
 
 

  

UNIVERSITÀ DEGLI STUDI DI TRIESTE 
 

 XXVIII  CICLO DEL DOTTORATO DI RICERCA IN NANOTECHNOLOGIE 

Settore scientifico-disciplinare: FIS/03 FISICA DELLA MATERIA 

 

DOTTORANDO             
MUHAMMAD SULAIMAN YOUSAFZAI       
     

COORDINATORE     
PROF. LUCIA PASQUATO  
  

SUPERVISORE  
DOTT. DAN COJOC 
  

TUTORE  
PROF. GIACINTO SCOLES  

 
 

 

 

ANNO ACCADEMICO 2014 / 2015 

CANCER CELL MECHANICS AND CELL 
MICROENVIRONMENT: AN OPTICAL 

TWEEZERS STUDY 
 





  Table of Contents 

 
 

Table of Contents 

Acronyms ...................................................................................................................................................... 1 

Abstract ......................................................................................................................................................... 3 

Chapter 1 ....................................................................................................................................................... 6 

Introduction .................................................................................................................................................. 6 

1.1 Motivation and Goal ..................................................................................................................... 7 

1.2 Cell mechanics and Cancer ........................................................................................................... 8 

1.2.1 Cell mechanical architecture ................................................................................................. 9 

1.2.2 Cell mechanical architecture and exterior world ................................................................ 10 

1.2.3 Mechanosensitivity and mechanotransduction in cell ....................................................... 11 

1.2.4 Mechanism of Motility ........................................................................................................ 12 

1.2.5 Mechanical Phenotypes of Cancer cells .............................................................................. 14 

1.3 Cell mechanics and cell microenvironment ................................................................................ 14 

1.3.1 Effect of substrate on cell stiffness ..................................................................................... 15 

1.3.2 Effect of neighboring cells on cell stiffness ......................................................................... 18 

1.4 Optical tweezers in Biomechanics .............................................................................................. 19 

1.5 Summary of the thesis ................................................................................................................ 21 

Chapter 2 ..................................................................................................................................................... 23 

Materials and Methods ............................................................................................................................... 23 

2.1 Breast Cancer Cell lines description ............................................................................................ 23 

2.2 Cell sample preparation .............................................................................................................. 24 

2.3 Substrate coating procedure ...................................................................................................... 25 

2.3.1 Collagen coating: ................................................................................................................. 25 

2.3.2 Polydimethylsiloxane (PDMS) coating: ............................................................................... 25 

2.4 Optical Trapping (OT) .................................................................................................................. 27 

2.4.1 Optical tweezers vertical indentation setup ....................................................................... 28 

2.4.2 Calibration of optical trap ................................................................................................... 30 

 2.4.2.1  Calibration of optical trap…………………………………………………………………………………………….31 

2.4.2.2  Trap stiffness calculations…………………………………………………………………………………………….31 

2.4.2.2.1 Equipartition theorem…….……………………………………………………………………………….31 

2.4.2.2.2 Power spectrum density ..……………………………………………………………………………….32 

2.4.3 Vertical Indentation Experimental Procedure .................................................................... 32 



  Table of Contents 

 
 

 2.4.3.1                  Contribution from Stoke’s drag force ................................................................. 32 

2.4.4 Elastic modulus calculation and data analysis .................................................................... 34 

2.4.4.1 Fixed indentation range ...................................................................................................... 35 

2.4.4.2 Fixed force range ............................................................................................................... 347 

2.4.5 Total Force vs Axial Force .................................................................................................... 38 

Chapter 3 ..................................................................................................................................................... 44 

Results and Discussion ................................................................................................................................ 44 

3.1 ELASTICITY OF CANCER CELLS AND ITS VARIATION IN CELLULAR REGIONS ............................... 44 

3.1.1 Response of a cell to applied force ..................................................................................... 45 

3.1.2 Elasticity and comparison of the three cell lines ................................................................ 47 

3.1.3 Cell regional variation in elasticity ...................................................................................... 48 

3.1.4 Conclusion ........................................................................................................................... 51 

3.2 EFFECT OF SUBSTRATE STIFFNESS ON CELL ELASTICITY ............................................................. 52 

3.2.1 Polydimethylsiloxane (PDMS) as soft substrate ................................................................. 52 

3.2.1.1 Discussion .......................................................................................................................... 526 

3.2.2 Collagen as soft substrate ................................................................................................... 56 

3.2.3 Discussion ............................................................................................................................ 59 

3.2.4 Conclusion ........................................................................................................................... 59 

3.3 EFFECT OF NEIGHBORING CELLS ON CELL STIFFNESS ................................................................. 60 

3.3.1 Effects of cell-cell connection on cell mechanics ................................................................ 60 

3.3.2 Comparison of elasticity in isolated and connected conditions ......................................... 63 

3.3.3 Discussion ............................................................................................................................ 64 

3.3.4 Conclusion ........................................................................................................................... 65 

Conclusions and Final Remarks ................................................................................................................... 67 

Acknowledgements ..................................................................................................................................... 70 

References .................................................................................................................................................. 71 

 

  



  Acronyms 

1 
 

Acronyms 

 
AFM  –  Atomic Force Microscopy 

BD  –  Bead Displacement 

Ca2+  –  Calcium 

DAQ  –  Digital Acquisition Card 

d  – Bead diameter 

DIC  –  Differential Interference Contrast 

DMEM –  Dulbecco’s Modified Eagle Medium 

E   – Elastic Modulus 

ECM   –  Extra Cellular Matrix 

EMT   –  Epithelial to Mesenchymal transition 

F  – Force 

FA   ̶  Focal Adhesion 

FAK   ̶ Focal Adhesion Kinases 

FCS   – Fetal Calf Serum 

FOB   –  Objective Focus 

fL   –  Focal Length 

fps   –  frame per second 

Id   –  Indentation 

IP   –  Interference Pattern 

IR   –  InfraRed 

k  – Trap Stiffness 

KB  – Boltzmann constant 

kPa  – kilo Pascal 

mW   – milli Watt 

NA   –  Numerical Aperture 

Nd:YAG  – Neodymium:ytterbium-aluminium-garnet 
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nm   –  Refractive index of the medium 

nN   –  Nano Newton 

OT  – Optical Tweezers 

PBS   – Phosphate Buffer Saline 

PDMS  –  Polydimethylsiloxane 

pN   –  Pico Newton 

PMMA  –  poly(methylmethacrylate) 

PSD   –  Power Spectrum Density 

QPD   –  Quadrant Photo-Detector 

RPMI    – Roswell Park Memorial Institute 

S  – Slope 

SD   –  Stage Displacement 

t  – Time 

WD   –  Working Distance 

x  – Lateral Displacement 

z  – Vertical component of displacement 
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Abstract 

Since cancer metastasis is a complex process, a lot of research has been carried out to identify 

different hallmarks for its diagnosis and cure. Mechanical alterations in cancer cells during cell 

spreading to adjacent tissues and other organs of the body emerged as a prominent hallmark in the 

last decade.   

In this thesis we employed a mechanistic approach based on cell stiffness (elasticity) measurement 

as  a  marker  to  study  cell’s  mechanical  response  in  varying  microenvironmental  conditions. 

Mechanical interaction of the cell with the surrounding microenvironment is a blend of cell-matrix 

and cell-cell interactions. Therefore we adopted an approach to study cells in isolation and in the 

presence of their neighboring cells, plated on rigid as well as on compliant substrates. The elastic 

modulus was calculated using the Hertz-model. 

We considered three breast cell lines as model, showing three phases of cancer progression: MDA-

MB-231, a highly aggressive cell line belonging to the Basal cell-like phenotype; MCF-7, a less 

aggressive cancer cell line, belonging to the Luminal A cell-like phenotype; and HBL-100, a non-

neoplastic cell line, derived from the milk of a Caucasian woman, normal control for breast basal-

myoepithelial cells. 

Cell elasticity can be locally measured by pulling membrane tethers, stretching or indenting the 

cell using optical tweezers. We introduce a simple approach to perform cell indentation by axially 

moving  the  cell  against  a  trapped  microbead.  Our  scheme  is  similar  to  the  AFM  vertical  cell 

indentation approach and can help to compare the quantitative results and thus complement AFM 

in a low force regime and loading rates.  

The elasticity trend of the three cell lines in isolated conditions showed that the aggressive MDA-

MB-231 cells are significantly softer as compared to HBL-100 and MCF-7 cells.  

We demonstrate that stiffness measurements are sensitive to the cellular sub-regions as well as the 

interacting microenvironment. We probed the cells at three cellular sub regions: central (above 

nucleus), intermediate (cytoplasm) and near the leading edge. Isolated cells showed a significant 

regional variation in stiffness:  higher at the center and fading toward the leading edge. However, 

the regional variation become statistical insignificant when the cells were in contact with other 

neighboring cells. We found that neighboring cells significantly alter cell stiffness: MDA-MB-231 

becomes stiffer when in contact, while HBL-100 and MCF-7 exhibit softer character. 
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Furthermore, we have studied the influence of substrate stiffness on cell elasticity by seeding the 

cells on Collagen and Polydimethylsiloxane (PDMS) coated substrates with varying stiffnesses to 

mimic extracellular (ECM) rigidities in vitro. PDMS polymer to crosslinker ratio was adjusted to 

15:1, 35:1 and 50:1 corresponds to 173kPa, 88kPa and 17kPa respectively.  These results show 

that cells adapt their stiffness to that of the substrate. Compliant substrates lead to reduced cell 

spreading and cell stiffness.   Our results demonstrates that the substrate stiffness influence not 

only cell spreading and motility, but also cell elasticity. 

Finally,  from  the  3D  tracking  of  the  indenting  probe,  we  calculated  and  compared  the  elastic 

moduli resulting from the total and vertical forces for two breast cancer cell lines: MDA-MB-231 

and HBL-100, showing that the differences are important and the total force should be considered.  

  

These  results  lead  to  the  following  publications  in  international  peer  review  journals  and  an 

abstract in conference proceedings   
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Substrate-dependent cell elasticity measured by optical tweezers indentation. Optics and 

Lasers in Engineering 76:27–33 (2016). 

 

2. Fatou Ndoye, Muhammad Sulaiman Yousafzai, Giovanna Coceano, Serena Bonin, 

Giacinto  Scoles,  Oumar  Ka,  Joseph  Niemela,  and  Dan  Cojoc,  The  influence  of  lateral 

forces on the cell stiffness measurement by optical tweezers vertical indentation,  

International Journal of Optomechatronics (accepted 2016 

DOI:10.1080/15599612.2016.1149896) 

 

3. G. Coceano, M. S. Yousafzai, W. Ma,  F. Ndoye, L. Venturelli, I. Hussain, S. Bonin, J. 

Niemela, G. Scoles and D. Cojoc, Investigation into local cell mechanics by atomic force 

microscopy mapping and optical tweezer vertical indentation. Nanotechnology 27: 065102 

(2016). 
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Chapter 1 

Introduction 
 

 

Most  of  our  understanding  about  cells,  tissues  and  organs,  in  terms  of  health  and  disease,  is 

biochemical in nature. Scientists working in these fields are trying, since decades, to help fight 

against diseases, especially those which are continuously challenging human lives, such as cancer. 

The necessity, to broaden the framework of cancer research because of its myriad different faces, 

shifts the paradigm towards the role of mechanical forces in cellular processes and pathologies to 

contribute in cancer diagnosis, therapy and cure. A rapidly growing body of evidences indicates 

that mechanical phenomena are critical to the proper functioning of cells and tissue processes and 

that mechanical forces can serve as extracellular signals that regulate cell function. Further, any 

disruption in mechanical sensing and/or function may cause tissue and organ abnormality, such as 

seen in cancer. This has led to the emergence of a new discipline that merges mechanics and cell 

biology: cellular Mechanobiology (Lim et al. 2010) . This term refers to any aspect of cell biology 

in  which  mechanical  force  is  generated,  imparted  or  sensed  leading  to  alterations  in  cellular 

function. The study of cellular mechanobiology bridges cell biology and biochemistry with various 

disciplines  of  mechanics  including  solids,  fluid,  statistical,  experimental  and  computational 

mechanics (Jacobs et al. 2012).  

In  vivo,  most  cells  are  mechanically  and  chemically  connected  to  its  microenvironment.  cell 

mechanical interaction with the surrounding microenvironment have grasped much attention and 

witnessed considerable progress (Hoffman and Crocker 2009). Microenvironment is the driving 

element in cell proliferation (Cheng et al. 2009), viscoelasticity (Suresh 2007; Schoen et al. 2013; 

Ladoux and Nicolas 2012), functionality (Fu et al. 2010) and cell signaling (Gieni and Hendzel 

2008; Jaalouk and Lammerding 2009). There are two types of cell- microenvironment interaction: 

cell-cell and cell-extra cellular matrix (ECM) interaction. Both of them have prime importance for 

the fundamental understanding of metastasis and cell behavior in malignant conditions. 

Mechanical forces from adjacent cells and ECM are transmitted to the interior cytoskeleton of the 

cell by adhesion junctions (E-cadherins and integrins) and transduced to biochemical reaction.  
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Cells are able to sense physical factors such as force, geometry and matrix rigidity. This ability of 

cell  has  been  acknowledged  as  promising  hallmark  for  cancer  phenotyping  (Hanahan  and 

Weinberg 2011). 

This  introductory  chapter  reviews  in  detail  the  mechanical  properties  of  cells.  Cancer  cell 

mechanics is explained in detail by introducing, first the mechanical components of cells and their 

mechanosensitive and mechanotransduction properties leading to cell motility. Detailed literature 

review has been presented on the modification of mechanical properties of breast cancer cells when 

they experience different microenvironmental conditions.  Substrate rigidity and cell-cells cross 

talk play a key role in cancer progression and their coordinated signaling decides tissue fate. We 

highlight the usefulness of optical tweezers (OT) in biomechanics especially to study cell elasticity 

and alterations in mechanical properties during different environmental conditions. At the end of 

this chapter, the summary of the thesis is presented.  

 Motivation and Goal 

The motivation behind the project is the intriguing behavior that cancer cell exhibits at tumoral 

and metastasis level. Cancer metastasis is the most common cause of death in cancer patients and 

the main obstacle in cancer treatment. It is now established that metastatic cells are softer than the 

normal  cells,  although  tumoral  tissue  is  stiffer  as  compared  to  normal  tissue.  Furthermore, 

metastatic cells exhibit multiple structural alterations during intravasation and extravasation. The 

transient journey of metastatic cells from primary tumor to the adjacent tissues and other organs 

of  the  body  exhibits  complex  modulation  of  mechanical  properties  of  cells  and  ECM.  Thus, 

studying  the  mechanical  alterations  that  cancer  cells  acquire  or  induce  in  the  surrounding 

environment (extracellular matrix (ECM)) at different level of aggressiveness is fundamental to 

elucidating cancer metastasis. The goal of this thesis was to develop a force spectroscopy setup 

(Optical Tweezer (OT)) to study cell mechanics of breast cancer cells in different 

microenvironmental conditions. We set the cell stiffness as the principal parameter to study breast 

cancer cells in on hard and soft substrates as well as in isolated and connected conditions. Cells 

stiffness  on  glass  and  complaint  substrates  (Polydimethylsiloxane  (PDMS)  and  Collagen)  are 

compared as well as in isolated and connected conditions. The experimental technique reported 

here is sensitive to force magnitudes of cell-matrix and cell-cell interaction forces in vivo, and thus 
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could  detects any elasticity changes in cells when they experience changes in substrate rigidity or 

when they  get in contact with neibhouring cells. 

 

Figure 1.1: Diagram representation of the experimental work. (a) Cell mechanical properties were 
probed at three locations of the cell i.e. center, intermediate location and near the leading edge to 
understand  the  mechanical  nature  of  cytoplasm  at  different  cell  location.  (b)    When  the  cell 
interacts with neighboring cells, the elasticity of the cell changes depending upon the type and 
level  of  aggressiveness  of  the  cell.  Measuring  the  stiffness  at  different  locations  can  give 
information about the force generating behavior of different kind of cells. (c) When the underlying 
substrate  stiffness  is  modified,  the  cells  response  is  different  as  compared  to  the  bare  glass 
substrate. (d) Probing cell response in on modified substrate when cell interacts with neighboring 
cells. 

