progettazione e l'analisi di macchine elettriche. I temi dello studio sono 
stati selezionati sulla base di diverse esigenze e criteri, tra cui la rilevanza pratica e l'applicabilità a livello 
ingegneristico. In realtà, ho sviluppato la mia ricerca lavorando allo stesso tempo in R&D presso Sicor SpA 
(www.sicor-spa.it), dove sono attualmente impegnato nella progettazione e sviluppo di motori elettrici 
innovativi da utilizzare in azionamenti per ascensori civili ed industriali. Questo ha posto alcune inevitabili 
difficoltà dovute all’esigenza di combinare gli impegni lavorativi e di ricerca, ma ha anche fornito una 
grande quantità di stimoli, idee e ispirazioni per la selezione di nuovi problemi di interesse pratico su cui 
concentrare l’attenzione da un punto di vista scientifico. 

 
L'attività di ricerca riportata nella tesi include una gamma piuttosto ampia di argomenti, ma è stata sviluppata 
seguendo una singola linea di indagine unitaria, che consiste nel tentativo di cercare e, dove possibile, 
definire e implementare, metodi matematici sufficientemente veloci ma accurati per eseguire calcoli su 
macchine elettriche in modo da evitare l'uso massiccio di tecniche basate su analisi agli elementi finiti. 
Queste infatti sono note per essere precise ed affidabili, ma allo stesso tempo richiedono ingenti risorse 
computazionali e sono quindi poco adatte quando è necessario esplorare un gran  numero di varianti di 
progetto, come nel caso di programmi di ottimizzazione progettuale basati su algoritmi genetici. I metodi agli 
elementi finiti non sono stati esclusi, naturalmente, ma piuttosto utilizzati come “benchmark” per valutare la 
validità delle tecniche di calcolo alternative proposte, ove non fosse possibile effettuare un confronto diretto 
con dati sperimentali. 

 
I tipi di macchine elettriche a cui si sono applicati i metodi di calcolo sviluppati in questa tesi sono diversi e 
vanno dai motori a magneti permanenti superficiali con cave statoricge (capitoli 2, 3, 4) a motori a magneti 
permanenti superficiali con statore slotless (capitoli 5, 6), dalle macchine sincrone a riluttanza (capitolo 7) 
alle macchine sincrone a rotore avvolto (capitolo 8), per finire con motori a induzione a gabbia di scoiattolo 
(capitoli 9, 10). Tutti questi tipi di macchine sono sempre più importanti nelle applicazioni odierne, sia nel 
settore industriale che per i sistemi di trazione. Per affrontare lo studio di queste macchine si sono di volta in 
volta sviluppati approcci di calcolo analitico diversi, anche in funzione degli obiettivi da raggiungere. 

Esempi di questi approcci analitici impiegati sono i seguenti: la teoria della “winding function” applicata al 
calcolo della coppia di macchine a magneti superficiali (capitoli 2, 3, 4); la teoria della “permeance function” 
applicata al calcolo delle macchine con eccentricità di rotore (capitolo 8); l'approccio mediante circuito 
equivalente magnetico o reti di riluttanze in combinazione a tecniche basate  sulle mappe conformi per lo 
studio dei motori sincroni a riluttanza (capitolo 7); la soluzione delle equazioni di Laplace e di Poisson per 
determinare il campo magnetico nelle macchine a magneti permanenti superficiali slotless (capitoli 5, 6) e a 
gabbia di scoiattolo(capitoli 9, 10). 

 
Nel complesso, i principali temi affrontati in questo lavoro di tesi possono essere classificati nelle seguenti 
categorie principali: 
 

a) Metodo analitico per calcolare la coppia di riluttanza di macchine a magneti permanenti superficiali e per 
ridurre al minimo la coppia di riluttanza attraverso algoritmi di ottimizzazione genetiche. Questo argomento 
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è trattato nei capitoli 2, 3 e 4. 
 

b) Studio analitico delle macchine a magneti permanenti slotless, con particolare riguardo al calcolo del 
campo magnetico all'interno del nucleo di statore e al calcolo della coppia a pieno carico. Il tema è 
sviluppato nei capitoli 5 e 6. 
 

c) studio analitico delle macchine sincrone a riluttanza con un numero generico di fasi statoriche. Questo è 
trattato nel capitolo 7. 
 

d) la modellazione analitica di macchine sincrone a rotore avvolto, soggette ad importanti eccentricità di 
rotore. Questo argomento è trattato nel capitolo 8. 
 

e) calcolo analitico delle induttanze di dispersione di cava di rotore di macchine ad induzione a gabbia di 
scoiattolo. 
 
In ogni capitolo,viene innanzitutto introdotto l’argomento principale del problema e viene quindi descritto 
l'approccio utilizzato per la sua soluzione. Inoltre, di volta in volta, viene riportata la descrizione dettagliata 
delle procedure matematiche e degli algoritmi proposti, compresa la loro rigorosa derivazione teorica. Infine, 
l'applicazione degli algoritmi di calcolo proposti è illustrata mediante opportuni casi di studio ed i risultati 
ottenuti sono sempre convalidati mediante confronto con tecniche di calcolo alternative (in particolare 
l’analisi agli elementi finiti). Particolare enfasi è posta sul ridotto onere computazionale ottenuto  applicando 
le procedure di calcolo proposte, rispetto all'approccio standard, tradizionalmente basato su analisi agli 
elementi finiti. Naturalmente, ove necessario si sono altresì poste in evidenza le limitazioni dei metodi 
presentati in termini di eventuale ridotta precisione ed impossibilità di tenere conto di vari effetti “non ideali” 
come la saturazione magnetica. 
 
Quasi tutti i contenuti inclusi in questa tesi di dottorato sono stati presentati a conferenze sponsorizzate 
dall’IEEE ed sono stati poi pubblicati a livello di IEEE. Tutti gli articoli pubblicati e citati nella tesi sono 
infatti disponibili nella banca dati on line IEEEXplore. 

Oltre al lavoro incluso in questa tesi, ho condotto vari altri studi, che hanno portato ad altre pubblicazioni 
(disponibili su IEEEXplore). Tuttavia, questo materiale aggiuntivo non è stato incluso in questa tesi in 
quanto si è deciso di effettuare una cernita selezionando solo il materiale con maggiore attinenza alla mia 
attività di ricerca programmata fin dall’inizio del dottorato. 
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1 Introduction	

	

This doctoral thesis summarizes the main results obtained during my Ph.D. course. My research activity has 
been mainly focused on the determination of analytical and numerical/analytical methods to approach the 
solution of some “hot” topics in the design and analysis of electric machines. The topics of the study have 
been selected based on various needs and criteria, including the practical relevance and applicability to 
engineering applications. In fact, I have developed my research as a Ph.D. while working, at the same time, a 
an R&D Engineer in the private company Sicor S.p.A. (www.sicor-spa.it), where I am currently in charge of 
the design and development of innovative electric motors to be used in full-electric drives for civil and 
industrial elevators. This has posed some challenges due to the inevitable difficulties of combining my 
industrial and research commitments, but has also provided me with a large amount of stimuli, ideas and 
inspiration for selecting new problems of practical interest that could be worth being investigated from a 
scientific point of view. 

The research activity reported in this thesis includes a number of quite different subjects, but has been 
developed following a single line of inquiry. This is the attempt to find sufficiently fast but accurate 
mathematical methods to perform calculations on electric machines so as to avoid the massive use of finite 
element analysis approaches, which are known to be precise and reliable, but extremely time consuming, 
hence little suitable for usage when a very large number of machine design variants needs to be explored, as 
in the case of design optimization programs based on genetic algorithms. Finite element methods have not 
been ruled out, of course, but rather used as a benchmark to assess the validity of the proposed alternative 
calculation techniques, wherever experimental data were not available for direct comparison with 
measurements taken on real equipment. 

The kinds of electrical machines considered in this thesis are various, ranging from surface-mounted 
permanent-magnet motors with slotted stator (chapters 2, 3, 4) to surface-mounted permanent-magnet motors 
with slotless stator (chapters 5, 6), from synchronous reluctance machines (chapter 7) to synchronous 
wound-field machines (chapter 8), to end with squirrel-cage induction motors (chapters 9, 10). All these 
kinds of machine are of increasing importance in today’s applications, both in the industry and for vehicle 
traction. 

The analytical methods employed to approach the study of these machines are quite different from one case 
to another. Examples of these analytical approach are the following: the winding function theory applied to 
the torque computation of surface-permanent magnet machines (chapters 2, 3, 4), the permeance function 
theory applied to the computation of eccentric-rotor machines (chapter 8), the magnetic equivalent circuit 
approach combined with conformal mapping techniques for the study of synchronous reluctance motors 
(chapter 7), the solution of Laplace’s or Poisson’s partial-derivative differential equations to determine the 
magnetostatic field inside slotless surface-mounted permanent-magnet machines (chapters 5, 6) and squirrel-
cage induction motors (chapters 9, 10). 

Overall, the main topics addressed in this work of thesis can be classified into the following main categories: 

a) Analytical method to compute the cogging torque of surface permanent-magnet machines and to 
minimize the cogging torque through genetic optimization routines. This subject is covered by 
chapters 2, 3 and 4. 
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b) Analytical study of slotless permanent-magnet machines, with special regards to the computation of 
the magnetic field inside the stator core and of the full-load torque. The topic is developed 
throughout chapters 5 and 6. 

c) Analytical study of synchronous reluctance machines with a generic number of stator phases. This is 
addressed in chapter 7. 

d) Analytical modeling of round-rotor synchronous wound-field machines subject to important 
eccentricity. This is covered in chapter 8. 

e) Analytical computation of slot leakage inductances for the rotor winding of induction machines. 

 

In each chapter, the main relevance of the problem being addressed and the approach used to solve it are 
described first. Then, a detailed description is provided of the mathematical procedures or algorithm 
proposed, including their rigorous theoretical derivation, whenever applicable. Finally, the application of the 
proposed computation algorithms is illustrated by means of suitable case studies and the results are always 
validated by comparison with alternative computation techniques (including finite element analysis above 
all). Special emphasis is placed on the computational gains that can be obtained by applying the proposed 
analytical calculation procedures instead of the standard approach, like finite element analysis. Of course, the 
limitations of the techniques presented are also pointed out in terms of possibly reduced precision and 
impossibility to account for various non-ideal effects like magnetic saturation. 

 

Practically the work included in this Ph.D. thesis has been presented in IEEE-sponsored conferences and has 
been then published by IEEE. All the published papers reporting the material included in the thesis are 
available in the online database IEEEXplore. In addition to the work included in this thesis, I have conducted 
various further studies during my Ph.D. course, leading to other publications (available on IEEEXplore as 
well). However, this additional material has not been included in this thesis as it is found not fully consistent 
with the aim and scope of my scheduled research activity as a Ph.D. student.
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2 Cogging	Torque	Fast	Calculation	Method	for	SPM	Machines	
Based	on	Winding	Function	Theory	

2.1 	Introduction	
One of the issues in computing the performance of surface permanent magnet (SPM) machines is the fast 
evaluation of their cogging torque from design quantities [7].  Although the calculation can be performed by 
means of finite-element analysis, the use of analytical or numerically-assisted methods is preferable as it 
allows to obtain results immediately and with no machine geometric model preparation. For this purpose, 
cogging torque analytical computation through Maxwell’s stress tensor is a possible solution. Nevertheless, it 
has been pointed out in the literature how this approach may give quite inaccurate results due its high 
sensitivity to air-gap flux tangential magnetic field values [9]. To obtain accurate predictions, various 
improved formulations have been recently proposed ([1],[4],[10],[7]) based on Maxwell’s equation exact 
analytical solution in the air-gap domain and on field integration through Maxwell’s stress tensor method. 

In this chapter a relatively simple SPM-motor cogging torque expression is derived where no tangential field 
component is involved. The expression is derived by treating permanent magnets as fictitious field windings 
and modeling them through the winding function theory [5]. The application of the approach to various 
sample SPM machine geometries is presented and found to give satisfactorily accurate results. In particular, 
it is shown that for a given air-gap field solution, the cogging torque computed with the proposed method is 
much more accurate than that computed via Maxwell’s stress tensor [9]. In other terms, the proposed 
formulation is not only easier to implement numerically, but also more resilient to possible errors in the 
determination of the air-gap field. 

2.2 Permanent	magnet	representation	through	an	equivalent	field	circuit	
In order for the winding function approach to apply, it is necessary that permanent magnets are modeled as 
an equivalent field circuit carrying a constant excitation current If. The equivalent field circuit must be such 
that, when carrying the current If, it produces the same air-gap field as permanent magnets do. The concept is 
illustrated in Fig. 1: Fig. 1a shows a permanent magnet shape suitable for installation on an SPM machine. In 
the hypothesis of uniform radial magnetization, the field produced by the permanent magnet is the same as 
that generated by a uniform surface current density js flowing on the magnet lateral surfaces as depicted in 
Fig. 1b.  

 

Fig. 1. (a) Surface permanent magnet. (b) Equivalent surface current density. 

The equivalent current density js has the same value as the radial magnetization M [5], hence we can write: 

 

r

crs h

h
HMj




  (1) 
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where Hc is permanent magnet coercivity, h is magnet height, r its relative permability and  is the air-gap 
width. The total current If flowing along each equivalent current sheets shown in Fig. 1b is: 

 
h

h

h
HMhhjI

r
crsf 





   (2) 

For example, let us consider the example electric machine illustrated in Fig. 2a. A comparison between the 
flux density generated by the real permanent magnets and by the equivalent field circuit (both computed by 
FE method)[2] is illustrated in Fig. 2c. The figure shows that the equivalent field winding perfectly 
reproduces the effect of permanent magnets. 
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Fig. 2. (a) No-load flux lines in a permanent magnet machine; (b) Flux lines due to equivalent current sheets; (c) 
comparison between radial flux densities on the mean air-gap circumference. 

 

2.3 Cogging	torque	computation	via	winding	function	theory	
For the equivalent field circuit it is possible to introduce a winding function wf() that is defined as follows 
[5]: 

 0

)(
)(


 r

f
f

B

I

h
W


 .  (3) 
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where  is an angular coordinate measured along the air-gap and Br(x) is the radial flux density which 

appears on the mean air-gap circumference   defined as per Fig. 3, when the equivalent field circuit carries 
the current If, in the hypothesis of slotless stator core (Fig. 3). 

 

Fig. 3. Mean air-gap circumference  and slotless stator model used to define the equivalent field circuit winding 
function. 

When the rotor is at position x, the self inductance of the equivalent field winding can be defined by the 
WFT as: 

 
 









 2

0

20 )()()( dxPW
h

LR
xL f  (4) 

where L is the axial core length and P() denotes the air-gap permeance function, that includes stator slotting 
effects. 

In the hypothesis of unsaturated stator and rotor cores, the electromagnetic torque when the rotor is at 
position x can be expressed in terms of the inductance derivative with respect to x as follows [3]: 

 

2)(
2

1
)( fIxL

dx

d
xT 



 . (5) 

Substitution of (4) into (5) yields: 
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Finally, substitution of (3) into (6) gives: 
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It can be seen from (7) that the equivalent current If vanishes in the torque expression. Conversely, two 
unknown functions of x appear in (7), that are: the no-load air-gap radial flux density Br(x) of the machine in 
the hypothesis of slotless air-gap; the permeance function P(x) including slotting effects. 

As concerns P(x), it can be computed analytically, for example with the method proposed by Zarko et al., 
2008; as an alternative, P(x) can be also computed with a single magnetostatic FE analysis as described by 
Tessarolo et al., 2012. This latter approach actually requires the stator core geometry to be modeled for FE 
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analysis, but this task is nowadays very easy to automate in batch mode through user-defined programs (D. 
Meeker). 

