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“I've seen things you people wouldn’t believe.

Attack ships on fire off the shoulder of Orion.

I watched C-beams glitter in the dark near the Tannhauser gate.
All those moments will be lost in time, like tears in rain.

Time to die.”

Rutger Hauer as Roy Batty
Blade Runner, Ridley Scott, 1982.
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Abstract

This thesis presents a research work on the estimation of the time of ar-
rival (TOA) of modern cellular signals for positioning purposes. The Third
Generation Partnership Project (3GPP) Long Term Evolution (LTE) signals
are analyzed, and the underlying orthogonal frequency division multiplexing
(OFDM) based physical layer used in the cellular downlink is exploited. The
original contribution presented in the thesis is twofold.

Firstly, a framework has been developed for assessing the TOA estimation
performance achievable with OFDM signals. The signals are realistically mod-
eled, and different power distributions of the available OFDM sub-carriers have
been carefully defined. This allowed new exploration of the TOA estimation per-
formance both in the asymptotic and in the threshold root mean square error
(RMSE) regions. Moreover, a novel performance metric based on the shape of
the Ziv-Zakai bound curve has been defined, and used to precisely evaluate the
boundaries between the threshold and asymptotic RMSE regions. The analysis
revealed a trade-off between the threshold RMSE, which is related in practice to
sensitivity, and the asymptotic RMSE, which determines the ultimate accuracy.
This shows that not only the Gabor bandwidth but also the threshold signal-
to-noise ratio (SNR) should be considered when designing reference signals.

Secondly, a TOA estimation algorithm has been developed and applied to
real LTE OFDM signals collected in multipath indoor and outdoor propagation
environments. The new algorithm, referred to as ESPRIT and Kalman filter
for time of Arrival Tracking (EKAT), combines a super-resolution algorithm,
which performs the multipath separation, with a Kalman filter, which tracks
the estimated direct path TOA. In addition, techniques have been extended for
combining the received LTE pilot tones in the time, frequency, spatial and also
cell ID domains. This exploits the intrinsic diversity offered by the LTE cell
specific reference signal (CRS), and showed an improvement in the robustness
and in the quality of the TOA estimates. The pseudoranges evaluated with the
proposed EKAT algorithm have been used to feed a positioning filter, delivering
position estimates with an error smaller than 8m (50% CEP) in the indoor
scenario.
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Summary

The contributions presented in this dissertation are the result of a three-year study
period as a Ph.D. student in information engineering at the Telecommunication
Group of the Department of Engineering and Architecture at the University of Tri-
este. The presented work has been realized with the support of the company u-blox
UK Ltd and in close collaboration with the Hochschule fiir Technik Rapperswil
(HSR), Switzerland, where several technical workshops and meetings were held dur-
ing the study period.

Nowadays, positioning and navigation technologies are commonly used in a large
variety of contexts [1-6]. One of the most popular applications is in the field of trans-
portation, where positioning systems are frequently used to ease the navigation in
maritime, air, and terrestrial vehicles. Localization systems are also used in robotics
for guiding autonomous devices, in cartography, in various context such as telecom-
munications, finance, and other time critical applications for clock synchronization,
in the sports field for monitoring and analyzing the athletes’ training. Other applica-
tions include assent management, and the tracking systems for vehicles, people and
pets. More safety critical scenarios include disaster relief, emergency services, and
search and rescue operations [7]. Positioning technologies are also strongly exploited
in the military field, in procedures such as target tracking and missile guidance.

In addition to these aspects, emerging technologies such as the concept of Internet
of Things (IOT), and the growing ubiquitous availability of broadband mobile con-
nections, increasingly lead to the need for communication networks to offer location
awareness features. Indeed, data collected or exchanged through a communication
network should often be supplied together with the corresponding location infor-
mation. Examples are personalized advertisements, social networking, and all the
applications related to the wireless sensor networks such as environment monitoring
and intrusion detection [5].

In the majority of these applications, the localization task is accomplished by
exploiting global navigation satellite systems (GNSSs), since these are a very precise
and effective mean for positioning, thanks to their global coverage, high precision,
and relatively low cost end-user receiver devices. However, there are multiple sit-
uations in which the GNSSs may not work effectively [8]. Devices often move to
environments where sky view is limited, such as subterranean and indoor areas,
narrow urban canyons, dense forests, etc. There, it may be impossible to obtain
a position fix due to satellite reception being limited in angle and power. GNSSs
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are also vulnerable to jamming and spoofing, which appear to be growing in fre-
quency and severity [9,10], and to bad space weather conditions. In addition, the
development and deployment of a GNSS infrastructure has extremely high costs,
which are not sustainable by the majority of the countries. Consequently, address-
ing the problem of positioning without relying on satellite systems is of fundamental
importance.

Several methods have been proposed to tackle positioning in critical scenarios.
Examples include inertial navigation systems, fingerprint based positioning, and lo-
calization via wireless terrestrial signals. While the former have the disadvantage of
cumulative errors and extensive calibration campaigns, respectively, the latter may
provide good performance and coverage with the advantage of no or limited addi-
tional infrastructure deployment [11-13]. In this context, localization by means of
the cellular systems base stations (BSs) downlink signals is a promising approach,
because of their wide availability and coverage, also bearing in mind the future de-
ployments of micro/pico-cells. Consequently, positioning using Third Generation
Partnership Project (3GPP) Long Term Evolution (LTE) downlink signals has be-
come a subject of recent research and industrial interest.

The 3GPP started the development of LTE in 2004, and released the first ver-
sion of the standard in 2008. LTE offers increased capacity, data rates, and user
mobility in respect to the previous standard for the cellular mobile systems, thanks
to an improved core network and radio interface. According to the data reported
in [14] and updated to September 2015, the countries with at least one commercial
LTE network are 140, with time coverage values' going from the 51% of Italy, to
the 80% of the Netherlands (Europe’s best), from the 78% of the United States, to
the 97% of the South Korea (World’s best). Together with its rising global coverage,
the LTE system is an attractive option to be considered for positioning also because
of the characteristics of its radio interface. Indeed, multi-carrier wideband wave-
forms such as the orthogonal frequency division multiplexing (OFDM) based LTE
downlink signals are an ideal candidate for being used as reference signals in time
of arrival (TOA) estimation, especially for range estimations in harsh propagation
environments [15-17].

Against this background, this thesis work addresses the problem of estimating, for
positioning purposes, the time of arrival of real 3GPP LTE signals, by exploiting their
underlying OFDM based physical layer. The original contribution of the presented
work is twofold.

Firstly, a theoretical analysis has been developed, based on the Cramér-Rao
bound and on the Ziv-Zakai bound, and aimed at assessing the root mean square
error (RMSE) behaviour of realistically modeled OFDM signals when used for TOA
estimation in an additive white Gaussian noise (AWGN) channel. This permitted
to identify a trade-off between threshold and asymptotic RMSE behaviour of the

!The time coverage is a metric for holistically assessing the coverage of a network. It consists in
the average percentage of time that users spent connected to that particular network in respect to
the total time spend connected [14].



employed OFDM signals, which is a useful achievement from the TOA reference
signals design point of view, and to compare different LTE signals to be used in
positioning applications.

Secondly, a TOA estimation and tracking algorithm has been developed, to be
used to estimate time based pseudoranges in real world multipath environments.
The developed algorithm, referred to as ESPRIT and Kalman filter for time of
Arrival Tracking (EKAT), has been tested on real LTE signals, collected during in
the field measurements in outdoor vehicular and indoor environments. The algorithm
is based on the use of super-resolution algorithms (SRAs), which naturally exploit
the OFDM physical layer of the LTE signals, and of a modified Kalman filter (KF),
which is able to manage the discontinuities typical of real datasets. Furthermore,
EKAT features a bound-based measurement reliability estimation, and combining
methods of the received LTE signals in the time, frequency, spatial, and cell ID
domains, for improving performance and robustness. The obtained ranges have
been then employed in a positioning filter, for evaluating the effectiveness of EKAT
from a positioning perspective. This part of the research work has been developed
in collaboration with the Institute for Communication Systems (ICOM) team of the
HSR, who performed the measurements and implemented the positioning engine.

The remainder of the thesis is divided in two main parts, with the first describing
the background topics analyzed at the beginning of the Ph.D. study period, and with
the second part presenting the original contributions.

In Chapter 1, the basic principles of a positioning system are explained, with par-
ticular attention to the positioning systems based on time based distance measure-
ments. Firstly, some classifications of the positioning systems are briefly proposed.
Then, the remaining sections focus on the description of the physical quantities
measured for obtaining a distance estimate, to be later used for performing the lo-
calization. The systems that are based on time measurements are explained more in
detail, since these are the ones exploited throughout this thesis work.

In Chapter 2, the LTE downlink physical layer is briefly described, with par-
ticular attention to the OFDM transmission technique, and to the LTE reference
signals exploited throughout the rest of the thesis work. Moreover, the chapter also
explains how LTE manages its frequency reuse factor of one, and how this enables
the simultaneous reception of reference signals from multiple cells controlled by the
same BS, which is a feature exploited in the experimental part of the presented work.

Chapter 3 describes the most popular SRAs, with particular attention to the
multiple signal classification (MUSIC) and the estimation of signal parameters via
rotational invariance techniques (ESPRIT), which is the one used throughout this
thesis work.

Chapter 4 briefly presents the theoretical performance bounds used for assessing
the effectiveness of the various considered TOA reference signals. The used bounds
are the Cramér-Rao bound and the Ziv-Zakai bound.

Chapter 5, which constitutes the first part of the original results, presents a
study of the performance of the OFDM signals when used as reference signals for
time of arrival estimation. A model for physically realizable signals is described and
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used to address the RMSE performance of realistic OFDM waveforms. Thanks to
the adoption of different sub-carriers power distributions and of a new performance
figure, the results of a study on the estimation RMSE both in the threshold and
asymptotic signal-to-noise ratio regions is presented. The results of a comparison of
different LTE OFDM reference signals are also reported, which permitted to establish
the best signal to use for time based ranging purposes.

Chapter 6 presents the second part of the original results. The developed EKAT
algorithm is described, and used for evaluating time-based pseudoranges from datasets
of real LTE signals collected from the commercial network of the town of Rapperswil,
Switzerland. Different measurement environments have been tested, including an
outdoor vehicular and an indoor scenario, both characterized by strong multipath
propagation. The different combining algorithms developed for improving the quality
of the TOA estimates are explained, and the effectiveness of the proposed approach
in separating multipath and tracking the direct path TOA is demonstrated. Finally,
the positioning results obtained by using the ranges estimated with the developed
EKAT algorithm are presented.
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Chapter 1

Distance measurements for
positioning

In this introductory chapter, the basic principles of a positioning system are ex-
plained, with particular attention to the positioning systems based on distance mea-
surements. Firstly, some classifications of the positioning systems are briefly pro-
posed. Then, the remaining sections focus on the description of the physical quanti-
ties measured for obtaining a distance estimate, to be later used for performing the
localization. The systems that are based on time measurements are explained more
in detail, since these are the ones exploited throughout this thesis work.

1.1 Radio positioning systems

There are several types of positioning systems. One of the widest classes of posi-
tioning systems is constituted by all the systems based on the measurements of the
wireless signals’ properties. As an example, the global navigation satellite systems
(GNSSs), including the well known Global Positioning System (GPS), the European
Galileo, the Russian GLONASS, the Chinese BeiDou, and others, belong to this
class. As explained in the summary of the thesis, GNSSs are by far the most pop-
ular and used localization systems. They exploit distance measurements from the
satellites of an orbiting constellation, which are equipped with tightly synchronized
atomic clocks and which periodically transmit ephemerides in order to enable the
receiver to calculate each satellite position. The distances between the receiver and
the satellites are estimated by measuring the time of arrival of the transmitted sig-
nals, and by exploiting the signals’ transmission time, which is timestamped in the
transmitted signals themselves.

The localization systems that exploit radio signals are not limited to the satellite
systems, but include also the class of the terrestrial systems. In the past decades,
terrestrial positioning systems were mainly used for maritime and air navigation,
and include, e.g., the LOng RAnge Navigation (LORAN) system and the Decca
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Navigator System. Recently, terrestrial wireless positioning systems have gained
improved interest also for less specific application fields. This is mainly motivated
by the fact that those systems constitute a valid alternative to the satellite systems,
to be used in environments where the GNSSs performance falter, or in case of GNSSs
failures. Moreover, because of the rising ubiquitous connectivity offered by the recent
broadband mobile systems such as the Third Generation Partnership Project (3GPP)
Long Term Evolution (LTE), terrestrial positioning systems are often integrated, at
various levels, with a wireless communication network. In this case, the terrestrial
positioning system is referred to as a cellular-based positioning system.

A wireless terrestrial positioning system involves several devices called nodes,
which are assumed to be connected to some wireless communications network. These
nodes can be divided in two categories: the anchor nodes have a known location,
while the agents have unknown location and are the nodes to be located. Both
anchors and agents can have a fixed or mobile position. In cellular-based positioning,
anchors are usually the base stations (BSs) of the mobile system, which have a fixed
position, while agents are the users’ mobile terminals, which are referred to as mobile
stations (MSs).

The positioning process consists of two main steps [6]. In the first step, referred
to as the measurement phase, agents and anchors measure any physical signal prop-
erty which carries information about the relative positions of the other nodes, by
exploiting the signals received from the network. The most common quantities mea-
sured in this phase are described in Section 1.2. In the second step, referred to as
the location update phase, the location of the agents is determined by using the
information acquired in the first step in conjunction with a priori information such
as the anchors’ positions. The positioning techniques exploited through this research
work are described in Section 1.3.

1.1.1 Classifications

A positioning method can be classified according to several criteria [1]. If the system
topology is considered, a positioning method may be: a self-positioning method, if
measurements and processing are done by the MS; a remote positioning method, if
the measurements and processing are made by the BS or by the network; an indirect
positioning method, if both the BS and the MS contribute to measurements and
processing needed for positioning.

A positioning system may also be classified according to the physical coverage
that ensures. Indeed, a localization method may be classified as satellite, terrestrial
or short-range positioning. The first method involves satellite communications and
provide positioning on a global scale. Terrestrial positioning systems are based on
signals sent or received by terrestrial stations, which may be the BSs of a cellular
communication system, or specific transmitting stations, like in the case of naviga-
tion systems such as the LORAN system. Terrestrial systems provide positioning
services within the range of the exploited communication technology, in dependence
also of the carrier frequency used. Coverages may vary from the thousands of kilo-
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Measurement Physical quantity Description

TOA Time Reception time of a reference signal

TDOA Time Difference of times between the reception of
two synchronous reference signals

RSS Power Received reference signal power

DRSS Power Difference of received power between the two
reference signals

DOA Angle Angle of arrival of the received reference signal
in respect to a fixed orientation

Node ID - Identifier of the node that transmitted the ref-
erence signal

PDP Power vs delay Shape of the multipath power delay profile

Table 1.1 — Overview of signal properties used in positioning.

meters of the hyperbolic navigation systems such as the LORAN, to the tens of
kilometers of the cellular systems. Finally, short-range positioning concerns wire-
less local area networks (WLANSs) and wireless personal area networks (WPANS),
provides positioning within the range of the tens of meters, and is used mainly for
indoor positioning.

Another useful classification divides positioning systems in integrated, oppor-
tunistic or hybrid systems. In the case of integrated systems, the positioning frame-
work is implemented together with the wireless communication technology, while in
the case of opportunistic systems the wireless communication protocol is exploited to
opportunistically determine the position. In hybrid systems, a mixture of integrated
and opportunistic approaches is used in combination or alternately depending on the
environment and on the positioning requirements.

1.2 Measurements

A terrestrial radio positioning system exploits the position-dependent parameters of
a received signal which are later used in the location phase for evaluating a position
estimate [2]. The signals exploited for such purpose are referred to as reference sig-
nals. The position-dependent parameters measured from a received reference signal
include its time of arrival (TOA), its received signal strength (RSS), its direction of
arrival (DOA), or some identifier of the particular node that transmitted the signal.
Moreover, differential measurements may be employed, such as time difference of
arrival (TDOA) measurements or the differential received signal strength (DRSS)
between two reference signals. Finally, the shape of the multipath power delay pro-
file (PDP) measured thanks to the exploitation of the reference signal may also be
exploited as a position dependent parameter. An overview of some of the position-
dependent signal parameters is presented in Table 1.1, with each entry described in
the following.

The node identifier is an unambiguous identifier of a transmitting node. Usually,
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node identifiers are used in the so called cell ID based positioning systems, where the
cell ID transmitted from a cellular system BS is exploited by the MS for obtaining
an estimation of its position. In a wireless communication system where a cell ID
localization service is available, all the BS positions associated with their unique ID
are stored in a database. A MS can query the localization service sending the cell
IDs of the received BSs. If just one BS is received, the position of the MS is usually
approximated with the position of the BS, with a maximum error equal to the radius
of the cell covered by that particular BS. Conversely, if more than one BS is received,
and if the database stores positions associated with the reception of sets of specific
BSs, a more precise estimate can be generated.

Multipath PDP are exploited in a similar way, in positioning systems which adopt
the so called fingerprinting techniques. Such methods are based on a database that is
built in a preliminary calibration phase. This database associates the particular PDP
measured in a certain point, and other signal parameters, to the position coordinates
of that point. In the positioning phase, the agent node that wants to obtain an
estimation of its position, measures the received PDP thanks to the reception of
reference signals, and then query the database sending the measured PDP. The
database answers with the coordinates that correspond to the PDP which is the
most similar to the one measured [1].