 Cell mechanics and Cancer 

Understanding  the  mechanisms  of  metastasis  formation  is  in  the  stage  of  infancy,  in  order  to 

disclose  the processes regulating the escape of cancer cells from the primary tumors, to migrate 

and  invade  neighboring  tissues,  how  they  enter  (intravasate)  into  the  blood  or  the  lymphatic 

circulation, how they survive “homelessness” against immune surveillance in the bloodstream, and 

how they target certain organs to leave (extravasate) the blood circulation and to initiate metastatic 

outgrowth in specific target organs (Figure 1.2).  
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Figure 1.2: Mechanism of metastasis formation. Transformation of normal epithelial cells leads 
to  cell  detachment  by  losing  adherens  junctions.  Degrading  basement  membrane,  tumor  cells 
invade the surrounding stroma, migrate and intravasate into blood or lymph vessels. Cells survived 
from immune system and flow stresses extravasate and lead to the formation of secondary tumor. 
(adapted from (Bacac and Stamenkovic 2008)) 

 

1.2.1 Cell mechanical architecture 

Microtubules, microfilaments and intermediate filaments are the main load bearing components of 

a  cell  cytoskeleton  and  give  structural  stability  to  the  cell  (Figure  1.3).  These  cytoskeletal 

constituents along with other cytoplasmic components account for the viscoelastic behaviors of a 

cell  (Suresh  2007).  Actin  filaments  are  the  most  prominent  components  of  cell  cytoskeleton 

(Pollard and Cooper 2009). The process of actin polymerization and depolymerization makes the 

cell  responsive  to  external  stress.  The  cell  stiffness,  a  widely  measured  property  for  cell 
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viscoelastic characterization, can be viewed at molecular level as actin/myosin perturbation and 

cytoskeletal deformation (Ketene et al. 2012).  

 

  

 

1.2.2 Cell mechanical architecture and exterior world 

The  cell  cytoskeleton  is  connected  to  the  exterior  world  i.e  Extracellular  Matrix  (ECM)  and 

neighboring cells through cross membrane receptor (Integrins) and junction proteins (E-cadherins) 

respectively as shown in Figure 1.4 (DuFort et al. 2011). Cells anchorage on the ECM is dependent 

on Focal Adhesion (FA). FA’s are highly dynamic and mechano-sensory complexes composed of 

integrins, Vinculin, Talin, p130Cas, FAK and SrC which provide a link between cell cytoskeleton 

and ECM.  Focal adhesion serve as conduit through which signal transductions occurs in response 

to physical forces (Ingber 2006; Bershadsky et al. 2003).  

The  ECM  provides  a  scaffold  to  cells  and  is  a  principal  component  of  tissues  and  organs.  It 

constituted  of  molecular  components  like  Collagens,  Elastins,  Proteoglycans,  Fibronectin  and 

Laminin that regulates number of cellular processes including cells adhesion, migration, apoptosis, 

proliferation  and  differentiation  (Vogel  and  Sheetz  2006;  Suresh  2007;  Hoffman  and  Crocker 

2009). ECM is responsible for all biochemical and biomechanical intercellular signaling. 

Perturbation in this network could causes the loss of cell and tissue homeostasis and lead to number 

of diseases, including cancer (Mierke 2014; Wirtz et al. 2011; Ingber 2008; Bissell and Hines 

2011). 

Figure 1.3: Cell architecture is composed of 
Actin  filaments  (parallel  filaments,  in  red), 
intermediate  filaments  (wavy  filaments,  in 
blue), and microtubules (thick filaments, 
green). The mechanics of a cell is also defined 
by its membrane (cell border), nucleus (oval), 
and  cytoplasm  (region  between  membrane 
and nucleus) (adapted from (Rodriguez et al. 
2013)). 
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Figure 1. 4: The cross membrane integrins connects the cytoskeleton of the cell to ECM proteins 
such  as  collagen or  fibronectin. The mechanical and mechano-chemical properties of all these 
components  and  their  interconnectivity  determine  the  rigidity-sensing  process  (adapted  from 
(DuFort et al. 2011)). 

 

1.2.3 Mechanosensitivity and mechanotransduction in cell 

Cells are capable of sensing mechanical stimuli and translating them into biochemical signals, this 

ability  allows  cells  to  adapt  to  their  physical  surrounding  by  remodeling  their  cytoskeleton, 

activating various signaling pathways and changing their gene expression (Ladoux and Nicolas 

2012). These phenomena are governed by two processes - mechanosensing and 

mechanotransduction.  Mechanotransduction  refers  to  the  conversion  of  mechanical  forces  into 

biochemical  or  electrical  signals  that  initiate  structural  and  functional  remodeling  in  cells  and 

tissues. Processes like auditory, blood flow regulation in circulatory system, lung expiration and 

inspiration, muscles & bone remodeling and sense of balancing are physiological 

mechanosensation originated in response to force, pressure and flow speed.  

The magnitudes of forces that cells encounter in vivo might not be sufficient to activate a particular 

mechanosensor  (e.g.,  molecular  unfolding,  and  change  in  conformation)  for  changes  in  their 

biochemical activity (Vera et al. 2005). However, channeling of forces along discrete molecular 

filament networks (e.g., ECM, cytoskeleton) provides a way to concentrate stresses on specific 

molecules at particular locations while protecting most other cellular components from these same 
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mechanical forces. In this manner, only a subset of mechanosensory molecules will experience 

force levels high enough to alter their biochemical activities. 

External forces may activate the actin-myosin motor machinery for cell spreading and locomotion 

(Pollard and Cooper 2009; Hu et al. 2004) while some studies have shown that external forces 

transmitted to the cytoskeleton can cause rupture of microtubules,  which in turn can initiate a 

biochemical signaling response (Odde et al. 1999). Forces applied via membrane receptors are 

transmitted  to  cytoskeleton  to  the  nuclear  envelop,  via  lamin,  and  then  to  chromatin,  causing 

nuclear deformation and gene transcription (Maniotis et al. 1997).  It is shown that the overall cell 

shape and geometry respond to local forces over time, and the integration of those responses, have 

an important role in the regulation of gene expression. Transcription factors that are recruited to 

the adhesion sites could have an important role in translating the physical stimulus that is sensed 

at  the  periphery  into  biochemical  signals  that  alter  gene  expression.  Many  mechanosensitive 

molecules at FA like paxillin (Woods et al. 2002; Turner 2000), zyxin (Cattaruzza et al. 2004) are 

translocated to the nucleus and in turn change gene transcription. This mechanism offers an evident 

way to transform force on specific intracellular-adhesion sites to a change in protein expression. 

Recent studies using microarray also confirm that changes in cell shape correlate with several 

changes  in  gene  expression  (Dalby  et  al.  2005).  Mechanotransduction  and  mechanosensing 

mechanisms  demand  more  rigorous  studies  to  ascertain  how  external  forces  of  such  small 

magnitudes (~ pN) activates signals which are integrated by multiple proteins in focal adhesion 

and cytoskeleton to produce a coordinated biological response. 

1.2.4 Mechanism of Motility  

Cancer  cells  may  use  a  broad  repertoire  of  cell  migration  and  invasion,  and  exhibit  multiple 

dynamical  changes  i.e  remodeling  their  cell-cell  and  cell  matrix  adhesion  and  their  actin 

cytoskeleton,  reorganize  its  molecular  processes  that  involve  in  various  signaling  networks 

(Bershadsky  et  al.  2003).  Cell  migration  can  be  classified  into  single  cell  (mesenchymal, 

amoeboid)  migration  or  collective  cell  (sheet,  strand,  tube,  clusters)  migration.  The  types  of 

migration  is  dependent  on  the  extracellular  protease  activity,  integrin  mediated  cell  matrix 

adhesion, cadherins mediated cell-cell adhesion, cell polarity, and cytoskeleton rearrangements. 

Morphogenic processes are utilized to control their migrator capabilities like dramatic 

reorganization of the actin cytoskeleton and the associated formation of membrane protrusions 
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required  for  cell  motility  in  three  dimensional  environment,  including  lamellopodia,  filopodia, 

podosomers and invadopodia.  

Based on their central function in actin remodeling, cell proliferation and survival, RhoGTPases 

play an important role in tumor cell invasion and metastasis (Hall 2005; Ridley 2006). RhoA, Rac1 

and Cdc42 are the best studied members of the RhoGTPase family, having critical role in cell 

migration  and  invasion  (Wojciak-Stothard  and  Ridley  2003;  Narumiya  et  al.  2009;  Vega  and 

Ridley 2008; Sahai and Marshall 2002; Jaffe and Hall 2005). In context of cell migration RhoA 

induces actin stress fibers formation and regulates cytoskeletal configuration affecting cell-cell 

and  cell-matrix  adhesion.  Conversely,  Rac1  is  involved  in  lamellopodia  and  membrane  ruffle 

formation, and Cdc42 excites filopodia formation (Liu et al. 2010). The tight regulation of actin 

cytoskeleton remodeling is not only critical for cell motility but also for other cellular processes, 

such as endocytosis and intracellular trafficking (Yilmaz and Christofori 2010). 

On the basis of morphological and functional differences, single cell migration has two modes of 

migration i.e. mesenchymal cell migration and amoeboid migration. Cancer cells can acquire either 

one or mixture of both strategies. Mesenchymal cell’s movements is driven at the leading edge, by 

Rac-induced cell protrusions and actin polymerization in cortical cables and stress fibers. These 

cells remodel the extracellular matrix by proteolysis (Lo et al. 2000; Raeber et al. 2008).  

In contrast amoeboid cell migration is used by round cells, which in a push –to-squeeze type of 

migration  make  their  way  through  the  extracellular  matrix.  Their  movement  is  driven  by 

RhoA/ROCK-mediated bleb like protrusions regulated by active myosin/actin contractions and 

cortical actin polymerization. The ECM is remodeled only by mechanical forces in the absence of 

significant proteolytic activity and cell migrates through the small pores of ECM (Brunner et al. 

2006;  Wolf  and  Friedl  2006).  These  cells  migrate  rater  fast  as  compared  to  mesenchymal 

migration. 

In contrast, collectively migrating cells maintain their cell-cell junctions and migrate in sheets, 

strands, tubes, and clusters, either still in connection with their originating tissue or as separated, 

independently migrating clusters (Friedl and Gilmour 2009; Friedl et al. 2004). There are only few 

differences to solitary migrating cells when viewed from cellular level. Collectively migrating 

cells  also  form  membrane  protrusions,  such  as  ruffles  and  pseudopodes;  they  use  cell-matrix 

adhesion receptors, such as β1-integrin and β3-integrin, to form focal adhesions connected to the 

actin cytoskeleton; they direct proteolytic breakdown of the extracellular matrix to generate a path 
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through  the  matrix  scaffold;  and  they  use  the  actin-myosin  contractile  apparatus  for  local 

contraction and cell movement. Yet, in contrast to their solitary migrating counterparts, 

collectively  migrating  cells  do  not  retract  their  cellular  tails  but  rather  exert  pulling  forces  on 

neighboring cells that are connected by adhesion junctions. Thereby, cells keep in most, but not 

all, cases their position in the collective. 

1.2.5 Mechanical Phenotypes of Cancer cells 

It is now established that mechanical parameters can be used as biomarkers to classify cancer cells 

phenotyping (Paszek et al. 2005; Huang and Ingber 2005; Remmerbach et al. 2009). Change in 

cell elasticity, deformability and traction forces are the most studies mechanical  phenotypes used 

to differentiate cancerous cells from normal ones (Kraning-Rush et al. 2012; Guck et al. 2005; 

Coceano et al. 2016; Tavano et al. 2011). A large number of experiments on cells shows that cells 

mechanical response is viscoelastic, having both elastic and viscous behavior (Nawaz et al. 2012). 

To elicit biomechanical response of cells, a variety of experimental techniques like micropipette 

aspiration, magnetic tweezers, optical stretchers, AFM and optical tweezers have been established 

capable of applying and measuring force magnitudes sufficient for cells mechanical phenotyping. 

Here  our  focus  is  on  the  study  of  cell  mechanical  properties,  specifically  cells’  resistance  to 

deformation due to applied forces using optical tweezers.   

 Cell mechanics and cell microenvironment 

Microenvironmental biochemical and physical stimuli activate many cellular processes such as 

stiffening, softening, maturation, ion influx, morphological changes, generation of tractions forces 

or focal adhesions (Discher et al. 2005). During normal growth, these stresses and responses are 

highly  regulated  and  coordinated  in  both  space  and  time  to  cooperatively  guide  the  proper 

development of tissue structure and function and, ultimately, of the organism. When these cues 

are disturbed by pathological stimuli, this imbalance can trigger maladaptive reorganization of the 

cytoskeleton leading to abnormal tissue growth and diseases such as cancer (Subra Suresh, 2007; 

Makale, 2007), atherosclerosis and malaria (Park et al., 2008).  

Cancerous ECM (and hence tissue) exhibits higher stiffness compared to its normal counterpart 

and this elevated stiffness is partly responsible for the critical process of cancer cell migration and 
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invasion (Ingber 2008; Friedl et al. 2004; Lo et al. 2000; Bissell and Hines 2011). Similarly, it is 

know that invasive cancer cells are softer as compared to normal cells (Coceano et al. 2016). 

 However, the relationship between the mechanical properties of the ECM and the intracellular 

mechanical properties that influence cell migration is still not well understood.  

1.3.1 Effect of substrate on cell stiffness 

Mechanical interactions between tissue cells and ECM have grasped much attention as they play 

an  important  role  cancer  progression  and  invasion.  Cell  constantly  sense  and  respond  to  the 

stiffness (rigidity) of its ECM (substrate). In various processes including tumor progression or 

tissue development, the stiffness of the ECM is modified (Georges and Janmey 2005; Paszek et al. 

2005). Cell sense the rigidity of the substrate and can migrate toward increased stiffness (Discher 

et al. 2005), by the mechanism of called Durotaxis 1, as shown in Figure 1.5. Cells favor stable 

substrate adhesions (Carter 1967), which depends on substrate rigidity (Pelham and Wang 1997; 

Giannone et al. 2004; Chan and Odde 2008).  

In lab-based experiments, cell are seeded on glass substrate having higher elastic modulus (E ≈ 

GPa). In the last two decades, surface modification methods using polymer hydrogels 

(polyacrylamide (PA), PDMS) are extensively used to obtain surfaces with varying elastic moduli 

(from 100Pa to 100kPa) to mimic ECM rigidities in vitro (Khademhosseini 2008). Pelhem et. al. 

examined normal rat kidney epithelial and 3T3 fibroblastic cells on a collagen coated 

polyacrylamide substrate with distinct elasticity,  while maintaining a constant chemical 

environment. 

Flexible  substrates  showed  reduced  spreading  and  increased  rates  of  motility  or  lamellipodial 

activity as compared with cells on rigid substrates. Fluorescent images of adhesion proteins such 

as vinculin revealed that on soft, lightly cross-linked gels (E ≈ 1 kPa), irregularly shaped and highly 

dynamic adhesion complexes were observed whereas stiff, highly cross-linked gels (E ≈ 30–100 

kPa) induced FA’s with normal morphology and much more stability, close to those  

                                                            
1 Durotaxis is a form of cell migration in which cells are guided by rigidity gradients, which arise from differential 
structural  properties  of  the extracellular  matrix  (ECM).  Most  normal  cells  migrate  up  rigidity  gradients  (in  the 
direction of greater stiffness) 
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observed in cells cultured on glass substrates (Pelham and Wang 1997). The possible reasons could 

be that the reduced stress on soft substrates could impact on the maturation of FAs. In fact, traction 

force mapping of fibroblasts on gels proves that stiffer substrates are pulled harder as compared to 

softer substrate (Lo et al. 2000). If a cell can generate higher traction, it has some internal structure 

that can sense the stiffness of the matrix on which it resides. Studies shows that contractile acto-

myosin apparatus can act as a global rigidity sensor (Kobayashi and Sokabe 2010).  

Experiments on mesenchymal stem cells have shown that they can differentiate toward neurons, 

myoblasts and osteoblasts on PA gels of different stiffnesses with identical biochemical conditions 

(Engler et al. 2006). It has also been reported that cell adopts a more rounded morphology on soft 

substrates and more flattened on stiff ones (Pelham and Wang 1997, Ghibaudo et al 2008, Tee et 

al 2011) as shown in Figure 1.6. It seems that cell contractility could be modulated by the internal 

cytoskeletal stiffness via a higher polarization of actin filaments. Tissue cells also has the ability 

to tune their internal stiffness to match that of their substrate (Solon et al. 2007) which make cells 

to migrate and helps in wound repair. 