As regards the expressions of Br(x), it can be also determined either analytically ([1], [4], [7], [9], [10]) or by 
means of a single magnetostatic FE analysis [5]. 

It is worth noting that determining P(x) and Br(x) by means of a single magnetostatic FE analysis is definitely 
a short task compared to the cogging torque computation by FE analysis, which requires to run a large 
number of simulations, for different rotor positions.  

The functions Br(x)2 and P(x) can be expressed as Fourier-series expansions as: 
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where p is the number of pole pairs and z is the number of stator slots. By using (8)-(9), the torque 
expression (7) becomes: 
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Based on the identity 
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(10) can be put in the final form: 
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where i,j is the Knronecher’s delta, which equals 1 if i=j, zero otherwise. Equation (12) has the advantage of 
not including any integral and being easy to compute numerically once Fourier parameters bm and pn are 
known. Cogging torque expression (12) is also much simpler than the one obtained with Maxwell’s stress 
tensor method [9]. 

 

2.4 Validation	through	FE	analysis	and	comparison	with	Maxwell’s	stress	
tensor	

The cogging torque expression (12) is assessed on some sample SPM machine geometry and the result is 
compared with the cogging torque computed by FE analysis. A comparison is also made with the cogging 
torque computed on the same geometry via Maxwell’s stress tensor. 
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An example of SPM machine geometry taken into consideration is depicted in Fig. 4. The main dimensional 
data are the following (see Fig. 3 for symbol meaning): 

 
 

Stator bore radius, Rs: 51.5 mm Permanent magnet permeability: 1.04 

Magnet height, : 3 mm Permanent magnet coercivity: 918200 A/m 
Air-gap width, g: 0.8 mm Number of stator slots, z: 24 
Permanent magnet span: 9/10 of pole span Core length:  210 mm 

 

 

Fig. 4. Example of the machine cross section considered for method assessment. 

To assess the method accuracy for different air-gap profiles, the cogging torque computation is run for 
various machine geometries characterized by different pole pairs p (the cases of p=2 and p=3 are hereinafter 
addressed) and different slot widths w (Fig. 4). The slot width values considered and the corresponding tooth 
to slot width ratios are provided in Table I. 

Table I 

w  / w 

2 mm 5.7 

4 mm 2.4 

6.7 mm 1.0 

 

The cogging torque computation is performed for both the 4-pole and 8-pole configurations with the slot 
width assuming the values in Table I. For assessment purposes, three methods of computation are compared, 
i.e.: 

a) the FE method, where a set of magnetostatic simulations is run on the machine cross section for 
equally-spaced rotor positions with 0.5 mm step; 

b) the proposed method based on the winding function theory and summarized by (12); the flux density 
and permeance function Fourier coefficients appearing in (12) are computed analytically as per [9]; 

c) by the analytical method proposed by [9] based on Maxwell’s stress tensor. 

The results obtained with the three approaches are shown in Fig. 5. As usually done in the literature [8], the 
FE calculation is assumed to give the correct cogging torque profile. With respect to such FE computation, 
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the proposed method proves to be satisfactorily accurate, especially if compared to the analytical result 
obtained through Maxwell stress tensor’s method. 

It is worth noting that both methods b) and c) employ an analytical field solution for the air-gap flux density 
which is not exact and, in particular, exhibits some inaccuracy in the tangential air-gap field component [9]. 
Nevertheless, one can observe that the proposed method gives more accurate cogging torque results and then 
seems more robust than Maxwell’s stress tensor method, i.e. less sensitive to possible inaccuracies in the air-
gap field computation. A possible explanation of this lies in the fact that the proposed leads to a cogging 
torque expression (12) where the tangential field component does not appear. 

 

Fig. 5. Cogging torque diagrams computed with different techniques. 
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2.5 Conclusion	
In this chapter a cogging torque computation method has been proposed for SPM machines. The method has 
been derived by replacing surface-mounted permanent magnets by appropriate current sheets capable of 
producing the same air-gap field and thus modeling permanent magnets through the winding function theory. 
Compared to previously proposed formulas, based on Maxwell’s stress tensor, the analytical cogging torque 
expression derived in the chapter is much simpler to implement and has the property of not including the air-
gap tangential field component. The accuracy of the method has been assessed on various SPM machine 
geometries featuring different slot-to-tooth width rations and different pole numbers. In all the cases, the 
proposed technique has been proved to give more accurate results than the Maxwell’s stress tensor, 
exhibiting a better robustness with respect to inaccuracies in the air-gap field solution. 
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3 Special	Magnetic	Wedge	Design	Optimization	with	Genetic	
Algorithms	for	Cogging	Torque	Reduction	in	Permanent‐
Magnet	Synchronous	Machines	

3.1 Introduction	
In electric machines with open-slot stator design, magnetic wedges are often used to improve the flux-
density profile in the air-gap by reduction of slotting harmonics [1], [2], [3]. This problem can practically 
occur in high-torque permanent-magnet motors for traction applications, which are characterized by small 
voltage and high current values and are therefore designed with flat-turn windings and open stator slots [4]. 

In [5], a new magnetic wedge design is proposed for reducing the cogging torque of open-slot permanent-
magnet machines and contemporarily controlling phase inductance values. In [5] finite-element analyses are 
used to show how the change in the proposed wedge design can significantly affect machine behavior and 
parameters in terms of phase inductance and cogging torque. 

In this chapter, the purpose is to find the optimal wedge geometry in order to minimize the cogging torque 
amplitude for a given surface permanent-magnet machine structure. The problem is numerically solved by 
means of a genetic optimization algorithm combined with a finite-element code for automatic cogging torque 
calculation. 

3.2 Wedge	technology	and	problem	statement	
The magnetic wedge technology presented in [5] is exemplified by the sample piece shown in Fig. 1. It can 
be seen that magnetic body of the wedge is crossed by a groove filled with a non-magnetic bar for 
mechanical reasons. The groove is simply obtained by a milling process applied to a magnetic wedge of 
traditional type and, by using different milling tools, can be suitably shaped as concerns its width w groove 
depth h, it is not very significant from a functional viewpoint because the magnetic wedge portion below the 
groove saturates and, due to saturation, the wedge practically behaves as if the groove depth were equal to 
the wedge thickness (Fig. 2b). 

 
Fig. 1. Magnetic wedge prototype with slant non-magnetic groove. 
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Fig. 2. Scheme of proposed magnetic wedge geometry and dimensions. 

 

Finally, the groove can be slanted with respect to the wedge longitudinal axis, as in the case shown in Fig. 1, 
thus producing a stator skewing-like effect. 

The influence of wedge geometry on machine phase inductance and cogging torque amplitude has been 
discussed in [5] showing how the groove width w strongly affects the slot leakage inductance. 

As concerns cogging torque amplitude, it has been shown that significant enhancement can be obtained by 
changing the groove position with respect to the wedge center in the various slots. For example, let us 
consider a four-pole surface permanent-magnet machine with Z=12 stator open slots as shown in Fig. 3 (the 
geometric data of the sample machine are reported in [5]). If we number the slots from 1 to Z, we can decide 

that the groove placed in the kth slot has a groove whose distance  from the center (see Fig. 2) is equal to k. 
For the sake of commodity, let us denote the groove position with respect to the center of the kth wedge with 

the non-dimensional parameter i defined as follows: 

 

wWb

i
i 




2
 

(1)

 

where Wb is the wedge width and w the groove width. 

It can be easily seen that parameter i may vary between –1 and 1. In particular, it is –1 when the groove is 
completely shifted to the left, 1 when it is completely shifted to the right, 0 when it is centered [5]. 

Furthermore, let us suppose that the groove width w has been fixed to obtain the desirable value of phase 
inductance as discussed in [5]. The problem is now to determine the optimal groove positions in all the Z 
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stator slots so as to minimize the cogging torque amplitude. In mathematical terms, the vector of non 

dimensional parameters k (with k = 1..Z) is to be determined so as to minimize the cogging torque 
amplitude. 

 

Fig. 3. Sample surface permanent-magnet machine considered for optimization 

3.3 Optimization	problem	implementation	in	the	modefrontier	environment	
The optimization problem stated above is a single-objective problem with twelve constrained design 
variables. The single objective function is the cogging torque peak Tpeak to be minimized. The constrained 

design variables are the twelve real numbers i which are allowed to vary in the [–1, 1] interval. In 
mathematical terms the problem can be stated as follow: 
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The function Tpeak which links the cogging torque amplitude to the twelve design variables k could be 
expressed analytically by resorting to such algorithms as presented, for instance, in [7]. However, due to the 
well known inaccuracy in present analytical methods for cogging torque computation, it is find more reliable, 

although more time consuming, to implement the function Tpeak (1,…12) numerically, that is by means of a 
sequence of finite-element analysis. 

The cogging torque calculation for any vector 1,…12 of design variables is performed by means of a 
program written 
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Fig. 4. Flow chart for the numerical calculation of the cogging torque by finite-element analysis. 

in LUA language which implements the flowchart drawn in Fig. 4 with black thin line. The program fist 

builds the machine model as shown in Fig. 3 by using the current vector (1,…12) of design variables to 

correctly place the wedge grooves. Then it performs a “for” loop by changing the rotor position by x -wide 
steps and, for the nth generic rotor position, it computes and stores the cogging torque value Tn. The 
computation is done by the FEMM software whose tasks can be executed through appropriate LUA language 
commands in batch mode [8]. When all the rotor positions across a 360-degree span have been analyzed, the 
program searches for the maximum in the vector | Tn | of cogging torque amplitudes and sets Tpeak equal to 
such maximum value. The objective function Tpeak thus calculated is then fed into the optimizer which, based 

on genetic algorithms, will appropriately decide the following vector of design variables (1,…12) to be 
explored. 

The optimization process described has been implemented in the modeFrontier® environment [9] through 

the workflow diagram reported in Fig. 5. The workflow illustrates how the twelve input variables 1,…12 
are separately treated and, at any optimization step, transferred into the input file. The application node, at 
each iteration, launches the LUA program which performs the cogging torque computation through the 
flowchart shown in Fig. 4. The LUA program writes the results (cogging samples) in an output file and the 
cogging torque absolute peak in a further file which is intended to contain the number to be minimized. 

The overall optimization process employs the MOGA II algorithm (Modified Genetic Algorithm, [9]). The 
inizialization of the optimization process is performed by a DOE (Design of Experiments) section which 
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used the simplex algorithm to indentify the initial designs to be explored which form the set from which the 
genetic algorithm search is started. 

 

 

Fig. 5. Workflow that implements the optmization in the modeFrontier environment. 

3.4 Optimization	results	
In the optimization process, more than one hundred configurations have been explored. Each configuration is 
simply called “design” and is assigned a progressive design ID. Each design is univocally determined by the 

order set of the twelve design variables 1,…12. 

A first diagram which can be used to visualize the optimization process output is shown in Fig. 6. It 
represents the cogging torque amplitudes computed for all the explored design, ordered by design ID. It can 
be seen that, at the beginning (low design ID values) the amplitudes are relatively high and quite randomly 
distributed. As the optimization process continues (i.e. for increasing design ID values), the genetic 
algorithm tends to select only the “fittest” designs, whose cogging torque amplitude, in fact, tends to a value 
around 1.23 Nm. This value can be treated as the lowest amplitude that can be achieved, provided that the 
optimization algorithm has worked properly identifying a global and not only local minimum for the given 
problem. 

Another view of the optimization output is provided in fig. 7, where we can see the values taken by all the 
design variables throughout the optimization. Representing all the design variable trajectories in the same 
diagram results in a quite confuse representation, so Fig. 8 shows the trajectory followed by each single 
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design variable separately. The y- axis scale is between –1 and 1 for all the design variables, while the 
abscissa is the design ID in all cases. 

 

Fig. 6. Peak torque values found throughout the optimization and plotted versus design ID. 

 

Fig. 7. Trajectory of the twelve design variables throughout the optimization 



23 

 

 

Fig. 8. Trajectory of the twelve design variables throughout the optimization 
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From Fig. 8 it can be clearly seen that each design variable, after an initial wide fluctuation, tends toward a 
quite precise value which defines its optimal value. 

The optimal solution is then constituted by the vector of variables i indicated as “optimal” in the histogram 
in Fig. 9. For the sake of comparison, two more design solutions are considered in the same figure, i.e. the 
worst design (which gives the highest torque ripple amplitude found throughout the optimization) and a 
generic non-optimal solution. 

 

Fig. 9. Numerical values of three design solutions: the optimal one, the worst one (among those been explored) and a 
generic non-optimal one. 
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Fig. 10. Cogging torque waveforms for: (a) optimal design; (b) worst design; (c) generic non-optimal design. 

The cogging torque waveforms corresponding to the three designed mentioned above are reported in Fig. 10. 

From a physical point of view, the optimal design determines a univocal distribution of groove positions 
around machine air-gap. Such distribution is illustrated in Fig. 8. 

Such configuration is the one which can minimize the cogging torque. It may be interesting to note that, from 
Fig. 9 and Fig. 11 the optimal solution does not seem to be characterized by any particular recognizable 
pattern, which suggests that finding it without a genetic optimization program would not be possible or, at 
least, intuitive. Nevertheless, one can also observe from Fig. 10 one can see that the optimal solution leads to 
a surprisingly “regular” (i.e. periodic) cogging torque waveform, unlike non-optimal solutions. 
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Fig. 11. Oprimal distribution of magnetic wedge grooves resulting from the optimization. 

3.5 Conclusion	
Cogging torque is a well known disadvantage of permanent-magnet machines, especially if designed with 
open stator slots. In a previous paper, a special magnetic groove design had been proposed to reduce cogging 
torque effects. In this chapter, such wedge design has been considered in more detail with the specific aim of 
finding its optimal design, which minimized the cogging torque amplitude. For this purpose, a genetic 
optimization algorithm, available in the modeFrontier software environment, has been employed. As a result 
of the optimization process, an optimal machine design with grooved wedges has been finally identified. 
Such optimal design does not exhibit any apparent feature such as to enable its recognition also without an 
optimization procedure. However, it has been also noted that the cogging torque waveform corresponding to 
the optimal design is not only the one with minimum amplitude, but also shows a periodic waveform which 
cannot be found, in general, in non-optimal design solutions. 
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4 Special	Magnetic	Wedge	Design	Optimization	with	Genetic	
Algorithms	for	Cogging	Torque	Reduction	in	Permanent‐
Magnet	Synchronous	Machines	Based	on	Winding	Function	
Theory	

4.1 Introduction	
Also already mentioned in previous chapter,  magnetic wedges are often used to improve the flux-density 
profile in the air-gap by reduction of slotting harmonics [1], [2], [3]. This problem can practically occur in 
high-torque permanent-magnet motors for traction applications, which are characterized by small voltage and 
high current values and are therefore designed with flat-turn windings and open stator slots [4]. 

In [5], a new magnetic wedge design is proposed for reducing the cogging torque of open-slot permanent-
magnet machines and contemporarily controlling phase inductance values. In [5] finite-element analyses are 
used to show how the change in the proposed wedge design can significantly affect machine behavior and 
parameters in terms of phase inductance and cogging torque. 

In the previous chapter, the purpose is to find the optimal wedge geometry in order to minimize the cogging 
torque amplitude for a given surface permanent-magnet machine structure. The problem is numerically 
solved by means of a genetic optimization algorithm combined with a finite-element code for automatic 
cogging torque calculation. 

In this chapter, the purpose is the same, but the problem is solved by means of a genetic optimization 
algorithm combined with a MATLAB code for automatic cogging torque calculation. 

The cogging torque calculation are based on winding function theory as well described in the chapter  2 . It 
allows to obtain results immediately and with no machine geometric model preparation. 