DOA measurements are performed in order to assess the angle of arrival of the re-
ceived reference signal in respect to a fixed orientation. This type of measurements
require the node to be equipped with a directional antenna, such as an adaptive
phased array of two or more antenna elements, and to run some signal processing
algorithm for DOA estimation. These facts make DOA estimation complex and ex-
pensive in terms of implementation, and hence usually less attractive as a positioning
technique intended for being implemented in consumer devices.

Finally, RSS and TOA measurements permit the estimation of the distance be-
tween the transmitting and the receiving node. The process of estimating the dis-
tance between two nodes is often referred to as ranging. These type of measurements
are analyzed more in detail in the following sections.

1.2.1 Received signal strength

Received signal strength (RSS) measurements exploit the dependence on the distance
of the received signal power. Indeed, if the power of the received reference signal can
be measured, and under the assumption of knowing the transmission power, the path
loss can be easily evaluated. Then, if a propagation model has been fixed, which
establishes a dependence between path loss and distance between transmitter and
receiver, an estimate of the distance can be obtained. A simple propagation model
which is frequently used in RSS measurements quantifies the instantaneous received
power P, qp(t) expressed in dB as [19]:

Pr,dB(t) = Pt,dB —10- - loglo(d) - K — Xf(t) — XS, (1.1)
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where: P gp is the transmitted power; K is a constant gain factor which depends
on the antenna gains and on the carrier frequency; Xy(¢) is a random variable (RV)
that models the small scale multipath fading, which is the attenuation due to the
recombination at the receiver of different replicas of the same signals, with differ-
ent attenuations and phase shifts; X is the shadowing term, which corresponds to
the large scale attenuation due to obstacles in the propagation environment, and is
usually modeled as a log-normal RV; and 10 - « - log;(d) is the attenuation due to
the distance d according to the path loss exponent a. The fading term presents fast
variations in time, and can be easily removed by averaging a certain number of mea-
surements over time, obtaining the average received power pde- Then, after having
fixed a certain path loss exponent «, and with the assumption of the knowledge of
the parameters K and P, the distance can be estimated as [1]:

A Py ap—Pe+K

d=10"" 10a . (1.2)
As one can see from (1.2), the estimated distance is highly dependent on the choice
of the particular path loss exponent «, which ultimately determines how the propa-
gation environment is modeled. The path loss exponent may be fixed in a previous
calibration phase, according to measurement campaigns [19,20], or determined dy-
namically according to different strategies [21,22].

The main advantage of using RSS measurements for performing range estimations
is constituted by the implementation simplicity. Indeed, the only requirement for
the transmitting and receiving nodes is the ability of measuring the power, which is
a common feature of almost every communication module, and no synchronization
is required. The drawback of this technique is the sensitivity in respect to modeling
mismatches. Indeed, the correctness of the estimated distance is highly dependent
on how closely the fixed propagation model fits the actual propagation environment.

1.2.2 Time of arrival

In a radio positioning system, the distance between two nodes may be estimated
by measuring the time that a signal takes for propagating from the transmitter to
the receiver. Then, assuming then that the electromagnetic wave that constitutes
the reference signal travels at a speed approximately equal to the speed of light in
the vacuum, i.e., at ¢ = 299792458 m/s, the distance can be easily retrieved. There
are different types of TOA based ranging techniques, which differ on the base of the
different requirements on the synchronization of the nodes’ clocks.

Consider the most ideal case, in which all the nodes of the system share the
same clock, i.e., their clocks are assumed to be perfectly synchronized. Moreover,
suppose that the nodes that transmit the reference signals insert in the signal itself
the timestamp ¢ of the transmission time. Then, once the receiver has estimated the
TOA i, of the reference signal, and read the transmission timestamp, the distance
between the two nodes can be calculated according to the procedure depicted in
Figure 1.1a, i.e.:

d=(t—t)-c (1.3)
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Figure 1.1 — Different ranging techniques based on TOA measurements.
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The clock synchronization of all the network’s nodes is often a challenging task.
Hence, some systems accepts the mis-synchronization of the receiver node. Suppose
that the receiver clock has an offset of es in respect to the transmitter clock, as
depicted in Figure 1.1b. Once the reference signal, transmitted at time ¢; according
to the transmitter’s clock, reaches the receiver, the TOA {, can be evaluated, ac-
cording to the receiver’s clock. In this case, the quantity p = c- (£, — t;), which is
referred to as pseudorange, is not directly related to the distance between the nodes.
For evaluating the correct distance, the clock offset has to be estimated with some
technique, obtaining é5. Then, the actual distance can be obtained by correcting the
pseudorange p as:

d:(fr—tt)-c—es:ﬁ—és-c. (1.4)

There are several techniques for the estimation of the clock offset. The GPS es-
timates the receiver’s clock offset together with the receiver’s position coordinates
p = [z,y, z]T € R3, treating es as an additional unknown in the solution of the
positioning equations [3]. In the approach developed in the work presented in this
thesis and explained in Chapter 6, the clock offsets are estimated in a preliminary
phase exploiting the knowledge of the receiver position.

Finally, the TOA based ranging solution that requires the smallest costs in terms
of nodes’ synchronization, is the so called two-way TOA ranging. According to this
approach, which is depicted in Figure 1.1c, a node A transmits a reference signal at
time t; o, which is received by the node B and retransmitted after At¢,. The node
A receives again the reference signal, and estimates the TOA as tAr,A. Under the
assumption that the retransmission time At, is known, the distance between the
nodes A and B can be estimated with no constraints on the nodes’ clocks, as:

c
The drawbacks of this approach are the overhead due to the doubled transmission
times, and the fact that all the network’s nodes must have an active role, i.e., they
must all transmit. Moreover, another drawback is represented by the fact that the
retransmission time At, may vary and cannot always be accurately known.

Distance estimations based on TOA measurements may be very accurate. As
explained in Chapter 4, the accuracy grows with the bandwidth of the reference
signal, provided that the receiver band is sufficiently large to correctly reconstruct
the received signal after the analog-to-digital (AD) conversion. The drawbacks re-
lated to the TOA based ranging techniques are mostly related to the propagation
environment. Indeed, the propagation time of the received signal is related to the
actual distance between two nodes only if the signal considered for the TOA esti-
mation propagates through the line of sight (LOS). This is the case of the GNSSs,
where, in open sky situations, the signals transmitted from the satellites reach the
mobile receiver through the direct path. Conversely, if the TOA estimation occurs in
environments characterized by non line of sight (NLOS) and multipath propagation,
the resulting distance estimate may be severely biased, e.g., in the case the receiver
estimates a multipath component TOA as the direct path TOA. This is the reason

d= (fr,A —t A — Atr) (1.5)
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clock . R

> time

Figure 1.2 —- TDOA measurements. Ad is the estimate of the difference of the distances
between the two nodes and the receiver Ad = dy — d;.

why, when TOA based ranging is performed in such propagation environments, ap-
propriate signal processing is needed at the receiver for separating multipath and
identifying the direct path. Chapter 6 of this thesis work tackles this problem in the
case of real LTE signals measured in outdoor vehicular and indoor environments.

1.2.3 Time difference of arrival

A time based ranging technique that partly relaxes the constraint on the synchroniza-
tion of the network’s nodes is constituted by the time difference of arrival (TDOA)
approach. Following this approach, only the anchor nodes must share the same clock
reference, i.e., they must be synchronized. Under this assumption, suppose that the
anchors transmit a reference signal at the same time. The mobile receiver that has
to estimate its position can measure the various TOA according to its local clock.
Then, for all the possible couples of received anchors, the difference between the
times of arrival of the corresponding reference signals can be evaluated, as depicted
in Figure 1.2. The TDOA measurement frg — fr,l is related to the difference of
distances between the two nodes and the receiver as:

~

Ad=c- (o — 1) (1.6)

This is not an actual distance measurement, but constitutes a differential measure-
ment that can be employed in hyperbolic localization techniques, which are explained
in Section 1.3.2. Similarly to the TOA techniques, also the TDOA approach suffer
multipath and NLOS propagation.

The TDOA measurements constitutes the basis for the so called observed time
difference of arrival (OTDOA) approach, which is the technique chosen for position-
ing by mean of the positioning reference signal (PRS) in the 3GPP LTE standard.
Further details on positioning in the LTE standard are available in [23-26].
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Figure 1.3 — Example of trilateration with 3 anchors having positions equal to p;, ps,
p3. The estimated distances are di, da, d3, and the estimated position is p.

1.3 Positioning

In this section, some of the most common techniques used for positioning are briefly
explained. Usually, the choice of a certain positioning technique highly depends
on the type of position dependent parameters measured in the measurement phase.
In the following, only the concepts of lateration and hyperbolic positioning are de-
scribed, which can be used for estimating the position when ranging or differential
range measurements are performed in the measurement phase, respectively. Further
details about positioning techniques can be found in [1-6,27].

1.3.1 Trilateration

The trilateration technique exploit distance estimates between the agent and mul-
tiple anchors for localizing the agent. Those distances may be estimated with a
ranging technique, such as the TOA or RSS measurements described in the previous
section. In a scenario with M anchors, the trilateration consists in finding the point
of intersection of a set of M circles centered on the anchors’ positions p; € RP,
7 =1,..., M, and having a radius equal to the measured distances dj, 7=1,....M,
where D € {2,3} denotes the number of spatial dimensions to consider. Figure 1.3
depicts a simple case of 2D trilateration. The system of equations corresponding to
the trilateration problem is:

IIP—plllzc@

_ —d
lp — Pl = d2 , (1.7)
1P — Pyl = du

which is a non linear system of equations to be solved in respect to the unknown
position of the receiver p € R”. Since (1.7) is a system in D € {2,3} unknown,
at least D equations are required for obtaining a finite number of solutions, which
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determines the constraint M > D. This means that in a 2D scenario, the ranging
measurements from at least 2 anchors are needed, while in a 3D scenario, the ranging
measurements from at least 3 anchors are needed. Moreover, for obtaining a unique
solution, at least 3 and 4 anchors are needed in the 2D and 3D case, respectively.

A rigorous solution of (1.7) exists and is unique only if the distance estimates d;
are all correct. However, in a real scenario with non-exact distance estimates, the
system of (1.7) does not have an exact solution. Several approaches are available
for finding solutions of (1.7) that minimize appropriate metrics. The most popular
methods are the least squares (LS) algorithms [1], and Bayesian methods such as
the extended Kalman filter (EKF) [28] or the particle filters [29,30]. As an example,
in Chapter 6 of the thesis work, an EKF is used for solving the positioning problem
exploiting TOA based range estimations.

A well-known class of positioning systems that make use of trilateration tech-
niques for the positioning phase is the class of the GNSSs. As mentioned in Section
1.2.2, GNSSs exploit TOA based ranging techniques, accepting a mis-synchronization
of the receiver clock. Since all the satellites are equipped with very precise synchro-
nized atomic clocks, there is only one clock offset eg to estimate, i.e., the offset of the
receiver clock in respect to the satellites’ common clock. This receiver clock offset
is estimated in the positioning phase, by adding a fourth unknown to the system of
(1.7). Indeed, if the measured pseudoranges can be expressed as:

pj=dj+es-c (1.8)

then the following system of equations can be defined [3]:

I[P —pil| +c-es=p1

— +c.e )
”p p2H S p2 7 (19)

P — Pl +c-es = pu

which can be solved with the techniques mentioned above. As one can note from
(1.9), the unknown are D + 1, i.e., the receiver position p € R” and its clock offset
es. Hence, pseudorange measurements from at least M > D + 1 anchors must be
available in this case. That is the reason why, for obtaining a GPS position fix, at
least four satellites are required to be visible. In this case, four satellites permit
to isolate two possible solutions, and the one closer to the Earth surface is usually
chosen.

1.3.2 Hyperbolic positioning

Hyperbolic positioning techniques are used when differential measurements are avail-
able, such as in the case of TDOA measurements. As Figure 1.4 depicts, every
measurement computed by the agent in respect to a couple of anchors permit to
evaluate a difference of distances Adm, 1 # j, which corresponds to a branch of an
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p3

Figure 1.4 — Example of hyperbolic positioning with 3 anchors having positions equal
to Py, Py, P3. The estimated difference of distances are Ad; 2, Ads 3, Ad; 3, and the
estimated position is p.

hyperbola with the two anchors in the focal points. This is because the hyperbola is
the locus of points where the absolute value of the difference of the distances to two
points called foci is constant, where the sign of the difference of distances permits
to identify the two branches. The intersection of all the hyperbolas corresponds to
the position of the node to be located. Mathematically, if M anchors are available,
this problem corresponds to the non linear system of %M (M — 1) equations in the
unknown p € RP given by:

Ip— Pl — P — poll = Adi 2
—pl =lp— = Ad
Hp pl” Hp pSH 1,3 7 (1.10)

P —Prp—1ll = lp— Pupll = Adel,M

which can be solved with one of the methods mentioned in Section 1.3.1. In this
case, measurements from a minimum of M > 3 anchors are required both in the
cases of 2D and 3D positioning for obtaining a finite number of solutions.
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Chapter 2

The 3GPP Long Term Evolution

The Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) is
the standard for the fourth generation cellular mobile communication systems. In re-
spect to the previous generations’ standards for the broadband wireless access, it offers
increased capacity, data rates, and user mobility, thanks to various improvements in
the core network and to a different radio interface, which also adopts beamform-
ing and multiple input multiple output techniques for user separation and increased
transmission throughput and reliability. In this chapter, the LTE downlink physical
layer is briefly described, with particular attention to the orthogonal frequency divi-
ston multiplexing transmission technique, and to the LTE reference signals exploited
throughout the rest of the thesis work. Moreover, the final section explains how LTE
manages its frequency reuse factor of one, and how this enables the reception of
reference signals from multiple cells controlled by the same base station.

2.1 Orthogonal frequency division multiplexing

The Long Term Evolution (LTE) downlink physical layer is based on the orthogonal
frequency division multiplexing (OFDM) modulation principle. The OFDM modu-
lation is a technique widely used in wireless and wired communications since it allows
high bandwidth transmissions in dispersive channels with a reduced implementation
and equalization complexity. The asymmetric digital subscriber line (ADSL) system
is an example of wired OFDM based standard. However, OFDM gained the most of
its popularity in the field of the wireless communications [31], and is exploited in var-
ious communication standards such as the IEEE 802.11 a/g/n/ac for the WLANS,
the terrestrial digital video broadcasting (DVB-T), the digital audio broadcasting
(DAB), and the aforementioned LTE.

The basic idea behind OFDM is to transmit several orthogonal parallel streams
in the frequency domain (FD), where each stream’s symbol rate is sufficiently low to
avoid distortion due to the wireless multipath channel. The data rate is maintained
high thanks to the FD parallel transmission, and the distortion is avoided due to the

15
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low symbol rate of each stream. In other words, the overall signal transmitted is a
wideband signal, but the symbols carrying information are transmitted with parallel
narrowband transmissions. Hence, OFDM is capable of treating a frequency selective
channel as a set of parallel adjacent narrowband flat channels. This peculiarity of
the OFDM modulation permits a straightforward FD symbol-wise equalization of the
transmitted data. Finally, a key aspect of the OFDM principle is its implementation:
the typical complexity of multi-carrier systems, i.e., the need of generating several
carriers, is avoided thanks to an handy discrete Fourier transform (DFT) based
base-band generation of the overall signal to be transmitted. Further and in-depth
informations on OFDM can be found in [19,20,31,32] and references therein.

In this section, the basic concepts for understanding an OFDM physical layer
are explained. Then, a brief motivation for understanding why OFDM signals and
super-resolution algorithms (SRAs) for time of arrival estimation can be successfully
combined is given.

2.1.1 OFDM transmission

An OFDM signal can be specified by defining the content of its sub-carriers, i.e.,
by defining the modulation symbols to be transmitted on each sub-carrier. Indeed,
consider an OFDM system with a total number Ngg of available sub-carriers. The
sub-carrier content of the transmitted reference signal is specified by the length Ngg
sequence:

S =[s[=Na) . S[-1), S[o], S[A], ..., S[-N — 1]]T eCNan,  (2.1)

Each of the symbols S[k] is taken from a PSK/QAM constellation, and usually the
symbol corresponding to the center frequency is left empty, i.e., S[0] = 0. Usually,
not all the available sub-carriers are filled with modulations symbols, since a certain
number of peripherals sub-carriers are left empty, i.e.:

T2 (2.2)

S[K] = some modulated symbol if k € [— A;SC &] ~ {0}
o otherwise ’

where Ng. < Ngg is the number of actual occupied sub-carriers. Then, the OFDM
signal can be defined as:

Nsc/2
st)y=" > g(t) S[k]- ™A e 0,1y, (2.3)
k=—Nsc/2

where Ty is the OFDM symbol duration, A f is the separation between adjacent sub-
carriers, and ¢(t) is the shaping impulse, which ideally should match a rectangular
signal of duration equal to Ts. A frequency separation of Af = 1/Ts together
with a perfectly rectangular shaping impulse ensure orthogonality between the sub-
carriers [31]. If the signal of (2.3) is sampled with a sampling period of Ts/Nqg, then
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Figure 2.1 — Block scheme of an OFDM transmitter working on a multipath fading
channel. The equivalent discrete time system is also shown, where the continuous con-
volution with the channel h(t) is replaced by the discrete convolution with its discrete
time version h[n]. The base band representation of the system is depicted.

the discrete time signal s = [s[0], ..., s[Nag — 1]]T € CNatt can be obtained, as:
Nic/2 ' - Nsc/2
sl = s,y = > S-SR = 3 sk N
Nate N2 k=—Nyc/2

Nage/2-1 Nage—1

— Z S[k;] ]Ndft 5’[]4;] ]Ndft kn
k=—Nqs; /2 k=0

— Nyg - IDFT {S[k]} C m=0,... Ny —1, (2.4)

where S [k] is the sequence obtained by applying the FFT-shift operation on the
sequence S[k], i.e.:

S =10,501]...,S[Nec/2,0% . o1, S[=Nec/2,..., S[=1]] e CNaw.  (2.5)

As one can see, S[k] is the same sequence as S[k], with the left and right halves
swapped. The procedure above demonstrates that the OFDM signal can be obtained
through a digital-to-analog (DA) conversion of the discrete time signal of (2.4), which
can be generated using a simple inverse discrete Fourier transform (IDFT) operation.
This procedure is depicted in the left part of Figure 2.1, where the base band OFDM
transmission scheme is represented.