The  cytoskeleton  of  a  cell  is  prestressed  because  tensional  forces  that  are  generated  within 

contractile microfilaments and spreaded throughout the cell are balanced by internal microtubules 

that  resist  being  compressed,  as  well  as  by  extracellular  adhesions  to  ECM  and  to  other  cells 

(Kumar et al. 2006; Wang et al. 2001; Ingber 2003; Hu et al. 2004). This allows cells to shift 

compressive forces back and forth between microtubules and ECM adhesions, such that 

microtubules bear most of the pre-stress in rounded cells with few anchoring points whereas the 

Figure 1.5: Cells feel the mechanical 
properties of the ECM. When plated onto an 
ECM that consists of adjoined rigid and soft 
regions,  fibroblastic  L  cells  move  from  the 
soft part to the rigid one, while cells on the 
rigid region remain confined in this 
region.(adapted  from  (Ladoux  and  Nicolas 
2012)). 
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ECM bears most of the load in spread cells on highly adhesive substrates (Figure 1.6) (Hu et al. 

2004).  The  existence  of  this  complementary  force  balance  in  the  cytoskeleton  explains  how 

external forces that are applied at the cell surface can alter the chemical potential of tubulin and 

thereby  control  microtubule  polymerization  in  cells  as  is  required  for  nerve  outgrowth  or 

directional cell migration, as well as why cytoskeletal tension and ECM adhesions contribute to 

this  response.  Similar  mechanical  interactions  between  microfilaments,  microtubules,  and  cell 

substrate adhesions govern the shape and stiffness of the cells and their linked ECMs ((Pollard and 

Cooper 2009)). In general , the tensional forces are supported by actin (Wang et al. 2002), and 

intermediate filaments (Wang and Stamenović 2000), whereas compressive forces are supported 

by the microtubules and adhesions.. 

 

 

Figure 1.6: Integrated cell and cytoskeletal shape control through a complementary force balance 
between  microfilaments,  microtubules,  and  ECM.  Top:  Cell  shape  and  the  stability  of  the 
cytoskeleton depend on a mechanical force balance between microfilaments, microtubules and the 
ECM.  In  most  anchorage-dependent  cells,  cell  spreading  on  ECM  is  required  for  cell  cycle 
progression and growth; abruptly increasing cytoskeletal tension in these spread cells results in 
cell  flattening,  increased  bundling  of  actin  filaments  within  basal  stress  fibers,  and  enhanced 
buckling of some microtubules (left). Decreasing ECM rigidity to the point where it can no longer 
bear cell traction forces results in force transfer to internal microtubules, which increases their 
buckling and bending, as well as stress fiber disassembly and cell rounding; in most cells, cell 
retraction switches off growth and turns on differentiation or apoptosis (right). Bottom: Diagram 
of a cell adherent to a rigid ECM through two basal focal adhesions (semicircles) showing the 
response  of  cytoskeletal  microtubules  (green)  and  microfilaments  (dashed  blue  lines)  when 
tensional  forces  are  applied  to  integrins  that  form  a  focal  adhesion  on  its  apical  cell  surface 
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(cylinder). Pulling on integrin receptors results in coordinated structural rearrangements 
throughout the actin and microtubular cytoskeletons, as well as within the nucleus and basal focal 
adhesions. Pulling on other transmembrane receptors that do not mediate cell adhesion produces 
only a local membrane response (Ingber 2006). 

  

1.3.2 Effect of neighboring cells on cell stiffness 

As discussed in previous section, Integrin based mechanical dynamics have strong effects on cell 

behavior. In-vivo cells are connected also with neibhouring cells through e-cadherin junctions, 

which shares mechanical information and maintain proper tissue morphology and function. At 

cell–cell junctions, tension from actin and myosin in one cell can be transmitted to a neighboring 

cell (Gomez et  al.  2011). These  junctions serve a structural role, by maintaining cell integrity 

through cytoskeletal connections to other cells, as well as to the extracellular matrix. 

Integrin based junctions are strong as compared to e-cadherins based cell-cell junctions,  but yet 

the cadherins can mediate force-induced activation of Ca ++  influx through mechanosensitive ion 

channels and associated actin assembly, and application of fluid shear stress to osteoblasts causes 

the  cadherin-associated  junctional  protein,  β-catenin,  to  translocate  into  the  nucleus,  where  it 

activates gene transcription (Ingber 2006).  

Many studies have highlighted cell-cell interactions in terms of adhesion and other chemo-physical 

properties, but only a few studies have been devoted to mechanistic nature of these interactions. 

Ivers  et  al  studied  interaction  between  MDA-MB-231  cells  and  non-cancerous  epithelial  cells 

(MDCK) in time lapse 3D configuration. They demonstrated that microenvironment has strong 

impact on the growth and dynamics of cancer cells by stressing the organ-specific affinity of cancer 

cells to host cells (Ivers et al. 2014). Songyu Hu et al by using optical tweezers pulling method 

categorized  stroma-  leukemia  cell  interactions  as  tightly  adherent,  loosely  adherent  and  freely 

suspended (Hu et al. 2013). They also observed dynamic Wnt signaling pathways during cell-cell 

interactions by coupling optical tweezers to fluorescence microscopy (Gou et al. 2013). The effect 

on  cell  stiffness  during  cell-cell  interactions  was  analyzed  using  AFM  for  normal,  immortal, 

tumorigenic,  and  metastatic  cells  mimicking  mammary  epithelial  cancer  at  four  stages  of 

aggressiveness (Guo et al. 2014), showing that microenvironment strongly affects normal cells 

(stiffer at the center and softer in isolated condition), but not metastatic and immortal cells and 

opposite effect was detected on tumorigenic cells. The reported body of evidences indicating that 
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the interaction between normal and neoplastic cell contributes to tumor growth (Kamińska et al. 

2015). As invasive (metastatic) cancer cells don’t express E-cadherins, their interaction with e-

cadherins expressing cell will have different interaction mechanisms (Guo et al. 2014; Lee et al. 

2012).  Lee  et  al  have  shown  that  invasive  cells  are  more  mobile  in  the  active  interaction 

environment of non-tumorigenic epithelial cell line/normal as compared to non-invasive, tumoral 

cells. Invasive cells are softer and more sensitive to the physical forces and these forces are applied 

on the lateral surfaces of the cells (Lee et al. 2012). 

Cell-cell interaction on soft substrate shows that some cells lose their shape sensitivity to substrate 

rigidity once they come into contact with other cells (Yeung et al. 2005). Cell–cell binding can 

overwrite cell-substrate induced signaling. In tissues, cellular-level mechanosensing, transduction 

and response processes can maintain the proper physical homeostasis, which is markedly altered 

in cancers (Suresh 2007; Yilmaz and Christofori 2010). 

 Optical tweezers in Biomechanics  

The pioneering work by Ashkin et. al. on the trapping of micro- particles and their manipulation 

by radiation pressure (Ashkin 1970; Ashkin et al. 1986) led to the foundation of a new tool called 

optical tweezers or optical trapping (OT), which has found a multitude of applications in physics, 

chemistry and biology (Figure 1.7)(Grier 2003; Neuman and Block 2004; Ashok and Dholakia 

2012).  An  important  achievement  for  biology  was  the  first  demonstration  that  living  micro-

organisms (e.g. viruses, bacteria) could be manipulated by OT without being damaged (Ashkin 

and Dziedzic 1987).  

Optical tweezers use an infrared laser and a microscope to trap an object and control its movements 

through  photons  (Neuman  and  Block  2004).  When  photons  pass  through  an  object,  there  is  a 

change in their direction based upon the object’s refractive index. The change in direction causes 

a change in momentum, resulting in a force on the object. When light is focused through a high 

numerical aperture lens, photonic forces can trap an object at the center spot of the laser beam 

(Figure 1.7 c). 

For  cell  mechanical  studies,  a  spherical  dielectric  bead  is  trapped  which  acts  as  handle  to 

manipulate cells. Optical trap is characterized by the trap stiffness (k) and obeys Hooke’s Law for 

small displacements (harmonic potential). Force which can be applied on the cell is then measured 

by the bead displacement (x) from the trap center.  This displacement of the bead can be recorded 
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using  video-based  position  detection,  imaging  or  laser-based  quadrant  photodiode  techniques 

(Neuman and Block 2004) . OT forces are in the range from 1 to 200 pN and trap stiffness is in 

the range 0.001–1 pN/nm. 

Among  the  various  properties  of  cell  mechanics,  viscoelasticity  has  been  the  most  widely 

investigated using OT with varying experimental arrangements like, membrane tether pulling, cell 

stretching and indentation (Tavano et al. 2011; Dao et al. 2003; Zhang and Liu 2008; Rodriguez 

et al. 2013). The technique has continued to develop and evolve with time, and more suitable and 

stable algorithm are adopted, not only to broaden OT application and improve sensitivity, but also 

to  match  other  biophysical  techniques,  like  AFM.  Therefore  axial  (vertical)  optical  traps  are 

introduced having the same protocol of cell indentation as AFM (Yehoshua et al. 2015; Yousafzai 

et al. 2016; Coceano et al. 2016; Nawaz et al. 2012; Dy et al. 2013). 

In the AFM techniques, the forces range from 10 to 10 3 pN with a cantilever stiffness larger than 

10  pN/nm.  However,  there  are  some  restrictions  that  limit  its  use  in  small  force  domain.  The 

thermal noise of the cantilever in a liquid, which is of the order of tens of pN (Bodensiek et al. 

2013),  limits  the  minimum  applied  force.  Furthermore,  as  an  example,  if  the  stiffness  of  the 

cantilever is 100 pN/nm (normally used in biological experiments), any small error in indentation 

of 1nm will induce a force of 100 pN, which is critical for many of the biological processes. To 

overcome these limitations, OT can be employed to characterize cell mechanics at small forces 

(<10 pN). OT, in general, impart forces in the range of 10-1 – 102 pN with a spring constant of 103 

– 1 pN/nm, which makes OT ideal for low mechanical force regimes (Zhang and Liu 2008). The 

higher sensitivity of OT over AFM lies in the different kinds of probes through which they apply 

forces. In the case of OT, the probe is a micron size bead held tightly in a laser trap (Neuman and 

Block 2004), which is more sensitive than a mechanical cantilever (Zhang and Liu 2008). 

OT versatility is highlighted by the wide range of applications which this technique has enabled: 

OT  are  now  being  used  in  the  investigation  of  an  increasing  number  of  biochemical  and 

biophysical processes, from the basic mechanical properties of cells (Tavano et al. 2011; Nawaz 

et al. 2012; Coceano et al. 2016; Yousafzai et al. 2016)  to the multitude of molecular machines 

that  drive  the  internal  dynamics  of  the  cell  like  DNA  and  proteins  (Bustamante  et  al.  2003; 

Allemand et al. 2003), force generation by molecular motors (Block et al. 1990), individual RNA 

transcription  (Wang  et  al.  1998),  and  protein  unfolding/folding  (Kellermayer  et  al.  1997)  or 

binding/unbinding (Thoumine et al. 2000).  
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Lastly, it has been proposed that the optical trap may have detrimental effects on cells at higher 

laser power limits, due to the local heating from the high intensity of the laser, as well as photo-

damage (Lim et al. 2006; Van Vliet et al. 2003; Hormeño and Arias ‐Gonzalez 2006). Therefore, 

we used an optimal laser power in our experiment to avoid any photo damage or changes in the 

mechanical properties of the cells. 

are attracted toward and accelerated along the laser path. (b) The first optical trap made of two 
beams moving in opposite direction. (c) Single beam optical tweezers. Laser beam is focused by 
high numerical aperture (NA) lens, the beam traps dialectic bead which can be used as handle to 
apply forces. (d) OT used in DNA and motor protein study (adapted from (Ashkin 1970; Ashkin 
et al. 1986; Bustamante et al. 2003; Moffitt et al. 2008)). 

 Summary of the thesis 

This thesis presents an attempt to study cancer cells from mechanical aspects, a rapidly expanding, 

yet still a nascent field of research that deals with the biomechanics and biophysics of cancer cells.  

Chapter 1 sets the scene for mechanistic discussions. The formulation of the thesis begins with 

an introduction to some key observations on the mechanics of cancer cells. The architecture and 

load bearing components of cell i.e.  Actin microfilaments, intermediate filaments and microtubule 

and their role in influencing cell mechanics, locomotion, proliferation, motility, differentiation and 
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neoplastic transformation are discussed. Cancer cell microenvironment and its importance in cell 

function and cancer progression and invasion in terms of cell-cell and cell-substrate interactions 

are highlighted. The chapter ends with the role of OT in biomechanics, which highlights some of 

its application limits and usefulness.  

Chapter  2  introduces  the  materials  and  methods,  used  to  study  cell  mechanical  properties. 

Selection of breast cancer cells and the experimental mechanism of optical tweezers are described 

in detail. To mimic the physiological stiffness of the extracellular matrix, substrate modification 

with PDMS and collagen and preparation techniques are presented.  

Chapter 3 discusses the experimental results in three sections.      

Section  3.1  introduces the  elastic  properties  of the  three  cell  lines,  and  their  comparison.  The 

response of a cell to the applied OT force is showed to be almost elastic. We also presented regional 

variation is mechanical properties of the cells. We compare our result with AFM results and found 

the same kind of elastic modulus trend for all the three cell lines.    

Section 3.2 is dedicated to the substrate dependent cell elasticity results.  It is sowed that substrate 

stiffness  has  profound  effect  on  cell  elasticity.  The  cell  senses  the  substrate  rigidity  and  by 

changing the substrate rigidity the elasticity of the cell can be tailored. 

Section 3.3 highlights the key role of cell-cell contact on the alterations of cell elasticity. These 

changes are dependent on the cell type and their level of aggressiveness.   

Conclusions  and  Final  Remarks  conclude  all  the  obtained  results  and  highlight  the  future 

perspectives and directions. 
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Chapter 2 

Materials and Methods 
 

In order to study cell mechanical properties (cell elasticity/stiffness), two human breast cancer cell 

lines with different aggressiveness (MCF-7 (luminal breast cancer) and MDA-MB-231 (basal-like 

breast cancer)) and one normal immortalized breast cell line HBL-100 (normal, myoepithelial) 

were  selected  as  a  model.  We  also  argued  in  the  previous  chapter  that  cell-microenvironment 

interactions are sensitive to mechanical forces in pN forces. Therefore, we employed OT setup to 

apply precisely calibrated pN forces and monitor the response of the cells in different 

microenvironmental conditions. 

This chapter contains four sections. The first section describes the details of the three human breast 

cell  lines  chosen  for  the  project:  HBL-100,  MCF-7  and  MDA-MB-231.  Second  section  is 

dedicated to the details of cell sample preparation. Third section specifies the procedures used for 

the coverslip coating with collagen and Polydimethylsiloxane (PDMS), used as soft substrates. 

The fourth section introduces Optical Tweezers (OT), discusses in detail the vertical indentation 

procedure and presents the procedure for elastic modulus calculation using Hertz model in two 

ways: fixed indentation range and fixed force range. At the end, details on the 3D bead position 

tracking and a comparison between the total indentation force and the vertical force are presented. 

 Breast Cancer Cell lines description 

MDA-MB-231 is an estrogen receptor independent breast cancer epithelial cell line derived from 

the  pleural  effusion  of  a  cancer  patient.  It  is  widely  used  for  breast  cancer  biology  studies;  it 

belongs  to  the  Basal  cell-like  (BCL)  or  “triple  negative”  phenotype.  This  subtype  has  been 

associated  with  aggressive  behavior,  poor  clinical  outcomes,  lack  of  response  to  the  usual 

endocrine therapies and shorter survivals when compared to other cancer subtypes. (Perou et al., 

2000b; Foulkes et al., 2003; Sotiriou et al., 2002b). We used this cell type as a model of cancer 

cell with high aggressive behavior.  

MCF-7 is an estrogen-receptor-dependent breast cancer epithelial cell line widely used for studies 

of breast cancer biology and hormone mechanism of action. The cell line was originally derived 
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at  the  Michigan  Cancer Foundation from  a  malignant  pleural  effusion  from  a  postmenopausal 

woman with metastatic breast cancer, who had been previously treated with radiation therapy and 

hormonal manipulation (Soule et al., 1973). The cells express receptors for a variety of hormones 

including  estrogen,  androgen,  progesterone,  glucocorticoids,  insulin,  epidermal  growth  factor, 

insulin like growth factor, prolactin, and thyroid hormone (Lippman et al., 1977). It belongs to 

Luminal A cell-like tumour subtype which is associated with good prognosis and a less aggressive 

behaviour, compared to the BLC group (Sotiriou et al., 2002b). 