4.2 Optimization	problem	implementation	in	the	modefrontier	environment	
 

The optimization problem is a single-objective problem with twelve constrained design variables. The single 
objective function is the cogging torque peak Tpeak to be minimized. The constrained design variables are the 

twelve real numbers i which are allowed to vary in the [–1, 1] interval. In mathematical terms the problem 
can be stated as follow: 
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The function Tpeak which links the cogging torque amplitude to the twelve design variables k could be 
expressed analytically by a fast computational method based on winding function theory. Usually, due to the 
well known inaccuracy in analytical methods for cogging torque computation, it is considered more reliable, 
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although more time consuming, to implement the numerical method, that is by means of a sequence of finite-
element analysis. 

The cogging torque calculation for any vector 1,…12 of design variables is performed by means of a 
program written in MATLAB language which implements the flowchart drawn in fig 4. 

The program calculates the Cogging torque kT  throw analytical method as follow: 
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Where np  and mb  are permeance and winding function Fourier series parameters respectively. 

Pearmeance function obtained  by comformal mapping[8][9], whereas slot open equivalent to the wedge 

groove width. In addition wedge permeability equal the lamination one( r ) .Indeed the wedge 

permeability 100r . The proposed method doesn’t allow different permeability between lamination and 

wedge. This approximation does not imply a limit to the attainment of the objective. 

 

 

Fig. 1. Analytic Permeance function of magnetic wedge grooves centered respect to the center of wedges. 
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Fig. 2. Analytic Permeance function of optimal configuration. 

 

 

 

Winding function[6] can be obtained by radial component of airgap flux density defined in (3)[7][8] . 
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Fig. 3. Analityc Airgap radial Flux density(Slotless) 

 

The program searches for the maximum in the vector | Tk | of cogging torque amplitudes and sets Tpeak equal 
to such maximum value. The objective function Tpeak thus calculated is then fed into the optimizer which, 

based on genetic algorithms, will appropriately decide the following vector of design variables (1,…12) to 
be explored. The optimization process described has been implemented in the modeFrontier® environment 
[9] through the workflow diagram reported in Fig. 5. The workflow illustrates how the twelve input variables 

1,…12 are separately treated and, at any optimization step, transferred into the input file. The application 
node, at each iteration, launches the MATLAB program which performs the cogging torque computation 
through the flowchart shown in Fig. 4. The MATLAB program writes the results (cogging samples) in an 
output file and the cogging torque absolute peak in a further file which is intended to contain the number to 
be minimized. 

The overall optimization process employs the MOGA II algorithm (Modified Genetic Algorithm[9]). The 
inizialization of the optimization process is performed by a DOE (Design of Experiments) section which 
used the simplex algorithm to indentify the initial designs to be explored which form the set from which the 
genetic algorithm search is started. 
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Fig. 4. Flow chart for the analytical calculation of the cogging torque by winding funtion method.
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 Fig. 5. Workflow that implements the optmization in the modeFrontier environment. 

4.3 Optimization	results	
In the optimization process, more than one hundred configurations have been explored. Each configuration is 
simply called “design” and is assigned a progressive design ID. Each design is univocally determined by the 

order set of the twelve design variables 1,…12. 

The diagram, in Fig. 6, can be used to visualize the optimization process output. It represents the cogging 
torque amplitudes computed for all the explored design, ordered by design ID. It can be seen that, as in the 
numerical analysis in chapter 3, at the beginning (low design ID values) the amplitudes are relatively high 
and quite randomly distributed. As the optimization process continues (i.e. for increasing design ID values), 
the genetic algorithm tends to select only the “fittest” designs, whose cogging torque amplitude, in fact, tends 
to a value around 110 Nm. This value can be treated as the lowest amplitude that can be achieved, provided 
that the optimization algorithm has worked properly identifying a 
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Fig. 6 Peak torque values found throughout the optimization and plotted versus design ID. 

 

global and not only local minimum for the given problem. 

For the sake of comparison, two design solutions are considered in the figure, i.e. the centered groove 
positions design (which gives the high torque ripple amplitude) and the optimal solution. 

The cogging torque waveforms corresponding to the two designed mentioned above are reported in Fig. 9-
10. 

From a physical point of view, the optimal design determines a univocal distribution of groove positions 
around machine air-gap.  

Such configuration is the one which can minimize the cogging torque. 

It may be interesting to note that, as mentioned in the previous chapter, the optimal solution does not seem to 
be characterized by any particular recognizable pattern, which suggests that finding it without a genetic 
optimization program would not be possible or, at least, intuitive. Nevertheless, one can also observe from 
Fig. 10 one can see that the optimal solution leads to a surprisingly “regular” (i.e. periodic) cogging torque 
waveform, unlike non-optimal solutions. 
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Fig. 7. Wedge grooves centered respect to the center of wedges connfiguration. 

 

 

 

 

 

Fig. 8. optimal wedge grooves configuration. 
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Fig. 9. Analytic Cogging torque of centered wedge grooves configuration 
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Fig. 10. analytic Cogging torque of optimal wedge grooves configuration 

Also as shown in follows fig.(11-12-13) It can be seen really good agreement between the analytic an 
numerical Cogging Torque in optimal and no-optimal configuration.   

 

 

Fig. 11. Analytic and FEM Cogging torque comparison of centered wedge grooves configuration 

 

Fig. 12 Analytic and FEM Cogging torque comparison of one no-optimal configuration 
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Fig. 13. Analytic and FEM Cogging torque comparison of optimal configuration 

  

Fig. 14 shown the effect due to neglect permeability diffrence between wedge and lamination. The proposed 
method doesn’t allow to consider it. Nevertheless This approximation does not imply a limit to the 
attainment of the objective. In fact the peak value of Cogging Torque is the same obtained in previous 
chapter (123Nm). 
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Fig. 14. Analytic r=, FEM r= and FEM r=100 Cogging torque comparison of optimal configuration 

	

4.4 Conclusion	
 

Cogging torque is a well known disadvantage of permanent-magnet machines, especially if designed with 
open stator slots. In [5], wedge design has been considered in more detail with the specific aim of finding its 
optimal design, which minimized the cogging torque amplitude. For this purpose, a genetic optimization 
algorithm, available in the modeFrontier software environment, has been employed. As a result of the 
optimization process, an optimal machine design with grooved wedges has been finally identified. In this 
chapter the numerical calculations of Cogging Torque has been replaced by analytical method .Which is 
quite accurate and it allow to obtain more rapidly results than numerical one. In addition the proposed 
method doesn’t need a geometric machine model and it’s enough few minutes to solve each iteration. This 
application has allowed once again to show performance of cogging torque analytical calculation method 
proposed on chapter 2. 

Such optimal design does not exhibit any apparent feature such as to enable its recognition also without an 
optimization procedure. However, it has been also noted that the cogging torque waveform corresponding to 
the optimal design is not only the one with minimum amplitude, but also shows a periodic waveform which 
cannot be found, in general, in non-optimal design solutions. 
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5 Analytical	Calculation	of	the	No‐Load	Flux	Density	in	the	Stator	
Core	of	Slotless	SPM	Machines	

 

5.1 Introduction	
Surface Permanent Magnet (SPM) machines may be equipped with either a slotted or slotless stator core. In 
the latter case, the stator laminations form a ferromagnetic hollow cylinder whose inner surface is smooth. 
To this surface, stator coils are attached, instead of being embedded in slots as in the ordinary construction. 
The slotless stator design leads to a lower power density compared to the slotted one and is used where some 
parasitic effects relating to the slotting effects are to be eliminated. Typical examples of such parasitic effects 
are the cogging torque and rotor additional losses. The minimization or cancelation of the cogging torque is 
required, for instance, in some wind generators in order to let them work even at very small torque and speed 
values. Additional loss minimization, on the other side, may be required in some very high-efficiency high-
speed applications. 

Thanks to the absence of teeth, slotless SPM machine geometry allows for a relatively easy analytical 
solution for the magnetic fields in active parts. Formulations of the magnetic field in the air-gap due to both 
permanent magnets and armature windings have been presented. In this chapter, an analytical exact 
formulation is derived for the flux density in the stator core of unsaturated SPM slotless machines. The 
solution is derived based on the analytical expression of the vector potential in the air-gap by solving the 
Laplace’s differential equation for the vector potential in the core domain subject to suitable boundary 
conditions. The accuracy of the results obtained is assessed by comparison with finite element analysis. 

This chapter also shows how the formulation derived can be used for the analytical computation of no-load 
core losses of SPM slotless machines including rotational eddy current effects. 

Finally, it is empathized that the same methodology described in the chapter can be used to analytically find 
stator core flux density due to armature windings and, therefore, the overall flux density at any load 
condition. 

5.2 Geometrical	modeling	of	slotless	permanent	magnet	machines	
A typical schematic geometry of a slotless SPM machine is shown in Fig. 1. For the purpose of the chapter, 
the geometry can be characterized by the dimensions shown in Fig. 2, i.e.: 

 
Ro stator outer radius 
Rr rotor core outer radius 
Rm radius at permanent magnet external surface 
Rs stator bore radius 
pm permanent magnet span. 
 

A magnet coverage c is also introduced as the ratio between the magnet span and the pole span p: 
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Fig. 1. Geometry of a slotless SPM machine. 

 

 

Fig. 2. Characteristic dimensions for a slotless SPM machine. 

p

mc



     (1) 

The assumption made to solve the field analytically in the active parts of the machine is the stator and rotor 
cores are subject to negligible magnetic saturation. 

Furthermore, end effects are neglected, i.e. the flux density distribution is supposed to be the same over any 
machine cross section. This implies that the magnetic vector potential inside the machine is anywhere 
oriented axially and can be treated to a scalar. 

Permanent magnets are supposed to be radially magnetized with uniform magnetization. 

5.3 Analytical	Solution	for	the	no‐load	airgap	field	
An analytical formula for the air-gap field produced by permanent magnets can be found by solving the 2-D 
Poisson’s equation: 
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where r is permanent magnet relative permeability, r and  are the radial and azimuthal coordinate in a 
polar coordinate system centered on machine axis, A is (the axial component of) the vector potential and M 
is the magnetization vector. Outside permanent magnets, the magnetization vector (and therefore its 
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divergence) is zero; inside radially-magnetized permanent magnets, the magnetization vector is radially 
oriented and has uniform amplitude given by: 
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Fig. 3. Radial component of the magnetization as a function of the azimuthal angle along an arbitrary circumference of 

radius r between Rr and Rm. 

where Hc is permanent magnet coercivity, h=RmRr is permanent magnet height and =RsRm [approximation 

(3) holds because relative permeability r is always very close to unity]. Hence the radial magnetization 

component r along any circumference of radius between Rr and Rm has the diagram shown in Fig. 3 for a 
machine with p pole pairs, while the tangential component is zero anywhere. Therefore, the divergence 
inside permanent magnets is: 
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Using (4), Poisson’s equation (2) can be solved analytically by separation of variables for the vector potential 
Ag. In particular, the radial flux density in the gap region not occupied by permanent magnets [i.e. for the 

region where   Rmr Rs and where div(M)=0] can be found from Ag as: 
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Fig. 2. Characteristic dimensions for a slotless SPM machine. 
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if np1. 

As a preliminary verification, the air-gap flux density computed by (4)-(8) is assessed against FE analysis on 
a sample machine geometry characterized by the data given in Table I. 

 
 

TABLE I 

Rr 50 mm Ro 100 mm 

Rm 59.5 mm r 1.04 

Rs 70 mm Hc 850 kA/m 

c 0.917 p 1 
 

 

As can be seen the matching is definitely satisfactory. The FE solution in Fig. 4 exhibits a ripple-like effect 
in the permanent magnet region due to the fact that, in the FE model, the radially magnetized magnet had to 
be approximated as a 
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Fig. 4. Comparison of the air-gap radial flux density computed analytically and by FE analysis over a pole span at  

radius r = 60 mm. 
 

 

 
Fig. 5. Modeling of radially magnetized permanent magnets as a sequence of elementary magnets with parallel 

magnetization. 
 

set of  magnets with parallel magnetization for numerical reasons. 

 
 

5.4 Analytical	Solution	for	flux	density	inside	the	stator	core	
To determine the flux density inside the stator core, the Laplace’s equation for the vector potential Ac in the 
core is first written as: 
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Assuming that separation of variables technique can be used, the general solution has the form: 
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for any set of coefficients 
ncA , , 

ncA , , . These coefficients can be determined by imposing boundary 

conditions. On the stator bore surface (r=Rs), the boundary condition is written considering that the radial 
flux density component is continuous across the inner stator surface, hence: 
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where Bcr indicates the radial flux density in the stator core and Bgr the radial flux density in the gap, given 
by (4). 

On the outer stator surface (r=Ro), the Dirichlet boundary conditions (meaning that flux lines are tangent to 
the external rotor surface) is imposed, i.e.: 
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From (11) and (12) the unknown coefficients can be found. In particular,  needs to be zero when the polar 

axis is at =0 [which is asumed in (4)]. Otherwise,  represents the polar axis position in the stator reference 

frame where angles  are defined. 

As to coefficients 
ncA , , 

ncA ,  the expression they must take to satisfy (11) and (12) is shown below: 
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with Kn and fn given by (5)-(8). 

Once the vector potential has been determined, the tangential and radial flux density components in the core 
are immediately known as: 
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where  is the polar axis position in the stator reference frame. 

The flux density magnitude in the core can be derived from (15)-(16) as: 
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5.5 FE	Validations	
The derived formulas for the flux density in the core are assessed by comparison with FE results obtained on 
the two-pole machine whose data are provided in Table I. 

 

Fig. 6. Positions of circumferences  and  on which flux density components from FE analysis and analytical 
computation are compared. 
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Fig. 7. Comparison of the flux density components in the yoke computed by FE analysis and through the formulas 
derived. 

 

The comparison is made between flux density values computed by FE analysis and with the analytical 

formulas above on the two circumferences  and  shown in Fig. 6:  is the stator bore circumference,  is 
the mean yoke circumference. 

The comparison is shown in Fig. 7, where a very good agreement between the two methods employed can be 
observed. 

5.6 Application	to	No‐Load	Core	Loss	Evaluation	
The knowledge of the flux density values in the stator core in the form of an analytical formula can serve 
different purposes. Among the other things, it helps compute core losses without FE analysis. 

According to [6], the no-load core losses due to the fundamental flux density can be estimated as: 
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where: 
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kH is the hysteresis loss coefficient 
kE is the eddy-current loss coefficient 
 is the exponential hysteresis coefficient 

(r,) is the rotational loss coefficient 
 is lamination density 

 
 
The rotational loss coefficient  at a given core point having coordinates r,  can be determined as a function 
of trakectory described by the flux density vector at that point. In general, such trajectory is an ellipse. In 
fact, let us consider the fundamental flux densities (designated with subscript “1”) according to (15)-(16): 
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Squaring (19)-(20) them we obtain: 
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By substitution of (21) into (22) we obtain that the tangential and radial flux density components must satisfy 
the equation: 
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which is the equation of an ellipse having axes equal to
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Equations (24)-(25) clearly show that the shape of the ellipse described by the flux density vector point (Fig. 
8) depends only on the radial coordinate r. 

The rotational loss coefficient appearing in (18) can be thus evaluated for any radius r as a function of the  
axes of the flux density ellipse at that radius, i.e.: 
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Fig. 8. Ellipse described by the point of the flux density vector B in a given point of the stator core. 

 

Fig. 9. Flux density ellipse axes computed analytically as a function of the radius in the stator core. 
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A diagram of the function   is provided in [6]. 

An example of analytical computation of the flux density ellipse axes in the stator core is provided in Fig. 9, 
which implements equations (24)-(25) for the machine whose data are given in Table I. In particular, it can 
be seen how the ellipses axis in the radial direction (b) tends to zero as the radius r approach the outer stator 
radius Ro. In fact, at r=Ro a purely tangential flux density (Dirichlet condition) has been imposed. 