Before DA conversion and transmission, the OFDM scheme requires a length L,
cyclic prefix (CP) to be inserted before the samples of (2.4), which consists of the
tail samples of s[n|. Upon defining Nt?t = Nagt + Lcp, the discrete time sequence
with the CP that feeds the DA converter before transmission can be written as:

: (2.6)

< [n] [Ndft ch—}—n] HZO,...,LCp—l
P s[n — Lep) n = Lep, ..., N
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which becomes s, (t) after DA conversion. The role of the CP is twofold. Firstly, as
will be explained in the next section, the CP enables a simple FD equalization, thanks
to the fact that the CP transforms the linear convolution between the OFDM symbol
and the channel in a circular convolution. Secondly, the time interval occupied by
the CP acts as a guard interval between subsequent OFDM symbols that permits to
avoid inter-symbol interference caused by the dispersivity of the channel.

As demonstrated, the base band version of the multi-carrier signal can be ob-
tained by simple signal processing techniques. As mentioned in the introduction of
the chapter, this is one of the reasons why OFDM is particularly attractive. After
the DA conversion, the signal scp(t) is ready for being up-converted to the carrier
frequency fc and transmitted in the wireless channel as a single carrier transmission.

2.1.2 OFDM demodulation

As represented in the transmission scheme of Figure 2.1, the received signal is given
by the convolution between the transmitted signal scp(¢) and the channel impulse
response (CIR) h(t) plus the noise w(t). If the signal is transmitted in an L paths
wireless multipath channel having CIR:

L—-1
h(t) = mo(t—m), (2.7)
=0

then, upon the assumption of constant channel during the duration of s¢,(t), the
received signal is:

L-1

r(t) = h(t) * sep(t) + w(t) =D Misep(t — 1) + w(t). (2.8)
=0

The assumption of constant channel during the duration of the OFDM symbol is
crucial for the OFDM system to work properly without any performance loss. In
the case of the LTE standard with a normal CP configuration (the most com-
mon configuration, used throughout this paper and found during the measure-
ments used), the duration of an OFDM symbol with the longest possible CP is
Ts + Tepo >~ 66.6 us + 5.21 pus = 71.81 us. Typically, in wireless communication the-
ory, the amplitude of a fading channel is considered correlated in the interval At if
the product fpAt is smaller than 0.1, where fp = fc - v/c is the Doppler shift and
v is the relative speed between transmitter and receiver [20]. At a carrier frequency
of fc = 2 GHz, this means that:

0.1c
At <0.1 <
fD < 0 =< v < cht

~ 208 ? (2.9)

which is a speed considerably higher than the maximum speed supported by the
LTE standard (which is 500 km/h).
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Figure 2.2 — Block scheme of an OFDM transceiver working on the discrete time
dispersive channel of (2.11). The additive noise which is present at the receiver is
omitted in this scheme.

By sampling r(t) with an analog-to-digital (AD) converter employing the same
sampling interval used at the transmitter side, i.e., Ts/Nqs, one obtains the discrete
time signal r[n], which is given by:

L—1
r[n] = h[n]  sep[n] + wln] =Y hisepln — ] + wln], n=0,...,Ni& -1, (2.10)
=0

where h[n] is the discrete time equivalent of h(t), given by:

1
|
i

hin] = hid[n —1]. (2.11)
l

Il
o

The equivalence between the discrete time channel hln] and the continuous time
channel h(t) is also depicted in the right part of Figure 2.1.

In [19] and references therein, it is demonstrated that the linear convolution
between scp[n| and h[n] is equal to the circular convolution between sn| and h[n],
provided that the first L, samples of r[n] are discarded. As mentioned before, this
is one of the reasons why the CP is used. Hence, by discarding the first L., samples
of (2.10), one obtains:

rin| = hin] ®n,, s[n] + z[n], (2.12)
where ®p,,, is the length Ngg circular convolution operator. Finally, the reception
procedure depicted in Figure 2.2 is performed, which basically consists of the inverse
of the tasks performed at the transmitter side. By applying to r[n] the DFT operator
and using the convolution property of the DFT (the DFT of a circular convolution
between two sequences is equal to the element-wise product of the DFTs of the two
sequences), one can retrieve the content of each sub-carrier. More particularly:

R[k] = DFT {r[n]} = DFT {h[n] ®n,, s[n]} + DFT {z[n]}
= DFT {h[n]|} - DFT {s[n]} + noise
= Nag H[k]S[k] + noise, k=0,..., Ngg — 1. (2.13)
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In (2.13), the discrete time sequence H [k] corresponds to the length Ngg DET of h[n],
which ultimately is a sampled version of the band limited channel frequency response
(CFR). Hence, using the received frequency domain samples R[k] and exploiting the
knowledge of the sub-carrier content S[k|, one can recover the samples H[k] of the
CFR. This demonstrates that the transmission of an OFDM reference signal, that
is, a signal for which the sub-carrier content S[k] is a priori known at the receiver,
offers a simple means for sampling the channel in the frequency domain. This, in
conjunction with the SRAs, has been exploited in the presented work on time of
arrival (TOA) estimation.

As will be shown in Section 3.1, the input of a SRA used for multipath TOA
estimation is a sampled version of the CFR. There are several ways for sampling a
CFR H(f). Suppose that one wants to estimate the CFR value at f = fj for some
values of k, i.e. the values of H(fx) have to be estimated. This can be achieved by
performing a frequency sweeping and transmitting subsequently a sounding signal
on each of the values of fi, or by using multiple transmitters each having a carrier
frequency equal to fi. However, all these methods require dedicated hardware and
are not suitable to be realized in low cost consumer devices. As demonstrated above,
an OFDM physical layer provides a simple means for realizing a sampling of a channel
response in the FD, without the need of additional dedicated hardware.

An example of channel estimation may be the least squares channel estimator [33],
which is the simplest estimator possible, and estimates the channel samples as:

; R[k]

Hlk] = 5[k = Nyg - H[k] + noise. (2.14)

There are several more accurate OFDM channel estimators. The interested reader
may refer to [19,31,33] and references therein for further details.

2.2 The LTE downlink physical layer

In the LTE standard, a base station (BS) is referred to as an eNodeB, and a sector
pertaining to a certain eNodeB is identified by the cell ID Nfﬁn, that is referred to
as a physical cell identity (PCI). A mobile receiver is referred to as user equipment
(UE), and an eNodeB provides resources to each UE through the use of an orthogonal
frequency division multiple access (OFDMA) scheme. OFDMA exploits the OFDM
principle to efficiently multiplex users in FD by assigning to each of them a set of
the sub-carriers that constitutes the OFDM symbol.

2.2.1 Time-frequency structure

The LTE downlink physical layer has two main possible configurations, the type 1
downlink physical layer, designed for frequency domain duplexing (FDD), and the
type 2 downlink physical layer, designed for time domain duplexing (TDD). The
LTE type 1 downlink physical layer is the most common, and is the one that will
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a radio frame - 10 ms

a subframe - 1ms

ns =0 ng =1 ng =2 ng =19
a slot - 0.5ms
CPop [=(0 [€P1 [=1 [CP1 [ =92 [CP1 | =3 [CP1 |=4 |CP1 |[=§ |CP1 [ =6

OFDM symbol [ =0

with CP

with CP

OFDM symbol [ > 0

Figure 2.3 — Type 1 LTE downlink physical layer time structure for the normal CP
configuration. As one can see, the duration of the CP of the OFDM symbol [ = 0 is
larger than the other symbols’ CPs. Each OFDM symbol carries Ng. sub-carriers in the
frequency domain.

B 1.4MHz | 3MHz 5MHz 10MHz | 15MHz | 20MHz
NRE 6 15 25 50 75 100
Nec 72 180 300 600 900 1200
Niot 12 30 50 100 150 200

Table 2.1 — List of possible downlink bandwidth configurations.

be considered throughout the presented work, also because is the only configuration
observed in the measurements.

The LTE type 1 downlink physical layer is organized in 10 ms long radio frames.
Each radio frame corresponds to 10 sub-frames, each made of 2 slots (20 slots per
frame, 0.5ms each). As Figure 2.3 depicts, each slot is composed of NS]:;,Ir;lb OFDM
symbols in the time domain. Each OFDM symbol is made by the actual symbol
(having a duration of Ty = 1/Af) preceded by its own CP, which has a slight longer
duration in the first OFDM symbol of the slot.

There are two LTE CP configurations, the normal CP configuration, and the
extended CP configuration. The latter is intended to be used in large sub-urban
and rural cells, where a large delay spread has to be supported. Conversely, the
former is the most common configuration, which is the one that has been considered
throughout the presented work. In the normal CP configuration, Ns?,?nb =7, and the
spacing between the OFDM sub-carrier is set to Af = 15kHz. Consequently, each
OFDM symbol has a duration of Ts = 1/Af ~ 66.7 us, and is preceded by its CP.
The CP of the first OFDM symbol of a slot has a duration of 160- T o while the CPs
of the remaining symbols have a duration of 144-T; o, being T} o = T;/2048 ~ 32.55ns
the basic time unit of LTE. In the frequency domain, each OFDM symbol corresponds
to NSC:NS%BNRD]% sub-carriers, spaced of A f = 15kHz when the normal cyclic prefix
configuration is adopted, for which NR®B = 12. The number of total sub-carriers used
in each OFDM symbol (and ultimately the LTE signal bandwidth B) is determined
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Figure 2.4 — Representation of a resource block (RB) with the time-frequency grid
concept for the antenna port p. The generic resource element (RE) S7, [k] is also
indicated.

by the parameter NRD]I;. There are 6 possible configurations, which are summarized
in Table 2.1.

The definition of the LTE downlink physical layer in both the time and frequency
domains leads to the time-frequency grid concept depicted in Figure 2.4. This grid
is used to define the mapping of the transmit resources to particular OFDM sym-
bols and sub-carriers within the OFDM symbol. The basic resource unit of LTE,
corresponding to the k' sub-carrier of a certain OFDM symbol in a slot, is referred
to as resource element (RE). REs are grouped in resource blocks (RBs), each cor-
responding to NEB adjacent sub-carriers in the FD, for the duration of one slot.
Resources are allocated to users within a cell in terms of RBs. The number of RBs
carried by the LTE signal in the frequency domain depends on the particular channel
bandwidth configuration, and ultimately on the parameter Nl%%. Only one RB is
depicted in the grid of Figure 2.4. The complete representation of the LTE signal
across all the LTE channel bandwidth can be obtained repeating the grid NRD]]; times
vertically.

LTE addresses the spatial domain with the concept of antenna port [26]. Each
antenna port is identified by the index p, and corresponds to a single physical antenna
or to a set of antennas that are treated from the communication point of view as a
single physical antenna (this is the case of antenna arrays used for beamforming). For
extending the above time-frequency grid concept to the spatial domain, a different
grid is employed for every antenna port.
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Finally, an LTE signal transmitted from a particular antenna port p is defined by
the collection of the REs Sﬁ e [k] defined on the signal’s time-frequency grid. Every
element S{j n, k] corresponds to the content of a particular sub-carrier k in the OFDM
symbol [ of the slot ns. Then, the actual base band analog signal is obtained with a
classical OFDM modulation with empty DC sub-carrier, as [26]:

k=—1
STn ()= D P [kt Noc/2] A1
k=—Nec/2
k=Ng/2—1
+ > 8P [k Noo/2] B2 BENAT ) T T (2.15)
As one can note from the above definition, the sequence Slpns [k], k=10,..., Ngc — 1,

defined for the LTE standard does not take into account the DC sub-carrier, which
is mandatory to be left empty. Hence, for generating the signal of (2.15) with the
low complexity DFT based implementation described in Section 2.1, the sequence
Sf n, k] must be modified in order to contain a zero element in the DC sub-carrier
position. This, after a zero padding to the length Ngg of the IDFT operator used at
the transmitter and an fast Fourier transform (FFT)-shift operation, produces the
sequence glp n, [K] given by:

oP
Slﬂ’bs - 07S£HS[NSC/2]"“7S£7LS[ ] ONdft Nge—1>

SP

Iing

[0],. .,sgfns[NSCp—u} e CNan, (2.16)

where Ngg is the length of the DFT operator, which is an implementation design
parameter. Afterwards, the discrete time version of the signal in (2.15) can be
evaluated as sj,, [n] = Nag - IDFT{SﬁnS (K]}

For presentation simplicity, the sequence manipulation showed in (2.16) is not
repeated for every LTE sequence used in the presented work. The notation sf [n] =
IDFT{S}, [k]} (note the S7, [k] withno tilde) and its inverse 7, [k] = DFT{sl [nl}
will 1mply a correct Sequence mampulatlon that, together Wlth the DFT / IDFT re-
alizes exactly the empty DC modulation of (2.15).

2.2.2 Exploited reference signals

LTE offers two downlink reference signals that are indicated for range measure-
ments, i.e., the positioning reference signal (PRS) and the cell specific reference
signal (CRS). The PRS is specifically designed for the acquisition of multiple si-
multaneous range measurements and is transmitted in dedicated time intervals [26].
However, operators generally tend to avoid its transmission in order to save band-
width for user data. On the other hand, although the CRS is primarily designed for
channel estimation and coherent data demodulation, it may be opportunistically ex-
ploited for range measurements, particularly because it is always transmitted. Both
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Figure 2.5 — PRS stairway shaped mapping to resource elements. Since the PRS is
transmitted on low interference sub-frames, there is no data transmission from any other
antenna port in any other empty RE. The index p = 6 in each colored square identifies
the antenna port from which the symbol is transmitted.

the PRS and the CRS are cell-specific: this means that the definition of the signal
sequence and the mapping of this sequence to the REs depend on the cell ID Nfﬁ“.

The PRS is defined as a QPSK modulated length-31 Gold sequence. The PRS
is transmitted from antenna port p = 6 and mapped to the REs with the stair-
way shaped pattern depicted in Figure 2.5. Since the PRS pilot tones occupy
one sub-carrier every six through all the available bandwidth (with a spacing of
A fprs = 6Af = 90kHz), the total number of transmitted pilot tones is Niot = Ngc/6
per OFDM symbol. The PRS is configured to be transmitted on specific position-
ing sub-frames, which are designed as low interference sub-frames, that is, without
transmission on data channels [23].

Similarly to the PRS, the CRS is defined as a QPSK modulated length-31 Gold
sequence. Multiple CRSs are transmitted from the BS for a particular sector with
a mapping to REs that depends on the antenna port configuration. When a config-
uration with 2 antenna ports is adopted, a CRS transmission occurs twice per slot,
on symbols [ = 0 and [ = 4: each time, a different CRS is transmitted from each
antenna port on the same OFDM symbol in non-overlapping sub-carriers, as Figure
2.6 depicts. Again, since the CRS pilot tones occupies one sub-carrier every six
through all the available bandwidth (with a spacing of A fors = 6Af = 90kHz), the
total number of transmitted pilot tones is Ny = Ny /6 per antenna port per OFDM
symbol. Since the CRS is intended as a reference signal for channel estimation and
data demodulation, it is always transmitted. The user data allocated to a particular
set of RBs is distributed on all the REs not reserved to the CRS (or to other control
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Figure 2.6 — CRS diamond shaped mapping to resource elements for a 2 antenna port
configuration (namely, CRS transmission occurs from p = {0,1}). The empty REs may
be filled by user data if the corresponding RB is allocated to data transmission. The
index p in each colored square identifies the antenna port from which the symbol is
transmitted. The X in a RE means that nothing can be transmitted on that RE from
the considered antenna port.
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Figure 2.7 — Mapping to resource elements of the used reference signals for two cell
IDs Nﬁ%{ll and Nﬁgn2 The index p in each colored square identifies the antenna port
from which the symbol is transmitted.



2.2 The LTE downlink physical layer

27

or synchronisation signals). This means that in OFDM symbols | = 0 and | = 4, the
empty REs between the CRS pilots may be filled with user data.

The mapping to REs of PRSs transmitted from different cells differs by a FD
shift of (NS, as represented in Figure 2.7a. This enables the transmission of up
to six orthogonal PRS from sectors having cell IDs { NS Nest 1, .. NS+ 5
and ultimately permits the simultaneous reception of reference signals from different
sectors.

Similarly, the CRS transmitted from different BS sectors is mapped to REs using
a FD shift which depends on the cell ID NIC]%H and is denoted with n?’p (the super
script ¢ identifies the particular cell). Assuming that a 2 antenna port configuration
is adopted, and hence that two different CRS are transmitted from the two antenna
ports in the same instant, the transmission of up to three orthogonal CRS from
sectors having cell IDs {NICBH, NICBH +1, NICBH + 2} is possible, as Figure 2.7b shows.