HBL-100 is an epithelial cell line developed and established in vitro, obtained from the milk of an 

apparently healthy 27-year-old Caucasian woman after three days from delivery (Gaffney et al., 

1976;Gaffney  EV.,  1982).  The  milk  donor  was  followed  for  several  years  with  clinical  and 

mammographic  evaluations at  regular  intervals with  no detectable breast  lesion (Gaffney EV., 

1982; Ziche and Gullino, 1982). However this cell line is referred to the breast in a particular 

situation, which is related to the production of milk. It is well known that gestation cycle induces 

a  massive  proliferation,  but  also  the  differentiation  of  epithelial  subtypes  of  cells  that  are 

susceptible to neoplastic transformation (Wagner and Smith, 2005). The dual nature of the above 

mentioned myoepithelial cell line which for some experiments could parallel a normal cell, while 

for others is very similar to cancer cell is in line with other authors, who detected the amplification 

of c-myc even at low passages (Krief et al., 1989). At low number of passages (below P 35) HBL-

100 showed to be non-tumorigenic, but they are able to form cancer in nude mice carcinomas at 

high number of passages. It has been shown that during the course of their progression toward 

neoplastic transformation, HBL-100 displayed an increasing capacity to induce angiogenesis and 

a loss of fibrin clot retraction activity, properties both associated with the malignant phenotype 

(Ziche and Gullino, 1982). HBL-100 cells, because of their myoepithelial differentiation, could 

represent a normal control for triple negative or basal breast cancers. 

 Cell sample preparation 

Single cell studies: MDA-MB-231, MCF-7 and HBL-100 cell lines (ATCC numbers HTB-26, 

HTB-22,  HTB-124  respectively)  were  cultured  using  low  glucose  Dulbecco’s  Modified  Eagle 

Medium  (DMEM)  with  L-glutamine  (MDA-MB-231  and  MCF-7)  or  Roswell  Park  Memorial 

Institute (RPMI) 1640 medium with L-glutamine (HBL-100), all supplemented with 10% (v/v) 

Fetal Calf Serum (FCS), 50 IU/ml of penicillin-streptomycin and 1mM gentamycin. Cell cultures 
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were maintained in 25 cm2 flasks at 37ºC in 5% CO2. Cell splitting was performed every 2-3 days, 

as soon as the cultures reached the confluence, using 1:10 diluted 0.05% trypsin-EDTA. The day 

before experiments, the cells were seeded overnight on 30 mm glass-bottom (OT) Petri dishes at 

a density of 10×104 cells/ml in 6ml (AFM) or 2 ml (OT and SSM) of medium. Before starting the 

experiment, the cells were washed three times in Phosphate Buffer Saline (PBS) and rinsed with 

medium prior to each measurement session. All reagents for cell culture were purchased by Gibco 

Lifetechnology, cell culture flasks and Petri dishes were purchased by Sigma-Aldrich. 

 Substrate coating procedure 

2.3.1 Collagen coating:  

To test the influence of the substrate stiffness on the elastic modulus of the cells, collagen-coated 

Petri dishes have been prepared and used for some experiments. Collagen is the main component 

of connective tissue and provides support for tissues. Type I collagen, the one that has been chosen 

for our experiments, has a herterotrimeric triple helical structure made up of two alpha-1(I) and 

one alpha-2(I) chains that twisted into elongated fibrils which are extremely strong. It has been 

proved to be useful as a substrate that promotes cell growth and proliferation (Hynda K. Kleinman 

et al., 1981). Under acidic conditions the protein is soluble, but it can be dried to form a thin layer 

of cell attachment. A concentrated solution of type I collagen was diluted with Acetic Acid 0.02N 

to a final concentration of 60μg/ml and has been distribute on a sterilized Petri dish to overlay the 

cover slip. 

The glass has been kept in contact with the collagen solution for 2 hours under a biological laminar 

hood. The remaining solution was then removed and the Petri dish was washed twice with PBS. 

The Petri was air dried and put under UV light overnight for sterilization. 

2.3.2 Polydimethylsiloxane (PDMS) coating: 

The  PDMS  is  a  synthetic  polymer  belonging  to  the  family  of  silicones,  based  on  the  relative 

composition  of  monomer  and  crosslinking  agent,  thin  films  o  PDMS  can  be  achieved  having 

almost similar elastic modulus as that of physiological tissues (Chen et al. 2013). The PDMS is an 

optically  transparent  material,  hydrophobic,  inert  and  non-toxic.  The  hydrophobicity  can  be 

removed temporarily on the surface mediated oxidation plasma, converting the surface groups 
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from  methylsilane  to  silano.  This  oxidized  surfaces  are  then  capable  of  binding  proteins  and 

support cell adhesions. 

The protocol for PDMS coating on glass substrate was followed as (Chen et al. 2013)  

 Addition of calculated amount of PDMS and crosslinker followed by vigorous mixing for 
few minutes. 

 Degassing for at least 30 minutes to get a bubble free mixture.  
 Coverslips cleaning using ethanol and followed by nitrogen drying. 
 Spin coating of the mixture of PDMS on coverslip (rotation speed = 2500 rpm, rotation 

time = 20 seconds) 
 Baking of PDMS coated substrates (85 ° C for at least 4 hours) 
 Cooling and storage at room temperature up to a few weeks 
 Plasma oxidation by using Plasma Cleaner (power = 50 W, time = 10 seconds, pO2 = 50 

millibars) followed by immediate immersion of the substrates in sterile PBS. 
 UV sterilization for 40-60 minutes. 

 
The substrates of PDMS have proven transparent to infrared light and visible (Cai et al. 2008) 

allowing  the  correct  operation  of  the  optical  tweezer  systems  and  bright  field  microscopy  for 

visualization of the sample. 

In order to get a uniform thickness of the PDMS films, we optimized the parameters of time and 

speed of rotation of the spin coater to get thinness in the range from 40 to 48 µm. This thickness 

helps to avoid influence of glass substrate on cells. To obtain optimum parameters we performed 

several tests and deduced the required parameters form thickness vs time plots (Figure 2.1). 

Due to the difference in composition of mixtures, and viscosity and hence the polymerization rate 

is  different  which  leads  to  different  spread  on  glass  substrates.  The  substrates  used  for  the 

experiments were fabricated at 2500 rpm for 30 seconds for mixtures 15: 1 and 35: 1, 3000 rpm 

for 30 seconds for the mixture 50: 1. These parameters allow to obtain thick substrates about 40 to 

48 µm. 

During the spin coating, the mixture of PDMS is distributed on the glass by means of centrifugal 

force, for this reason substrates tend to be slightly thicker at the edges. 
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Figure 2.1: Optimization plots for PDMS spin coating. The plots were optimized for 40 to 48 µm 
of thickness with PDMS to crosslinker ratio as 15:1, 35:1 and 50 to 1 corresponds to  173kPa, 
88kPa and 17kPa respectively. 

 Optical Trapping (OT) 

A variety of biophysical methods such as microplate or optical stretchers, micropipette aspiration, 

magnetic twisting, atomic force microscopy (AFM) and optical tweezers (OT) are being used to 

study  viscoelastic  nature  of  cells,  as  reviewed  in  (Suresh  2007;  Hoffman  and  Crocker  2009). 

However,  in  the  past  two  decades,  AFM  and  OT  emerged  as  strong  candidates  to  study  cells 

cultured on substrates.  

The majority of all optical trapping experiments are performed in a plane that is parallel to the 

microscope coverslip (Tavano et al. 2011). In this horizontal geometry, it is difficult to compare 

the quantitative results of optical trapping experiments with AFM indentation experiments because 

the experimental boundary conditions are very different. Therefore, we adopted a mechanism to 

probe the elasticity (stiffness) of cells, using the same vertical cell indentation scheme as AFM 

(Bodensiek et al. 2013; Yehoshua et al. 2015). 

When analyzed with AFM in vertical indentation, the cells show elastic modulus values even three 

orders of magnitude higher than those obtained with OT.  This highlights the fact that the cells are 

sensitive to the applied forces and the loading rates (measured in N/s) (Chiou et al. 2013) because 

of  their  viscoelastic,  inhomogeneous  and  anisotropic  nature.  Therefore,  for  characterization  of 

different cell lines it is important to complement AFM vertical indentation measurements by OT 

measurements following the same scheme (Yehoshua et al. 2015; Nawaz et al. 2012; Coceano et 

al.  2016).  In  AFM  and  OT  techniques,  where  the  cells  are  indented  vertically  for  elasticity 

measurements, only the axial force is taken into account. We also introduce, the concept of total 

force which comprises both axial and lateral force components, and will be discussed in detailed 

in section 2.2.5. 
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2.4.1 Optical tweezers vertical indentation setup  

A modular Thorlabs optical tweezers kit (www.thorlabs.com) with some modifications has been 

employed in this work. To achieve more stability and power we  replaced the original laser trapping 

source (single mode laser diode, 975 nm, max 300 mW) by an IR laser (single mode Yb fiber laser 

YLM-5, 1064 nm, max 5W, IPG Photonics GmbH), as shown in Figure 2.2. The laser head has a 

built-in collimator providing a TEM00 laser beam with a diameter D=5 mm. After reflection by 

mirror M1 (which helps for alignment) the beam passes through a 2X beam expander, increasing 

its diameter to slightly overfill the entrance pupil of the microscope lens (Nikon 100X, NA 1.25 

oil immersion, WD 0.3). This beam expander also helps to change the focus of the laser  (trap 

position) to get a reasonable height from the coverslip and adjust relatively with respect to optical 

focus to better visualize the bead during cell-bead interaction as shown in figure 2.3. The laser 

beam is focused into the sample chamber by the microscope lens, where a silica microbead is 

trapped at the point of focus. A home-made temperature controlled holder (Tavano et al. 2011) is 

connected to the sample chamber (a Petri dish) to keep the cells at the physiological temperature, 

T=  37°  C  during  the  experiments.  This  is  mounted  on  a  nano-piezo  cube,  PS  (Piezo  Stage), 

(Thorlabs,  NanoMax  3-axis  flexure  stage)  allowing  to  control  the  sample  position  with  5  nm 

precision. A second microscope lens (Nikon 10X, NA 0.25, WD 7) collects the laser light scattered 

by the trapped bead. The scattered light interferes in the back focal plane (BFP) of the second lens. 

The interference pattern (IP) is imaged by lens L3 (f= 40 mm) onto the quadrant photo detector, 

QPD, (Thorlabs, PDQ80A, detector size 7.8mm) which senses the lateral and vertical displacement 

of the trapped bead, as indicated. When the bead is in the equilibrium position, the IP is centered 

on the QPD. A lateral displacement of the bead is indicated by an IP lateral displacement, while a 

vertical  displacement  is  indicated  by  the  change  in  size  of  the  IP.  The  lateral  and  vertical 

differential signals (ΔX, ΔY, ΔZ) are obtained combining the signals from the quadrants 1-4 as 

follows: ∆𝑋 = [(1 + 4) − (2 + 3)] ; ∆𝑌 = [(1 + 2) − (3 + 4)] ; ∆𝑍 = [1 + 2 + 3 + 4]    (1) 

The differential signals are acquired through a digital acquisition card (DAQ – NI USB 2561) and 

a custom LabView (NI Student suit) code running on a PC. As the QPD has a large bandwidth 

(150  kHz),  it  can  resolve  the  thermal  movement  of  the  bead  in  the  trap  very  well,  which  is 

characterized by a maximum bandwidth of 1-2 kHz. The sample is illuminated by the light from a 
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LED through the second microscope lens. The sample is imaged by the first microscope lens and 

the tube lens (TL) on the sensor of a CMOS camera (Thorlabs, DCC 1240C).  

 
 

Figure 2.2: Optical tweezers setup for vertical cell indentation and force measurement. (a) Laser 
trapping beam path (red) and bright-field imaging path (green). PS: 3-axis nano-piezo stage; DAQ: 
digital analog acquisition card; TL: tube lens; L1-L3 convergent lenses; M1-M3: mirrors; DCM 
1-2 dichroic mirrors, TC: temperature controlled holder (b) Interference pattern imaged on the 
QPD for: equilibrium position, lateral and axial displacements. 

 

 

 

Figure 2.3: Changing the relative 
positions of the two lenses of the beam 
expender,  one  can  increase  or  decrease 
the width of the beam as well as the trap 
location relative to the objective’s focal 
plane (dotted line). 
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2.4.2 Calibration of optical trap 

In order to use optical tweezers as a quantitative instrument for position and force measurements, 

the detection system must be calibrated. Silica bead of 3µm was used as a handle for 

measurements, to calculate and calibrate its stiffness (pN/nm) we take a time series position trace 

of the bead from QPD in terms of voltage as shown in Figure 2.5. The voltage trace acquired at 

10 KHz for 5 seconds but only a section of 1 sec is shown, which is sufficient to calculate the 

stiffness. We used two calibration methods: the equipartition theorem and the power spectrum of 

thermal Brownian motion of a trapped object (power spectrum density - PSD). For the 

equipartition theorem we need to calculate sensitivity of our setup in terms of mV/nm in advance, 

while PSD doesn’t require the sensitivity to be known. In the following, a detailed experimental 

procedure for calibration is presented.  

 

 

 

 

2.4.2.1 OT setup sensitivity 

To calibrate the position of the trapped bead and measure the linear range of the vertical optical 

trap we focused the trap onto a 3 µm diameter bead that was stuck to the coverslip. The stage was 

moved with a sinusoid of 1um, in order to sweep the trap through the stuck bead in the z-direction. 

The QPD signal in volts and the stage movement in µm was plotted to get the sensitivity of the 

setup (Figure 2.4). The response was linear for ≈1 μm. From the slope we could obtain the detector 

sensitivity (0.5 mV/nm), which is necessary to convert voltage trace from QPD to position trace.  

 

Figure 2.4: Trace of thermal 
Brownian motion of a trapped bead 
from the QPD in volts. The plot is a 
section (1 sec) of 5 sec trace 
sampled with 10 kHz. 
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trap focus is at the middle of the bead, and the QPD response is monitored. (b) By plotting the 
linear part of stage displacement and QPD voltage signal we get the QPD sensitivity in terms of 
V/µm. This plot also define the region of harmonic potential behavior of the trap. 

 
2.4.2.2 Trap stiffness calculations 

2.4.2.2.1 Equipartition theorem: 

The equipartition theorem states that a molecule in thermal equilibrium has an average kinetic 

energy for each degree of freedom by < 𝐸 > = 12 ���      (2) 

Assuming that the movement of the trapped bead is due to thermal fluctuations, we can set the 

kinetic energy to the potential energy of the trap. 12 𝑘 < � 2 >= 12 ���      (3) 

where < �2 > is potition variance in the z direction. We can convert a voltage trace to a position 

trace using sensitivity and calculate the variance of the displacements <z 2>, KB is the Boltzmann 

constant and T is the temperature of the medium. Therefore, the stiffness of the trap is 𝑘 = ��� 𝑣𝑎�(�)⁄       (4) 

2.4.2.2.2 Power spectrum density 

The  thermal  motion  of  the  bead  was  recorded  from  the  QPD  in  volts  and  via  a  Fourier 

transformation converted into a power spectrum (Figure 2.7) and then fitted with a Lorentzian 

using Equation 5. The Brownian motion of the bead is constrained by the optical trap. However, 

at high frequencies (above the corner frequency fc), the power spectral density of the trapped bead 

still represents that of the Brownian motion; at very short time-scales the bead does not feel the 

confinement of the trap. At frequencies below f c, the spectral density is constant with a plateau I0, 
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showing the confinement of the bead by the trap. A resonance peak is not visible in the spectrum 

because of the low Reynolds number of the bead; the trapped bead behaves like an overdamped 

oscillator (Bodensiek et al. 2013). F(I, f, fc) = �0  fc2(f2+fc2)      (5) 

The estimating this corner frequency we can estimate the stiffness of the trap as  𝑘 = 2𝜋𝛽��        (6) 

Where 𝛽  is the hydrodynamic drag coefficient calculated as   𝛽 = 6𝜋𝜂�        (7) 

Where 𝜂 drag coefficient and R is the radius of the bead. The sensitivity is calculated by 𝑠 = √ 𝛽𝜋 2�0fc2�� �        (8) 

The power spectrum density method is fast as compared to the equipartition theorem method, as 

was stated earlier, the power spectrum density (PSD) doesn’t needs prior estimation of the detector 

sensitivity. The method is also useful as a diagnostic tool for the trap stability.  