5.7 Extension	to	Analytical	coumputation	of	the	core	Flux	Density	due	to	
Armature	Currents	

The methodology described in this chapter can be naturally extended for the computation of the flux density 
that originates in the slotless stator core due to armature currents. For this purpose, one can  start from the 
armature reaction field analytical expression in the air-gap domain and use the flux density values on the 
stator bore circumference as a boundary condition to solve Laplace’s equation in the core domain.  
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5.8 Conclusion	
In this chapter an analytical expression has been derived for the no-load flux density in the stator core of a 
slotless SPM machine. The  expression has been derived by solving Laplace’s equation in the core domain 
and applying suitable boundary conditions. The expression has been verified by comparison with FE analysis 
results on a sample machine and found to be extremely accurate. Finally, the use of the derived formula for 
the computation of no-load core losses has been discussed. In particular, it has been shown how, using the 
proposed analytical approach, rotational eddy current effects can  be easily taken into account in the core loss 
computation. Extension of the computation method proposed to the core flux density due to armature 
currents has been finally discussed. 
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6 A	Compact	Analytical	Expression	for	the	Load	Torque	in	
Surface	Permanent‐Magnet	Machines	with	Slotless	Stator	
Design	

 

6.1 Introduction	
Surface Permanent Magnet (SPM) machines may be equipped with either a slotted or slotless stator core [1], 
[2], [3]. In the latter case, the stator laminations form a ferromagnetic hollow cylinder whose inner surface is 
smooth. Stator coils are attached to this surface, instead of being embedded in slots as in the ordinary 
construction. 

The slotless stator design leads to a lower power density compared to the slotted one and is used where some 
parasitic effects relating to the slotting effects are to be eliminated. Typical examples of such parasitic effects 
are the cogging torque and rotor additional losses. The minimization or cancelation of the cogging torque is 
required, for instance, in some wind generators in order to let them work even at very small torque and speed 
values [4]. Additional loss minimization, on the other side, may be required in some very high-efficiency 
high-speed applications [5]. 

Thanks to the absence of teeth, slotless SPM machine geometry allows for a relatively easy analytical 
solution for the magnetic fields in active parts [3]. Formulations of the magnetic field in the air-gap due to 
both permanent magnets and armature windings have been presented [1], [2]. In this chapter, an analytical 
exact formulation is derived for the load torque of slotless SPM machines. The proposed formula has the 
advantage of explicitly showing how machine torque relates to every single construction detail, i.e. to active 
part dimensions and permanent magnet characteristics. Therefore, it can be of practical usefulness in the 
dimensioning and design optimization stage as a fast alternative to time-consuming Finite Element (FE) 
analysis [4], [5]. 

With respect to the existing literature, the method proposed in the chapter for torque computation does not 
rely on Maxwell’s stress tensor technique [1]-[3] (which is known to lead to quite involved formulation) but 
employs an alternative approach where rotor permanent magnets are modeled as equivalent current sheet [7]. 
Such a modeling makes it possible to compute the force acting on them (and thus the rotor torque) from the 
vector product of the armature reaction field and the equivalent current density representing permanent 
magnets. 

6.2 Geometric	Model	of	Slotless	Spm	Machines	
A typical schematic geometry of a slotless SPM machine is shown in Fig. 1. For the purpose of the chapter, 
the geometry can be characterized by the dimensions shown in Fig. 2, i.e.: 

Rw winding inner radius 

Rr rotor core outer radius 

Rm outer permanent magnet radius 

Rs stator bore radius 

pm permanent magnet span 
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Fig. 1. Geometry of a slotless SPM machine. 

  

Fig. 2. Characteristic dimensions for a slotless SPM machine. 

A magnet coverage c is also introduced as the ratio between the magnet span and the pole span p: 

pmc  /
  

(1)
 

 

The assumption made to solve the field analytically in the air-gap is that stator and rotor cores are subject to 
negligible magnetic saturation. Furthermore, end effects are neglected, i.e. the flux density distribution is 
supposed to be the same over any machine cross section. This implies that the magnetic vector potential 
inside the machine is anywhere oriented axially and can be treated as a scalar. 

Permanent magnets are supposed to be radially magnetized with uniform magnetization. They are 

characterized through a relative permeability r and a coercivity Hc. Residual flux density is thereby 

determined as 0rHc where 0=4×107 H/m is air magnetic permeability. 

The stator coils are supposed to be organized in a single-layer three-phase winding arrangement (as in usual 
construction 0, 0) where each phase has a 60-electrical-degrees span (phase belt). In each phase belt, a 
uniform current density distribution is assumed.  

Currents in phases a, b, c are supposed to be sinusoidal and shifted by 120 electrical degrees in time, so that 
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The winding is characterized by the following data: 

Nc number of turns per coil 

p number of pole pairs 

q number of coils per pole per phase 

I peak phase current 

 stator current pulsation 

b number of parallel ways per phase 

 

For machine field analysis, a polar coordinate system ),( r  is introduced where a generic point P in the 

machine cross section is identified with a radius vector of length r starting from rotation axis and forming an 

angle  with the vertical as shown in Fig. 2. One phase belt of phase “a” is assumed centered at =0. 

6.3 Geometric	Model	of	Slotless	Spm	Machines	
 

Based on the assumptions and definitions fixed in previous section, the procedure followed in this chapter for 
analytical load torque derivation consists of the following steps: 

-The armature reaction field due to stator currents over time is computed analytically by solving Maxwell 
equation for the magnetic vector potential in the air-gap domain. The accuracy of the computation is checked 
by comparison with FE analysis. 

-Permanent magnets are modeled through appropriate current sheets. The surface current required for exactly 
modeling their effect is calculated and the accuracy of the modeling approach is verified by FE analysis. 

-The instantaneous torque is computed as resulting from the interaction between the armature reaction field 
and the equivalent current sheets introduced to model permanent magnets. The derived torque expression is 
checked against FE analysis. 

The three steps mentioned above will be developed in next sections. 

 

6.4 Computation	of	Armature	Reaction	Field	
 

The armature reaction field in the air-gap domain  is first computed. By air-gap domain in this context 
reference is made to all the machine region not occupied by ferromagnetic cores; the air-gap in this sense 
therefore includes permanent magnet and stator winding regions as well. 
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The armature reaction field is being computed by solving Maxwell equation for the magnetic vector potential 
in the air-gap domain. The field solution in the winding region ( sRrR 1 ) is indicated in the following by 

subscript “w”, while the solution in the remaining part of the air-gap (mainly occupied by permanent 
magnets, 1RrRi  ) will be denoted by subscript “m”. 

If only stator current energize the machine, the vector potential in the winding and permanent magnet 

domain (Aw, Am, respectively), satisfy the following differential equations in polar coordinates r, : 
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where J(t) indicates the current density at instant t at angular position  in the winding region. 

 Solving (5)-(6) enables one to find the radial and tangential components of the flux density in the 

winding region (Bwr, Bw) as well as the radial and tangential components of the flux density in the permanent 

magnet region (Bmr, Bm) as follows: 
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6.4.1 Definition	of	current	density	function	
 

The current density function J(, t) is a piece-wise constant function that accounts for the current density 
being uniform over each phase belt. By simple geometric considerations, it can be shown that the function 

J(t) can be expressed as the following series expansion: 
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where coefficients Jn, for any odd positive integer n, have the form: 
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Indices k and h in (7) respectively take odd integer values given by k=6q+1 (with q=0, 1, 2, …) and h=6q1 
(with q=1, 2, 3, …). 

Fig. 3 shows the plot of current density function J(, t) for a two-pole machine over a double pole span 
(  20  ) at three instants of time, namely at t=0, t=T/12 and t=T/6, where T is the period of stator 

currents (T=2/). The data of the sample SPM slotless machine taken into account to draw the plots in Fig. 
3 are reported in Table I. 
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Fig. 3. Current density function plot over a two-pole span at time t=0, t=T/12 and t=T/6. 

 
 

 

TABLE I. SAMPLE SPM SLOTLESS MACHINE DATA 

q 6 r 1.05 

p 1 Hc 850×103 A/m 

I 1500 A L 80.0×103 m 
Nc 1 Ri 50.0×103 m 
b 1 R1 60.5×103 m 
Ri 0.050 m Rs 70.0×103 m 
f 50 Hz cm 0.917 
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6.4.2 Definition	of	current	density	function	
 

Once the current density function has been defined as discussed in the previous subsection, what is still 
required to solve differential equations (5)-(6) is to define suitable boundary conditions. Two homogeneous 
Neumann boundary conditions can be established on the outer and inner air-gap circumferences (at radii r=Ri 
and r=Rs), imposing that the flux density must have zero tangential component on them (due to the assumed 
infinite core permability): 
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for any . Two further boundary conditions can be fixed by imposing that the flux density must be 
continuous at r=R1 in both its radial and tangential components: 
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6.4.3 General	solution	for	air‐gap	magnetic	potential	
 

To determine the vector potential in the air-gap domain, boundary conditions (11)-(14) are to be applied to 
the general solutions of (5)-(6). By separation of variables, such general solutions can be expressed as 
follows: 
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where 
nwA , , 

nwA , , 
nwA , , 

nmA , , 
nmA ,  are suitably defined constants. 

By direct substitution and partial derivative expansion, one can prove that (15)-(16) always satisfy (5)-(6) on 

condition that, for any odd integer n, the constant 
nwA ,  is defined as: 
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6.4.4 Solution	for	the	air‐gap	magnetic	vector	potential	
 

The only action to determine the magnetic vector potential in the air-gap domain is to fix the constants  
nwA , , 


nwA , , 

nmA , , 
nmA ,  for any odd integer n. This can be done by imposing boundary conditions (11)-(14). 

Substitution of (15)-(16) into (11)-(14) gives in fact: 

 

   


 
,...17,11,5

,
1

,
1

, cos2
h

shw
hp

shw
hp

shw thpRARhpARhpA   

    0cos2
,...13,7,1

,
1

,
1

,  




k
skw

kp
skw

kp
skw tkpRARkpARkpA   (18) 

   


 
,...17,11,5

1
,

1
, cos

h

hp
ihm

hp
ihm thpRhpARhpA   

    0cos
,...13,7,1

1
,

1
,  





k

kp
ikm

kp
ikm tkpRkpARkpA    (19) 

 

   


 
,...17,11,5

1,
1

1,
1

1, cos2
h

hw
hp

hw
hp

hw thpRARhpARhpA   

   


 
,...13,7,1

1,
1

1,
1

1, cos2
k

kw
kp

kw
kp

kw tkpRARkpARkpA   



60 

 

   


 
,...17,11,5

1
1,

1
1, cos

h

hp
hm

hp
hm thpRhpARhpA   

    0cos
,...13,7,1

1
1,

1
1,  





k

kp
km

kp
km tkpRkpARkpA   (20) 

 

   


 
,...17,11,5

1,
1

1,
1

1, sin
h

hw
hp

hw
hp

hw thpRARARAhp   

   


 
,...13,7,1

1,
1

1,
1

1, sin
k

kw
kp

kw
kp

kw tkpRARARAkp   

   


 
,...17,11,5

1
1,

1
1, sin

h

hp
hm

hp
hm thpRARAhp   

    0sin
,...13,7,1

1
1,

1
1,  





k

kp
km

kp
km tkpRARAkp     (21) 

 

Since (18)-(21) must hold for any  and t, they imply the following equalities: 

 

02 ,
1

,
1

,  
snw

np
snw

np
snw RARnpARnpA   (22) 

01
,

1
,   np

inm
np

inm RARA         (23) 

 
1,

1
1,

1
1, 2 RARnpARnpA nw

np
nw

np
nw

  

1
1,

1
1,

  np
nm

np
nm RnpARnpA        (24) 

 
1,

1
1,

1
1, RARARA nw

np
nw

np
nw

  

1
1,

1
1,

  np
nm

np
nm RARA              (25) 

to be satisfied for any odd integer n. Equations (22)-(25) constitute a linear system of equations in the 

unknowns 
nwA , , 

nwA , , 
nmA , , 

nmA ,  [ 
nwA ,  are still known from (17)]. Such a system can be solved yielding: 
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6.4.5 Air‐gap	flux	linkage	determination	
 

Once coefficients in (15)-(16) are fully determined through (17) and (26)-(29), the flux density in the air gap 

can be computed from (7)-(8) at any point (r, ) and at any instant of time t. In particular, what will be used 
for torque computation is only the radial flux density component in the permanent magnet region (Bmr), 
whose explicit expression in therefore provided explicitly below: 
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The accuracy of the expression found for the radial magnetic field is assessed against FE analysis. 
Comparisons between analytical and FE results are made on the sample SPM slotless machine whose data 
are provided in Table I. The comparison is made at two instant of times, namely at t=0 and t=T/12, being T 
the period of stator currents given by (2)-(4). The FE analysis solution referring to the two instants of time 
are provided in Fig. 4 and Fig. 6 respectively. In the same figures, three contours are shown where the radial 
flux density values resulting from FE analysis and analytical computation are compared. The comparison 
shows a very good matching between analytical and FE-computed results. 

 

 

6.5 Modeling	Permanent	Magnets	with	Equivalent	Current	Sheets	
 

In order to facilitate load torque computation, the approach proposed in this chapter consists of replacing 
each 
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Fig. 4. FE analysis output for the sample SPM slotless machine at instant t=T/12, when conductors in magenta carry a 

current I and conductors in yellow carry a current I/2. 

  

Fig. 5. Radial flux density plotted over contours 1, 2, 3 (Fig. 4) at instant t=0, according to analytical calculation and 
FE analysis. 

permanent magnet with a couple of current sheets capable of generating exactly the same field. The 
concept is illustrated in Fig. 8, which shows how the permanent magnet with uniform radial magnetization M 
is replaced by a surface current density js flowing through its radially-oriented sides. 
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The equivalent current density js has the same value as the radial magnetization M 0, hence we can write: 

 

Fig. 6. FE analysis output for the sample SPM slotless machine at instant t=T/12, when conductors in magenta carry a 
current 0.866×I and the other ones carry no current. 

 

  

Fig. 7. Radial flux density plotted over contours 1, 2, 3 (Fig. 6) at instant t=T/12, according to analytical calculation 
and FE analysis. 
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where Hc is permanent magnet coercivity, h is magnet height im RRh   (Fig. 2), r its relative permability 

and  is the air-gap width mRR  1 . 

 The accuracy of replacing permanent magnets with their equivalent current sheets computed as per 
(31) is assessed 

 

 

Fig. 8. (a) Surface permanent magnet. (b) Equivalent surface current density. 

 

 

Fig. 9. FE analysis output for the no-load operation (a) with fully-modeled permanent magnets; (b) with equivalent 
current sheets in place of permanent magnets. 
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Fig. 10. Comparison between the radial flux density produced on the mean air-gap circumference r=(R1+Rm)/2 by 
permanent magnets and equivalent current sheets, both computed by FE analysis. 

 

on the sample SPM machine characterized by the data given in Table I. For this machine, the no-load flux 
distribution is computed by FE analysis using two models as shown in Fig. 9. For one simulation permanent 
magnets are included in their usual form (Fig. 9a), for the other they are removed and replaced by the surface 
current js, given by (31) and placed on the radial segments shown in Fig. 9b. Flux line distribution and flux 
density color map (plotted in equal scale) as shown in Fig. 9a and 9b suggest that the magnetic field 
produced in the machine in the two simulations is practically identical. As a further check, the radial flux 
density component is plotted over the semi-circumference placed in middle of the mechanical air-gap 
[ 2/)( 1RRr m  ]. The radial flux density plots resulting from the two simulations are compared in Fig. 10. It 

can be seen that the two plots are in good accordance except for the small ripple-like effect observed in the 
simulation output when permanent magnets are modeled in the conventional way. Such a ripple is due to the 
fact that, to model a radially-magnetized permanent magnet, the FE simulation software needs to subdivide it 
into several parallel-magnetized magnet segments. 