2.2.3 Frequency reuse factor

LTE is designed to operate with a frequency reuse factor of one. Indeed, the mea-
surement campaign described in Section 6.3 showed that operators tends to deploy
LTE base stations with sectors all using the same carrier frequency. By transmitting
on the same channel, neighbour cells suffer of strong inter-cell interference, which
has to be faced adopting inter-cell interference coordination (ICIC) strategies.
Consider a simplified system with two adjacent cells using the same channel, each
controlled by a different eNodeB, and two UEs, each connected to a different cell.
Suppose that the two users are provided by the eNodeB with resources on the same
slots and sub-carriers. Then, the total system downlink achievable rate is given by:

Ps1|Hy1)? Ps 2|Ha2|?
Rigs = Bllog, (14 =200 o (14 2212200 31 2.17
ot { g2< P,+P;5|H1|? 82 P,+P;1|Hi2|? (2.17)

being P, = NyB the noise power, Nj the bi-lateral power spectral density of the
complex thermal noise, B the system channel bandwidth, Ps, < Pnax the power
transmitted from the BS z € {1,2}, Pyax the maximum power available at the
BS for the particular user, and |H; ;|?, i,j € {1,2}, the channel gain between the
transmitter ¢ and the receiver j. In this scenario, two opposite situations may occur,
depending on the UEs positions [34, p.287].

1. Each UE is close to its eNodeB, as represented in Figure 2.8a: in this situa-
tion, |Hy 1| >> |Ha.| and [Ha 2| >> |Hj2|; hence, the best total throughput
is obtained if the eNodeBs transmit all the available power on the allocated
resources to both the UEs, namely Ps1 = Ps2 = Prax.

2. The UEs are close, nearby the cell border, as represented in Figure 2.8b: in this
situation, |Hj 1| ~ |Ha,1| and |Ha 2| ~ |H; 2|; hence, the best total throughput
is obtained allowing just one UE to transmit, e.g., P51 = Ppax and P2 = 0.
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eNodeB;

eNodeB;

(b) Close UEs, nearby the cell edge.

Figure 2.8 — Different inter-cell interference situations in a 2-eNodeBs 2-UEs system
with a frequency reuse factor of 1, depending on the UEs position in respect to the
eNodeBs.

In practical situations, as these scenarios illustrate, resources should be allocated
to users depending on their position in respect to the eNodeB. For users close to
the BS (cell-centre users), an actual frequency reuse factor of one can be employed,
and hence the same sub-carriers can be allocated in the same time slots to users of
different neighbour cells. For users close to the cell border (cell-edge users), resource
scheduling must be applied:

- different cells may allocate orthogonal RBs to their cell-edge users; this is
optimal, but limits the number of users;

- while a cell is serving on a certain RB a user close to the cell edge, a neighbour
cell may only transmit at low power on that RB (e.g., with the aim of serving
a UE close to its cell centre); this is referred to as soft frequency reuse.

When different cells are controlled by different eNodeBs, these ICIC policies
require inter-eNodeB communication. However, we are interested in cells controlled
by the same eNodeB. In this case, the eNodeB can implement autonomously its ICIC
policy, which may still be based on a full frequency reuse for cell-centre users, and a
soft frequency reuse for cell-edge users, as depicted in Figure 2.9.

It is important to stress that ICIC strategies affect only the user data, and not
the reference signals such as the CRS, which are always transmitted from each sec-
tor. Hence, the frequency reuse factor of one adopted by the LTE enables CRSs
from adjacent cells to be transmitted on the same channel, and to be received si-
multaneously, since the ICIC policy does not affect their power, and since the CRS
pilots of neighbour cells are generally orthogonal. This aspect is further clarified in
the next section.
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eNodeB

cell edge, soft reuse

cell centre, full reuse

Figure 2.9 — Possible inter-cell interference coordination scheme for cells controlled
by the same eNodeB. The different colors identify different cells, while the different
patterns identity different cell zones, corresponding to different ICIC strategies.

2.2.4 Physical cell identities

Each cell ID NSS! is referred to as a physical cell identity (PCI). There are 504 PCls,
grouped into 168 physical cell identity groups (PCIGs), each made of three identities.
A PCI is hence defined as NS5 = 3NI%) + NI%), where NI%) € {0,...,167} identifies
the PCIG and NI%) € {0,1,2} correspond to a particular cell ID within the PCIG.
The three identities within a group, identified by the cell IDs { N, Ngg!t+1, Ngg! +
2}, are usually assigned to the cells under the control of the same eNodeB [35, p.155].
Hence, as a consequence of the mapping scheme described in Section 2.2.2, the three
CRSs (as well as the PRSs) of the cells of the same PCIG (controlled, as said above,
by the same eNodeB), are associated with three consecutive cell IDs, and hence are
orthogonal in the frequency domain.

The multiple sectors controlled by the same eNodeB are usually multiplexed only
by means of directional antennas. However, while served from the predominant cell,
reception of other cells from the same BS is still possible, due to antenna back lobes
and multipath. This fact, together with the orthogonal transmission of the reference
symbols (CRS or PRS) pertaining to the PCIs of the same group (i.e., of the same
eNodeB), and together with the fact that LTE adopts a frequency reuse factor of
one, enables the simultaneous reception of reference signals from multiple sectors of
the same base station. This fact is exploited in the presented work for positioning
purposes, as explained in Section 6.7.
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Chapter 3

Super resolution algorithms

Super-resolution algorithms constitute a class of methods for the estimation of fre-
quencies in harmonic models. They have been mainly used for direction of arrival
estimation of planar waveforms on linear uniform arrays. Few works in the liter-
ature recognize that super-resolution algorithms can also be used for multipath time
of arrival estimation. This chapter describes the most popular super-resolution algo-
rithms, with particular attention to the ones used throughout this thesis work.

3.1 Super-resolution algorithms for TOA estimation

Consider the channel impulse response (CIR) of a multipath fading channel, which
is given by [20]:

L-1
h(t;T) = m(t)s(r — n(t)), (3.1)

=0
where 79 < .-+ < 771 and each of the coefficient h;(t) € C represents the complex
gain pertaining to each of the L paths that reaches the receiver. Suppose that the

observation interval is small enough that the delays 7;(¢) and the channel gains h;(t)
can be considered constant, leading to the time-invariant CIR:

L—-1
h(r) = md(r —m). (3.2)
=0

Consider now a system that transmits through the channel of (3.2) a reference signal
s(t), that is known at the receiver. The received signal is:

L-1
r(t) = st —7) +w(t), (3.3)
=0

where w(t) is a complex noise process, that is assumed to be un-correlated and to
have a zero mean o2 /2 per-dimension variance Gaussian distribution. The aim of

31
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a system that has to estimate the time of arrival (TOA) of the signal s(t) is the
estimation of the delay 7y given the received signal r(t). As will be shown in the
next sections, the super-resolution algorithms (SRAs) can be exploited for achieving
such a goal.

Consider the Fourier transform of (3.2), which constitutes the so called channel
frequency response (CFR):

L—1
H(f) =F{h(r)} =) e ccC. (3.4)
1=0
As one can note, (3.4) constitutes an harmonic model, since the signal H(f) is
composed by the sum of L complex sinusoids (in the frequency domain) having a
period of T% In other words, H(f) can be seen as a continuous time signal in the
variable f, made of L sinusoids of frequency 7; (which actually have the dimensions
of time since they represent time-delays).

Super resolution algorithms are a powerful tool that can be used to estimate the
frequencies contained in an harmonic model-like signal. Their name is due to their
ability to resolve complex exponentials closely spaced in frequency [36]. Since the
CFR of a multipath channel is an harmonic model, SRAs can be employed for the
estimation of the time of arrival of a reference signal. In particular, SRAs can be
used for the estimation of the frequencies of the complex sinusoids that compose
H(f), namely the delays 7;. The use of SRAs for estimating the multipath TOA
of a wireless channel has been previously reported in the literature in works such
as [15,16,33,37-42] and references therein.

Suppose that the receiver is able to produce a rough estimate of the CFR. This
estimate will likely be a sampled and noisy version of H(f), where the frequency
domain (FD) sampling interval is A fora:

L—1
z[n] = H(f = nAfsra) + w(n] = Z hle—%nﬁfsmn + wn]
1=0
L—1
=Y e ™ 4 win] €C, Vn. (3.5)
1=0

According to the sampling theorem, the inverse of the sampling interval 1/A fora
must be at least two times bigger than the maximum delay Tmax = 7.1 — 70, i.€.:

1
— > 27 & Afspa < . 3.6
AfSRA e 2Tmax ( )
Hence, the parameters f; = Afsgra7 assume values in the interval [—%,%} and

represent the discrete time frequencies that the receiver has to estimate.

3.1.1 Sub-space based approach

In the following section, the sub-space approach on which super-resolution techniques
rely is explained. The interested reader may refer to [36] and [43] for further details
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about super resolution algorithms. Consider a set of M > L adjacent samples of
z[n] collected in the vector x[n|, which is referred to as a snapshot:

x[n] = [z[n], z[n +1],...,z[n+ M —1]]* e CM. (3.7)

Each snapshot x[n] can be written as:

= Z hye= 2N {1, e 2 gmmh2 e 2miM=1)| " | wn]

L-1
=Y e ™ o(fi) + wln]
=0
= Vh[n] + w[n] = s[n] + w[n|, (3.8)
where:
L—1
=Y e *™v(f;) = Vh[n] € CV, (3.9)
=0
V = [v(fo),v(f1),. ., v(fr-1)] € CMF, (3.10)
v(f) = [1,6_27rf,e_2”f2, .. .,e_%f(M_l)}T eCcM, (3.11)
w(n] = [wn],wn+1],...,wn+ M —1]]* e CY, (3.12)
hln] = [hoe_%”fo,hw_%"fl, . ,hL_le_%"fL—l}T e Cr, (3.13)

are respectively the signal vector, the time-window frequency matrix, the time-
window frequency vector, the noise vector and the channel coefficients vector. Each
element of wn] is assumed to be a complex Gaussian random variable with zero mean
and o2 /2 variance per dimension, and to be independent from all the other noise sam-
ples. Hence, the auto-correlation matrix of the vector w[n] is Ry, = E[w[n]w[n]] =
021y Moreover, the complex channel gains h; = |hy|e?81} are assumed to be
random variables having independent identically distributed phases arg{h;} with a
uniform distribution in the interval [0,27) [15]. Finally, assume that the modulus
|hi| and the phase arg{h;} of each channel gain are independent.

Upon these assumptions, consider the auto-correlation matrix of the snapshot
vector x[n], which is given by:

R,=E [:B[ | H[n]]

=E [s[n]s"[n]] + E [wln]w"[n]]
—E (Z hie™ ]27rnfl fl ) (Z h* e]27rnfl/ fl’)) + 0121)IM
L—-1L-1
—ZZE (hahi) e 20 (fi)ot (fi) + 02T, (3.14)

=0 1l'=
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Since |hy| and arg{h;} are independent, the term E[h;h};] becomes:
E [huhi] = E [l || E [e5() ¢—sti)]
B {]E (Rl E ([ |] E [exetd] E [e-rsthd] if 1 1

E [|l]?] ifl=1
CJENRNE[Rp]] 27 Lethdh [IT keI dn if 1 # 1
O\ E[|mf?] if | =1
where o? = E[|ly|?] and dy is the Kronecker delta. Hence, Eq. (3.14) becomes:

Rz—zal (o (f) + o2 T

= VAVH + 021y (3.16)
=R, +R, € CM*M (3.17)
where A = diag{[a2,...,a2 ||T} € CI*L and Ry = VAV € CMXM g referred

to as signal auto-correlation matrix. The noise auto-correlation matrix R, is full
rank since it is diagonal, i.e., the rank R,, is equal to M. Moreover, since M > L,
the signal auto-correlation matrix R is rank deficient. This can be seen from the
dimensions of the matrices that generate R:

R,= V A VI (3.18)
~— M~
MxL LxL LxM

where it is evident that Ry takes vectors from CM, projects them to C» (through
the matrix AV), and finally maps them back to CM (using V). Hence, R, has
rank equal to L and hence it has M — L null eigenvalues.

Since R, is a normal matrix (i.e. R,RI = RIR,), then it exists an eigendecom-
position of R, with an orthonormal basis of eigenvectors, i.e.:

R, = QAQ"
X 0 ... 0 qi!
0 )\1 ce 0 qIfI
= [QO q --- qul] . : .
0 O Av—1] Q-1
M-1
m—0

where \,, € Rt are the eigenvalues of R, and gq,, € CM are the corresponding
eigenvectors, A = diag{[Xo,..., A1)} and QQ™" =1/ (ie. qflq,, = ;). The
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eigenvalues of R, = Rs + O'%UI M can be calculated recalling that, if \;(A) is the ith
eigenvector of the matrix A € CM*M then \;(A + alys) = A\i(A) + a, obtaining:

Am (Re) = A (VAVH) 4 02 (3.20)

Using (3.18), one can note that the signal auto-correlation matrix Ry = VAV has
M — L null eigenvalues. Moreover, it can be demonstrated (see [36]) that the L non-
null eigenvalues of R are equal to M ole, l=0,...,L —1. Hence, the eigenvalues of
R, are:

Ao = Mo + o2

eigenvalues corresponding to the signal, (3.21)
A1 =Ma? | +02
A\ =02
eigenvalues corresponding to the noise. (3.22)
AM—1 = U?U

Hence, (3.19) can be written splitting the summation in two terms, one correspond-
ing to the signal eigenvalues, and the other corresponding to the noise eigenvalues,
obtaining:

M—1 L—-1 M—1
Re= Y Al = O A+ Y, Oolmnm

m=0 m=0 m=L

= QSASQIs{ + U?[}Qng7 (323)
where:

Qs = [q0,---,q1-1] € CY*F, (3.24)
Qw = [qL7 s 7qM—1:| € CMX(M?L)v (325)
A = diag {[Xo, ..., A1)} € CFXE (3.26)

This procedure demonstrates that the auto-correlation matrix R, of the snapshot
vector [n] can be decomposed in two matrices, one generated by an orthonormal
basis of vectors (namely the columns of Q) that corresponds to the signal sub-
space, and the other generated by another orthonormal basis of vectors (namely the
columns of Q,,) that corresponds to the noise sub-space, which spans a space that
is orthogonal to the signal sub-space. In other words, the sub-spaces spanned by
Qs and Q,, are orthogonal. Since the time-window frequency vectors v(f) lie in
the signal sub-space if f = fj, then the vectors v(f;) are orthogonal to the noise
sub-space, i.e.:

(f)g, =0 VI, Ym > L. (3.27)

This property is exploited by super-resolution algorithms for understanding if a

particular discrete time frequency f € [—%, %] is contained in the signal z[n]. In

particular, a SRA checks if the vector v(f) is orthogonal or not to the noise sub-
space, which is equivalent to checking if it belongs or not to the signal sub-space.
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3.1.2 Estimation of the auto-correlation matrix

The first problem to be faced in a real implementation is that a limited number of
samples of the signal z[n] is known and hence the ideal auto-correlation matrix R,
is unknown at the estimator side. The matrix R, can only be estimated using the
limited number of snapshots that is usually available in a real system, leading to
the estimated auto-correlation matrix f{x, which is more reliable as the number of
available snapshot x[n] increases.

There are several methods for the estimation of R, [15]. If a number of N non
overlapping length M snapshots of the discrete time signal z[n] are available, namely:

xo,...,EN_1, xn€CM Vn, (3.28)

they can be used for the estimation of R, as:

N-—1 iIZH
. 1 o 1 0 H

where the non overlapping snapshots collection matrix X, is defined as:

1
\/7N [xo, ..., 2zN_1]

When z[n] = H(f = nAfsga) + w[n], i.e., when the super-resolution algorithm is
used for channel estimation purposes, the non overlapping snapshots x, may be FD
samples of the channel in different instants (this is valid only for static channels), or
FD samples of the channel acquired in different frequency bands. On the other hand,
if just a long single snapshot of x[n] is available, say a length Nyo > M snapshot:

Xpo = e CMxN, (3.30)

[[0], z[1], ..., 2[Niot — 1]], (3.31)
then N = Niot — M + 1 overlapping snapshots can be defined as:
xn] = [z[n],z[n+1],...,zn+ M -1  eCM, n=0,...,N -1, (3.32)

and the auto-correlation matrix can be estimated as:

A L Nl xH[0]
R, =+ > anjzp]t = [x[0] ... [N 1] =X, X1 (3.33)
n=0 mH[N — 1}

where the overlapping snapshots collection matrix X, is defined as:

1
X, =

[2[0],...,x[N —1]] € CM*¥, (3.34)
Again, when the SRA is used for channel estimation purposes, the case of long
overlapping snapshot is the most common, especially when time variant channels
are considered.
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Once the estimated auto-correlation matrix is computed, its eigendecomposition
is performed, obtaining a set of M eigenvectors q,,,, m = 0, ... M —1, each associated
with the corresponding eigenvalue A,,. The L eigenvectors corresponding to the
L largest eigenvalues are assumed to be the signal eigenvectors, while the other
M — L eigenvectors are assumed to be the noise eigenvectors. If the eigenvalues are
Ao > A1 > -+ > A\y—1, then the signal sub-space is assumed to be spanned by the
columns of:

Qs = [do:---+ a1 € T, (3.35)
while the noise sub-space is assumed to be spanned by the columns of:
Qu = [ap,-- - au] € CMED, (3.36)

3.2 The MUSIC algorithm

The multiple signal classification (MUSIC) algorithm determines the frequencies
contained in the analysed signal z[n] through the following procedure. First, the
pseudospectrum Ryrusic(f) is computed according to:

Ryusic(f) = ! 5 (3.37)

S ol (g,

As stated in (3.27), if q,,, is a noise eigenvector, then it should be orthogonal to the
vector v( f;). Hence, the spectrum of (3.37) should present L peaks in correspondence
of the discrete time frequencies f = f;, which are the L frequencies contained in the
harmonic signal z[n]. As a consequence, the second phase of the MUSIC algorithm
consists in finding the L highest peaks of Ryusic(f), which appear at a discrete
time frequency that corresponds to the estimate fl

In real implementations, it is impossible to calculate a continuous version of the
function Ryusic(f), hence a discretization in Ng > M samples is needed. In partic-
ular, the discretized pseudospectrum Ryjusic[n] can be easily computed through the
discrete Fourier transform (DFT) operator using the following observations. First,
suppose that the vector g,, € CM is:

qdm = [Qm[o]’ ‘jm[l}a R ij[M - 1]]T ecM (3'38)

Then, observe that:

1 n M-1 '

= IDFT N, {Gm[k} i, 7=0,...,Na—1. (3.39)
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Figure 3.1 — Flowgraph of the implementation of the MUSIC algorithm.