 

2.4.3 Vertical Indentation Experimental Procedure  

Cell indentation is observed by moving vertically the cell against the trapped bead, as shown in 

Figure  2.7. When  contact  is  made,  the  bead  will try to  resist  cell  advancement,  producing  an 

indentation of the cell. As the stage displacement (SD) is known and bead displacement (BD) can 

be  measured  by  BFP  interferometry  as  previously  shown,  it  is  possible  to  measure  the  bead 

movement into the cells, i.e. the indentation, Id: 

    �𝑑 = 𝑆𝐷 − �𝐷      (9) 

The force, F, exerted by the cell on the bead during indentation is given by the linear relation: 𝑭 = 𝒌 × 𝑩�       (10) 

Figure  2.  6:    Power  spectrum  density 
plot  of  bead’s  thermal  motion  in  the 
trap.  Fit  with  a  Lorentzian  (red  line: 
using Equation 5 for the corner 
frequency fc. 
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where k is the stiffness of the optical trap. This linear relation for the force is valid for a limited 

range of BD (± 1000 nm) (see section 2.4.2.1). 

At the beginning of each single cell experiment, a bead is trapped and a cell is positioned slightly 

below it, preventing cell-bead contact. The Piezo stage (PS) is then vertically displaced with a 

sinusoid signal (amplitude A=1.14 μm, one period T= 5s) as shown in Figure 2.7c, and the vertical 

displacement of the bead in the trap is acquired at a 10 KHz sampling frequency (dark blue curve). 

During the first half of the period, the PS moves away from the bead, therefore the bead oscillates 

freely in the trap. This signal can be used to measure the stiffness of the trap in situ. It also confirm 

that there is no contact between the cell and the bead. As shown in Figure 2.7c, we chop up the 

signal for an interval, A of about 1 s to calculate the stiffness through the equipartition theorem 

with Equation 4 (section 2.4.2.2). In this setup, the trap stiffness can be varied from 5 to 30 pN/μm 

using powers of the trapping laser, at the sample, from 8 to 50 mW. Stronger stiffness can be 

obtained by increasing the power of the laser, but this is limited by the need to avoid damaging the 

cell. It is to be noted, that cell damage is not restricted to the induced death of the cell but also to 

alteration of its properties (e.g. mechanical properties). To exert sufficient care in this regards we 

kept the trap stiffness at a constant value: k = 15 pN/μm (or 0.015 pN/nm), using a power of 24-

26 mW of the trapping laser at the sample. 

2.4.3.1 Contribution from Stoke’s drag force: 

By moving the stage towards the bead, we calculated the contribution of the Stoke’s drag force to 

the total force. Using Stoke’s equation 𝐹𝑠 = 3𝜋𝜂𝑑𝑣       (11) 

Where 𝜂  viscosity of the media, d is is the diameter of the bead and v is the stage speed. The stage 

is moved with a speed of 1µm/sec, and selecting the viscosity of the medium as similar to water 

(0.069 Pa.s) at physiological temperature (37 oC). Inserting these values in Equation 11, we get 

the viscous drag force  𝐹𝑠 = 0.02 pN  

Since the viscous drag force is very low, we can safely neglect this contribution to the optical 

force. 
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Figure 2.8:. 

 

 

2.4.4 Elastic modulus calculation and data analysis 

Data analysis and processing for elastic modulus calculations was performed using MATLAB ® 

(MathWorks®) code. Two schemes were used to calculate the elastic modulus from the 

experimental measured force - indentation curves: fixed indentation range and fixed force range, 

as it is described in the following sections. 

2.4.4.1 Fixed indentation range 

The interaction between the cell and bead is observed for the second half of the sinusoid shown in 

Figure  2.7c.  When  the  cell  comes  into  contact  with  the  bead  and  begins  to  push  it,  bead 

displacement (BD) increases in the same direction as the piezo stage (PS) travel. However, the rate 

of BD rise is smaller than the rate of PS displacement. The difference between the two gives the 

cell indentation, Id. As shown in Figure 2.7c, there are two characteristic regions for cell-bead 

interaction: indentation, when the stage/cell moves toward the bead and retraction, when the cell 

moves back. To measure the elastic modulus, we choose shorter intervals B (indentation) and C 

(retraction),  corresponding  to  the  almost  linear  regions  of  the  stage  movement.  To  avoid 

ambiguities  related  to  the  contact  point,  the  starting  point  of  the  indentation  interval  should 

correspond to a bead displacement BD > 30 nm. The same condition is maintained for the second 

Figure  2.7:  Schematic  of  the  experimental  procedure.  (a)  The  cell  is  positioned  below  the 
trapped bead, (b) the stage is moved up by SD and the cell interacts with the bead displacing it 
by  BD,  while  the  bead  indents  the  cell.  (c)  Stage  and  bead  displacement  due  to  cell-bead 
interaction. Stage displacement following a period of sinusoidal signal (T= 5s) is represented in 
red. Bead displacement sampled at 10 kHz is represented by the blue curve and the corresponding 
smoothed signal (over 500 sampling points) by the green one. Trap stiffness is calculated using 
the signal chopped from interval A, where the bead is freely oscillating in the trap. Indentation, 
B and retraction, C intervals defined in the linear regions of the second half of the sinusoid are 
used to calculate the elastic modulus 
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point of the retraction interval. Stage and bead displacements, indentation, the applied force and 

the selection of the indentation and retraction intervals are illustrated in Figure 2.8a.  

The elastic modulus has been estimated by the use of the Hertz-model (Li et al. 2008). This model 

applies to homogeneous, semi-infinite elastic solid objects, but a living cell is clearly different 

from that type of object, being viscous as well as elastic, and inhomogeneous. In spite of this, the 

Hertz-model has been used to determine cell elasticity in most reported cell mechanics studies 

(Mierke 2014; Guz et al. 2014; Kirmizis and Logothetidis 2010; Laura Andolfi 2014; Li et al. 

2008; Medalsy and Mü̈ller 2013; Nawaz et al. 2012; Dy et al. 2013; Coceano et al. 2016) and 

technical procedures of commercial AFM instruments (JPK; BRUKER). In our experiments, we 

consider the resulting elastic modulus as an apparent elastic modulus, to distinguish it from the 

rigorous  formulation  given  by  the  Hertz-model.  The  apparent  elastic  modulus,  E  is  given  by 

(Nawaz et al. 2012): 𝐸 = [3 (1 − 𝑣2 ) (4⁄ √�𝑑 ∗ � )] ∗ (𝐹/�𝑑)     (12) 

where, R is the bead radius, F the force, Id the indentation and ν is the Poisson ratio. For our 

experiments we choose ν= 0.4 (Nawaz et al. 2012).  

 

Figure  2.  8: (a) Indentation and retraction intervals.  Stage displacement  (red), measured bead 
displacement (blue), the calculated force (green), calculated indentation (black) for the second half 
of the sinusoid, when cell interacts with the bead. Indentation and retraction intervals are selected 
in the linear regions of the sinusoid. (b) Example of Force-Indentation plots taken for indentation 
and retraction intervals to calculate the slope S. 

From the temporal sequences of BD and Id for the indentation and retraction intervals shown in 

Figure  2.8a, and using the  force  Equation  10 we obtain the Force–indentation (F-Id) curves, 

shown in Figure 2.9b. As one can see from this figure, the curves are almost linear, indicating that 
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the behavior of the cell at low indentation forces is elastic. By linearly fitting the Force–indentation 

(F-Id) curve we obtain a linear Force-Indentation (Fl-Idl) curve (Figure 2.7b) of which slope S, is: 

S= d(Fl)/d(Idl). Considering this linear fit, the elastic modulus in Equation 12 can be approximated 

by: 𝐸 = [3 (1 − 𝑣2 ) (4⁄ √�𝑑 ∗ � )] ∗ 𝑆      (13) 

with the indentation Id remaining the only variable. Since the absolute value of the indentation 

depends on a series of experimental variables, such as the contact point, it is difficult to determine 

it properly. To avoid this problem we have adopted a practical criterion, based on the observation 

of the experimental data. From the temporal sequences of the indentation curves (Figure 2.8a) we 

observed an indentation, Id ≥ 200 nm, for all the cells analyzed in our study. The indentation and 

retraction intervals were therefore set to 200 nm. The starting point, t 1, of the indentation interval 

was always chosen to correspond to a bead displacement; BD > 30 nm, which confirms the cell-

bead interaction event, while t2 was chosen such that the interval [t1, t2] remained within the linear 

region of the stage displacement and the indentation amplitude, measured from t1, was higher than 

200 nm. The same criterion was used to  establish the retraction interval. Following the above 

considerations, we calculated the elastic modulus considering the same indentation value, Id = 200 

nm, for all the cells in our study. Introducing this value and the radius of the bead (R= 1.5 μm) in 

Equation 13 we obtain a simple equation to calculate the apparent elastic modulus: 𝐸 = 1150 ∗ 𝑆         (14) 

where S is the slope of the linear force-indentation curve and the elastic modulus, E is expressed 

in Pa. 

 

2.4.4.2 Fixed force range  

The previous mechanism of elastic modulus calculations impose some boundary conditions on 

indentation by fixing indentation depth of 200 nm in order to get a slope of (F/Id) and linearize 

Equation 14. The procedure is technically correct but later we adopted a more appropriate one, 

which is  generally used in  AFM. : We fixed the  force range by selecting a region defined by 

0.15Fmax to 0.75Fmax in the force-indentation curve. Rearranging Equation 13 we obtain 

 𝐹 = [ 4 √�𝑑3 ∗ � (⁄ 3 (1 − 𝑣2 ) )] ∗ 𝐸    (15) 
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where E is to be determined using the F(Id) curve. Since the equation above is not linear, we 
proceed with linearization in terms of Id:  𝐹23 = 𝐸 23 ∗  𝐶 ∗  �𝑑        (16) 

where C is a constant including all the other constants in formula (15). Fitting linearly the F2/3(Id) 
curve above, one can easily determine the value of the elastic modulus E. 

From  the  bead  displacement  time  series  plot  (Figure  2.9a),  we  select  point  a  as  a  start  of 

indentation till the highest point b on the curve, similarly the retraction region is from point b to 

c. The selection of points a and c are arbitrary but could be consider when the bead displacement 

curve takes-off or land on the base line. The force-indentation curve (Figure 2.9b) defines a range 

of forces going from the 0.15F max to 0.75F max, to eliminate the effect of force saturation. This 

prevents the need to define the point of contact during cell-bead interaction and excludes the last 

part of the stage movement. The procedure is similar to that used for data processing in AFM 

experiments. If the automatically generated force range do not represent a linear range, a manual 

selection of force range is also possible. To calculate the elastic modulus we plot the linearized 

force – indentation values followed from Equation 16.  
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Figure 2.9: (a) Stage and bead displacement plot. The indentation range is from a to b, while the 
retraction region is b to c. (b) by selecting the maximum force on the force-indentation plot, a 
force region is automatically selected having range from 0.15Fmax to 0.75Fmax. (c) Linearized force 
(F2/3)-indentation (Id) curve plotted for Equation 16. (Indentation: black, retraction: red). 

2.4.5 Total Force vs Axial Force  

Our setup is capable to monitor the 3D movement of the bead (Figure 2.10) using QPD and hence 

the  force  components  leading  to  calculate  the  total  applied  force  on  the  cell.  In  most  of  the 

biophysical indentations experiments lateral components of the total force are generally ignored, 

and only vertical component is taken in to account. We used linearized Hertz model to calculate 

and compare the vertical and total indentations resulting from vertical and total forces, 

respectively.  By  tracking  of  the  bead  in  the  trap,  we  determine  the  trap  stiffness,  k,  with  its 

components k = (k x, ky, kz) (Neuman and Block 2004). Since the bead in the trap behaves as in a 

harmonic  potential  well,  the  force  F=(Fx,  Fy,  Fz)  exerted  on  the  bead  is  proportional  to  its 

displacement BD= (BDx, BDy, BDz): 𝐹� =   𝑘� �𝐷� ; 𝐹� =   𝑘� �𝐷� ; 𝐹� =   𝑘� �𝐷�     (17)   
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We selected two breast cancer cell lines i.e. HBL-100 (transformed) and MDA-MB-231 

(metastatic)  and  monitored  the  3D  tracking  of  the  cell-bead  interaction.  We  calculated  and 

compared  the  elastic  moduli  resulting  from  the  total  and  vertical  forces,  showing  that  the 

differences are important and the total force should be considered. 

 

Figure  2.10:  Displacement  of  the  stage  (cell)  and  of  the  microbead  in  the  trap  during  the 
experiment. The sinusoidal movement of the stage make the microbead displacements: in x, y and 
z. The displacement of the bead in z begins to be significant and it is accompanied by smaller 
lateral displacements in x and y. 

The trapped bead is positioned at a small distance above the cell (left image: Figure 2.11). The 

stage (and hence the cell) is moved vertically to intercept the bead (right image: Figure 2.11). The 

force exerted by the bead on the cell produces the cell indentation. This force is determined from 

the displacement of the bead (down image: Figure 2.11). If the bead displacement is vertical, the 

force  has  only  one  component,  Fz (upper  image:  Figure  2.11)  and  the  indentation,  Idz  is  only 

vertical.  However  due  to  the  bead-cell  interaction,  the  bead  is  displaced  also  laterally,  which 

corresponds to lateral force components and hence the direction of the total force, F and of the 

indentation, Id are deviated from the vertical direction. 

Following the same mechanism of cell indentation as discussed in section 2.4.1, we calculated the 

total force, F and its vertical component, F z during the cell-bead interaction from the BD data, 

using Equation 17. As clear from Figure 2.11, due to the presence of lateral forces Fx and Fy, the 

total force F is different from the vertical component Fz.  

We selected here, a model where the force has three components, but the situation may vary and 

the  components  and  the  angles  may  changes  during  experiments.  Using  the  Equation  17  we 

calculated  the  force  components,  the  total  force  and  its  orientation.  The  force  amplitude  and 
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orientation are represented in Figure 2.12 (a-b). All the force components increase during the 

indentation and decrease during the retraction phase due to the cell-bead interaction. The total 

force F () is however larger than the vertical force F z (), due to the lateral components F x (x) 

and Fy (+). The orientation of the total force is not vertical and changes considerably, as indicated 

by the excursion of α and β (Figure 2.12b).  The amplitude and direction fluctuations of the force 

indicate that the total force is a more adequate parameter than the vertical component only. 

We  considered  both  the  indentation  and  the  retraction  interactions  between  the  cell  and  bead 

interaction (see Figure 2.12a) and calculated the indentation elastic moduli E i, Ei
z and retraction 

moduli  Er,  Er
z  correspondingly  from  linearized  force  indentation  curve  (Figure  2.12c).  We 

measured and compared the elastic moduli of 10 cells from MDA-MB 231 cell line and of 10 cells 

from HBL-100 cell line. The cells from each type of cell line were selected from two different 

cultures prepared in different days.  

 

Figure 2.11: Experimental approach for calculating the force components (F x, Fy, Fz) of the total 
force F during vertical indentation by optical tweezers. The vertical force is a component of the 
total force F. 
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As expected, the elastic moduli corresponding to the total force are bigger than those 

corresponding  to  the  vertical  force  only,  for  both  types  of  cells  and  for  both  indentation  and 

retraction. The maximum difference between the mean value of the elastic modulus corresponding 

for total force and the elastic modulus corresponding to the vertical force is observed for HBL-100 

cells. One can note from the standard deviation , the values are quite dispersed. This is typical for 

local measurements on live cells due to the variability of the cells: each cell is different from the 

other cells. Therefore, a larger number of cells should be considered when the investigation will 

be performed to provide relevant statistical analysis for cancer cell mechanics. Nevertheless, the 

values from Figure 2.13 already indicate that HBL-100 cells are stiffer than MDA-MB-231 cells. 

This confirms the results of other studies reported in the literature (Wirtz et al. 2011), which show 

that basal aggressive cancer cells are softer than the non-neoplastic cells. 

Figure 2.13 summarizes the results (mean-values). For HBL-100 cell line, the elastic modulus is 

higher for indentation than retraction by 17% when calculated from the total force. However no 

significant difference is observed for the axial force. For indentation, HBL-100 cells appear to be 

stiffer by 22% when the total force is considered than considering only the axial force component. 

For retraction the difference is smaller (7.8%). In case of MDA-MB-231 cells, the indentation and 

retraction  values  for  elastic  modulus  for  both  total  force  and  axial  force  are  almost  the  same, 

indicating a clear elastic regime. Nevertheless for indentation, the elastic modulus calculated with 

the total force is 19 % higher than that obtained from the axial force. Similarly, the value is about 

16% higher for the total force than the axial force during retraction.  