 

6.6 Load	Torque	Computation	
 

As a final step, the machine torque in load condition is computed. For this purpose, a machine model is 
assumed where the armature reaction field produced by stator currents over time is computed as per Section 
6.4 and rotor permanent magnets are replaced by their equivalent surface current density computed as per 
Section 6.5. 

Let us consider a generic instant of time t, when stator currents are given by (2)-(4) and the rotor pole axis, 
under the hypothesis of synchronous operation, is placed at: 

 

t
pr

  0

  
(32)
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where 0 indicates the initial rotor position. It is incidentally noted that, based on the conventions specified in 

Section 6.2, 0 is the complementary of the angle between armature reaction field and permanent magnet 

field axes; hence, the maximum torque operation for the machine occurs when 0=0. 

 From Fig. 11 it is clear that the equivalent current sheets replacing permanent magnets in the model 
(segments PQ and RS for one pole) are located at angles: 

 

 

Fig. 11.Example machine with polar axis placed at generic position r. . 

 

p

c
t

p
mm

r 22 0

 
   

(33)
 

 

where m is permanent magnet angular span and cm is permanent magnet coverage in per unit (i.e. magnet to 
pole span ratio). 

The torque acting on the rotor is due to the force that originates along the current sheets replacing permanent 
magnets. For example, considering an infinitesimal element ds lying on segment PQ and placed at radius r 
(Fig. 11), the Laplace force acting on it will have a tangential component equal to drjLBdF sr , where L is 

machine core length and Br is the total radial flux density on element ds. This will give an electromagnetic 
torque contribution equal to rdFdTem  . Hence the total electromagnetic torque on the rotor will be (Fig. 

11): 
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The total radial flux density Br results from two contributions, respectively accounting for rotor permanent 
magnet and armature reaction field, namely: 

 

nlmrr BBB 
   

(35)
 

 

where Bmr is the radial flux density due to stator currents, given by (30), and Bnl is the no-load radial flux 
density due to permanent magnets. 

Substitution of (35) into (34) gives: 
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(36)
 

 

where sign “” is due to the fact that, on the two current sheets PQ, RS, the surface current js has opposite 
direction. 

The sum of integrals in the second bracketed term is certainly zero for slotless SPM machines where, due 
to the perfect circular symmetry of air-gap boundaries, the two integrals on PQ and RS cancel each other. In 
fact, the no load flux density Bnl has an identical distribution on segments PQ and RS. It is to be observed 
that, in slotted SPM machines, this is not true, in general, as a consequence of slotting effects. In other 
words, the second term of (36) gives (in general) the cogging torque, which is known to be zero in slotless 
SPM machines. 

In conclusion, for the machine type under study, (36) can be written as: 
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Considering that Bmr is given by (30) and segments PQ, RS are placed at angular positions (33), the torque 
expression above can be expanded as: 
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where the constant Fn is defined for any odd integer n as: 
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The integral in (39) takes two different solved forms depending on whether np=1 or np1, i.e.: 
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It can be noted that the case np=1 occurs only for two-pole machines when n=1. 
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As a final step, by expressing t as a function of r according to (32), we can write the electromagnet torque 
(38) as: 
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Equation (41) gives the exact torque expression as a function of the rotor position r during 

synchronous operation with an angle displacement /20 between the d axis and the armature reaction field 

[setting 0=0 in (41) we have the maximum-torque operating condition]. 

 It might be useful to isolate the mean torque Tmean (which is the useful torque) from the torque ripple 
Tharm in (41): 
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The mean torque is given by the r-independent term, which is obtained for k=1 in the second sum of (41): 
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(43) 

 

which  clearly shows how the maximum torque occurs for cm=1 (i.e. when the magnet fully covers the pole 

span) and for 0=0, i.e. in case of stator and rotor fields placed in quadrature position. 

 As to the ripple torque component, it collects all the r-dependent terms in (41), namely: 
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The torque ripple (44) would be zero in the ideal case of sinusoidal winding distribution. In this case, in fact, 

coefficients Jn would be zero for n1 in (9) and, consequently, also coefficients 
nmA , , 

nmA ,  would be zero for 

n1, [see (26)-(29)], as well as coefficients [see (40)]. Conversely, due to the winding being not sinusoidally 

 

 

Fig. 12.Electromagnetic torque computed by FE analysis and with the proposed analytical method during synchronous 
operation . 

 

distributed (see Fig. 3 showing the actual current density distribution), coefficients Fn are not negligible, in 
practice, which leads to non-negligible torque ripple even in case of sinusoidal current-versus-time 
waveforms. 

As a numerical validation of (42)-(44), a comparison is made between the instantaneous torque values 
computed through such formulas and by FE analysis on the sample machine with characteristic data given in 
Table I. The FE simulation is made by successive magnetostatic analyses where the rotor is moved in 
synchronism with stator currents. The comparison, shown in Fig. 12, highlights that the instantaneous torque 
can be very accurately predicted through the analytical formulation presented in the chapter. Such model can 
be therefore used as a fast computationally-efficient alternative to FE analysis if the hypotheses discussed in 
Section 6.2 are acceptable. The diagram in Fig. 12 also clarifies how the non-sinusoidal stator winding 
distribution, although in presence of sinusoidal current-versus-time waveform, gives rise to a non-negligible 
torque ripple amplitude. 

As a concluding remark, it is observed that, for the purpose of machine dimensioning, the interesting 
quantity is only the useful torque developed by the machine, given by (43). This expression is quite compact 
and easy-to-evaluate compared to those obtained by Maxwell stress tensor method. In fact, using (26)-(29) 
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and (40), Tmean given by (43) can be easily expanded to show the explicit dependence of machine torque on 
all the construction parameters. This can be very useful in the dimensioning stage as well as in the machine 
design optimization. 

 

 

6.7 Conclusion	
 

Slotless SPM machines are used as electric motors and generators in some high-performance applications 
where torque disturbances and additional losses due to slotting effects need to be minimized. In this chapter, 
a compact exact analytical expression for the load torque of slotless SPM machines has been derived and 
validated by FE analysis. The expression proposed has been found by solving Maxwell equations in the air-
gap domain to determine armature reaction field and by replacing permanent magnets with equivalent 
surface current distributions. The torque has been thus computed as the result of the interaction between 
armature reaction field and rotor equivalent current sheets. Compared to the involved implicit formulations 
resulting from Maxwell stress tensor methods, the approach proposed in the chapter has led to simple torque 
expression that can be easily evaluated as a function of machine design quantities. This may be very useful 
as an alternative method to FE computations in the machine dimensioning and design optimization 
processes. 
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7 Analytical	Modeling	of	Split‐Phase	Synchronous	Reluctance	
Machines	

 

7.1 Introduction	
Synchronous reluctance (SynRel) motors are gaining increasing attractiveness as vehicle traction motor 
drives thanks to their rugged, cheap and magnet-free rotor construction [1]-[3]. Promising applications of 
SynRel motors, possibly assisted by permanent magnets, in the automotive field have been recently reported 
in the literature [4], [5]. An effective way to cope with the strict reliability requirements proper to vehicle 
traction drives is to equip the electric motor with a split-phase (or multiple three-phase) winding, consisting 
of two or more three-phase winding sections, each fed by an inverter independently [6]. In this chapter, a 
SynRel motor with a split-phase stator winding is in fact considered as a possible interesting electric machine 
topology for fault-tolerant magnet-free vehicle traction applications. 

SynRel motors are usually characterized by a round rotor in which magnetic anisotropy (required for 
reluctance torque production) is achieved by suitably shaped flux barriers [7], [8]. Flux barrier geometry is 
often defined through an iterative optimization procedure [8] with different possible goals, such as torque 
ripple enhancement [9], [10] and core loss reduction [11] or in a multi-objective framework [8]. In the 
optimization procedures, hundreds or thousands of design solutions need to be explored within a reasonable 
timeframe, which calls for very fast methods for machine analysis, possibly avoiding time-consuming FEA 
simulations. For this purpose, analytical techniques based on magnetic equivalent circuits (MEC) have been 
proposed in the literature [10], [11] for the study of SynRel motors (or permanent-magnet assisted ones) 
featuring three-phase stator winding and flux barriers of roughly uniform width. 

 In this chapter, MEC technique is extended to study split-phase SynRel motors with an arbitrary set 
of stator windings and with flux barriers having a circular shape, which are widely used for purely reluctance 
(magnet-free) motors [3], [7], [12]. The MEC parameters (namely MMF sources and magnetic reluctances) 
are analytically computed based on motor design data. The MEC analytical solution is used to obtain an 
accurate estimation of SynRel motor air-gap flux for any rotor position and supply currents. Accuracy of 
results is successfully assessed by comparison with FEA simulations on a sample six-phase SynRel motor 
including magnetic saturation effects. 

  

7.2 Modeling	Assumptions	
In this chapter, a SynRel motor with a split-phase stator winding which includes a generic number N of 

three-phase sets is taken into account. As shown in Fig. 1, the phases of the N sets are named (A0, B0, C0), 
(A1, B1, C1), … (A N−1, B N−1, CN−1) and the three-phase sets are displaced 60/N electrical degrees apart. Each 
three phase set is suitable for being supplied by an inverter independently (Fig. 2). In normal operation, all 
the winding sets are equally loaded, but under faulty or abnormal conditions it may happen that the output 
currents I0, I1… IN−1 are different in the N inverters (possibly being equal to zero).  



74 

 

 
Fig. 1. Phase arrangement and naming for a split-phase winding configuration with N three-phase sets. 

 
 

 
Fig. 2. Overall drive schematic for a split-phase motor with N independently fed stator sets. 

 
 

  
Fig. 3. Example of a four-pole dual-three-phase SynRel motor with two round barriers per pole. Phase arrangement over 

a pole span. 
 

This brings to the possibility for the drive to operate at reduced power in case of fault on one or more 
supplying inverters or winding sections. The way in which phases are physically arranged in stator slots is 
exemplified in Fig. 3, where the case is illustrated of a four-pole dual-three-phase (N=2) winding 
configuration with a dual-layer short-pitch coils with two slots per pole per phase. 
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Fig. 4. Characteristic geometric quantities for the i-th flux barrier. 

Regarding the rotor, a generic number of flux barriers is assumed (Fig. 3 shows the case of two barriers per 
pole). For the purpose of MEC definition, the case of uniform-width C-shaped barriers is the most simple 
and is also addressed in [8], [10], [11] for three-phase machines. The most challenging case of circular flux 
barriers (Fig. 3, [3], [7], [12]) will be then assumed in the following as it requires a more complex procedure 
to analytically find the MEC reluctance associated to each barrier. Furthermore, it will be assumed that flux 
barriers are delimited by circumferential arcs as depicted in Fig. 4. Here, the generic i-th flux barrier is 

represented for example. Its borders lie on circumferences ai (of radius rai and center Cai) and bi (of radius 
rbi and center Cbi) and intersect the outer rotor circumference (having radius r and center C) at points Pai, Qai 

and Pbi, Qbi, respectively. These intersection points are identified by the two angles ai and bi centered in C, 
as shown in Fig. 4. The geometry of the i-th flux barrier is hence fully determined by the two radii rai, rbi and 

by the two angles ai and bi. In fact, the centers Cai, Cbi are consequently defined by their distance from the 
rotor center C as follows: 

 

aiaiaiai rrrCC  222 sincos 
  

(1)
 

bibibibi rrrCC  222 sincos 
  

(2)
 

 

For the following, it is also useful to observe that the two circumferences ai  and bi intersect at points Pi, Qi 
placed outside the rotor. The intersection of segment PiQi with the barrier symmetry axis is called Oi in Fig. 4 
and from elementary geometric calculations one can find the distance of Oi from rotor center C and the 
length of segment PiQi as follows: 
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The geometric relationships mentioned above will be used in Section 7.5 for the magnetic field analysis in 
the flux barriers. 

Finally, saturation effects are neglected, or, more precisely, supposed to occur only in the iron bridges 
between flux barriers and the outer rotor periphery in such a way that no flux passes through these bridges. 
Such hypothesis is normally assumed in the study of SynRel machines through MEC techniques [10], [11] 
and is very well matched for sufficiently small bridge widths, as later on confirmed by comparing analytical 
results with FEA simulations where saturation effects are included (Section 7.7). 

 

7.3 Motor	Modeling	with	MEC	Technique	
 

The MEC modeling of the SynRel motor is illustrated in Fig. 5 where, for the sake of clarity and 
simplicity, the case of a two pole machine with two barriers per pole (indicated as barrier 1 and 2 for one 
pole, 1' and 2' for the other one) is taken into account. The basic principle for MEC modeling is that the air-
gap is subdivided into various regions (sectors), named “11”, “12”, “21”, “22” by the points (Fig. 4) where 
barriers intersect the rotor outer periphery. For instance, region “11” is delimited by the end points of barrier 
1 (or 1'), regions “12” and “21” are delimited by the end points of barriers 1 and 2 (or 1' and 2'), region “22” 
is delimited by the end points of barriers 2 and 2’. For the generic air-gap region, the relevant air-gap 
reluctance (Rg) and MMF (F) is naturally defined and computed as discussed in the next Section. Moreover, 
the reluctances (Rb) associated to rotor flux barriers are defined and, again, reference is made to the next 
Section for their analytical computation. The nodes of the MEC are identified as S, A, B, A', B', R. Each 
node represents a portion of the machine (core) where no MMF drop is supposed to occur under the 
hypothesis (Section 7.2) of disregarding magnetic saturation. The fluxes passing through the various air-gap 

regions are finally indicated in Fig. 5 (11, 12, 21,22) as well as the flux (2) passing through barrier 2. 
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Fig. 5. Schematic of the SynRel MEC for a two-pole motor with two barriers per pole. 

 

 

The MEC sketched in Fig. 5 can be solved using well known methods of circuit theory analysis [13]. These 

give the following solution for the fluxes 11 and 2 passing through barriers 1 and 2: 
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The two fluxes (5)-(6) will be used in Section 7.6 to compute machine air-gap flux density distribution. 
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7.4 Computation	of	Air‐gap	MMF	Sources	
 

In this Section, the MMF sources of the MEC (e.g. F11, F12, F21, F22 in Fig. 5) are analytically computed. 
The computation is based on the analytical expression of the air-gap MMF field produced by a split-phase 
winding with N three-phase winding sets ([6], Fig. 1). It is assumed that the currents in the w-th three-phase 
winding (w=0, 1, …, N) is: 
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where p is the phase index ranging from 0 to 2 (0 corresponds to phase “A”, 1 to phase “B”, 2 to phase “C”), 
h is the time harmonic order, Iw,h is the amplitude of the current in the p-th phase of the w-th winding set in 
regard to the h-th order time harmonic. Calling x the angular position along the air-gap circumference in 
electrical radians, measured from the symmetry axis of phase “A0” taken as the zero reference, the air-gap 
MMF distribution as a function of time (t) and space (x) is [6]: 

 

   xtFxtFxtF ,,),(      (10) 

where  xtF ,  and  xtF ,  are the travelling waves which respectively rotate in the same and opposite sense 

with respect to the fundamental. They can be written as [6]: 

 

   









 






1,
, eRe,

kh

kxthi
khMxtF  ,    









 






1,
, eRe,

kh

kxthi
khMxtF 

(1)

 

where i denotes the imaginary unit, k is the space harmonic order and coefficients 
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In (12)-(13), q is the number of slots per pole per phase, n the number of series-connected turns per coil and 
coefficients Ck are defined as: 
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being )3/( Nqs    the slot pitch in electrical radians: 

From the air-gap MMF distribution function, calling xr the position (in electrical radians) of the rotor d-axis 
(taken coincident with flux barrier symmetry axis, Fig. 3) with respect to phase “A0” symmetry axis, we can 
compute the total MMF that pertain to the various air-gap regions identified in the machine (Fig. 5). For 
instance, in case of two barriers per pole (Fig. 5), we have: 
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where 2xi denotes the length of the rotor outer circumference arc between points Pi and Qi for the i-th rotor 
barrier (Fig. 4), namely according to Fig. 4: 

 

 2/11 Prx  ,  2/22 Prx   (8)

 

for the two flux barriers (i=1, i=2). The coefficient P/2 is needed to pass from mechanical radians (i) to 
electrical radians (xi).  