In (3.39), the [|shie operator applies the FFT-shift function to a vector, which per-
forms a swapping between the left and right halves of the input vector.

Finally, the discretized MUSIC pseudospectrum can be obtained as:

1
Ruusic[n] = 5, n=0,...,Ng—1, (3.40)

Z%;i [IDFTNd {am [k]}]shift

and the frequency estimates can be obtained by selecting the sample indexes that
correspond to the L highest peaks of Ryusic[n]. If 7o is the sample corresponding to
a peak of Ryusic|n], then the frequency estimate will be:

p 1 n
=——+ — 3.41
f=-3+xy (3.41)
which corresponds to the delay estimate:
1 1 n
7= —— 4+ — . 3.42
Afsra < 2 Nd) (3.42)

As one can see, the accuracy of the estimation depends on the discretization interval
that is adopted in the calculation of Ryusic|n], which ultimately corresponds to the
length N4 of the IDFT operator used in (3.40). Higher values of Ny corresponds
to higher estimation precision for the MUSIC algorithm, but determine an higher
complexity from the implementative point of view. Finally, Figure 3.1 shows the
actual implementation of the MUSIC algorithm.
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3.3 The ESPRIT algorithm

The estimation of signal parameters via rotational invariance techniques (ESPRIT)
algorithm relies on the data matrix X € CM* of (3.34), which is given by:

X = [z[0],...,z[N — 1]] € CM*V, (3.43)

Note that the sub-script (-), has been dropped from X for notational simplicity. In
(3.43), M is the length of a single data snapshot and N = Niyot — M +1 is the number
of overlapping snapshots used in X. The ESPRIT derivation is formulated here as
in [36]. Consider the vector defined in (3.8), which can be also written as:

L1
z[n] = sln] + wln] = 3 he ™o (fi) + win]
=0
e—i2rfo 0 " ho
= [U<f0)v7v(fL—1)] +w[n]
0 o e i hr_1
=V.-®"-h +wn|, (3.44)

where V. € CM*L is the same matrix defined in (3.10), b = [ho,...,hr 1] € CF
collects the L channel gains and:

ei2mfo 0

& — : : e CkxL, (3.45)
0 .oe I

is referred to as rotational matrix. The ESPRIT algorithm estimates the discrete
time frequencies f; through the estimation of the matrix ®. More particularly, the
estimation of ® using the data X can be performed exploiting the particular structure
of the harmonic signal s[n]. As an example, consider the signal sg[n] = a-e/?™/™
which has the following property:

soln + 1] = a-e?? (4 = gin]. /2 (3.46)

As one can see, the samples so[n + 1] and so[n] are related through a phase shift of
27 f radiants, which corresponds to a rotation of 27 f radiants on the unitary circle.
Hence, if one knows sg[n + 1] and sg[n], the discrete time frequency f can be easily
determined. Consider now the vector s[n] € CM and note that it can be expressed
as a combination of two partially overlapped vectors:

sy—1[n] = [s[n], ..., s[n+ M —2]|T e ML, (3.47)
sy—in+1]=[s[n+1],...,s[n+ M —1]]T e cM1, (3.48)

as:

sln] = [s[ns f?\lﬂ 1}} = LM_?[[ZL 1]] ech. (3.49)



40

Super resolution algorithms

The length M — 1 vector sj;—1[n] can be written as:
sM_l[n] = VM_1 "I’n-h, (3.50)

and the matrix Vs_1 is constructed in the same way as the matrix V of (3.10),
except that the time-window frequency vectors vys—1(f) have length equal to M —1,
i.e.:

Vet = [wa—1(fo), va—1(f1), - s vn—1(fr—1)] € CMDxL (3.51)

T

As one can see from (3.50), the vectors sps—1[n] and spr—1[n + 1] can be generated
respectively as sy;—1[n] = Vi®"h and sp;—1[n + 1] = Vo P"h, where:

V1=V, (3.53)
Vy=Vy_1® =V, (3.54)

i.e. the “generating” matrices V1 and V3 are related through a “rotation” determined
by the phase shift described in the matrix ®. Moreover, the M — 1 dimensional sub-
spaces spanned by the columns of V1 and Vs lie in the signal sub-space, since:

v v, 1] 1t
T |e2mfo(M=1) o ei2rfia (M=) TV @ T |V,

_ [Z:] _ [{Z] . (3.55)

Finally, it can be said that s[n] has a rotational invariance property since it can
be decomposed in portions which can be related through simple phase shifts, i.e.
rotations on the unitary circle.

The ESPRIT algorithm exploits this relation for the estimation of the discrete
time frequencies f;. In particular, consider the singular values decomposition (SVD)
of X, which results in:

X =U-Z-L1, (3.56)
where L € CV*V and U € CM*M are unitary matrices (ie. L - LY = Iy, U -
UM = 1)), and & € CM*V is a diagonal matrix containing the rank(X) = M, <
min{ M, N} non-null singular values of X, i.e.:

v 3, Ons x(N—1,): c cMxN (3.57)
On—ntyxnt, O—n)x(N—M,)
S, = diag {[00,...,0n,—1]7 } € CMr>Mr (3.58)

where g9 > --- > op.—1 > 0. Upon observing that the eigendecomposition of R,
can be obtained using the SVD of X as:

R, =XX!=-vU.z.Litxtul=vUu.z.xtut (3.59)
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one can note that the square root of the eigenvalues of R, are the singular values
of X. Moreover, the columns of U are an estimation for the eigenvectors of R, and
hence it can be assumed that they span the signal and the noise sub-spaces. Hence,
U can be decomposed as:

U =[U;U,], (3.60)

CM>L collects the estimates for the signal space eigenvectors

M-1L)

where the matrix U, €
(which correspond to the L largest singular values) and the matrix U, € CM*(
collects the estimates for the noise sub-space eigenvectors.

The matrix U can be split into two sub-matrices Uy 1 € CM-1xL and U, €
CM-DxL a5 was done for V in Eq. (3.55), resulting in:

U, = [2’;1] = [S:Z] . (3.61)

Since the columns of U and V span the same space (i.e. the signal sub-space), then
it exists a full rank mapping matrix T € CY*L which satisfy:

V =U,T, (3.62)
which can also be applied to the respective sub-matrices, obtaining:

V, =U,,T, (3.63)
Vo =U,T. (3.64)

Based on the observation regarding the rotational invariance of the signal s[n] and
similarly to Eq. (3.54), also the matrices U, ; and Uj 3 are related through a rotation
matrix ¥ € CL*L;

Uso =U, 1 WP (3.65)

Hence, manipulating Eq. (3.63)-(3.65), an estimate for ® can be obtained as:

Vy = U, T = U, 19T, (3.66)
Vy=V®=U, TP, (3.67)
UT =T, (3.68)
and finally:
¥ =TeT L. (3.69)

Hence, ® can be obtained through an eigendecomposition of ¥. Let ¢;,1 =0,...,L—
1, be the L eigenvalues of ¥. Then, the discrete time frequency estimates f; can be
calculated as:

fi=—5-arg (i} (3.70)

The last step in the ESPRIT algorithm is the calculation of the matrix ¥ from
the eigenvectors U,. The original approch consists in solving the linear system
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Figure 3.2 — Flowgraph of the derivation of the ESPRIT algorithm.

represented in Eq. (3.65). Since M — 1 > L, then an exact solution for that system
might not exist. Hence, the least square solution is given by:

¥ =U!, U,,. (3.71)

The literature reports a second and more accurate method for the calculation of
W, called total least squares ESPRIT, but its descriptions goes beyond the scope of
this thesis. The interested reader may refer to [36] and [43] for further details.

Figure 3.2 summarises the process for the derivation of the ESPRIT algorithm.
As one can see, ESPRIT is based on the observation that the signal sub-space has
a rotational invariance property, which exists also in the signal sub-space estimated
from the data. Since these two spaces are related through a mapping T, then the
“rotation” W that links U, 1 and U, » can be used to estimate the actual “rotation” @
that links V1 and Vo, which contains the discrete time frequencies f; to be estimated.
Figure 3.3 shows the actual implementation of the ESPRIT algorithm. As one can
see, the resolution of the estimated discrete time frequencies does not depend on any
sampling interval, conversely to what happens for the MUSIC algorithm.

Finally, it should be mentioned that there is another version of the ESPRIT
algorithm, called unitary ESPRIT. This version of the ESPRIT algorithm is demon-
strated to be more accurate than the legacy one, and also permits to reduce the
computational burden by avoiding computations with complex numbers. An inter-
ested reader can refer to [44] for further informations about unitary ESPRIT.

3.4 Estimation of the number of multipath components

So far, the number of received multipath components L was assumed to be known
at the receiver. However, in real implementations, this assumption is not realizable.
As demonstrated in the sections above, L is a parameter of fundamental importance
for the implementation and the accuracy of the super-resolution algorithms. Hence,
a method for the estimation of L has to be provided.

Consider the signal autocorrelation matrix R, of (3.17). As demonstrated in
(3.21)-(3.22), the eigenvalues of R, can be divided in two sets: L eigenvalues equal to
Am = Mozlz—i—oﬁ,, m =20,...,L—1, corresponding to the L received paths, and M — L
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Figure 3.3 — Flowgraph of the implementation of the ESPRIT algorithm.

equal noise eigenvalues \,, = 02, m = L,..., M — 1. If R, is known at the receiver,
the number of received multipath components L can be easily determined through
the calculation of the eigenvalues of R,;: the quantity M — L can be determined
by computing the number of equal eigenvalues, and hence L can be calculated as
M — (M- L).

However, in real implementations, the actual signal autocorrelation matrix R,
is not known at the receiver, which can only compute its estimation R,. The es-
timated autocorrelation matrix has with high probability all different eigenvalues,
hence the estimation of the number of multipath components is not as simple as in
the case of known R,. Nevertheless, the eigenvalues of R, are still a useful mean for
understanding the number L of received multipath components. In situations where
the square magnitude of all the channel gains |h;|? is considerably higher than the
2 (i.e. high signal to noise ratio conditions), it is easy to fix a thresh-
old for distinguishing noise eigenvalues and signal eigenvalues, thus determining the
value of L. On the other hand, when the values |;|? and o2, are comparable, then
it becomes challenging to distinguish between noise and signal eigenvalues. Hence,
a rigorous and reliable method for the estimation of L that relies on the estimated
autocorrelation matrix eigenvalues is needed.

noise variance o

3.4.1 The minimum descriptive length method

The authors of [15] propose the minimum descriptive length (MDL) method of [45] for
the estimation of the number of multipath components when using super-resolution
algorithms for the estimation of the TOAs in a multipath environment.

Consider the eigenvalues A, of the autocorrelation matrix R, € CMXM  ogtj-
mated using N snapshots. Suppose that the eigenvalues are sorted in descending
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order, i.e. A\g > A1 > -+ > Apy—1. The MDL criterion relies on the following metric:

HM—l AL/ (M—k)
zlzk i +p(k), k=0,...,M—1, (3.72)
mzz':k Ai

MDL(k) = —=N(M — k) log (

where p(k) is given by:
1
p(k) = Sk(2M — k) log N. (3.73)

Finally, the number of estimated multipath components is obtained by minimizing
the metric MDL(k), i.e.:

L =arg g {MDL(k)} . (3.74)
A typical shape of the MDL metric is shown in Figure 3.4. A reader who is interested
in further details about the theoretical derivation of the MDL criterion should refer
to [45] for further details.



Chapter 4

Bounds on TOA estimation

This chapter briefly presents the theoretical performance bounds used for assessing
the effectiveness of the various considered signals as reference signals for time of
arrival estimation. For having a best case preliminary performance assessment, the
considered scenario is the simplest one, i.e., a pulse transmission in the additive
white Gaussian noise channel. The used bounds are the Cramér-Rao bound and the
Ziv-Zakai bound. The knowledge of such bounds is a matter of interest since they
provide a theoretical bound on the performance in terms of root mean square error
of any time of arrival estimator over a range of signal-to-noise ratios.

4.1 Problem formulation

4.1.1 Signal parameter estimation problem

Consider a complex signal s(t; A) € C, V¢, which is a potentially non-linear function
of the parameter A. Suppose that the noise w(t) modeled as a zero-mean complex
Gaussian random process is added to s(¢; A), obtaining the signal:

r(t) = s(t; A) +w(t) € C. (4.1)

The random process w(t) constitutes a zero-mean complex random variable (RV) for
every fixed value of t. In particular, w(t) ~ CN(0,02), meaning that the RV w(t)
has a complex Gaussian distribution with zero mean and o2, variance, where the real
and the imaginary part of w(t) are uncorrelated zero-mean o2 /2 variance Gaussian
RVs. Finally, suppose that r(¢) is time-limited to the interval [0, T5].

A signal parameter estimation problem consists in the estimation of the pa-
rameter A based on the knowledge of the signal r(t). The case where no a priori
knowledge on the distribution of A is available will be considered. In such a sce-
nario, the optimal estimator for the parameter A is the maximum likelihood (ML)
estimator, which requires the knowledge of the likelihood function A[r(t); A], that
expresses the probability of having measured r(t) given that the parameter used in

45
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s(t; A) is A. When A[r(t); A] is available, then the estimation of A can be performed
as:

~

A=arg max {A[r(t); Al}. (4.2)

The calculation of the likelihood function is the first problem that has to be faced
when performing a signal parameter estimation. This is because r(t) is potentially
a function pertaining to an infinite dimensional space [46]. Hence, A[r(t); A] has
to be calculated through an approximation. The procedure of [47] will be used in
the following for the explanation of such problem. In particular, consider the K
coefficient approximation of r(t):

K
r(t) = v (t) =D rrtbn(D), (4.3)

k=1

where the K functions {¢(t)}5_, defined in [0, 7,[ constitute an orthonormal basis
obtained through the Gram - Schmidt process. The parameters r; can be obtained
as:

TO To
re — /0 F(E)n(0)dt = /0 (s(t: 4) + w(t)) vi(t)dt
= Sk(A) + wg, (44)

where:

Sk(A)

To
/0 s(t: A)e(1)dt, (4.5)

Wk

Ts
/0 w(t)(t)dt. (4.6)

Under the assumption of white noise (i.e., if one assumes that the autocorrelation
function of the mnoise is R, (7) = 02 (7)), it can be demonstrated that the pa-
rameters {wg}X_ | are K CN(0,02) distributed uncorrelated (and, since Gaussian,
independent) RVs. Using this approach one can define the finite set of parameters:

r = [7"1 o ... TK]T S (CK, (4.7)

which is an equivalent representation of rx(t) and an approximate representation of
7(t), which is more precise as the number K of element of the basis increases, i.e.:

I}iinm ri(t) = r(t). (4.8)

A likelihood function may be easily computed for r as A[rk(t); A] = ppa(r|A),
leading to the function:

1 1 &
= Wexp{‘azZm —sk<A>\2}. (4.9)
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As one can see, (4.9) is not well defined if K — oo. Consequently, a different
approach has to be followed for the calculation of A[r(t); A]. Looking at (4.2), one can
note that A[r(t); A] may be divided by an arbitrary quantity that does not depend
on A, leaving the result of the estimation unchanged. Hence, the likelihood function
of (4.9) may be divided by the probability density function (PDF) of measuring r(t)
(and hence its approximate K coefficients representation r) when there is no signal,
ie.:

T2 ref?
p(r|no signal) = H o { k2 } , (4.10)
which also corresponds to the PDF of the noise vector w = [w; ... wg]T € CK.
Performing this operations, one obtains:
Alr (1): A S
Mlric(t) 4] = SUCCS = exp{ S Sl (AP + w} (4.11)
w w k=1
Finally, by letting K — oo in (4.11), one obtains:
LT 2 2
Mfrt) Al =expy—— [ r(t) = s(& AP + [r(t)]"dt
w JO

To To
:exp{oi Dfie{r*(t)s(t;A)}dt;g}/O |s(t;A)|2dt} (4.12)

w J0
By taking its natural logarithm, (4.12) can also be expressed as:

2 [To
log Malr(t); Al = 75 |

Re {r* (t)s(t; A)}dt—ai2 /0 " Is(t; A)Pdt (4.13)