The  elastic modulus  calculated  for  HBL-100  cells  is  larger  than  MDA-MB  231  cells  for  both 

indentation and retraction when estimated for total force and axial force. These measurements 

confirm that the metastatic MDA-MB-231 cells are softer as compared to HBL-100 cells. On the 

other hand, both cell types appear to be stiffer when probed with total force. This gives evidence 

of the contributions of lateral forces in cell bead interaction. These results suggest that considering 

the lateral forces provides a more accurate measurement of the effective elastic modulus, allowing 

a better analysis of the cell mechanics. All our measurements have been performed on the top of 

the cell, in a region above the nucleus. In a recently published paper (Coceano et al. 2016), using 

also AFM measurements at different positions of the cell, we have indicated this region as the most 

reliable to make a comparison between different cell lines in terms of cell elasticity. However, we 

expect that the differences between the cell elasticity results obtained when the total forces are 
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considered instead of the vertical forces, be considerably bigger in the transition regions between 

the nucleus and the leading edge. These aspects will be studied in detail in the next future by our 

group. 

 

 

Figure 2.12: Force excursion vs time during the vertical indentation. (a) Total force F and force 
components: Fx, Fy and F z; (b) The orientation of the total force F: angle α and angle β (angles 
defined in Figure 4). (c) Force-indentation curve for total force F, and the vertical force F z. The 
dashed lines define the force range where the fit is applied. 

 

 

Figure 2.13: Elastic modulus values calculated for HBL-100 and MDA-MB-231 cells during (a) 
Indentation and (b) Retraction, using total force (F) and vertical force (Fz). (t-test: *** p < 0.001) 
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In summary, the elastic modulus found from total force are larger than its vertical component, 

suggesting that for more rigorous analysis, the total force should  be considered rather than only 

the vertical force (Yousafzai et al. 2016). 
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Chapter 3  

Results and Discussion 
 

The elastic modulus values for the three cell lines, calculated using OT vertical indentation and 

hertz model, discussed in detail in the previous chapter, are summarized here.  

This chapter is divided into three main sections. First, we presented the elastic modulus values for 

the  three  breast  cell  lines  to  differentiate  them  on  the  basis  of  their  mechanical  properties. 

Furthermore,  the  mechanical  variation  in  different  cellular  subregions  is  presented  in  order  to 

establish a consensus for cellular mechanical measurements. We also compared our results with 

AFM results to distinguish and map the cells on the basis of elasticity.  Second, we summarize the 

results  for  mechanical  properties  measured  on  different  complaint  substrates  like  PDMS  and 

collagen. Substrate stiffness has profound effect on the cell elasticity and morphology.  Third, we 

relate alterations in cellular mechanical properties due to the cell-cell contacts. Neighboring cells 

change cell mechanical properties, making them stiffer or complaint depending of the nature and 

level of cell aggressiveness. 

 ELASTICITY OF CANCER CELLS AND ITS VARIATION IN CELLULAR 
REGIONS  

Cancer is a multifactorial disease and there is a general consensus in identifying the hallmarks that 

better describe the onset and progression of the disease (Hanahan and Weinberg 2011). However, 

recently,  attention  has  been  focused  on  extra  factors  that  characterize  cancer:  the  mechanical 

changes that the tumor cells acquire and induce in the surrounding microenvironment  (Mierke 

2014; Hoffman and Crocker 2009; Plodinec et al. 2012). While this aspect is especially evident at 

the tissue invasion and metastasis stage, the overall change in the mechanical properties of a tissue 

starts much earlier, involving several physiological processes that, by altering the membrane and 

cytoskeleton structure, convert a malignant cell into a metastatic one (Plodinec et al. 2012; Costa 

2004). It is known that cancer cells are softer and hence more deformable than non-tumour cells 

(Sugawara et al. 2008; Guck et al. 2005; Rother et al. 2014) and this eventually leads to their 

increased  ability  to  infiltrate  the  tissues,  spread  from  the  primary  tumour  site  and  establish 
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secondary sites (Suresh 2007; Lekka et al. 2012). Metastasis is the most common cause of death 

in breast cancer patients. In females, breast cancer is the most frequent tumour (Jemal et al. 2011; 

Bacac and Stamenkovic 2008). Therefore a thorough characterization of the mechanical properties 

of breast cancer cells would be beneficial in the understanding of the underlying molecular events 

that lead to metastasis (Geiger and Peeper 2009; Cross et al. 2007) and could provide potential 

label-free markers based on mechanical measurements rather than molecular diagnostics (Cross et 

al. 2008).  

3.1.1 Response of a cell to applied force 

In general, cell’s response to the applied force can be divided into two parts: a mechanical response 

(Janmey and Weitz 2004; Bausch and Kroy 2006; Gardel et al. 2006), consisting simply of the 

deformation of the cell’s load-bearing structures, and then the biochemical signaling response, 

which potentially leads to force-induced phenotypic changes (Orr et al. 2006; Chien 2007; Wang 

et  al.  1993).  To  understand  the  latter  (biochemical  response)  one  should  have  a  complete 

knowledge of the mechanical response.  

Here  our  focus  is  on  the  study  of  cell  mechanical  properties  in  different  microenvironmental 

conditions. 

Cells  have  complex  microstructure  and  display  viscoelastic  behavior,  having  both  elastic  and 

viscous behavior (Nawaz et al. 2012). This behavior is ultimately due to the complicated, time-

dependent response of interior architectural cytoskeletal components of the cells. 

To understand how the cells respond to OT axial forces < 10 pN and loading rate of about 5 pN/s, 

we studied HBL-100 cells (n=26) on glass substrate. The bar plot in Figure 3.1 suggests that the 

elastic modulus values for the indentation and retraction curves are almost identical (calculated 

from  Figure  3.2a),  indicating  that  the  cell  response  to  lower  forces  is  almost  entirely  elastic 

(Coceano et al. 2016; Yousafzai et al. 2016).  

In comparison, when HBL-100 cells were studied using AFM with force range of (1–2 nN) and 

indentation frequency of (0.25–0.5 kHz), there was a clear difference between the indentation and 

retraction curves as shown is in Figure 3.2b. This difference is an indicator of dissipation due to 

viscoelastic behavior of the cell at forces and loading rates specific to AFM (Coceano et al. 2016). 

For  dissipative  medium  the  retraction  curve  doesn’t  follow  the  same  path  of  the  indentation, 
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indicating that the cell respond to the indentation with a viscous component (Coceano et al. 2016) 

at high loading regime. 

  

 

Figure 3. 2: Force-indentation curves on an HBL-100 cell using OTM (a) and AFM (b). The plots 
show the indentation (black), retraction (red) experimental traces and the fitted curves (green) used 
to calculate the elastic modulus. A Sneddon fit was used for AFM indentation (a) and a Hertz fit 
for OT (b). The fit is applied in a range of forces within min and max force boundaries. For OT 
the  indentation and retraction curves are almost  the  same, indicating no loss of energy during 
indentation and retraction process, indicating an elastic behavior of the cell for low loading rates. 

 
The  viscous  contribution  could  be  explained  by  looking  into  the  three  components  of  the 

cytoskeleton (actin, microtubules, and intermediate filaments). These components have multiple 

interconnections and have a degree of spatial segregation. Normally, edges of cells are enriched in 

actin  and  comprises  the  cell  cortex,  whereas  the  microtubules  and  intermediate  filaments  are 

predominantly located in the middle of the cell, with the nucleus and an extensive network of lipid 

membranes comprising the endoplasmic reticulum and Golgi apparatus (Hoffman and Crocker 

2009; Bao and Suresh 2003). In general , actin and intermediate filaments support the tensional 

forces (Wang et al. 2002) (Wang and Stamenović 2000), whereas compressive forces are supported 

by the microtubules and adhesions. 

Figure  3.1:  Mean  elastic  modulus  values  for 
HBL-100 cells for both indentation and 
retraction  measured  with  OT.  The  two  values 
lacks statistically significance, indicating elastic 
response of a cell to applied force. (N=26) 
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3.1.2 Elasticity and comparison of the three cell lines  

To perform comparative studies on the basis of elasticity for the three cell line, we analyzed cells 

from different Petri dishes (about 6-10) and from different cell cultures, to have more 

representative information about the entire population. To have a better statistical population, more 

than 25 cells were selected for each cell line. The Elastic modulus values measured at the nuclear 

region in isolated condition are summarized in Table 3.1 and Figure 3.3.  

The results clearly show that the basal epithelial  breast cancer  cell line MDA-MB-231 has  an 

elastic modulus lower than both luminal epithelial breast cancer cell line MCF-7 and the normal 

myoepithelial cell line HBl-100 cells, both for indentation and for retraction. The errors represent 

the standard deviations. 

Table 3.1: Analysis of the Elastic modulus measured during indentation and retraction on the three 
different cell lines using OT. The table reports the values of the elastic modulus calculated as 
explained in the text and the number of independent measurements (n) from which the average 
value and the standard deviation (SD) were obtained.    

 

We compared the Elastic modulus values of the three cell lines obtained from OT with AFM results 

(Figure 3.4). Although the mean values of the elastic modulus measured by OT are always much 

lower than the ones obtained by AFM indentation, the cell lines comparison showed the same 

important result: the basal breast cancer cells, MDA-MB-231 has a significantly lower Elastic 

modulus than HBL-100 and MCF-7, regardless of the technique and loading rate applied for the 

measurement. The differences between the cell lines were calculated using the two tailed Mann–

Whitney test. 

 

 HBL-100 
(n= 32) 

MCF-7 
(n= 30) 

MDA-MB-231 
(n= 25) 

Elastic Modulus (Pa) ± 
SD 

Indentation 25.9 ±10.6 31.6 ± 15.8 12.6 ± 7.9 

Retraction  23.4 ± 13.8 31.2 ± 19.3 12.6 ± 9.1 
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Figure 3.3:  Box plot representation of the elastic modulus values for the three cell lines for (a) 
Indentation (b) Retraction. The Elastic modulus of MDA-MB-231 is significantly lower than the 
other two cell lines, the difference between HBL-100 and MCF-7 is not significant (*P: <0.05). 
 

 

 
 

3.1.3 Cell regional variation in elasticity  

Mechanical phenotyping of breast cancer cells using AFM and OT have shown that metastatic 

cells  are  softer  as  compared  to  the  normal  breast  cells  (Lee  et  al.  2012;  Coceano  et  al.  2016) 

(Tavano et al. 2011). This comparison demands a robust strategy for comparative mechanical study 

of different types of cells. There are some studies (Guck et al. 2005; Guilak et al. 2000; Coceano 

et al. 2016) which show that the cell mechanical properties are in-homogenously distributed, with 

a nuclear region as the stiffer part. These observations indicate that for cell indentation experiments 

there should be a consensus among the regions of measurements on cells.  Therefore to verify 

whether the elasticity is homogenously distributed across the cells when studied with OT and to 

 Figure 3.4:  Bar  plot  representation  Elastic 
modulus values for the three cell lines 
calculated with AFM. MDA-MB-231 has 
significantly lower (*P: <0.05) values than 
HBL-100 and MCF-7.   
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identify the most reliable measurement regions of the cells, we indented cells at three cellular 

locations: at the center above the nucleus (L1), out of cell nucleus (L2) and near the leading edge 

(L3), as shown in Figure 3.5. Each location was indented at least 2 times and the results were 

averaged for each location. 

 

Biophysical approaches like AFM, optical stretching and micropipette aspiration which have been 

used to study viscoelastic properties of cellular sub regions  (Lee et al. 2012; Guck et al. 2005; 

Guilak et al. 2000; Guo et al. 2014; Coceano et al. 2016). We used OT for the first time to study 

cell stiffness at three different cell locations. The results (Figure 3.6, Table 3.2) show a descending 

trend in elastic modulus from nuclear region towards the leading edge. All three cell lines exhibit 

higher stiffness at the center (L1) than the intermediate position (L2) yet having higher value than 

position L3 near the leading edge. The values at the three locations are statistically reliable and are 

in agreement with studies carried out by other groups using different biophysical methods (Guo et 

al. 2014; Guck et al. 2005; Guilak et al. 2000; Coceano et al. 2016). 

Stiffness values for single cells indented at the center (L1) show that the most aggressive cells 

(MDA-MB-231) are softer as compared to HBL-100 and MCF-7. These values agree with the fact 

that  metastatic  cells  are  softer  as  compared  to  its  non-invasive  counter  parts  (Suresh  2007; 

Hoffman and Crocker 2009; Lee et al. 2012; Kristal-Muscal et al. 2013; Guo et al. 2014). The 

HBL-100 and MCF-7 cells are 2 fold stiffer than MDA-MB-231 in the nuclear region (L1) and 

can be used to differentiate cells on the basis of their aggressiveness level.  

When  comparing  sub-regions,  for  HBL-100,  stiffness  at  nuclear  region  is  25%  higher  than 

cytoplasm and 47% higher than the leading edge. MCF-7 stiffness decreases as 46% and 59% 

whereas for MDA-MB-231 it diminishes by 16% and 47% respectively for cytoplasm and leading 

edge. All the three cell lines have significantly different stiffness at the nuclear region and the 

leading  edge,  showing  a  larger  contribution  of  the  nucleus  towards  mechanical  architecture  

(Guilak et al. 2000).  Figured 3.6 shows that HBL-100 and MCF-7 has the same elastic modulus 

at  the  leading  edge  as  MDA-MB-231  at  the  center.  Therefore,  from  these  observation  we  can 

Figure  3.5:  DIC  image  of  a  MDA-MB-231 
cell and the indentation locations: L1 - above 
nucleus, L2 - intermediate position 
(cytoplasm)  and  L3  -  near  the  leading  edge. 
Scale bar 10 µm. 
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conclude that for cells, to be mechanically characterized and differentiated, nuclear region is the 

most adequate for measurements. If the regional differences were disregarded then observations 

might be erroneous.  

Table 3.2: Elastic modulus measurements (± standard error of the mean) for all three cell lines 
measured in isolated condition in three different cellular sub-regions. (L1, L2 and L3). 

 Cell stiffness at cellular sub-regions in isolated condition 
 HBL-100 MCF-7 MDA-MB-231 
 E (Pa) ±SD n E (Pa) ±SD n E (Pa) ±SD n 

L1 36 ± 11  
10 
 

39 ± 8  
10 
 

19 ± 9  
14 
 

L2 27 ± 10 21 ± 10 16 ± 8 
L3 19 ± 8 16 ± 6 10 ± 4 

 

 

Figure 3.6: Elastic moduli for the analyzed cell lines indented at three cellular locations. All the 
three cell lines have descending character for stiffness, higher at the center and decreasing towards 
the leading edge. (t-test:*p < 0.05, **p < 0.01, ***p < 0.001). 

 

 

When the same cell lines were mapped with AFM, the same elasticity trend was observed as shown 

in Figure 3.7. By comparing the two data sets it is clear that even a low loading rate has the 

outcome for elasticity and can be used as complimentary technique to AFM. 
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Figure 3.7: Elastic modulus values measure with AFM. The elasticity decreases with the distance 
from the nucleus. N: nuclear area, I: intermediate, and LE: leading edge. 

 

3.1.4 Conclusion 

Here we applied OT vertical indentation technique to distinguish breast cell lines on the basis of 

their elasticity which serve as an indicator of cell aggressions. As a first observation, we found that 

cells response is elastic for low loading rates and low forces. For comparative observations, we 

found  that  metastatic  cells  (MDA-MB-231)  are  softer  as  compared  to  HBL-100  and  MCF-7. 

Further, we realized that cell’s response is different at different cellular regions and this might 

nullify  our  claim.  Therefore  to  have  a  consensus  for  mechanical  characterization  of  cells,  we 

studied  regional  mechanical  variation  in  cells  and  show  that  all  the  three  cell  lines  exhibit 

descending trend in elasticity from center towards the leading edge. The results show that nuclear 

region is the stiffer part and can be used for mechanical characterization of cells.  We compared 

our results with AFM measurements (with high loading rates) and found an agreement in results. 