 From a physical viewpoint, (15)-(17) represent the average MMF in the three air-gap regions “11”, 
“12”, “21”. The value of F22 is defined in the same way, but it is not worth being computed as it does not 

appear in the MEC solution for the interesting unknowns 11 and 2 as per (5)-(8). 

 

 

7.5 Computation	of	Air‐gap	and	Barrier	Reluctances	
 

The SynRel MEC shown in Fig. 5 also includes the reluctances (Rg) associated to the various air-gap regions 
and the ones (Rb) associated to the flux barriers. 

7.5.1 Air‐gap	reluctances	
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Taking the example case of a SynRel with two barriers per pole (Fig. 3, Fig. 5), air-gap reluctances can be 
trivially computed as follows: 
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where L is machine core length, r the rotor radius, g is the air-gap width, 0 is the magnetic permeability of 
the air and P is the number of machine poles. 

7.5.2 Flux	barrier	reluctance	
 

While for C-shaped flux barriers, with approximately uniform width, the reluctance is easy to compute [10], 
[11], some complications arise with respect to round or circular-shaped flux barriers (Fig. 3, [3], [7], [12]). 
The detailed mathematical procedure for reluctance computation in this case will be covered in a dedicated 
publication and is omitted here for the sake of brevity. What is only recalled, for the purpose of the chapter, 
is the final expression of the magnetic vector potential in a generic flux barrier and such expression is then 
used to derive the flux barrier reluctance. 

 

7.5.2.1 Magnetic	vector	potential	and	flux	density	in	the	i‐th	barrier	

 

Let us consider the generic i-th flux barrier domain (Fig. 4). To compactly write the vector potential 
expression inside it, it is convenient to fix a Cartesian reference frame having its origin in point Oi and axes 
ui, vi (Fig. 4). In this coordinate system, it is possible to prove that the magnetic vector potential inside the 
flux barrier can be written in the form: 
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where iii QP  is given by (4), A0 is an arbitrary additive constant and B0 is a parameter which depends on 

the operating point (i.e., in other words, on stator currents and rotor position). 

 The fact that (22) is the vector potential inside the i-th flux barrier can be proved by checking that it 
satisfies Laplace differential equation in the inner points of the flux barrier and the Neumann boundary 
conditions on the borders [14]. More precisely, Laplace equativo 
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can be proved to hold by directly substituting the partial derivatives of (22) into (23). The flux density can be 
consequently derived as [14]: 
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As regards boundary conditions, we can observe that the barrier borders are arcs of circumferences ai and 

bi whose Cartesian equations in the uiOivi reference frame are: 

 

ai:   222
aiiaii rvdu   

 
(15)

bi   222
biibii rvdu   (16)

 

where   22 2/iaiai rd  ,  22 2/ibibi rd   (see Fig. 4 for the geometric meaning of dai, dbi). 

Hence, the tangent vectors (tai and tbi) to the two circumferences ai and ai in a point of abscissa ui are 
easily found to be: 
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Newmann boundary conditions can be written in the form: 

0),()(  iiiai vuu Bt  on ai

 
(19)



82 

 

0),()(  iiibi vuu Bt
 
on bi

 
(20)

 

meaning that the flux density is anywhere orthogonal to the flux barrier border. Actually, (29) can be easily 
checked to hold for all (ui, vi) pairs satisfying (25) and (30) to hold for all (ui, vi) pairs satisfying (26). 

 

7.5.2.2 Reluctance	calculation	for	the	i‐th	flux	barrier	

 

Once the field inside the i-th flux barrier is known, its reluctance Rbi can be computed from Hopkinson law 
as: 

barrbarrbi ΦΔHR /  
 

(21)

 

where barrΦ  is the flux crossing the barrier and barrΔH  is the MMF drop across it. barrΦ  can be computed 

directly using the vector potential (22) as [14]: 

 

    QaiQaiPaiPaibarr vuAvuALΦ ,,   
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where  PaiPai vu ,  and  QaiQai vu ,  are the coordinates of flux barrier end points Pai, Qai (Fig. 4). From the 

inspection of Fig. 4 we have: 
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and by substitution of (33) into (25) we have: 
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By using (22) we can derive an explicit analytical expression for barr: 
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The MMF drop Hbarr across the flux barrier can be computed by integration of the magnetic field (24) 
along a path that goes from one to the other border of the flux barrier. For instance, taking a linear path along 
the barrier axis of symmetry, we have: 
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Using (24) and performing the integral symbolically, this yields: 
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By substitution of (35) and (37) into (31) we obtain: 
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(38) 

 

We can observe that the analytical expression (38) for the reluctance of the i-th flux barrier does not 
depend on the operating point [parameter B0 in (22) cancel out] and only depends on the barrier geometry 
and machine core length L. 

 

7.6 Computation	of	Air‐gap	Flux	
 

Once the MEC of the SynRel motor has been evaluated and solved (Section 7.3-7.5), the solution can be 
used to compute the air-gap flux density distribution in the machine. For this purpose, it is necessary to 
correct the MMF due to stator currents (Section 7.4) by adding or subtracting the MMF drops due to the flux 
flowing across rotor barriers. In particular, in the case of two barriers per pole, the following two MMF drops 
are to be computed: 

2211111 bb RΦRΦΔF 
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The former contribution is to be applied to region “11” and accounts for the MMF drop due to the flux 
passing through both barriers 1 and 2. The contribution (40) instead, applies to the regions “12” and “21” and 
accounts for the MMF due to the flux passing across barrier 2 only. Finally, no correction to stator current 
MMF is to be applied in region “22” because all the flux flowing in such region does not cross any rotor 
barrier. The total MMF (including stator current contribution and MMF drops through rotor barriers) can be 
written in the form given in (42) at the bottom of the page. Since (42) represents a total (resultant) MMF 
acting in the air-gap, the flux density immediately derives from it as: 
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7.7 Assessment	Against	FEA	Simulation	
 

The methodology proposed in the chapter is next applied to the four-pole dual-three-phase SynRel motor 
whose cross section is shown in Fig. 3. Its characteristic data are provided in Table I. 

 

Tab1e I. Characteristic data of the example SynRel machines 

Rotor outer radius, r 212 mm 

Air gap width 3 mm 

Number of stator slots 48 

Number of poles 4 

Number of turns per coil 5 

Coil to pole pitch ratio 10/12 

Number of slots per pole per phase 2 

Angles a1, b1 of barrier 1 ( a1=22,50°, b1=22,83° 

Angles a2, b2 of barrier 2 ( a2=35,36°, b2=35,68° 
Radii ra1, rb1 of barrier 1 ( ra1=184,2 mm, rb1=141,9 mm 
Radii ra2, rb2 of barrier 2 ( ra2=227,3 mm, rb2=128,1 mm 

Iron bridge width 1 mm 
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Stator and rotor cores are characterized by a ferromagnetic material having an ordinary BH curve with a 
saturation knee located at around H=15.000 A/m and B=1.65 T. 

As a first study case, both machine windings are energized with a peak current of 50 A taking its 
maximum value in phase A0. The currents in the other phases are set according to (9) taking the instant t=0 
and setting all current harmonics different from the fundamental to zero (Iw,h=0 for h0). For such a current 
distribution, the rotor is placed at different positions xr with respect to phase A0 axis and, for each position, a 
FEA simulation is run (Fig. 6a). The resulting air-gap field is then plotted and compared to that obtained 
analytically from (41) where t=0. The comparisons for xr=0°, xr=15°, xr=30° and xr=60° electrical degrees 
are shown in Fig. 7, showing an excellent agreement with analytical predictions. 
As a second study case, one of the two winding sets is again energized with a 50 A current (the maximum 
current value being in phase A0), while the other set is at no load [Iw,h=50 for h=1 and w=0, while Iw,h=0 for 
any other w and h in (9)]. FEA simulations are also run in this case for different rotor positions (Fig. 6b). The 
air-gap flux density obtained from FEA is then compared to the analytical prediction, as depicted in Fig. 8, 
showing a very good agreement. 

7.8 Conclusion	
 

SynRel motors with split-phase stator winding sets supplied by multiple inverters have been investigated in 
this chapter as an increasingly attractive solution for fault-tolerant, rugged, magnet-free vehicle traction 
drives. These machines are typically designed through iterative optimization techniques in which thousands 
of alternatives are evaluated in search for an optimum.  

 

 

Fig. 6. FEA simulation output for rotor position xr=15° and for (a) both winding sets energized; (b) only one winding 
set energized. 
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Fig. 7. Air-gap flux density over a pole span, computed analytically and by FEA simulation for both windings energized 

with 50 A current. 
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Fig. 8. Air-gap flux density over a pole span, computed analytically and by FEA simulation for unbalanced SynRel 
motor operation (one winding energized with 50 A current, the other at no load). 

 

 

This calls for very fast computation approaches to keep optimization procedures within acceptable 
timeframes. In response to such a need, the chapter has proposed an analytical method for the air-gap 
computation of split-phase SynRel motors equipped with an arbitrary number of stator three-phase sets and 
with circular-shaped rotor barriers. The MEC model of the motor has been first defined and analytical 
procedures have been presented to compute its parameters. The flux density distribution in the air-gap has 
been then derived based on MEC solution. The accuracy of the proposed methodology has been assessed 
against FEA simulations (including magnetic saturation) showing a very good agreement between numerical 
and analytical predictions. This suggests that the proposed approach can be a fast, accurate and reliable 
alternative to time-consuming FEA simulations for the analysis of the electric machine topology under study. 
Future investigations, presently in progress or in publication, will address the extensions of the presented 
model for electromagnetic torque computation and for machine transient analysis and operation with 
arbitrary (non-sinusoidal) current waveforms. 
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8 An		Accurate	Fourier‐Series	Expansion	for	Round‐Rotor	
Electric	Machine	Permeance	Function	Including	Large	
Eccentricity	Effects	

	

8.1 Introduction	

	

One of the key tasks in multiphase AC electric machine modeling  is  the  analytical  expression of phase self 
and mutual  inductances  as  a  function  of  the  rotor  position [1], [2]. This can be a non trivial issue 
specially for salient-pole  machines  [2]  as  well  as  for  machines  subject  to  rotor eccentricities  [3]-[4].  
A  powerful  tool  for  self  and  mutual inductance  analytical  computation  is  constituted  by  winding and  
permeance  functions  [1]-[4].  Various  permeance function  approximations  have  been  proposed  in  the 
literature  to  describe eccentricity effects in both round-rotor and  salient-pole  electric  machines  [3]-[6].  In  
most  works, eccentricity  is  supposed  to  be  very  small  compared  to  air-gap  width,  which  justifies  
introducing  quite  crude approximations,  like  Taylor  series  expansions  truncated  to the  first  few  terms.  
In  this  chapter,  the  general  case  is  instead investigated  of  a  round-rotor  machine  subject  to  important 
eccentricity  effects,  which  requires  a  certain  accuracy  to  be preserved  in  the  permenace  function  
expression.  A  further constraint  considered  in  the  chapter  is  that  the  permeance function  expression  
being  sought  must  be  in  the  form  of  a Fourier  series  expansion,  which  is  important  for  it  to  be 
effectively  used  in  multiphase  machine  analytical  models [1], [2]. The problem is solved in the chapter 
moving from an initial  geometric  analysis  to  determine  the  permeance function  expression  in  a  closed  
form;  as  s  further  step,  this is  turned  into  a  Fourier  series  form.  Throughout  this  second step,  some 
integrals  are  encountered  that  do  not  allow  for  a closed-form  symbolical  solution,  so  asymptotic-
series approximations  have  to  be  adopted.  Finally,  a  permenance function  expression  as  a  Fourier  
series  expansion  is  found. Despite  of  its  quite  complicated  appearance,  the  proposed formulation  is  
proved  to  be  accurate  and  computationally efficient  as  it  involves  series  approximations  that  very 
rapidly converge to their asymptotical values. This results in a  small  number  of  series  terms  required  for  
achieving  a satisfactory precision. 

8.2 Geometric	Model	
A general geometric model for a round-rotor electric  machine with eccentricity is shown in Fig. 9. The rotor 

eccentricity (which can be either static or dynamic) is identified by the amplitude  and the angle , the latter 
measured with respect to a fixed reference line s attached to the stator (having radius Rs, while rotor radius is 
Rr). With respect to the same line s, a generic point P along the stator bore circumference is identified by an 

angle . Obviously, the air-gap width at point P is not univocally determined. The concept can be clarified 
looking at the zoomed view shown in Fig. 2, where the air-gap region around point P is suitably enlarged. 
Lines AP and BP are the lines passing through P and respectively orthogonal to the stator and rotor surfaces. 
Distances AP and BP are respectively indicated as gs and gr. In absence of eccentricity, we would have that 

gs=gr=g=RsRr being g the univocally-defined air-gap width. 
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Fig. 9. General geometricl model for a round rotor machine with eccentricity. 
 

 

 

Fig. 10. Zoomed view of the air-gap in the neighborhood of point P. Light-blue line PF represents the flux line passing 
for the air-gap field passing through P 

In presence of eccentricity, we have that 

sr gg   (1) 

and conceptual uncertainty arises as to how to define the air-gap width at point P. Let us also consider the 
air-gap field flux line FP passing through point P. In the hypothesis of infinitely permeable stator and rotor 
cores, this line is orthogonally incident to both stator and rotor surfaces. A simple geometric reasoning 
thereby suggests that the point F must fall between A and B and, calling gm (“magnetic” gap width) the 
length of line FP, we have: 
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smr ggg   (2) 

From a physical viewpoint, the permeance function aims at quantifying the MMF drop associated to a given 
gap field line, hence it is reasonable to assume the air-gap width at point P coincides with gm. Since gm can 
be exactly determined only through a complete air-gap field computation, the approach followed hereinafter 
is to separately and exactly estimate gs and gr for all points P. This will give us a feeling of how gs and gr 
may differ (also in case of very large eccentricities) and of the error that we introduce if we accept to identify 
the magnetic gap width gm with either gs, or gr, or their average. 

 

8.2.1 Determination	of	gr	
 

Setting 
 

    (3) 

sROP  , rRAC  , OC   (4) 

we can express segment CP from Carnot’s theorem as: 

 cos222
ss RRCP     (5) 

Hence gr is simply given by: 

rssrr RRRRCPBPg   cos222   (6) 

8.2.2 Determination	of	gs	
 
From elementary geometry relationships, we can  write: 
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from which: 
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Furthermore, the following relationship holds: 

 coscoscoscos  rROCACAO   (9) 

and substitution of (8) into (9) gives: 
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 cossin 222  rRAO   (10) 

This leads to estimate gs=AP as: 

 cossin 222  rsss RRAORAPg   (11) 

 

8.2.3 Comparison	of	gs	and	gr	
 

Example diagrams of sg  and rg  versus  are provided in Fig. 11 for the case where Rs=25 mm, Rr=13.75 

mm, Rs=5.83 mm, i.e. for the example geometry illustrated in Fig. 9. 
To have an idea of how gs and gr differ from each other in the general case, it makes sense to consider the 
following ratio: 
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which results from dividing the difference of the two quantities by their arithmetic mean. It is intuitive and 
would be easy to prove that the maximum error between gs and gr occurs for =/2 or =3/2 (see Fig. 11). 
Hence the maximum error could be expressed as: 
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Substituting (6) and (11) into (13) and dividing both numerator and denominator by Rs gives:  
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where g' and ' are adimensional quantities defined as follows: 
 

sR/  ,   srs RRRg /   (15) 

which represent the eccentricity and the nominal gap expressed in per unit of the stator bore radius. For 
obvious physical reasons, the eccentricity cannot exceed the nominal gap, so (13) makes sense for g  . 