Hence, the ML estimate of A may be obtained using the likelihood function of (4.13)
instead of A[r(t); A], obtaining:

; 2 [T 1T
A = arg max {2 Re {r*(t)s(t; A)} dt — — / |s(t; A)\th} . (4.14)
A 0w Jo 0w Jo
The maximization problem of (4.14) is referred to as a parameter estimation
problem for a signal corrupted by Gaussian noise.
4.1.2 Time of arrival estimation

Consider the complex baseband representation of a communication system in an
additive white Gaussian noise (AWGN) channel given by:

r(t) = s(t— 1) +w(t) €C, tel0,Th, (4.15)

where 7(t) € C, s(t) € C and w(t) € C represent respectively the complex envelopes
of the received signal, transmitted signal and thermal noise. The thermal noise is



48

Bounds on TOA estimation

modeled as a stationary zero mean o2, = Nj variance complex Gaussian random

w
process, and hence w(t) ~ CN(0,Np), Vt. In (4.15), the parameter 7 models the
time that the signal s(¢) takes to propagate to the receiver after its transmission,
i.e., it models the time of arrival. The signal s(¢) is time limited to the interval [0, Ts[

with Ty < Ty, i.e., s(t) # 0 only if t € [0,Ts[. Moreover, s(t) has an energy equal to:

Ts
= S 2 . .
£ = /0 s()2at (4.16)

The problem of the estimation of 7 given the received signal r(t) can be formu-
lated as a signal parameter estimation problem analogous to the one of (4.1), where
A =7 and s(t; A) = s(t — 7). Suppose that the receiver acquires the received signal
in the interval [0, T,[, where Ty is sufficiently large for the transmitted signal to be
completely received. Then there is an a priori knowledge on the distribution of 7,
which is supposed to be uniformly distributed in the interval [0, T, — Ts[. Since:

To 7o
/ |s(t; A)|2dt = / |s(t — 7)|*dt = & if 7 € [0, T, — Ts], (4.17)
0 0

is independent from 7, then the optimal estimator for the time of arrival (TOA) of
a signal in an AWGN channel is:

To
7= argTe[(r)I?lj%%Ts[{ ; Re {r*(t)s(t — T)}dt} . (4.18)

Upon defining the cross-correlation between the received signal r(¢) and the trans-
mitted signal s(t) as:
To
R, s(1) = Re {r*(t)s(t —7)}dt, 7€]0,T, — Ty, (4.19)
0
then the estimator of (4.18) becomes:

7= ar%e[g%)ETs[{RT’S(T)}’ (4.20)

which is usually referred to as cross-correlation based estimator. Since the cross-
correlation R, s(7) can be expressed as:

To
Rea(m) = [ Re{(s7(0) 4w (@)s(t ) a
[ e (s st — P+ [ e fut ()s(t — )}
0 0
= Ryy(7) + Rups(7), (4.21)

then it is evident that the performance of the TOA estimation of the signal s(t) in
the AWGN channel strongly depends on its shape, and in particular on the shape of
its auto-correlation function R, (7).
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4.1.3 The performance of an estimator

As can be seen from (4.14), the result of an estimation is a RV since it is itself a
function of a RV (in the case of the TOA estimation, 7 is a RV since it is a function of
r(t), which is a RV). Hence, the performance of an estimation can only be described
statistically [48].

Firstly, the estimators which are usually considered have the property to yield on
average the correct value. These estimators are referred to as unbiased estimators.
In the case of the TOA estimation, if 7 is the result of an unbiased estimation, then:

E[f]=7 Vr. (4.22)

But the unbiasedness of an estimator does not imply that this is a good estima-
tor. Hence, a second parameter has to be introduced for quantifying its performance.
An optimality criterion which is frequently adopted for searching for good unbiased
estimators is the minimum variance criterion. According to this criterion, an unbi-
ased estimator is as good as its variance Var(7) is small. This criterion is derived
from a more general one, which can be applied also to biased estimators, and aims
to minimising the mean square error (MSE) that occurs in the estimation. The MSE
quantifies the average square distance between the estimation and the real value of
the parameter, and is defined as:

MSE (7) = E [(% - 7)2] . (4.23)
Upon defining the bias b(#) of the estimator # as:
b(r) =E[#] -, (4.24)
then (4.23) can be expressed as:
MSE () =E [(+ = E[#] + b(r))?]
—E |(7 = E[#])?] +6%(7) + 2E b(7) (* — E[7])]
= Var (7) + b*(7). (4.25)

As one can see, if the estimator is unbiased (i.e. b(7) = 0, ¥7), then the minimum
MSE criterion corresponds to the minimum variance criterion. A criterion which is
equivalent to the minimum MSE criterion is the minimum root mean square error
(RMSE) criterion, which aims to minimise:

RMSE (#) = v/MSE (7). (4.26)

In the particular case of a TOA estimation, the RMSE of 7 depends on the
signal-to-noise ratio (SNR) of the received signal, defined as:
Es

V=N (4.27)
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Hence, if one wants to evaluate the performance of a TOA estimator, one has to
calculate a SNR vs RMSE curve: estimators having smaller values of RMSE for a
fixed SNR are better estimators for that SNR.

A lower bound on the RMSE that can be obtained in a given TOA estimation
scenario would be a useful benchmark tool for quantifying the effectiveness of an
estimator. In particular, a lower bound on the RMSE would quantify the minimum
SNR which is required for obtaining a given RSME.

4.2 The Cramér-Rao bound

The Cramér-Rao bound (CRB) is a lower bound on the variance of an unbiased
estimator. It is by far the easiest bound to determine [48] and it is widely used in
the evaluation of the performance of several types of estimators.

Consider the estimation problem where the scalar parameter ¥ has to be esti-
mated based on the observation x. Assume that the likelihood function pgy(x|)
satisfies the condition:

E 8logpm|19(ac|19)
m o

] =0 W (4.28)

Then, it can be demonstrated that the unbiased estimator ¥ must satisfy the bound:

1

B {82 logpmw(ccw)] ’
ez 092

(4.29)

Var (19) >

where the derivative is evaluated at the true value of ¢ [48]. Note that the likelihood
function py|g(x[¥) can be divided by any arbitrary function f that does not depend
on ¥ since:

0 . pxplxld) 0 0 B,
= logwil = = log gy (x]|¥) — 5 log f =~ log pyje(z|V). (4.30)

oY f Gz oY oY
Consider now the signal parameter estimation problem of (4.1), where A is esti-
mated using the estimator A, which is a function of the measured signal r(t). The
Cramér-Rao bound (CRB) for A is given by:

" 1
Var (4) > T (4.31)
B [7&2 }
where log A1 [r(t); A] is expressed in (4.13) and can be used instead of the logarithm
of the likelihood function thanks to the observation of (4.30). The bound of (4.31)
can be simplified by taking the second derivative of log A1 [r(t); A], which corresponds
to:

o2 [T eon 0 1 (o
&4[%/0 gm{r (t)aAg(t,A)}dt—No ; 8—As(t,A)\ dt}. (4.32)
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Then, since:
0 0
&4\ s(t; A)\ = 29%{ *(t; A)aA s(t; A)}, (4.33)

one obtains:

Faq. (4.32) = a% [AQ/O /OT° SRe{(r(t) _ s(t; A))* 8%5(75 A)}dt]
_ AQ/()/OT %{aix [( () — s(t; A))* a(ils(t A)Hdt

:AQ/()/OTO ‘ai (t; A)2+9{e{£j2 (tA) (r ()—s(t;A))*}dt.

(4.34)
By taking the expectation over all the possible values of r(¢) one obtains:

2

2
0 dt +

d 2 [T
B |- gz el Al] =[]

+/OTO%{£; (t; A) (E[r ()]—S(t;A))*}dt

2 [T 2
-

dt, (4.35)
since E[r(t)] = s(t; A) Vt. Moreover, using the same algebra as above, it can be
demonstrated that the regularity condition of (4.28) is also satisfied when using
log A1[r(t); A] instead of the likelihood function, at the condition that s(¢; A) is a
“smooth” function of A. Finally, by substituting (4.35) in (4.31), one obtains the
CRB for the estimation of the parameter A in the transmission of the signal s(¢; A),
which can be expressed as:

s(t; A)

0

A s(t; A)

Var <A> > ! . (4.36)

. 2
o’ Ls(t; A)|" dt

Consider now the case of TOA estimation described in Section 4.1.2, where A = 7
and s(t; A) = s(t — 7). Then, since:
9 ? T
9 gt—n)| dat= /
0

To
/0 or

the CRB for a TOA estimation in an AWGN channel becomes:

Var (7) > o1 C(v), (4.38)

255 2P
ﬂz_l/TS ds(t
& Jo

2

dsh) " 4. (4.37)

dt

where:

Cat— L / " ar 80 Paf (4.39)
dt & ) ' '
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In (4.39), the Parseval’s rule for the continuous time Fourier transform has been
invoked. The quantity 8 of (4.39) is often referred to as Gabor bandwidth (GB),
and expresses the root mean square value of the spectral content of the signal s(t).
In the TOA estimation case, the regularity condition of (4.28) becomes equivalent

to the existence of the derivative ©% or to the convergence of the integral in the

RHS of (4.39). “

The CRB can be calculated very easily and gives an accurate prediction on
the RMSE performance of unbiased estimators for large SNRs, but has two main
limitations. As said, it can be demonstrated that the CRB is accurate only for large
values of SNR. This happens mainly because the ML estimator (which represents
the optimum if no a priori knowledge is available for the parameter to be estimated)
is unbiased only for large values of SNR. Moreover, the CRB can be calculated only
for certain reference signals s(t). In particular, the CRB is defined only when s(t)
is a “smooth” function of ¢ [49], i.e., the regularity condition of (4.28) has to be
satisfied.

Modified versions of the CRB (e.g., the bound proposed in [46]) were proposed
in the literature for an easy calculation of the bound in presence of nuisance param-
eters in the estimation problem. This may be useful for evaluating bounds on TOA
estimation when other unknown signal paramteres that influence the received signal
such Doppler shift or complex channel gains exist but are not estimated.

As one can see from (4.38), the greater the GB of a signal, the smaller will be its
CRB and ultimately its RMSE performance for high values of 4. This consideration
suggests that a suitable characteristic of a TOA estimation reference signal is to
have the greatest possible GB. According to the definition of (4.39), a signal with
such properties can be obtained by pushing the available power on the edges of the
available bandwidth. The analysis reported in Chapter 5 of this thesis will reveal
that designing a reference signal by considering only its GB does not always lead to
a good RMSE performance in a wide range of SNR values.

4.3 The Ziv-Zakai bound

The Ziv-Zakai bound (ZZB) was first proposed by J. Ziv and M. Zakai in [50] and then
improved by the same authors in [49]. Afterwards, the bound was further improved
by the author of [51] thanks to the adoption of the so called Bellini-Tartara valley
filling function.

The ZZB is derived specifically for the TOA estimation problem, by using a
detection theory approach. Consider the TOA estimation problem of (4.15), which
consists on the estimation of the TOA 7 of the transmitted signal s(¢) using the
received signal having a complex baseband representation r(t) given by:

r(t) =s(t—71)+w(t) €C, te|0,T,] (4.40)

Let [0,7,[ denote the a priori interval for the estimation problem, i.e., the receiver
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knows only that 7 € [0,7,[. Then, it can be demonstrated that [49,51]:

Ts
MSE (1) > 2 [ AT, - 2)Q (VA (T~ pu(A)) dA = 2(1), (4.41)
0

(o]

MSE (7) > Ti /OTOAG (-0Q (VAT n@) baa= 2.0,  (442)

o

where:

- Q(-) denotes the Q-function, which is the complementary cumulative density
function for a zero mean unitary variance Gaussian distribution, i.e.:

Qz) = \/127 /+<>o e*§du ; (4.43)

- G{-} is the Bellini-Tartara valley filling function [51], defined as:

G{f(ac)} _ {I;l(i};ue]w,+oo[ {f(u)} ft}{e(fv)‘/ijemaxue]xﬁroo[ f(u) : (4'44)

- ps(A) is the normalized single-sided autocorrelation function of the signal s(t),
defined as:

ps(A) = {éRs’s(A) =& Jy " Re{s*(t— A)s(t)}dt A€ [0, T4

] ,  (4.45)
0 otherwise

and Ts is the duration of s(t), i.e. s(t) is defined in the interval [0,7], as
detailed in section 4.1.2.

The formulation of Z(7y) of (4.41) is the one proposed in [49], while the definition of
Zy(7y) of (4.42) is the one proposed in [51] and employing the valley filling function,
and is proved to be a tighter bound.

There is an important remark about the ZZB to take into account, regarding the
limit value that the noise variance Ny can assume. If Ny — +o0o (i.e. when the SNR
decreases to zero), then both (4.41) and (4.42) become:

1

T) >
MSE (7) > o7,

To T2
/ A(T, — A)dA = 22 (4.46)
0 12

since Q(0) = 1/2. As one can note, T2/12 is the variance of a continuous RV having
a uniform distribution in the interval [0,7,[. This fact has a physical explanation:
when the noise level is too high (i.e., when the SNR approaches zero), the best
thing that an estimator can do is to randomly select a time of arrival in the a prior:
interval. Hence, at an SNR that approaches zero, the RMSE is greater or equal to
the variance of a RV uniformly distributed in the a priori interval.
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As one can see from (4.41)-(4.42), obtaining a closed form expression of the
77B can be a challenging task, since it involves the integration of a Q-function that
depends on the auto-correlation function of the considered signal. In particular, in
the case of the ZZB Z(~) of (4.41), the function to be integrated is A-n(~, A), where:

(T - 8)-Q(VEM D)) ifa<T,

(To — A)-Q (\ﬁ) , otherwise (447)

n(y,A) = {

and £(y,A) = - (1 — ps(A)). The literature presents closed form expressions of the
ZZB for only a few simple signals (e.g., the rectangular impulse, in [49]). Hence,
in this research work, the ZZB was always computed through numerical integration
procedures. The numerical calculation of the integral:

To
0

is challenging especially for high values of +, since n(y, A) presents an high peak near
A = 0 and then goes steeply to zero. In oder words, n(v,A) is a stiff function for
high values of 7, i.e., a function which is hard to be integrated numerically, unless
the step size is taken to be extremely small. This is showed in the figures of the
examples of Section 4.4.

Although it is difficult to compute, the ZZB has several advantages in respect to
the CRB:

- it can be applied to a larger class of functions s(t), e.g., it can be applied for
the calculation of a bound for the TOA estimation performance of rectangular
pulse shaped orthogonal frequency division multiplexing (OFDM) signals;

- it is a tight bound also for very low values of SNR;

- it takes into account the a priori knowledge on the TOA which has to be
estimated.

Modified versions of the ZZB (e.g., the one proposed in [52]) were proposed in
the literature for an easy calculation of the bound in presence of nuisance parameters
in the estimation problem.

4.4 Some examples of bound computations

In this section, the CRB and the ZZB are computed for three test signals, in order
to highlight some important behaviours of the bounds in respect to the variation of
some signals’ properties. The Ziv-Zakai bound Z,(v) of [51] is considered, i.e., the
one exploiting the valley filling function.
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(a) Triangular pulse sTr(t). (b) Truncated sinc pulse ssinc ().

Figure 4.1 — Some of the test signals used.

Consider a triangular pulse reference signal sTr(t) having duration T and main
peak amplitude A, represented in Figure 4.1a and defined as:

24(3 + %) te]-%,0]
stR(t) = 24(3 —£) te€]0, ] . (4.49)
0 otherwise

This has a squared GB that can be easily evaluated in closed form, equal to:

2 1 [T
ﬁTRISS/O

The CRB and the ZZB of st (t) are represented in Figure 4.2. The ZZB is calculated
for different values of the a priori interval T,. Two points should be noted. Firstly,
it is evident that asymptotically, i.e., for high values of SNR, the ZZB and the CRB
assume equal values. Secondly, for very low SNRs, the bound curve tends to the
value of T,/+/12 (which is represented in the figure by a dotted line for every value
of Ty,), according to the asymptotic behaviour described in (4.46). This shows the
influence of the a priori search interval on the TOA estimation performance: the
bigger the observation window, the worse will be the estimation performance for low
values of SNR. The normalized auto-correlation function ps(A) for the triangular
impulse signal is depicted in Figure 4.3a, while the corresponding integrand function
is plotted in Figure 4.3b for different values of the SNR ~. As one can see, for high
SNRs the numerical integration of n(+, A) may be challenging due to the stiffness of
the function.

2
12

dt = —. 4.50

‘ T2 ( )

d sTr(t)
dt

Consider now a signal defined as a truncated sinc function having a main lobe
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Figure 4.2 - CRB C(y) and ZZB Z,(v) for the triangular impulse signal sTgr(¢) and
different values of the a priori interval T,. The dotted lines represent the asymptotic
value of T,,/+/12 for every value of Tj,.
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(a) Autocorrelation function of str(t). (b) ZZB integrand n(y,A) for str(t),

To = 4T, and various values of SNR.

Figure 4.3 — Autocorrelation and ZZB integrand function for the signal stg(t).
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Figure 4.4 — ZZB of the truncated sinc signal sginc(t) for different values of the
parameter M. The CRBs for the corresponding signals are also plotted as a reference.
The a priori interval is T,, = 4T, for all the curves.
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(a) Autocorrelation function of sginc(¢) for
different values of the parameter M.
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(b) ZZB integrand n(vy,A) for ssmc(t),
To = 4Ts, M = 4 and various values of

SNR.