OT rules out the contributions of viscous forces typical of AFM and measure the elastic behavior 

of the cells. Also, the regional mechanical variations were found to be the same as AFM. Our 

results show that measurements region on the cell influences results: stiffness decreases from the 

center towards the periphery (leading edge). 
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 EFFECT OF SUBSTRATE STIFFNESS ON CELL ELASTICITY 

In  vivo,  epithelial  breast  cells  are  mechanically anchored  on  extra-cellular  matrix  (ECM),  like 

collagen, fibronectin etc, and they are constantly in mechanical force balance (DuFort et al. 2011; 

Kumar et al. 2006; Wang et al. 2001; Ingber 2003; Hu et al. 2004). When an imbalance occurs 

(mechanical and biological) these cells becomes cancerous, their mechanical anchorage properties 

changes and they become motile and metastasize (Kobayashi and Sokabe 2010). These metastic 

cells  have  much  different  mechanical  properties  from  the  normal  cell  (Suresh  2007).  The 

mechanism how these cells actually migrate out of primary tumors and invade into neighboring 

tissue (how they intravasate and extravasate) is still elusive (Bacac and Stamenkovic 2008). These 

cells are generally not viable when suspended in a fluid and are therefore said to be anchorage 

dependent.  Normally,  in  lab  based  experiments,  they  are  studied  on  Glass  substrates  having 

stiffness in range of GPa. However, cells feels the stiffness of the underlying substrates and change 

their stiffness accordingly (Solon et al. 2007) (Engler et al. 2006).  Therefore, different attempts 

have been made change the stiffness of the underlying substrate and mimic the same stiff as that 

of tissues and ECM (Khademhosseini 2008; Pelham and Wang 1997).  

Here  in  this Section we  modified  the  glass coverslips with polydimethylsiloxane (PDMS) and 

collagen and studied the elastic properties of these cells. The elastic properties of cell on these 

substrates are indicator of cell’s aggressiveness.  

3.2.1 Polydimethylsiloxane (PDMS) as soft substrate 

To investigate whether cell elasticity is affected by the stiffness of the substrate to which they 

adhere,  we  studied  cell’s  elastic  modulus  on  polydimethylsiloxane  (PDMS).  PDMS  has  been 

extensively used as a material to study cell behavior because of its biocompatibility and the tunable 

mechanical properties that cover a wide range of biological tissue stiffnesses (Yim et al. 2005; 

Murrell  et  al.  2011;  Trappmann  et  al.  2012).  We  prepared  three  PDMS  substrates  with  bulk 

stiffnesses of 173 kPa, 88 kPa an 17 kPa by varying the base:crosslinker ratio as 15:1, 35:1and 

50:1 respectively (Chen et al. 2013). The height of the PDMS film was maintained at 40-50 µm 

such that the cells don’t feel the glass rigidity (Figure 3.8). 
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Twenty cells from each substrate were analyzed from different sets of cultures. Measurements 

were performed for all cells in their central region, above the nucleus. Results are summarized in 

Table 3.3.  From the bar plot (Figure 3.9), it is evident that the elasticity of HBL-100 and MCF-

7 cells decreases with the softness of the substrates, while MDA-MB-231 shows an increase in 

stiffness. Figure 3.10 shows the bright field images of the morphologies of the three cell lines on 

glass  and  PDMS  substrates.  All  the  three  cell  lines  show  viability  and  biocompatibility  with 

PDMS. 

HBL-100 on a glass substrate spreads more as compared to PDMS where it adopts a compact 

morphology. HBL-100 cells are softer on PDMS where they adopt a compact morphology.  HBL-

100 shows a decreasing trend in elasticity with the decrease of substrate stiffness. 

MCF-7 cells also show a decrease in elasticity with softness of the substrate. The morphology of 

the cells show a compact structure. There is no statistical difference in elasticity between glass and 

PDMS for 173 kPa and 88 kPa, which indicates that for this stiffness range MCF-7 does not feel 

the underlying substrate stiffness. There might be two possibilities, since the structure is compact 

on PDMS but the spread area is the same as on glass which give the same elasticity. Secondly, 

there may be some critical value of stiffness for MCF-7 cells to respond to the substrate stiffness. 

Contrary to HBL-100 and MCF-7, MDA-MB-231shows polarization on soft substrates (Figure 

3.9f). As MDA-MB-231 cells are metastatic and motile, their response is different to compliant 

substrates. MDA-MB-231 shows increase is stiffness with the softness of the substrate as show in 

Figure 3.10. The elasticity plot of MDA-MB-231 indicates that there is an increase in stiffness for 

glass to 173kpa, and then a decrease towards 17kPa. We have no clear idea but there might be 

Figure 3.8: Glass coverslips are coated 
with PDMS to get complaint substrates. 
The ration of polymer to crosslinker was 
used as 15:1, 35:1and 50:1 to get 
stiffness of 173 kPa, 88 kPa and 17 kPa 
respectively. The height of the film was 
40  µm  -  50  µm  to  avoid  glass  rigidity 
effects on cells. 
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some critical threshold stiffness of PDMS to which MDA-MB-231 cells are sensitive and can be 

identified if the stiffness range is analyzed with small steps. 

  
 
Table 3.3: Elastic modulus measurements (± standard error of the mean) for all three cell lines 
measured in isolated condition on three types of PDMS substrates. (15:1, 35:1, 50:1). 

 HBL-100 MCF-7 MDA-MB-231 
Type of Substrate E (Pa) ±SD n E (Pa) ±SD n E (Pa) ±SD n 

Bare Glass (70 GPa) 36.7 ± 12 

20 

31.3 ±7 

20 

18 ±8 

20 
PDMS 15:1 (173 kPa) 32.7 ± 18.3 30 ± 8 34.8 ± 17 
PDMS 35:1 (88 kPa) 27.2 ± 9 38 ± 8 33 ± 6 

PDMS 50:1 (17 kPa) 25.6 ±11.5 25 ± 12 22 ±14 

 

(173kPA,  88kP,  17  kPa).  HBL-100  and  MCF-7  shown  a  descending  trend in  elasticity  with  a 
decreasing PDMs stiffness. While MDA-MB-231 has increased stiffness. (T-test:*p < 0.05, ***p 
< 0.001). 
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Figure 3.11: Comparative representation of elastic modulus values for the three cell lines plated 
on glass and three different PDMS substrates (173kPA, 88kP, 17kPa). 

 

Figure 3.11 indicates that on glass substrate we can clearly distinguish MDA-MB-231 from other 

cell lines by stiffness, while on PDMS we cannot because the stiffness values are comparable for 

Figure 3.10:  Bright field images show 
morphology  of  HBL-100  cells  on  glass 
(a) and PDMS (b); MCF-7 on glass (c) 
and  PDMS  (d);  and  MDA-MB-231on 
glass (e) and PDMS (f) substrates. HBL-
100 and MCF-7 show compact structures 
on  PDMS  while  MDA-MB-231  shows 
polarization at two ends. (Scale bar 
10µm) 
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all the cell lines, without a significant difference between them. However, the increase of stiffness 

for MDA-MB-231 for softer substrate can be used together with the measurements performed on 

bare glass to confirm cell elasticity as a marker to differentiate and characterize metastatic cells. 

3.2.1.1 Discussion 

Mechanical interaction of cell with soft gel for the determination of metastatic potential (MP) of 

cancer cells and to identify and predict the metastatic target-site in the body is one of the emerging 

tools  in  cancer  research.  Cells  constantly  interact  mechanically  with  their  underlying  matrix 

(substrate) through integrin based focal adhesions (Schoen et al. 2013; Mierke 2014). Mechanical 

properties of matrix are crucial, as they may have a role in cancer initiation, promotion or they 

may cause the cancer to revert back (Bissell and Hines 2011; Ingber 2008). Some studies show 

that by tailoring the matrix stiffness, cancer cell fate may change to normal ones (Bissell and Hines 

2011; Ingber 2008). Evidence indicates that in cancer microenvironment, ECM becomes stiffer as 

compared to its normal state, but cells behave softer (Katira et al. 2013)  and exhibits increased 

acto-myosin cortex contractility (Kristal-Muscal et al. 2013). Kristal et al show that that invasive, 

metastatic  cells  apply  normal  forces  and  indent  the  impenetrable,  soft  gels  utilizing  their 

cytoskeleton, and also apply strong lateral (traction) forces. In contrast, benign cells that remain 

rounded on the gel, do not indent, and apply small normal and traction forces (Kristal-Muscal et 

al.  2013).  Here,  our  results  shows  that  HBL-100  and  MCF-7  cells  are  getting  softer  with  the 

softness of the substrate, while the metastatic cells, MDA-MB-231, exhibit an increase in elasticity 

with the decrease in substrate stiffness. This increase in stiffness may be attributed to increase in 

acto-myosin  activity  during  cell  motility  and  force  generation.  However,  not  only  substrate 

stiffness plays decisive role for controlling cell adhesion and hence cell stiffness but also a specific 

mechanical anchorage of adhesion molecules like collagen, fibronectin (Trappmann et al. 2012) . 

Our results show that even without anchorage molecules the cell lines adhere to PDMS substrates 

and  adapt  their  morphology  closely  related  to  their  physical  state  i.e.  either  tumorigenic  or 

metastatic.  

3.2.2 Collagen as soft substrate  

Collagen, a major constituent of the extra cellular matrix (ECM) in vivo, has been used as a soft 

substrate for cells to study substrate influence on the mechanical behavior of cells in vitro (Yang 

and Nandi 1983; Plant et al. 2009; Holle et al. 2015). We used type I collagen, normally found in 
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bones, tendon and skin.  The superiority of the collagen substrate, whether used as surface or as 

matrix culture, over plastic and glass may lies in its ability to allow cells to produce a basement 

membrane (Yang et al. 1981) 

We used HBL-100 cell line cultured on two different substrates: bare glass coverslip and collagen 

coated coverslip. Bare glass represents the stiffer substrate, while collagen-coated glass represents 

the less stiff substrate (Wen and Janmey 2013; Khademhosseini 2008). Twenty-six cells from each 

substrate were analyzed from different sets of cultures. Measurements were performed for all cells 

in their central region, above the nucleus. Results are summarized in Table 3.4. HBL-100 cells 

cultured on glass have an elastic modulus higher than the one of the cells grown on collagen-I 

coated substrate, both for indentation and for retraction. For the glass (stiffer) substrate, the elastic 

modulus measured during indentation was 27% higher than that obtained for the more compliant 

collagen substrate. For retraction, the difference between glass and collagen-coated substrates was 

even larger, notably 43 %. For both substrates, the elastic modulus measured for indentation was 

smaller  than  the  one  measured  for  retraction  (by  11.5  %  for  glass  substrates  and  31.6  %  for 

collagen-coated substrates). 

Our results show that cell elasticity correlates with the substrate stiffness; HBL-100 cell elasticity 

increases when cells are cultured on stiffer substrate. 

 

Table 3.4: Elastic modulus values for indentation and retraction of HBL-100 cells cultured on bare 
and collagen-coated glass substrate. The table reports the values of the elastic modulus calculated 
as explained in the text and the number of independent measurements (n) from which the means 
and the standard deviation (SD) were obtained. 

 

 Bare Glass Collagen-coated Glass n 

Elastic Modulus (Pa) ± 
SD 

Indentation 26 ± 9 19 ± 7 26 

Retraction 23 ± 10 13 ± 7 26 
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Figure 3.12: Mean values of elastic modulus for (a) indentation and (b) retraction.(Nb, Nc = 26; 
p < 0.01 (t-test)). 

 
 

Box plot representation  of the elastic modulus values  tells more about the  data  distribution  as 

shown in Figure 3.13. Notice that while the 50 % clusters (2 nd+3rd quartiles) are quite similar in 

dimension for all cases, the elastic modulus data for bare substrates have more spread than those 

for collagen coated substrates. A t-test has been applied to show the data sets are significantly 

different (p< 0.01). 

 
Figure  3.13:  Box  plot  representation  of  the  distribution  of  elastic  modulus  values  for  (a) 
indentation and (b) retraction. (Nb, Nc =26; p<0.01(t-test)) 
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3.2.3 Discussion  

The cell’s morphology on glass and collagen coated substrates showed that cells cultured on glass 

spread more than those cultured on collagen (see Figure 3.14). These morphological changes can 

be linked with the organization of cell cytoskeleton, showing that cells respond to extra-cellular 

environmental changes. Cytoskeleton re-arrangement is also accompanied by variations of cell 

spreading  and  motility.  For  instance,  cells  on  compliant  substrates  exhibit  reduced  spreading, 

greater  migration  rates,  and  elevated  lamellipodial  activity  compared  with  cells  on  more  rigid 

substrates (Pelham and Wang 1997). Increased motility and lamellipodial activity on compliant 

substrates is associated with more dynamic focal adhesions, whereas cells on rigid substrates had 

more regularly shaped, stable adhesions (Fischer et al. 2012; Khademhosseini 2008; Engler et al. 

2004).  

coated and (b) bare substrate. 
  

3.2.4 Conclusion 

We studied the effect of substrate stiffness on the elastic behavior of three breast cell lines, HBL-

100, MCF-7 and MDA-MB-231. Cells were cultured on PDMS coated glass having stiffnesses as 

173kPa, 88kPa and 17kPa. Our results show that cell senses the underlying substrate stiffness and 

modify its elasticity accordingly. It is shown that HBL-100 and MCF-7 gets softer on complaint 

substrates while MDA-MB-231 exhibits increase in elasticity. The morphology of these cells on 

PDMS  substrates  shows  that  HBL-100  and  MCF-7  adopt  a  compact  structure  on  soft  PDMS 

substrate while MDA-MB-231 shows polarization and greater lamellopodia activity (about 70 % 

of  the  MDA-MB-231cells  shows  polarization).  The  correlations  of  morphology  and  elasticity 
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values are directly connected with a cells aggressiveness. Metastatic cells, MDA-MB-231, are 

stiffer on soft substrate because they have the ability to apply forces on the compliant substrate 

and apply greater traction forces, which in term increase the cytoskeleton stiffness. While, HBL-

100 and MCF-7 cells are passive and adapts to the compliance of the substrate. When HBL-100 

cells were plated on collagen coated substrate, they showed decrease in elasticity and adopted a 

compact morphology. Our result demonstrate that substrate stiffness plays a dominant role in cell 

function and morphology. In conclusion, cell elasticity changes with substrate stiffness can be used 

as marker to distinguish between types of cells with different cancer aggressiveness.  

 

 EFFECT OF NEIGHBORING CELLS ON CELL STIFFNESS  

A tissue to function normal, all its interconnected cells should work in a well-coordinated way. 

Cells constantly sense mechanical forces from their neighboring cells that play a pivotal role in 

cell functions (Schoen et al. 2013; Mierke 2014). Any mechanical abnormality and aberrant signals 

are either compensated by the neibhouring cells or they may hinder the normal tissue function. 

Evidences  indicate  (Kamińska  et  al.  2015)  that  mechanical  interaction  between  normal  and 

neoplastic cell contributes to tumor growth.   

This section is dedicated to cell-cell interaction dynamics for the three breast cancer cell lines.  

Cell-cell interaction is another important constituent of the mechanical interaction mechanism with 

microenvironment  (Rodriguez  et  al.  2013).    It  has  a  prime  importance  for  the  fundamental 

understanding of metastasis and cell behavior in malignant conditions. Cell-cell interactions are 

complex and includes cell–cell interactions in normal tissues, primary tumor, interactions during 

transit at metastasis stage and secondary tumor site (Bacac and Stamenkovic 2008) (Bershadsky 

et al. 2003). Initiation, detachment and organ-specific affinity of cancer cells to host cells in terms 

of mechanical interaction can reveal deeper understanding of cancer progression and metastasis 

(Subra Suresh, 2007; Makale, 2007) (Brunner et al. 2006; Wolf and Friedl 2006). 

3.3.1 Effects of cell-cell connection on cell mechanics 

To investigate cell stiffness modulation during interactions with neighboring cells, we analyzed 

cell lines in contact conditions (Figure 3.14). All the three cell lines were cultured on the same 

type of glass cover slips, which act as hard substrate to the cells (~ GPa of stiffness). Since the cell 

senses it’s surrounding, to understand the effects of neighboring cells on the mechanical properties 
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of  the  cell  under  study,  they  were  cultured  with  varying  densities  (see  section  Material  and 

Methods) to get cells in contact. An isolated cell is not touching any other cell while a connected 

cell has at least two contacts with the neighboring cells. Those surrounding cells act as mechanical 

cage to the cell. 

 

Figure 3.15: MDA-MB-231 cells cultured on glass substrate. Cell is categorized as (a) isolated 
cell: when there is no interaction with any other cell and (b) Connected: when the cell interact with 
two or more cells. Scale bars 10 µm. 

 

Table 3.5: Elastic modulus measurements (± standard deviation) for all three cell lines measured 
in connected condition in three different cellular sub-regions. (L1, L2 and L3). 