Hence, we can also express (13) as: 
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Fig. 11. Diagrams of gs and gr as a function of  for Rs=25 mm, Rr=13.75 mm and =5.83 mm. 
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Where 
gg //     (17) 

 
is a coefficient less than 1 that quantifies the eccentricity in relative terms with respect to the nominal gap. 

The function (16) is plotted versus  ranging between 0 and 1 for different possible values of normalized gap 
g', expressed in per unit of the stator bore as per (15). The diagram shows that for values of g' below 0.2 the 
function fmax take values below 0.025 (which means that the error between gs and gr, with respect to their 
arithmetic mean, is lower than 2.5%). Of course, considering values of g' above 0.2 seems definitely 
unrealistic because this would imply nominal gap widths larger than 20% of the stator bore. From this 
preliminary brief analysis, we can conclude that, for electric machines of practical interest and even for very 

large (extreme) rotor eccentricities (=1), the discrepancy between gap width estimations gs and gr is well 
below 2.5%. Therefore, in the rest of the chapter the two values will be considered interchangeable and, for 
the sake of commodity, reference will be made to gr given its slightly easier mathematical expression. 

 

8.3 Permeance	Function	Definition	
 
Let us suppose to have a multiphase machine (that can be a conventional three-phase one as a particular 
case). The self inductance of a phase and the mutual inductance between two arbitrary phases can be 
computed through the winding function theory as [1], [2]: 
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0

0, )()()()( dxpwwRLxm jiji   (18) 

where x is an angular coordinate identifying the rotor position, i and j are integer indices that identify the 
phases (if i=j the self inductance is being computed), R is mean air-gap radius, L the core length, wi(x) and 
wj(x) are the winding functions of phases i, j and p(x) is the permeance function accounting for the gap shape. 
Computation of inductances through (18) is not convenient as the equation involves an integral to be 
numerically solved. To overcome the problem, one generally considers the winding function and permenance 
function expansions in Fourier series: 
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where  is the phase progression [1], [2], so that (18) can be symbolically expanded yielding an easy-to-
compute expression for mi,j() including Fourier series coefficients Wn, Pn [1], [2]. All this justifies the need 
to have the permeance function available as a Fourier series expansion. 
 By definition, the permenace function is the reciprocal of the gap function, which quantifies the gap 
width as a function of the angular coordinate   in the stator reference frame (Fig. 1). In the case of an 
eccentric machine, it has been decided in the previous Section to identify the gap function with gr() given, 
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in accordance to (3) and (6), by: 
 

  rssr RRRg   cos2)( 22   (20) 

 

Fig. 12. Diagram of function fmax versus  for various possible values of normalized gap (expressed in per unit of the 
stator bore). 

so 

  rssr RRRg
p







cos2

1

)(

1
)(

22
  (21) 

Since gr() is symmetrical with respect to =, the Fourier series expansion for p() can be expressed as: 
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and the problem is substantially to determine Fourier coefficients Pk. The formal definition for Pk is 
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Substitution of (21) into (24) leads to integrals for which a symbolic expansion has been found impossible 
through any integration technique. Therefore, an alternative approach is hereinafter proposed consisting of 

two successive steps: firstly; a Taylor series expansion is derived for p(); secondly, the Taylor series 
expansion is plugged into (23)-(24) allowing for a symbolic integral solution, although in an asymptotical 
series form. 

 

8.4 Expanding	the	Permeance	Function	in	Taylor	Series	
 

For the sake of commodity, let us introduce an auxiliary variable x as follows: 
 

   cos2 sRx   (25) 

and redefine (21) as: 
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This can be rewritten as: 

  
























222

222

22

22

222

22

1

1

)(

rs

rs

r

s

s

rs

rs

RR

x
RR

R
R

x
R

RxR

RxR
xp










  (27) 

At this point the following Taylor series expansion identity is recalled: 
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Using it (27) becomes: 
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As to the denominator, we can consider the Taylor series expansion identity: 
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So (29) becomes: 
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Equation (31) can be split in the sum of two terms: 
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Equations (32)-(34) provide the Taylor series expansion, in the variable cos(), which we shall use in 
(23)-(24) as explained in the next Section. 
 

8.5 Determination	of	Fourier	Coefficient	for	the	Permeance	Function	
 

Substitution of (32)-(34) into (23)-(24) gives rise to some integrals that, apart from multiplicative 
coefficients, are: 
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These cannot be solved symbolically in a closed form. A solution of this kind of integrals through 
appropriate asymptotical series expansions is yet possible as derived in the Appendix of this chapter. 
Using the results given in Appendix and after some lengthy but elementary algebraic manipulations, Fourier 
coefficients (23)-(24) can be finally determined as follows: 
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where: 
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Constants M and Q that appear in (36)-(37) should theoretically tend to infinite. However, for the purpose of 
numerical computation, it is possible to truncate the sums to relatively low values of such constants, so that 
the practical calculation of (36)-(37) is not a computationally heavy process. 

 

8.6 Numerical	Assessment	
 

As a numerical assessment, the permeance function of the machine topology shown in Fig. 9 (Rs=25 mm, 
Rr=13.75 mm and =5.83 mm, =0.54 rad) is considered and approximated as: 
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with K being the integer at which the Fourier series is truncated and with Fourier coefficients Pk computed as 
per (36)-(41) with appropriate choice of integers M, Q. Such Fourier series approximation is then compared 
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to the actual function given by (21). The comparison is shown in Fig. 13 where the Fourier series 
approximation is performed using K=4, M=1 and Q=12. 
 

 

Fig. 13. Permeance function diagram (actual and Fourier-series approximation) for Rs=25 mm, Rr=13.75 mm and 
=5.83 mm, =0.54 rad. 

 

It can be observed that a very satisfactory matching is achieved even if the Fourier series is truncated to its 
first four terms and only two values for index m (i.e. m=0, m=1) are considered in (36)-(37). Further tests 
confirm that a definitely satisfactory Fourier series approximation is obtained with similar index ranges also 
for other machine topologies. For reduced eccentricity values, also the range for index q (spanning between 0 
and Q) in (36)-(37) can be significantly reduced without remarkable precision losses. 

8.7 Conclusion	
This chapter has addressed the permeance function expansion in Fourier series for round-rotor electric 
machines subject to large eccentricity values. The reasons why a permenace function expression in the form 
of a Fourier series has been justified. From elementary geometric considerations, a suitably accurate 
permeance function expression has been derived for a machine with arbitrary rotor eccentricity. Then, this 
has been expanded resorting to Taylor series. Finally, Taylor series expansion has been used to calculate the 
coefficients of the final Fourier series expansion. Numerical assessments have been provided to show that 
good precision levels can be attained with relatively low computation burden since the series involved in the 
proposed formulation converge very rapidly to their asymptotical values and can be therefore truncated to the 
first few terms. 
 

8.8 Appendix	
 

In this appendix the problem is addressed of finding a suitable symbolical solution for the integral having the 
general form: 
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where m, n are arbitrary positive integers. To approach the problem let us consider the identity [7]-[8]: 
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This leads (43) to be written as: 
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Using the complex notation for sine and cosine functions, the integrand   zz knkm  sincos  can be expanded 

as follows: 
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and using binominal coefficient expansions we have: 
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This leads to the final identity: 
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Equation (48), used in (45), enables us to easily expand the integral: 
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considering that: 
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Hence the symbolical expansion for the integral (43) will  be as follows: 
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where s,t is the Kroneker symbol defined so that: 
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9 Improved	Analytical	Computation	of	Rotor	Rectangular	Slot	
Leakage	Inductance	in	Squirrel‐Cage	Induction	Motors	

 

9.1 Introduction	
Squirrel-cage induction motors represent the most widespread category of electric machines being used in 
today’s industrial [1] and vehicle traction [2]-[3] applications. In order to predict the steady-state 
performance of these machines, the use of Finite Element Analysis (FEA) [4] or numerical meshless 
methods [5] is certainly the choice leading to the best accuracy levels. As a faster and simpler alternative to 
FEA, however, it is still a common practice to solve motor equivalent circuit [6]. This requires equivalent 
circuit lumped parameters to be estimated, including rotor leakage inductance. In addition to FEA-based 
approaches [7], simple analytical formulas can be found in the literature for this purpose [8], [9]. This 
chapter, in particular, focuses on the computation of rotor slot leakage inductance in squirrel-cage induction 
motors having rectangular rotor bars [10]. The leakage inductance of such rotor bars is determined by direct 
solution of Poisson’s equation in the slot domain, similarly to what is presented in [11] for trapezoidal bar 
shapes. Differently from [11], however, this chapter arrives at an explicit ready-to-use calculation formula. 
This is validated against FEA simulations for different rectangular bar aspect ratios and is shown to give very 
accurate results, with errors in the order of 2%. Conversely, traditional formulas available from the literature 
[8], [9] are shown to give much larger errors (above 10%), especially for height to width bar ratios lower 
than 5. A limit of the proposed approach is that it does not account for magnetic saturation which is known to 
occur especially in the iron bridge region [12] and which could be considered either through heuristic 
corrections to analytical formulas [8], [9], [12] or by using numerical computation techniques [5], [7]. 

 

9.2 Geometric	model	and	physical	assumptions	
The assumed rotor slot geometry is shown in Fig. 1, where W and H are the rotor bar dimensions and d, w are 
the air-bridge dimensions. A Cartesian xyz reference frame is introduced as show in Fig. 1, with its origin 
placed on the bottom-left corner of the rectangular bar. 

The physical assumptions made to study the leakage field inside the slot are listed next. 

a) The rectangular bar carries a uniform current density J, positive if oriented in the z direction, and, hence, 
a total current 

 

WHJI    (1) 

b) The rotor core is infinitely permeable, so magnetic saturation is neglected. 
c) The magnetic field in the air bridge is supposed to be uniform and oriented parallel to the x axis. 
d) End-effects are neglected, hence the magnetic field is supposed to lie in the xy plane and the 

vector potential to be aligned along the z axis. 
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The hypothesis a) limits the applicability of the treatment to the steady-state motor operation close to 
rated slip values, wherein the rotor current frequency is so small that skin or eddy current effects can be 
disregarded [8], [9]. 

The hypothesis b) could make the treatment suitable only for unsaturated machines. Actually, the effects 
of iron bridge saturation can be, to a certain approximation, taken into account by suitably changing the slot 
opening width d as discussed in [9]. As mentioned in the same reference, the model depicted in Fig. 1 can be 
also applied to the study of closed slots by treating the slot opening as a fictitious one (of appropriate width) 
which mimics the effect of the iron bridge saturation [9]. 

Assumption c) may not be rigorously correct, but can be reasonably accepted as the slot opening is 
usually very small compared to the overall slot dimensions. 

Assumption d) is widely accepted in the study of electric machines and is necessary to reduce the analytical 
problem to a 2D one.The rotor core is infinitely permeable, so magnetic saturation is neglected. 
The magnetic field in the air bridge is supposed to be uniform and oriented parallel to the x axis. 
End-effects are neglected, hence the magnetic field is supposed to lie in the xy plane and the vector potential 
to be aligned along the z axis. 

The hypothesis a) limits the applicability of the treatment to the steady-state motor operation close to 
rated slip values, wherein the rotor current frequency is so small that skin or eddy current effects can be 
disregarded [8], [9]. 

The hypothesis b) could make the treatment suitable only for unsaturated machines. Actually, the effects 
of iron bridge saturation can be, to a certain approximation, taken into account by suitably changing the slot 
opening width d as discussed in [9]. As mentioned in the same reference, the model depicted in Fig. 1 can be 
also applied to the study of closed slots by treating the slot opening as a fictitious one (of appropriate width) 
which mimics the effect of the iron bridge saturation [9]. 

Assumption 0 may not be rigorously correct, but can be reasonably accepted as the slot opening is usually 
very small compared to the overall slot dimensions. 

Assumption 0 is widely accepted in the study of electric machines and is necessary to reduce the analytical 
problem to a 2D one. 

 

Fig. 14. Rotor slot geometry. 
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9.3 Poisson’s	equation	and	boundary	conditions	for	the	slot	domain	
9.3.1 Field	solution	in	the	slot	domain	
 

With reference to the geometric model shown in Fig. 1, the vector potential A (z component) in the 
rectangular bar region must satisfy the following Poisson’s equation in Cartesian coordinates [13]: 
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  (2) 

Wx 0 , Hy 0  

where 0 is the magnetic permeability of the air and the vector potential A is related to the magnetic flux 
density components Bx and By along x and y directions through the following relationships [13]: 

  
Fig. 2. Closed path used to determine the magnetic field in the air bridge. 
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As regards the magnetic field in the air bridge, it can be determined by applying Ampere’s circuital law to 

the closed loop  having vertices P1, …, P8 and shown in Fig. 2, where 

hy  120   (4) 

Since the magnetic field is orthogonal to all the points of the contour except for the segment P1-P8, we can 
write Ampere’s circuital law as follows: 
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where Hbridge and Bbridge are the magnetic field and flux density in the air bridge, positive if pointing in the x 
axis direction, negative otherwise. From (5) the flux density in the air bridge region can be written as: 
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Regarding boundary conditions in the rectangular bar region where (2) is to be solved, the assumed infinite permeability 
of the core yields: 

0),0(),0( 
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On the top domain border (y=H), which includes the slot opening, the tangential flux density takes the form 
shown in Fig. 3. It can be seen that Bx along such border is zero (due to the infinite core permeability) except 
for the slot opening region, where it takes the value given by (6). In symbols: 
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The same function can be expanded in Fourier series as follows: 

 

 
Fig. 3.  Tangential flux density diagram, along the top side of the rectangular slot. 
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where Fourier coefficients are: 
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having used (6) for Bbridge. 

Equations (7), (8), (9), (10) define a set of Neumann boundary conditions which enable one to solve 
Poisson’s equation (2) in the rectangular bar domain. 

The solution to (2) subject to boundary conditions (7), (8), (9), (10) is sought in this Section in the following 
form [13]: 
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Accordingly, the flux density in the slot domain is derived from (3) to have the x, y components below: 
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By direct substitution of (14) into (2) and after symbolical expansion of the derivatives, it can be easily seen 
that (14) satisfies Poisson’s equation (2) if and only if the coefficient A0 takes the following value 

2
0

0

J
A


   (17) 

Furthermore, using (15), (16), one can easily prove that (14) also satisfies the boundary conditions (7), (8), 
(9) along the bar sides which do not include the slot opening. 

In order to determine coefficients An, for n=1, 2, 3, …, it is necessary to impose that the additional Neumann 
boundary condition (10) is satisfied. This leads to write the following equations: 

 

002 FHA    (18) 
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sinh ,   n=1, 2, 3, …  (19) 

with F0, F1, F2, … representing Fourier series coefficients, given by (12)-(13), for the function f(x). 

Considering (12) and (1), it can be seen that (18) is automatically satisfied if A0 is set as per (17). 

From (19) and (13), coefficients An are finally determined as follows: 
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,  n=1, 2, 3, …  (20) 

Equations (15), (16), with coefficients A0, A1, A2, … given by (17) and (20) fully determine the magnetic 
flux density in the rectangular bar region. 