Figure 4.5 — Autocorrelation and ZZB integrand function for the signal sginc(t).
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width that depends on the parameter M, i.e.:

2M sin (7T 27]1‘54t) Ts T.
SSINC(t) _ ASIHC(TS t) :AW 1ft€:|_7§,7g:| ) (451)
0 otherwise

The signal sine(t) is represented in Figure 4.1b for different values of M. Differently
from the triangular signal, sginc(t) does not have a closed form expression for its
GB, but the derivative dss‘ld#f(t) exists and it is well defined. The CRB and the ZZB
of ssinc(t) are represented in Figure 4.4 for different values of the parameter M.
In Figure 4.4, the dashed lines represent the CRB, and the solid lines represent the
77B. In this case, the a priori interval is assumed to be four times greater than the
duration of the impulse, i.e., T, = 4T,. As one can see, for very low SNRs, the ZZB
tends to the value T, /4/12, while in the asymptotic region it assumes the same values
as the corresponding CRB. The normalized auto-correlation function ps(A) for the
truncated sinc impulse signal is depicted in Figure 4.5a for different values of M. As
one can see, higher values of M correspond to narrower pulses and hence to narrower
autocorrelation functions, leading to a better TOA estimation performance in the
high SNR region. This phenomenon can also be analyzed in the frequency domain: a
higher value of M leads a narrower pulse, which has a greater bandwidth, and hence
a bigger GB, leading to better asymptotic RMSE TOA estimation performance. The
integrand function for the M = 4 truncated sinc signal is plotted in Figure 4.5b for
different values of the SNR ~. Again, for high SNRs the function 7(v, A) becomes
stiff and hence challenging to be numerically integrated.
Finally, the rectangular pulse sg(¢) is considered, defined as:

A te]-L. L]
t) = 272 . 4.52
sr(t) {0 otherwise ( )

This type of signal does not admit a finite GB, i.e., the integral that defines 3? does
not converge. Hence, the corresponding CRB can not be evaluated. Fortunately,
the ZZB does not have any restriction on the signal regularity, and hence can be
evaluated even for the rectangular pulse. Figure 4.6 represents the ZZB of sgr(t)
together with ZZBs of the triangular impulse and of the truncated sinc signal with
M = 7. Again, the a priori interval is assumed to be T, = 47T, and for very
low SNRs the bound attains the value of T,/+/12. The normalized auto-correlation
function ps(A) for the rectangular impulse signal is depicted in Figure 4.7a while the
corresponding integrand function is plotted in Figure 4.7b for different values of the
SNR ~. As one can note from Figure 4.6, the asymptotic slopes of the ZZB curves
differ. The bounds corresponding to the triangular and the sinc-shaped signal predict
a RMSE that requires a 20 dB growth of the SNR for decreasing of a factor ten.
Conversely, the bound corresponding to the rectangular signal predict a RMSE that
requires a 10 dB growth of the SNR for decreasing of a factor ten. The double slope
that characterizes the ZZB of the rectangular impulse signal may be a consequence
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Figure 4.6 — ZZB of the rectangular signal sg(t). The ZZBs of the triangular signal
and of the truncated sinc signal with M = 7 signal are also shown as a comparison. The
a priori interval is T, = 4T%.
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4T, and various values of SNR.

Figure 4.7 — Autocorrelation and ZZB integrand function for the signal sg(t).
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Figure 4.8 — Estimation RMSE characteristic error regions.

of the discontinuities that characterize sg(t). Indeed, experimental investigations
reported in [53], demonstrated that a single discontinuity in the reference signal is
sufficient for producing a double slope in the corresponding ZZB. Since the signals
with discontinuities are not physically realizable, they have not been considered in
the remainder of the thesis, and hence only signals having a “normal” slope have
been analyzed.

4.5 Estimation error regions

As one can note from Figure 4.2, Figure 4.4 and Figure 4.6, the ZZB curve may
be divided in three principal regions [54,55]. A first region, corresponding to low
SNR values, corresponds to a RMSE which is mainly determined by the length of
the a priori interval T, in respect to the signal duration 7. This region is referred
to as the a priori region. The second region, which is referred to as the threshold
region, usually corresponds to low-to-medium values of the SNR. In this region, the
RMSE curve detaches from the a priori value T,/+/12 for reaching the asymptotic
behaviour of the RMSE performance, which corresponds to the CRB. The shape
and the slope of the threshold region is characteristic of each signal, and mainly
depends on the shape of its autocorrelation function ps(A). Signals exhibiting a
faster transition between the threshold and the asymptotic region will be preferred
for TOA estimation systems that have to work in the low-to-medium SNR range.
Finally, the third region is referred to as the asymptotic region or error floor region,
and corresponds to high values of SNR. In this region, the ZZB curve overlaps the
CRB. These three regions are depicted in Figure 4.8, where the borders between
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these regions are only qualitative.
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Chapter 5

Bounds on TOA estimation of
LTE OFDM signals

This chapter presents a study of the performance of the orthogonal frequency divi-
sion multiplexing (OFDM) signals when used as reference signals for time of arrival
estimation. A model for physically realizable signals is exploited to address the root
mean square error (RMSE) performance of realistic OFDM waveforms. Thanks to
the adoption of different sub-carriers power distributions and of a new performance
figure, the estimation RMSE is studied both in the threshold and asymptotic signal-to-
noise ratio regions, where a performance trade-off is revealed. Finally, different Long
Term Evolution OFDM reference signals are compared as reference signals for time
of arrival estimation, in order to establish the best signal to use for such purpose.!

5.1 Introduction

As has already been mentioned, orthogonal frequency division multiplexing (OFDM)
has become a successful and widely used wireless communication technique, which,
thanks to its robustness and low complexity, has been adopted in a conspicuous num-
ber of wireless communication standards, including Third Generation Partnership
Project (3GPP) Long Term Evolution (LTE), terrestrial digital video broadcasting
(DVB-T), digital audio broadcasting (DAB), and IEEE 802.11 a/g/n/ac [31]. The
fundamentals of this technique have been described in Section 2.1.

The ubiquity of this communication paradigm has determined an interest in the
OFDM technology also in the field of positioning, where the intrinsic characteristics
of the OFDM signals may be studied for understanding how to design a proper
OFDM waveform suitable for pseudorange calculation. Concerning this aspect, the
estimation of the time of arrival (TOA) of a signal is a fundamental topic. Indeed,

'The content of this chapter was partly published on M. Driusso, M. Comisso, F. Babich, and
C. Marshall, “Performance Analysis of Time of Arrival Estimation on OFDM Signals,” IEEFE Signal
Processing Letters, vol. 22, no. 7, pp. 983-987, Jul. 2015.
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there are multiple reasons that make OFDM signals appealing for being used as
reference signals in TOA estimation for pseudorange evaluation. Firstly, OFDM
waveforms are usually wideband signals, and, as shown in Chapter 4, the wider the
bandwidth, the smaller is the error due to noise when estimating the TOA of a
signal. Moreover, when the environment is characterized by multipath propagation,
signals with a larger bandwidth permit an easier separation of the different received
paths” TOA. Secondly, the OFDM waveforms are multi-carrier signals, and hence
their spectrum can be easily shaped by differently filling the transmitted sub-carriers,
permitting an easy manipulation of the properties of the signal that affect the timing
performance.

For this reason, this part of the thesis addresses the issue of assessing the perfor-
mance of the LTE OFDM signals when used as reference signals in TOA estimation.
More particularly, the TOA estimation performance of LTE OFDM waveforms in
the additive white Gaussian noise (AWGN) case is analyzed, with the purpose to
provide a best-case ranging accuracy indication, in contrast with more severe sce-
narios, such as the fading multipath channels. Moreover, only physically realizable
OFDM signals have been considered for the presented analysis, by taking into ac-
count the effect of a realistic digital-to-analog converter (DAC) for the conversion of
the OFDM time domain samples to the actual transmitted signal.

The analysis presented is twofold. Firstly, the OFDM waveforms are analyzed
from the signal’s design point of view. The characterization is performed by prop-
erly shaping the power spectral density of the OFDM signals, so as to infer the
influence of the sub-carriers’ power distribution on the TOA estimation root mean
square error (RMSE). The TOA estimation RMSE behavior is explored not only
in the asymptotic region, but also in the threshold region, by introducing a novel
quantity, which is complementary to the widely adopted Gabor bandwidth (GB).
This permitted to reveal a trade-off between asymptotic and threshold performance,
showing that the GB is not the only parameter to consider for designing a TOA
reference signal. Secondly, the TOA estimation performance of some of the actual
LTE OFDM downlink reference signals is compared, in order to understand which
of those signals is the most suited to be used for pseudorange measurements, and
how the LTE system parameters influence the timing performance.

The remainder of this chapter is organized as follows. Section 5.2 presents a
review of the related works found in the literature, together with the motivations of
the analysis presented. Section 5.3 introduces the system model used for addressing
the performance of the OFDM signals. Section 5.4 analyzes the metrics used for
quantifying the TOA estimation performance of the considered signals. Section 5.5
discusses the numerical results obtained through computer simulations. Finally,
Section 5.6 summarizes the most relevant conclusions.
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5.2 Related works and motivations

The design of TOA-based positioning systems that exploit OFDM waveforms has
been addressed in the literature in several works, where both performance analysis
and new estimation approaches are proposed. The authors of [56] propose a com-
prehensive work where OFDM signals are exploited for time difference of arrival
(TDOA) measurements in a distributed positioning system. In [57], a system based
on OFDM signals TOA measurement is proposed for positioning in WLANs. The
authors of [58] exploit the phase rotation induced by the channel delay on the OFDM
symbol’s sub-carriers for estimating the TOA, and propose this method for the next
generation global navigation satellite systems (GNSSs). In [59], a method for posi-
tioning by jointly exploiting the direction of arrival (DOA) and the TOA of OFDM
signals is proposed. In [60], the LTE positioning reference signal (PRS) signal is
exploited for joint time and amplitude channel estimation in multipath scenarios.

Concerning the subject of LTE OFDM signals performance analysis, the authors
of [61,62] proposed an approximated Cramér-Rao bound (CRB) for OFDM signals
for assessing the ranging performance obtainable with the LTE PRS under different
types of interference. In [63], the same authors propose an analysis of the per-
formance of the same signals under multipath conditions based on the concept of
multipath error envelope.

Finally, the subject of OFDM signal design for TOA estimation has been faced
in different works. In [17], the authors analyzed the possibility to use band-limited
multi-carrier modulations for achieving selective accuracy in GNSSs, by exploiting
the Ziv-Zakai bound (ZZB). A method based on the CRB to properly arrange the
pilot tones on the sub-carriers of an OFDM symbol in order to achieve an accurate
estimation of the timing and amplitude of the channel is proposed in [64]. In [65,66],
the CRB is again exploited for shaping the OFDM symbols’ power spectrum, in order
to achieve joint capacity maximization and TOA estimation accuracy in multipath
channels.

Against this background, a careful investigation that jointly considers the asymp-
totic and the threshold TOA estimation performance of realistically modelled OFDM
signals, and its dependence on the sub-carriers’ power distribution, remains a partly
unexplored issue. Moreover, a comparison of the TOA estimation performance of all
the main LTE reference signals has not been found in the literature. These are the
problems that have been addressed in the following sections of the presented work.

5.3 System model

A physically realizable OFDM signal model has been adopted for assessing the per-
formance of different OFDM waveforms when used as reference signals in TOA es-
timation. In particular, the performed analysis is twofold. Firstly, by exploiting the
power distributions defined in Section 5.3.2, the influence of different sub-carriers’
arrangements on the TOA estimation RMSE is studied. Secondly, the TOA estima-
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tion performance of LTE reference signals described in Section 5.3.3 is compared, in
order to determine which of the considered LTE waveforms is the most suited for
time based range measurements.

5.3.1 OFDM signal model

The proposed investigation exploits the OFDM signal model described in Section 2.1,
i.e., an OFDM signal defined by Ng. used sub-carriers out of Ngg > Ny available
ones. The used sub-carriers are arranged symmetrically on each side of the direct
current (DC) sub-carrier, Ns./2 on each side. As explained in Section 2.1, the DC
sub-carrier is left empty and the reminder of the spectrum is padded out with empty
sub-carriers, (Ngg— Nsc)/2 in the negative range and (Ngg — Ny )/2—1 in the positive
range. As a consequence, the parameter Ny, controls the available bandwidth for
each considered OFDM waveform. The ideal complex baseband representation of
the adopted OFDM signal is the same as (2.3), i.e.:

Nec/2
sty =Y g(t) Sk te (0,1, (5.1)
k=—Nsc/2

where g(t) is the shaping impulse, S[k] € C is the symbol transmitted on the k" sub-
carrier (with S[0] = 0), Af = 1/T5 is the frequency separation between sub-carriers,
and T} is the OFDM symbol duration. Here, the OFDM symbol is considered without
the corresponding cyclic prefix (CP), since this is usually discarded by the receiver
as it contains the inter-symbol interference due to the previous transmitted symbols.
The vector § = [S[—Nec/2],...,S[K],...,S[Ne/2]]" € CNeF! which contain the
sub-carriers’ content including the empty DC, is defined in order to satisfy the energy
constraint ||S||? = 1.

Ideally, as explained in Section 2.1, g(¢) should be the rectangular function.
However, in real world implementations, the actual shape of g(¢) is determined by
the DAC, which generates the continuous time signal:

Nag—1

i) = > silpat- 7). (5.2

n=0

where s[n] = s(t=n/fs) is the sampled ideal OFDM signal, fs = Nqg /75 is the sam-
pling frequency, and p,(¢) is the impulse response of the DAC used for generating
sc¢(t) out of the samples s[n]. An ideal DAC is a low pass filter with a rectangular
frequency response having the cut-off frequency set to match half the sampling fre-
quency of the input discrete time signal. This corresponds to a DAC with an impulse
response given by sinc (¢ - fs). Physically realizable DACs may be modeled as filters
having a truncated sinc-shaped impulse response, i.e., p,(t) = w(t) -sinc (¢ - f5), with
w(t) denoting the windowing function that limits in time the sinc interpolating func-
tion. The set of the Ngp samples s = [S[O],...,S[Ndft — 1]}T e CNare g usually
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Figure 5.1 — Comparison between the ideal rectangular pulse shaped OFDM signal
s(t) and the real DAC filtered signal s.(¢). The Gibbs oscillations are evident in ¢t = 0
and t = T§.

obtained through a length Ngg inverse discrete Fourier transform (IDFT) operation
on the sequence S. More particularly, s = Ngg - IDFT{S}, where:

S =[0,80],...,5[Ne/2},0% . _noo1,S[~Nec/2],..., S[-1]] € CNav,  (5.3)

is a shifted and zero-padded version of S. According to [67, p. 533], w(t) may be
defined by a Hamming windowing function, thus:
1-— 2nt/T,) te[-T,/2,T,/2
oy = {o+ (1= a)eos(@n/T) e (L2102 -
0 otherwise

where o = 0.54 and T,, = 10/ f, is the adopted window width, which yields to an
overall duration of T, = Ty + 10/ fs for s.(t).

Thus, instead of using the widely adopted ideal model in (5.1), this study adopts
the realistic OFDM waveform in (5.2), hence considering the actual output of the
DAC, that is, a physically realizable signal. Figure 5.1 shows an example of an
OFDM signal obtained implementing a real digital to analog conversion. As one can
see, the discontinuities due to the rectangular shaping function are smoothed by the
DAC. In particular, the OFDM signal generated through the simulation of a real
DAC shows the classical Gibbs oscillations in correspondence of the time instants
where the ideal signal s(¢) presents discontinuities.

5.3.2 Sub-carrier power distributions

The OFDM framework is exploited for creating TOA reference signals having dif-
ferent power spectral densities. This is achieved by considering two sets of power
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distributions: Ug n,. and On, n... An Uy . distribution defines the sub-carrier con-
tent S[k], according to the sub-carrier distance d, as:

S[k] =

| {1 ke {£[Ne/2 = U(d+ 1)), 1 € Lan,} (5.5)

V2N,

where N, =[Ny /[2(d+1)]] is half the number of non-null sub-carriers, and L4 n,, =
{0,1,---, N, — 1}. Each distribution consists of a set of 2N, active equal power
and equal initial phase sub-carriers separated by d empty sub-carriers, which are
placed symmetrically with respect to the DC starting from the edges of the available
bandwidth (i.e., from the sub-carrier index k = Ns./2). Hence, the parameter d
controls the density of the active sub-carriers, with higher values of d corresponding

to a lower density of active sub-carriers. The value of d is selected from the set
Dy, ={deN:0<d < Ns/2, In,.(d) = 2d + 1}, where:

0 otherwise

In(d) = Noo — 2(d+1) Q%‘;\;DJ - 1) 1, (5.6)

is the number of empty sub-carriers determined by the adopted power distribution
around the DC sub-carrier. By this choice, increasing the value of d € Dy, leads
to larger spacing between the used sub-carriers and to a higher energy towards the
edge of the band. For each Uy ., distribution, a corresponding Oy, n,. distribution
can be derived by defining S[k| as:

S[k] =

1 {1 ke{xl:1l€[Ns/2— Ny+1,Ns/2]} (5.7)

V2N,

where, as previously outlined, N, and d are related. Hence, each Oy, n,. distribution
consists of N, sub-carriers contiguously placed both at the negative and positive
edges of the available bandwidth. As an example, Figure 5.2 shows the Uy y,, and
the corresponding Op, n,. distributions for Ny, = 72, which is the number of total
available sub-carriers specified in the 3GPP LTE 1.4 MHz channel configuration [26].