 
 

Cell stiffness at cellular sub-regions in connected condition 

 HBL-100 MCF-7 MDA-MB-231 
 E (Pa) ±SD n E (Pa) ±SD n E (Pa) ±SD n 

L1 30 ± 11  
29 
 

20 ± 11  
15 
 

31 ± 12  
14 

 
L2 25 ± 9 18 ± 11 27 ± 12 
L3 21 ± 8 14 ± 7 23 ± 11 

 

 

 

When the three cell lines are indented at the center (nuclear region, L1) in connected conditions 

the prominent variation in elasticity has been observed. Figure 3.15 shows the comparative bar 

plot of the three cell lines. In connected conditions, the most aggressive cell line MDA-MD-231 

becomes  stiffer  while  HBL-100  stiffness  decreases.  MCF-7  on  other  hand  becomes  softer  in 

connected conditions. These results show that the neibhouring cells has profound effect on the 

cells. 
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Prominent variation in stiffness was observed as summarized in Table 3.5 and shown in Figure 

3.17. Stiffness of HBL-100 and MCF-7 cells decreases by (17%, 10%) and (30%, 30%), while for 

MDA-MB-231 it decreases by 13% and 26% at cytoplasm and leading edge region as compared 

with the nuclear region. Results (Figure 3.17, Table 3.5) show that even in contact conditions, the 

leading edge has significantly lower stiffness than the nuclear region.  

In connected condition MD-MB-231 is no more a softer one and its stiffness is comparable with 

HBL-100 in all the three locations. MCF-7 exhibits a softer character. For the three cell lines, cell 

stiffness in cytoplasm and the leading edges is almost uniform and loses statistical significance. 

This may be due to the fact that during cell-cell interactions the cytoskeleton organization is more 

dynamic, leading to a reduction in stiffness variance. 

 

 

 
 
 
 

Figure  3.16:  Bar  plot  representation  of 
Elastic  modulus  values  for  the  three  cell 
lines indented at the nuclear region in 
connected condition. MDA-MB-231 is no 
softer in connected condition (as it was in 
isolated condition), having similar 
elasticity as HBL-100. MCF-7 has 
significantly lower (* P: <0.05) elastic 
modulus than the other two cell lines.  
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Figure 3.17:
in connected conditions. Stiffness decreases from nuclear region to the leading edge. Cell lines 
exhibit  the  same  stiffness  in  the  cytoplasm  and  leading  edge  indicating  that  cell  cytoskeleton 
organization during interactions becomes more dynamic. MDA-MB-231 shows the same stiffness 
as HBL-100. (t-test:*p < 0.05, **p < 0.01). 

 

3.3.2 Comparison of elasticity in isolated and connected conditions 

Stiffness values corresponding to regional locations in isolated and connected conditions show a 

decreasing trend for HBL-100 and MCF-7, whereas MDA-MB-231 becomes stiffer during cell-

cell interaction as shown in Figure 3.18. For HBL-100 and MCF-7 stiffness at nuclear region 

decreases  by  an  amount  of  17%  and  49%  respectively.  MDA-MB-231  responds  opposite,  it 

becomes stiffer in contact condition. Stiffness increases by 39%, 41% and 57% in L1, L2 and L3 

locations respectively. The higher increment at the leading edge in interactive condition 

demonstrates that MD-MB-231 orchestrates more cytoskeletal components (Kristal-Muscal et al. 

2013) at the leading edge and applies greater force on the membrane. In contact condition MDA-

MB-231becomes stiffer and its stiffness is comparable with HBL-100 (Table 3.4) while MCF-7 

turns softer (Figure 3.18). 

HBL-100 and MDA-MB-321cells do not express E-cadherins, which is involved in cell-cell tight 

junctions, whereas MCF-7 does express them, hence they have different interaction mechanisms 

(Guo  et  al.  2014;  Lee  et  al.  2012) .  Furthermore,  HBL-100  (non-tumorigenic)  and  MCF-7 

(tumorigenic)  are  noninvasive,  but  MDA-MB-321  is  invasive,  therefore  their  response  to  the 

interacting cells might be different. Lee et al have shown that MDA-MB-231 cells are more mobile 
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in  active  interaction  environment  of  MCF-10A  (non-tumorigenic  epithelial  cell  line/normal 

counterpart of MCF-7) monolayer as compared to non-invasive MCF-7 cells (Lee et al. 2012) . 

They showed that invasive cells (MDA-MB-321) are softer and more sensitive to physical forces 

if applied on the lateral surfaces of the cells. Our results show that MDA-MB-231 is stiffer in 

interacting environment whereas the MCF-7 and HBL-100 turns softer during cell-cell 

interactions, in agreement Kristal et al, (Kristal-Muscal et al. 2013) who demonstrated that cell 

with metastatic potential (MDA-MD-231) generates greater forces despite their soft character as 

compared to low metastatic potential cell (MDA-MB-468) and benign cells (MCF-10A), which 

don’t indent the substrate at all.  

 

 

Figure 3.18: Elastic moduli variation in isolated (I) and connected (C) conditions in nuclear (L1), 
cytoplasm (L2) and leading edge (L3) regions. MDA-MB-231 exhibits a more prominent variation 
in connected conditions as compared to HBL-100 and MFC-7. (t-test: **p < 0.01, ***p < 0.001). 

 

3.3.3 Discussion  

Cancer cell metastasis formation is a complicated mechanism and is the main cause of death in 

many cancer patients. Evidence indicates that in cancer microenvironment, ECM becomes stiffer 

as compared to its normal state, but cells behave softer (Katira et al. 2013)  and exhibits increased 

acto-myosin cortex contractility (Kristal-Muscal et al. 2013). Furthermore, some studies show that 

by altering the mechanics of cell microenvironment, cancerous cell may act as normal ones (Bissell 

and  Hines  2011;  Ingber  2008).  Herein  our  approach  demonstrates  that  cell-cell  connection 

modifies cells mechanical behavior. In the same micro environmental conditions HBL-100 and 

MCF-7 cells were getting softer by interacting with their neighboring cells, but MDA-MB-231 
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cells became stiffer. In isolated conditions, cell adopts a particular structure and morphology on a 

harder substrate (glass), and the same stiffness feature has been shown for all the analyzed cell 

lines. When they feel dynamic interactions (cell-cell cross talk) they rearrange their cytoskeleton 

and those changes are intrinsic for each cell line depending on the level of its aggressiveness.  

Surrounding cells act like a steric cage that restricts the mechanical movement of the cell  (Lee et 

al. 2012). Stiffness increase in MDA-MB-231 during interaction may be attributed to the strong 

forces its cytoskeleton applies on the leading edge of the membrane (as increase by a factor of 

2.3x) to push against the steric mechanical barrier (Figure 3.17). As compared to MCF-7 cells, 

which are tumorigenic but not metastatic, they behave as isolated. MCF-7 cell cytoskeleton tends 

to be more uniformly distributed in terms of stiffness during cell–cell interaction. This difference 

may arise as MDA-MB-231 cells are more sensitive to the physical forces because of increased 

actomyosin contractility, and because they lack permanent adherent junctions.MCF-7 cells form 

E-cadherins based adherent junctions and thus activated myosin II generates tugging forces to 

prevent  impinging  forces  (Lee  et  al.  2012).  Cadherin  based  junctions  prevent  MCF-7  cells  to 

experience full contact force as in case of MDA-MB-231 cell-cell interactions. Interactions with 

neighboring cells make HBL-100 cells softer but a bit stressed at the leading edge. As, HBL-100 

and MDA-MB-231 do not form permanent junctions, their migratory behavior is influenced by the 

surrounding cells, which apply forces on the neighboring cells and we detect these forces as change 

in  stiffness.  This  phenomenon,  leads  HBL-100  to  soften  and  MDA-MB-231  to  stiffen.  These 

dynamic variations in stiffness of invasive cells in interactive condition highlight the fact that cell 

alter internal cytoskeletal organization to proliferate and metastasize, they can apply forces to push 

the barrier but at the same time they can change the morphology to penetrate. 

Our results show that measurements region on the cell influences results: stiffness decreases from 

the  center  towards  the  periphery  (leading  edge).  Single  cell  mechanical  measurements  greatly 

change with cellular sub-regions and should be considered while measuring and comparing cells 

elasticities. 

3.3.4 Conclusion  

OT is a powerful force spectroscopic technique, capable of applying and measuring pN forces. 

This  capability  was  utilized  to  study  stiffness  variations  in  cell  in  interacting  conditions.  We 

studied the three cell lines in connected conditions with other neibhouring cells the same type. 
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MDA-MD-231 is considered to be softer in isolated conditions but when it interact with other cells 

it shows increase in stiffness comparable to HBL-100.This increase in stiffness maybe attributed 

to high acto-myosin contractile capability of metastatic cells and increased motility. HBL-100 and 

MCF-7 on other hand have shown decease in stiffness. In connected conditions all the three cell 

lines  loss  regional  variation  in  stiffness,  indicating  that  cells  interior  cytoskeleton  is  actively 

involved during interaction with other cells. More rigorous mechanical studies on cancer cells 

corresponding  to  different  range  of  forces  and  different  micro-environmental  conditions  may 

further unravel aspects of cancer progression and metastasis formation. In future studies, we will 

apply this technique to investigate effects of ECM on cell-cell interaction and to study the related 

mechanotransduction pathways. 
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Conclusions and Final Remarks 

 

The intrinsic ability of cells to sense and respond to any mechanical changes in its 

microenvironment give us the opportunity to develop new biophysical tools to manipulate the cells 

state in different microenvironmental conditions. Mechanical properties of cell are being used as 

prominent  biomarkers  for  cell  phenotyping  in  cancer  and  disease  diagnosis.  Viscoelasticity  is 

among  the  most  studied  mechanical  properties  of  cells.  Cancer  cells  exhibit  alterations  in 

viscoelastic  properties  at  different  level  of  cancer  progression.  There  are  several  biophysical 

techniques available in the scientific community to study viscoelastic properties of cells, everyone 

has its own application regime and benefits in terms of force range and time scale.  

The main goal of this thesis was to develop an optical tweezers (OT) force spectroscopy technique 

to  validate  the  cell  elasticity  parameter  as  a  label  free  marker  of  cancer  cells  in  different 

microenvironmental conditions.  

For this purpose we considered three breast cell lines in different progression states of cancer and 

tried to distinguish them on the basis of their elasticity. We studied the alterations in cell elasticity 

in different microenvironmental conditions by changing the substrate stiffness and cell 

neibhouring. 

We used three cell lines as model: 

• HBL-100, as a control, derived from a woman with no breast cancer lesion; 

• MCF-7, a tumor cell representing the luminal A breast cancer subtype; 

• MDA-MB-231, a highly aggressive cell lines representing the basal cancer subtype. 

We introduced the OT vertical indentation approach to study cell elasticity using Hertz model in a 

similar way as for AFM cell indentation experiment. We applied two mechanisms to calculate cell 

elasticity  from  force-indentation  curves:  fixed  indentation  and  fixed  force  range.  In  fixed 

indentation we fix the indentation (e.g. 200 nm) in a linear range of Force-indentation curve, while 

in fixed force method we set the range of force from min (e.g. 0.15F max ) to max (e.g. 0.75F max) 

similar to AFM data analysis. Furthermore, we used 3D particle tracking with QPD and back focal 

plane interferometry to calculate also the lateral forces which arise during the vertical indentation 

of  the  cell.  These  lateral  forces  are  usually  ignored  by  other  reported  indentation  techniques 

because  of  the  technique’s  limitation  itself  (AFM)  or  because  the  detector  limitation  (a  single 
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photodiode instead of QPD). We studied the vertical and lateral forces contribution and found that 

indeed the lateral forces are not negligible and should be considered for an accurate analysis of the 

cell elasticity. The contributions of lateral forces in understanding different aspects of mechanical 

properties of cell membrane will be exploited in future studies. 

Applying OT vertical indentation and considering the vertical force component we calculated the 

cell  elasticity  and  compared  cells  from  the  three  cell  lines  above  mentioned..  We  found  that 

metastatic cells (MDA-MD-231) are softer than HBL-100 and MCF-7 cells when measured cells 

are isolated and cultured on bare glass. Our probing force is in the range of 10 pN and the obtained 

elasticity in the Pa range. We performed AFM indentation with nN force for the same types of 

cells and found that the elastic moduli values were in the kPa range. Both techniques indicate the 

same trend for the three cell lines, showing that OT reveals the elastic behavior and can be used as 

complementary  technique  to  AFM  in  low  force  regime.  We  extended  our  approach  to  study 

different regions of the cell and we showed that all the three cell lines exhibit descending trend in 

elasticity from the cell nucleus towards the leading edge. The nuclear (center) region appeared as 

the stiffer part of the cell and provides the most meaningful results for cell indentation studies. We 

compared  our  results  with  AFM  and  found  that  both  techniques  show  the  same  trends  in  cell 

regional mechanical variations.  

Normal tissue cells are anchorage dependent, and once grown on a substrate with defined stiffness, 

cells adapt their own elasticity to the stiffness of their extra cellular matrix (ECM). We studied the 

effects of substrate compliance on the cell elasticity. In lab-based experiments, cell are seeded on 

glass substrate having higher elastic modulus (E ≈ GPa).  Therefore, to change the stiffness of the 

underlying substrate we coated the glass coverslips with three different PDMS having stiffnesses 

as 173 kPa, 88 k Pa, and 17 kPa. Our results show that all the three cell lines have good adhesion 

on the three types of PDMS substrates. HBL-100 and MCF-7 show compact morphology while 

MDA-MB-231  shows  polarization  and  higher  lamellopodia  motility.  HBl-100  and  MCF-7 

elasticity decreases with the decrease in stiffness of the substrate while MBA-MB-231 becomes 

stiffer with the decrease in PDMS stiffness. This increase in elasticity may be attributed to the high 

metastatic potential and cell’s ability to apply normal forces on soft substrates. Metastic cells are 

more motile and exhibit more acto-myosin contractility. We also used Collagen as soft substrate 

to  study  the  elasticity  of  HBL-100  cells.  HBL-100  adopts a  compact  morphology  on  collagen 

coated glass and show reduced elasticity as compared to glass substrate. These results demonstrate 
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that cells are responsive to the rigidity of the substrate on which they are cultured and can be used 

as a marker to distinguish and characterize metastatic cells. In future studies, anchorage dependent 

focal adhesions and their mechanotransduction pathways and consequent cytoskeletal alterations 

will be analyzed.  

The tissue cells not only feel the mechanical changes in their ECM but they are also connected 

with  their  neibhouring  cells,  and  transmit  mechanical  signals  to  their  neibhouring  cells  in  a 

coordinated way. To investigate the cell stiffness modulation during interactions with neighboring 

cells, we analyzed cell lines in contact conditions. In isolated conditions, MDA-MB-231 is softer 

as compared HBL-100 and MCF-7 but the situation changes when MDA-MB-231 cells interact 

with  other  cells.    In  this  case  the  stiffness  increases  and  becomes  comparable  to  HBL-100  in 

connected conditions, meaning that an MDA-MB-231 metastatic cell surrounded by other cells 

gets more aggressive as these surrounding cells provide a mechanical blockage to its motility. This 

increase in stiffness maybe attributed to high acto-myosin contractile capability of metastatic cells 

and increased motility (Guo et al. 2014; Lee et al. 2012; Kristal-Muscal et al. 2013; Kraning-Rush 

et  al.  2012).  HBL-100  and  MCF-7  on  other  hand  have  shown  decrease  in  stiffness.  Also,  the 

regional variation in mechanical properties were studied in connected conditions and results show 

that  all  the  three  cell  lines  loss  regional  variation  in  stiffness,  indicating  that  cells  interior 

cytoskeleton is actively involved during interaction with other cells. Following the same protocol, 

we  will  investigate  the  behavior  of  these  cells  in  mixed  coculture  and  the  related  signaling 

pathways.  

In summary, using OT we are able to apply well-calibrated pN forces and study small changes in 

the elasticity of cells. Vertical indentation measurements of the three cell lines in isolated and 

connected conditions as well as on bare glass and PDMS show promising results.   MDB-MB-231 

cells are metastatic and when they feel soft underlying substrate or the neibhouring cells their 

response is more aggressive, i.e increasing in elasticity, which is linked to the interior cytoskeleton 

of  the  cells.  HBL-100  and  MDA-BM-231  cells  get  softer  on  compliant  cells  and  also  when 

surrounded by other cells of the  same type.  More rigorous  mechanical studies  on cancer  cells 

corresponding  to  different  range  of  forces  and  different  micro-environmental  conditions  may 

further unravel aspects of cancer progression and metastasis formation.  
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