9.3.2 Slot	leakage	inductance	calculation	
 

The slot leakage inductance Lbar of an individual rotor bar can be determined by computing the magnetic 
energy Em stored in the slot (bar and opening regions) and then writing [8], [9]: 
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where I is the total current (1) flowing through the bar. Calling L the machine core length, the magnetic 
energy in the overall slot region can be written as: 
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where Em,op is the energy stored in the slot opening (air bridge) region: 

d

IhL

d

IhdL
B

hdL
E bridgeopm 222

2
0

2

0

0

2

0
,











   (23) 

and Em,bar is the magnetic energy stored in the bar region: 
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After some symbolical expansions and algebraic manipulations which are not included for the sake of 
brevity, it is possible to found an explicit solution for the double integral in (24) by substituting the flux 
density components (15), (16) into (24). This leads to the final expression below: 
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Finally, from (21)-(25) the expression for the bar leakage inductance is obtained in the form below: 
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At this point, we can recall that the simplified formula for the leakage inductance of a rectangular bar 
embedded in a semi-closed slot according to the literature [9] is: 
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It therefore appears that the approximated leakage inductance barL  differs from the more accurate expression 

(26) derived in this chapter only by the third term between curled brackets in (26), i.e.: 
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9.4 Accurate	model	validation	through	FEA	and	comparison	with	the	
simplified	formula	

In this Section the proposed accurate formula for the slot leakage computation in rectangular semi-closed 
slots of squirrel-cage induction motors, given by (26), is assessed by comparison against FEA. Furthermore, 
it is compared to the simplified formula, given by (27), available from the literature. The model adopted for 
the FEA assessment is represented in Fig. 4 and is characterized by the dimensions given in Table I, where 
the meaning of the symbols is illustrated in Fig. 1. 

TABLE I 

H 50 mm W 10 mm h 1 mm d 2 mm 
 

 

The bar leakage inductance is estimated by FEA, by the proposed accurate formula (26) and by the 
simplified one (27), for different bar heights H, while parameters W, d and h are left the same as per Table I.  
The results are given in Fig. 5, which shows that the proposed approach leads to an excellent accordance 
with FEA for all bar aspect ratios. Conversely, the values obtained with the approximated formula (27) 
exhibit a sort of practically constant offset [corresponding to (28)] with respect to FEA and to the new 
proposed expression (26). Such an offset appears not to change significantly with the bar aspect ratio [(28) 
does depend on W but not on H, in fact]. In terms of percent error, the situation is illustrated in Fig. 6. This 
shows that the proposed accurate formula leads to errors below 2% for any bar aspect ratio, while the 
approximated formula gives errors between 10% and 40% for H/W ratios below 5.5. In general, the accuracy 
of the simplified formula improves as the H/W ratio increases. 
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 Fig. 4. (a) Slot meshed model; (b) Model FEA solution (H=50 mm). 

 

 

 

Fig. 5. Rotor bar inductance evaluation with the proposed analytical formula, with the simplified formula 
available from the literature and with FEA, as a function of the H/W ratio. 

 

 
Fig. 6. Percent error (with respect to FEA) of the slot leakage inductance estimation with the proposed and simplified 

analytical formulas. 
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9.5 Conclusion	
 

In this chapter the rotor slot leakage inductance of squirrel-cage induction motors with rectangular bars has 
been investigated through the analytical solution of Poisson’s equation for the magnetic vector potential in 
the rotor slot domain. The analysis has led to identify a new explicit easy-to-use formula for slot leakage 
inductance estimation. Its accuracy has been successfully assessed by FEA for different slot aspect ratios, 
showing errors below 2% in all cases. The proposed formula has been also compared to the simplified one 
available from the literature, showing that the latter yields errors above 10% which increase as the bar 
height-to-width ratio decreases. 
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10 An	Improved	Analytical	Expression	for	Computing	the	Leakage	
Inductance	of	a	Circular	Bar	in	a	Semi‐Closed	Slot	

 

10.1 Introduction	
Round conductors embedded in semi-closed slots are often used in electric machinery, such as in the squirrel 
cage of induction motors [1], [2] or in the damper winding of synchronous generators [3]. Under some 
circumstances, for example to predict the steady-state performance of a squirrel-cage induction motor at 
rated slip through its equivalent circuit [4], [5], it is useful to determine the leakage inductance of such 
circular conductors neglecting eddy-current and magnetic saturation effects. The most accurate method to 
accomplish the task is to use Finite Element Analysis (FEA) [4] or numerical meshless methods [6], but this 
may results in a significant computational burden in addition to requiring machine geometrical models to be 
prepared. For the purpose of a fast computation, simple analytical formulas available in the literature [1], [2], 
[5] are still commonly used. The problem of these formulas is that they assume quite crude simplifying 
hypotheses about slot leakage flux distribution, resulting in possible remarkable errors. In this chapter, a new 
improved expression is derived for the leakage inductance of a round conductor embedded in a semi-closed 
slot. The formulation is obtained by the direct solution of Poisson’s equation in the slot domain, similarly to 
what is done in [7] for a trapezoidal conductor shape. Differently from [7], however, this chapter arrives at 
an explicit ready-to-use leakage inductance expression that can be readily applied in the engineering practice. 
The precision of the proposed formula is assessed against FEA considering various possible bar and slot-
opening dimensions, showing that a very good accuracy, with errors in the order of 2%, can be achieved in 
any case. Conversely, the simplified formulas available in the literature [1], [2] are shown to give possibly 
imprecise results, with errors (with respect to FEA) which can be 20% or higher for some bar and slot 
opening dimensions. 

 

10.2 Geometric	model	and	physical	assumptions	
 

The assumed slot and bar geometry is shown in Fig. 1, where R is the bar radius, O is the bar center and d, h 
are the slot opening dimensions. 

A polar coordinate system, centered in O, is introduced so that any point P in the bar domain is identified by 

the two coordinates r,  as indicated in Fig. 1. The angle  corresponding to the slot opening is defined as: 

Rd /   (1) 

The physical assumptions made to study the leakage field inside the slot are listed next. 

a) The circular bar carries a uniform current density J, positive if pointing out of the page, and, 
hence, a total current 
 

2RJI    (2) 
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Fig. 15. Rotor slot geometry. 
 
 

b) The rotor core is infinitely permeable, i.e. magnetic saturation is neglected. 
c) The magnetic field in the slot opening is supposed to be uniform and orthogonal to slot opening 

sides. 
d) End-effects are neglected, hence the magnetic field is supposed to lie in the plane and the vector 

potential is assumed parallel to the bar axis. 

 

  
Fig. 2. Closed path used to find the magnetic field in the slot opening. 

 

The hypothesis a) limits the applicability of the treatment to the operating conditions where no significant 
eddy current or skin effects arise, such as in the induction motor squirrel cage at or near the rated slip [1], 
[2]. 

The hypothesis b) could make the treatment suitable only for unsaturated machines. Actually, the effects of 
iron bridge saturation can be, to a certain approximation, taken into account by suitably changing the slot 
opening width d as discussed in [1]. As mentioned in the same reference, the model depicted in Fig. 1 can be 
also applied to the study of closed slots by treating the slot opening as a fictitious one (of appropriate width) 
which mimics the effect of the iron bridge saturation. 

Assumption 0 may not be rigorously correct, but can be reasonably accepted as the slot opening is usually 
very small compared to the overall slot dimensions. 

Assumption 0 is widely accepted in the study of electric machines and is necessary to reduce the analytical 
problem to a 2D one. 



114 

 

10.3 Poisson’s	equation	and	boundary	conditions	in	the	slot	domain	

	
10.3.1 Field	solution	in	the	slot	domain	
 

With reference to the geometric model shown in Fig. 1, the vector potential A (component along bar axis) in 
the circular bar region must satisfy the following Poisson’s equation in polar coordinates [7], [8]: 
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where 0 is the magnetic permeability of the air and the vector potential A is related to the radial and 

azimuthal flux density components Br and B through the relationships [8]: 
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As regards the magnetic field in the slot opening, it can be determined by applying Ampere’s circuital law to 

the closed loop  shown in Fig. 2. Since the magnetic field is orthogonal to all the points of the contour 
except for the segment DC, we can write Ampere’s circuital law as follows: 
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where Hop and Bop are the magnetic field and flux density in the slot opening. From (5) the flux density in the 
air bridge region can be written as: 

d

I
Bop 0   (6) 

Regarding boundary conditions in the circular bar region where a solution to (3) is searched for, the assumed 

infinite permeability of the core causes the tangential flux density B on the bar periphery (r=R) to be 
everywhere null except for the slot opening region, where it takes the value (6). In symbols the boundary 
condition can be written as: 
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This function (whose diagram is plotted in Fig. 3) can be expanded in Fourier series as follows: 
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where Fourier coefficients can be easily found to be: 
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Equation (7) defines a Neumann boundary condition which enables one to solve Poisson’s equation (3) in the 
circular bar domain. 

Under the hypothesis that the separation of variable technique applies, the general solution to (3) can be 
expressed in the following form [7], [8]: 
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with suitable coefficients 0sA , 0A , 
nA , 

nA . By direct substitution of (11) into (3), after symbolical 

expansion of the partial derivatives, it can be seen that, for (3) to hold, the coefficient 0sA  must take the 

following value: 
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     (12) 

 

Furthermore, in order for the solution not to diverge at the center of the bar (r=0), it is necessary to suppose 
that: 

00  
nAA   (13) 

for any integer n. 

The only unknown which need to be determined are then the coefficients 
nA . These can be identified by 

imposing the boundary condition (7), which gives: 
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This leads to impose the following identities: 
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Equation (15)  is automatically satisfied based on (9) and (12). Instead, equation (16) fixes the value of 
nA  

as follows: 
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with Fn given by (10). 

In conclusion, the flux density components in the circular bar region are completely known and, using (15) 
and (17), can be written as: 
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10.3.2 Slot	leakage	inductance	calculation	
 

The slot leakage inductance Lbar of an individual round bar can be determined by computing the magnetic 
energy Em stored in the slot (bar and slot opening regions included) and then writing [1], [2], [5]: 

2/2 IEL mbar     (20) 

where I is the total current (2) flowing through the bar. Calling L the machine core length, the magnetic 
energy in the overall slot region can be written as: 

barmopmm EEE ,,    (21) 

where Em,op is the energy stored in the slot opening region: 
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and Em,bar is the magnetic energy stored in the bar region: 
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The flux density components (18)-(19) can be substituted into (23), with coefficients F0, Fn given by (9)-
(10). After some symbolical expansions and algebraic manipulations, which are not included for the sake of 
brevity, the double integrals in (23) can be explicitly solved giving: 
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At this point, using (21), (22), (24) in (20), the bar leakage inductance is finally found to be: 
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It can be observed that the first term in the right-side member of (25) represents the “internal” self-
inductance that the round bar would have if it were placed in the free air [8]; the second term accounts for the 
leakage flux in the slot opening region; the third terms accounts for the field distortion inside the bar due to 
the surrounding ferromagnetic material. 

The accurate expression (25) for a round bar embedded in a semi-closed slot is proposed as an alternative to 
the following approximated expression barL  available in the literature to evaluate the same quantity [9]: 
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10.4 Accurate	model	validation	through	FEA	and	comparison	with	the	
simplified	formula		

 

 

In this Section the proposed accurate formula for the slot leakage computation of round bars in semi-
closed slots, given by (25), is assessed by comparison against FEA. Furthermore, it is compared to the 
simplified formula, given by (26), available from the literature. The basic model adopted for FEA 
simulations is represented in Fig. 4 and is characterized by the dimensions given in Table I, where the 
meaning of the symbols is illustrated in Fig. 1. 

 

TABLE I 

R 5 mm d 1 mm h 0.5 mm 
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The bar leakage inductance is estimated by FEA, by the proposed accurate formula (25) and by the 
simplified one (26). 

In order to cover a wider variety of possible design configurations, the comparison is first repeated for 
different bridge heights h, while parameters R and d are maintained the same as shown in Table I. The results 
are shown in Fig. 5.  

 

  

Fig. 4. (a) Slot meshed model and (b) Model FEA solution in the configuration with R=5 mm, h=0.5 
mm, d=1 mm 

 

Here it can be seen that the leakage inductance varies in an approximatively linear fashion with respect to 
the dimension h, as confirmed by both (25) and (26). The bridge height is varied in a range between 0.2 mm 
and 1 mm. In such a range, the error of the proposed accurate formula (25) with respect to FEA results 
remains practically unchanged and always below 2%, while the simplified formula leads to underestimate the 
leakage inductance with an error between 10% and 25%. 

As a second study case, the circular bar radius R is changed while the slot opening dimensions h, d are 
kept the same as shown in Table I. The bar radius is varied between 1.5 mm and 8 mm. Leakage inductance 
evaluation results over such range are shown in Fig. 6. From Fig. 6 it appears that the proposed accurate 
formula (25) provides results which are always in very good accordance with FEA simulations, with errors 
that again keep lower than 2%. Conversely, the simplified expression (26) underestimates the leakage 
inductance with errors that strongly increase with the bar radius, up to around 25%. 

As a final remark, it is worth observing that both the accurate and the simplified inductance expressions 
being compared hold under the hypothesis of unsaturated core. The effect of magnetic saturation on leakage 
inductances is highlighted in [9], [10] and, to capture it with an adequate level of accuracy, numerical 
calculation procedures through FEA [4] or meshless techniques [6] appears to be a mandatory choice. 
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Fig. 5. (a) Rotor bar inductance evaluated with the proposed accurate formula, with the simplified formula 
available from the literature and with FEA, as a function of the bridge height h. (b) Corresponding percent 

errors with respect to FEA. 

 

 
Fig. 6. (a) Rotor bar inductance evaluated with the proposed accurate formula, with the simplified formula 

available from the literature and with FEA, as a function of the bar radius R. (b) Corresponding percent 
errors with respect to FEA. 

 



120 

 

 

10.5 Conclusion	
 

In this chapter the rotor leakage inductance of a circular bar embedded in a semi-closed slot (such as 
those used in many induction motor squirrel cages or in synchronous generator damper windings) has been 
investigated. An explicit easy-to-use formula has been derived for evaluating the leakage inductance by 
solving Poisson’s equation for the magnetic vector potential in the semi-closed slot domain. The proposed 
expression has been validated against FEA and compared to simplified analytical formulas available in the 
literature. The comparison has been performed for various possible slot geometries characterized by different 
circular bar radii and different slot opening dimensions. In all the cases taken into account, it has been shown 
that the proposed expression yields very accurate results, which are in excellent accordance with FEA 
simulations (errors less than 2%) while the traditional simplified formulas may lead to remarkable errors (in 
the order of 25%) with respect to FEA estimations. 
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11 Concluding	remarks	
In this doctoral thesis I have collected most of the research work produced during my Ph.D. course. 

The main line of inquiry followed in the development of my Ph.D. study has been the attempt to approach 
many engineering problems related to electric machine design and analysis through analytical techniques that 
may be valuable alternative to traditional numerical approaches like finite element analysis. The main 
purpose which have been pursued in conceiving these approaches is the reduction in the computational 
burden required. 

In this perspective, various electrical machines of practical interest in today’s application have been 
addressed (induction motors, synchronous reluctance motors, permanent-magnet machines, wound-field 
machines) and, for any type of machine, some problems have been selected to develop innovative 
analytically-based computation approaches. The problems to solve have been selected based on the needs 
resulting from practical applications as well as by a careful consideration of the “gaps” in the state-of-the-art 
of electric machine analysis design and methodologies. 

Interesting and innovative results have been found in regards to various subjects, like: 

- the cogging torque analytical calculation and minimization in surface-mounted permanent-magnet 
machines based on the winding function theory 

- the fully-analytical accurate computation of slot leakage inductances for induction machines by 
direct solution of Maxwell equations for the magnetic field 

- the full-load torque waveform analytical prediction in synchronous reluctance machines through a 
magnetic-equivalent-circuit approach combined with conformal mapping techniques 

- the computation of the magnetic field in the whole slotless machine domain by direct solution of the 
magnetic field equations. 

All the results reported in this work have been presented in IEEE-sponsored or IEEE-cosponsored 
conferences and have been published in scientific papers currently available through IEEEXplore. 
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