0 otherwise

5.3.3 Used LTE synchronization and reference signals

The analyzed LTE signals are LTE type 1 downlink signals with a normal CP and a
sub-carriers’ frequency separation of A f = 15kHz , and hence are designed according
to the specifications detailed in Section 2.2. A total of four LTE signals have been
considered throughout this analysis.

The first two considered signals are the primary synchronization signal (PSS) and
the secondary synchronization signal (SSS). These are synchronization signals, which
are designed for the time and frequency synchronization of the user equipment (UE),
and for providing the UE with the physical cell identity (PCI) of the cell, which is

given by Nf]:e)” = SNI%) + NI%), NICSH € [0,504] N N, as described in Section 2.2.4.



5.3 System model

71

v d=0,Na=36 x d=1,Na=18 % d=2 N, =12
4 d=3,No=9 =+ d=5N.=6 v d=8 N.=4
d=11,N,=3 ® d=17,Na=2 m d=235N,=1

| Wt f
| S

Figure 5.2 — Uy n.. and Oy, n., power distributions obtained using Ny, = 72 for
d e D7 ={0,1,2,3,5,8,11,17,35} and N, =|Ny/[2(d+1)]].

For a detailed description of the synchronization signals and their mapping to the
resource elements, the interested reader may refer to [26, p. 95].

The primary synchronization signal consists of a length 62 Zadhoff-Chu sequence
having a root sequence index u, which depends on the parameter NI%), that identifies
a particular cell ID within a physical cell identity group (PCIG). The same PSS
is transmitted only in the last OFDM symbol of the slots ng = 0 and ns = 10.
The sequence is mapped to the sub-carriers k = {—31,...,31} for all the channel
configurations, and hence the PSS has always a rough actual band occupation of
62 - Af = 930kHz. In our comparisons, the PSS was computed using NI%) = 0,
which corresponds to the Zadhoff-Chu root sequence index v = 25. The parameters
adopted for the generation of the used PSS are summarized in Table 5.1a.

The secondary synchronization signal is an interleaved concatenation of two
length 31 m-sequences. The SSS is transmitted in the slots ng = 0 and ng = 10, in
the OFDM symbol that occurs just before the one containing the PSS. Two different
SSSs are defined for each slot ng € {0,10}, and both depends on the PCIG NI%). In

particular, NI%) determines the value of the tuple (mg, mi,m’, q, ¢'), which ultimately
controls the relative shift of the m-sequences that constitute the SSS. The sequence
is mapped to the sub-carriers k = {—31,...,31} for all the channel configurations,
and hence also the SSS has always a rough actual bandwidth of 62 - Af = 930 kHz.
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ID within the PCIG N7 2
Zadhoff-Chu root u 20
slot in the LTE radio frame ng 0
considered OFDM symbol in the n* slot 6
actual bandwidth 930 kHz

(a) Parameters for the considered PSS.

PCIG N 62
(mg,m1,m',q,q") (8,11,70,2,2)
slot in the LTE radio frame ng 0
considered OFDM symbol in the n'" slot 3
actual bandwidth 930kHz

(b) Parameters for the considered SSS.

Table 5.1 — Parameters used for the generation of the considered LTE synchronization
signals.

In our comparisons, the SSS positioned in the OFDM symbol [ = 5 of the slot ng =0
was used, and it was generated setting NI%) = 67 as the physical layer cell identity

group. The parameter used for the generation of the used SSS are summarized in
Table 5.1b.

The other two considered signals are the reference signals described in Section
2.2.2, namely, the positioning reference signal (PRS) and the cell specific reference
signal (CRS). For a detailed description of the composition of the reference signals
and their mapping to the resource elements, the interested reader may refer to [26,
p. 76]. In our comparisons, the CRS signal pertaining to antenna port p = 0 (of a two
antenna ports configuration), time slot ng = 0, OFDM symbol [ = 0, and NICBH =3,
and the PRS pertaining to time slot ng = 1, OFDM symbol [ = 1 and Nfﬁn = 3 were
considered. The parameter used for the generation of those signals are summarized
in Table 5.2a and Table 5.2b, respectively. As described in Section 2.2.2, the symbols
of both the PRS and the CRS occur every 6 sub-carriers in the frequency domain,
i.e., twice per resource block (RB). Hence, the bandwidth that those reference signals
occupy depends on the adopted channel bandwidth configuration, and is given by
[62NEE — 1) + 1]Af = (NEBNEB — 5)Af = (Ng. — 5)Af, which is slightly less
than the actual channel bandwidth Ng.Af.

5.4 TOA estimation performance evaluation

Consider the estimation of the TOA 7 of the signal s¢(t) in an AWGN channel, given
the received signal:

r(t) =sc(t—71)+w(t), te]l0,To, (5.8)
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PCI NSt

slot in the LTE radio frame ng

considered OFDM symbol in the n* slot

antenna port p

actual bandwidth (NEBNEB _5)Af
(a) Parameters for the considered CRS.

(==} Nen) Nan) OV}

PCT N

slot in the LTE radio frame ng

considered OFDM symbol in the nt* slot

actual bandwidth (NEENEB _5)Af
(b) Parameters for the considered PRS.

Table 5.2 — Parameters used for the generation of the considered LTE reference signals.

where the observation interval [0, T, [ is assumed a priori known to the receiver [49],
and w(t) is the zero mean complex Gaussian white noise. Defining the signal energy
as & = [, |sc(t)|*dt and the noise power spectral density as Np, the signal-to-noise
ratio (SNR) at the receiver is v = &;/Np. If 7 is the result of the estimation of
T given r(t), then the estimation mean square error (MSE) is given by MSE(7) =
E [(7‘ — %)2]. Now, as the main objective of this study, the TOA estimation root
mean square error RMSE(7) = (MSE(7))'/2 obtainable employing the OFDM signal
model described in Section 5.3.1, is characterized through the sub-carrier power
distributions described in Section 5.3.2 using the widely adopted CRB, and the
tighter ZZB. Moreover, the same tools are exploited for comparing the performance
of the LTE signals of Section 5.3.3.

5.4.1 Bounds on the estiomation RMSE

If an un-biased estimator is considered, then E [7] = 7 and the estimation MSE is
equal to the variance of the estimator Var (7) = E [(7 — E [#])?], which can be lower-
bounded using the CRB, as explained in Section 4.2. Identifying S.(f) = F {sc(¢)}
as the spectrum of s.(¢), the CRB, which can be computed only if s.(¢) satisfies some
regularity conditions [48], can be expressed as Var (7) > C (y) = 1/(2v3?), where:

# =g [ enpPsiar (.9

is the squared Gabor bandwidth (GB) of s.(¢). It can be proved that the CRB is
tight only in the asymptotic region, that is, for high values of y [48,49]. Observe that,
intuitively, to increase the GB in (5.9), one should increase the power concentration
at the edges of the available bandwidth. This is the reason for the adoption of the
distributions Uy n,, and On, n,. defined in Section 5.3.2, which allow one to control
the GB simultaneously reducing the active sub-carriers’ density.
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Figure 5.3 — Normalized estimation RMSE and corresponding bounds for T, = 47T}
using the Us 7o power distribution.

A bound on the estimation MSE, tighter than the CRB for a wide range of SNR
values and holding for all estimators and signals, is the ZZB, which is described
in Section 4.3. Here, the bound of (4.41) is adopted, i.e., the one derived in [49],
which does not exploit the valley filling function. The ZZB can be expressed as
MSE(7) > Z (vy), with:

To
Z20) =7 [ AT - 8@(vATT=p(&)]) aa (5.10)
where Q(z) = (2m)~ /2 [ e~*/2du and:
NISEES { SR Aot BERTY gy

is the normalized single-sided autocorrelation function of the reference signal s.(t),
with e {-} and (-)* denoting the real part and the complex conjugate, respectively.

The bounds on the estimation RMSE obtainable from the CRB and the ZZB
are /C (v) and /Z (), respectively. These bounds, normalized to the ideal signal
duration 7§, are shown in Figure 5.3 for the U 7o distribution. The qualitative
boundaries between a priori, threshold and asymptotic regions are also highlighted,
together with the quantities that are proposed for determining a bound between the
threshold and the asymptotic region, and that are described in the following section.
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5.4.2 Estimation RMSE performance figures

Two quantities are considered for the evaluation of the TOA estimation performance
of each power distribution. As one can see from Figure 5.3, the asymptotic estimation
RMSE performance is identified by the CRB, which directly depends on the GB S.
Hence, the first considered metric is the normalized GB T, which is a dimensionless
parameter that quantifies the TOA estimation performance for high SNR values and
does not depend on the signal duration.

In addition, for characterizing the signal performance in the threshold region, a
novel performance figure is introduced. Define v4g = 10log;, v as the SNR expressed
in dB, and let vtqg = 10log;y7f be the maximum value of SNR expressed in dB
for which the logarithmic plot of \/Z(107%8/10) has a convex to concave point of
inflection. Defining Z(yqp) = Z(10%8/10)_ the value y;qp can be found by taking
the highest solution of:

82
Mg
for which the left hand side of (5.12) changes sign from minus to plus. Using the
ZZB definition of (5.10) and defining the auxiliary function:

[1og10 E(’ydB)} -0, (5.12)

€ (v, A) = 1078101 — p (A)], (5.13)

the equation of (5.12) can be rewritten, after some manipulations, as:

=*(7a) = E(vaB) - E(van) » (5.14)
where:
-~ _ 0 —
E(vaB) = 9van [E(vaB)]
log 10 /TO é(vap.A)
——_©°"7 AT, — A ,A) pdA, 5.15
2o¢mo{ (T, - A)e™ 57 Ve (s, A) | (5.15)
. 82
E(yaB) = % [E(7aB)]
log? 10 /To ' ana)
= —-———— ATO_A 7A 7A_1 dA
20227 T, Jo { ( Je o2 € (vam, A) [€ (vaB, A) ]}
(5.16)

Hence, 44 can be obtained as the highest numerical solution of (5.14). As depicted
in Figure 5.3, the novel performance figure is referred to as v,ag = 10logyg Yin
and is defined as the intersection between the logarithmic plot of the CRB, i.e., of
v/C(107a8/10) " and the tangent to the logarithmic plot of y/Z(10748/10) at ~; 4p.

In other words, consider the linear equation that defines the logarithmic plot of
the CRB as a function of «4g, which is:

1

1 2
Yy = —?OVdB 35 log (25 ) ) (5-17)
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and the linear equation that defines the tangent to the logarithmic plot of the ZZB
as a function of yqp at ¢ qp, which is:

1
~ 2log 10

(’Yf,dB)
('Vf,dB)

1 —
- (vaB — Y.aB) + 3 logyo [E(7t,aB)] - (5.18)

(11| [1]

)

Hence, the value of 4, gg can be found as the intersection between (5.17) and (5.18),
which is given by:

) YeaB=E (Yr,ap) — log 10 - = (yg.a) - logyo [2E (Vean) 5]
th,dB = - - .
E (YtaB) + 7510810 - E (a8)

(5.19)

This SNR value may be used to reliably approximate the transition point between
the threshold region and asymptotic region, where the ZZB becomes tight to the
CRB. Hence, signals having a small value of ~,, are considered as signals achieving
a good estimation RMSE performance in the threshold region.

In Section 5.5, the SNR threshold d2 of [18,68] is also used as a benchmark of
the proposed threshold ~¢n. The threshold ds is evaluated as the highest solution of
the equation:

Z(62) =2-C(d2), (5.20)

which corresponds to the SNR value for which the ZZB value is twice the value
assumed by the CRB.

5.5 Results

In this section, the results obtained with the described OFDM signals are presented.
Section 5.5.1 analyzes the dependence of the RMSE performance of the sub-carriers’
power distributions of Section 5.3.2 on the parameters d and N,. Moreover, the
effectiveness of the proposed SNR threshold 7, in determining the boundaries be-
tween threshold and asymptotic RMSE regions is addressed. Finally, Section 5.5.2
presents the results obtained by comparing the different LTE signals explained in
Section 5.3.3.

5.5.1 Power distributions comparison

This section discusses the numerical results which are obtained using T, = 47T
and considering the two cases (Ngc, Nagt) = (72,128) and (Nsc, Nag,) = (300,512),
corresponding to the 3GPP LTE specifications for the 1.4 MHz and 5 MHz channel
configurations, respectively, as detailed in Section 2.2.

Figure 5.4 depicts the normalized ZZBs obtained for different Uy n,. distribu-
tions, selecting, for readability purposes, four representative values of d for each
value of Ng.. More specifically, the d = {0,3,11,35} cases (corresponding to N, =
{36,9,3,1}) are presented for N. = 72 and the d = {0, 9,49, 149} cases (correspond-
ing to N, = {150, 15, 3,1}) are presented for N. = 300. Moreover, Figure 5.5 depicts
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Figure 5.4 — Plots of \/Z(v)/Ts for selected distributions Uy ... The proposed per-
formance figure vy, g and the threshold metric d2 of [18,68] are also shown for each
curve.
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Figure 5.6 — Plots of \/Z(v)/Ts for selected Uy n, and O, n, distributions in the
surroundings of the boundary between threshold and asymptotic RMSE region. The
thresholds =, and d9 are compared.

the ZZB curves relative to the Oy, y, distribution. The N, = {36,3,2,1} cases are
presented for N, = 72 and the N, = {150,10, 5,1} cases are presented for N, = 300.
In both Figure 5.4 and Figure 5.5, for each plotted curve, the circle marker identifies
the SNR threshold vin B evaluated by (5.19), while the triangle marker identifies,
for comparison purposes, the usual SNR threshold 2. For readability purposes, the
benchmark threshold s is reported in dB at the same ordinate of the correspond-
ing vthap value. Three aspects may be outlined from these figures. Firstly, it is
evident that the novel performance figure vy, qp effectively evaluates the estimation
RMSE threshold performance of a signal by properly locating the boundary between
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threshold and asymptotic regions. Secondly, Ny strongly influences the asymptotic
estimation RMSE performance, since higher values of Ny, lead to an increase of the
bandwidth occupied by the sub-carriers with the same inter-channel spacing Af.
This ultimately determines an increased GB and hence a smaller asymptotic esti-
mation RMSE. And thirdly, the adopted value of sub-carriers’ spacing d strongly
influences the RMSE behavior in the threshold region. Interestingly, the signal ob-
taining the best asymptotic performance shows the worst threshold behavior.

A direct comparison between v, gg and Jd2 shows a satisfactory agreement be-
tween the two definitions of the SNR threshold. However, the agreement between
Vth,dB and d2 depends on the steepness of the ZZB curve in the boundary between
threshold region and asymptotic region. When this transition is sufficiently steep,
Vth,dB s able to better capture the point at which the threshold region actually ends.
Conversely, when the ZZB curve has a flatter transition from the threshold region
to the asymptotic region, d2 better captures the actual end of the threshold region.
This is represented in Figure 5.6, where, for each plot, two cases are depicted, where
the novel metric v, g performs better and worse than the metric do of [18,68] in
identifying the boundary between threshold and asymptotic performance region.

To explore the estimation RMSE behavior of the different OFDM signals with
the spectra determined by the parameters d and IV,, consider now the threshold gain
Gin =73 /ven- This parameter is defined as the hypothetical amount of power that
a signal permits to save in respect to 1;;,** for attaining the RMSE convergence to the
boundary between threshold and asymptotic RMSE region. Here, 1{;** is the value
of v when d= Ng./2—1, that is when N, = 1, for which the highest normalized GB
BTy is attained. Figure 5.7 shows how the values of 87, and Gy, vary depending on
the values of NV, obtained using d € Dy,.. As one can see, for the distributions Uy n,.
and a fixed Ng, the value of 5T that results from a decrease of the number of active
sub-carriers N, (i.e., an increase of the sub-carriers’ spacing d), is not associated
with an improvement in the threshold gain Gy, and hence with a reduction of
Vth,dB- This reveals a trade-off between 5T and Gy, that is, between asymptotic
and threshold performance, which is even more evident for the distributions O, n..-
This demonstrates that the GB is not the only parameter that should be considered
when designing a TOA reference signal [48], since the maximization of the GB does
not directly guarantee a satisfactory threshold performance. Finally, these results
show that an acceptable estimation RMSE performance in the threshold region can
be achieved using a sufficiently high density of active sub-carriers for the equispaced
Uqg, N, distributions, or a sufficiently high number of contiguous active sub-carriers
at the edges of the bandwidth for the Oy, n,. distributions.

5.5.2 LTE signals comparison

In this section, the LTE synchronization and reference signals described in Section
5.3.3 are compared in terms of estimation RMSE performance when employed for
TOA measurements in the AWGN channel. The tools exploited for the comparison
are the ZZB of (5.10) and the SNR threshold -y, explained in Section 5.4.2. Dif-
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Figure 5.7 — Plots of Gy, (star markers) and 87, (cross markers) for the distributions
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where d € Dy, .

ferently from the previous figures, the bounds on the TOA estimation RMSE are
represented as distances, obtained as ¢ - /Z(7), with ¢ being the speed of light.
The results of the comparison are depicted in Figure 5.8, where the ZZBs are
evaluated using T, = 47,. The signals considered are the PSS, the SSS, and the
CRS and PRS for all the possible LTE channel bandwidth configurations, i.e., for
all the possible numbers of resource blocks Ng‘f € {6, 15,25,50,75,100}. There are
four aspects to be highlighted. Firstly, the influence of the LTE channel bandwidth
configuration, i.e., of the number of resource blocks NSI]?, on the estimation RMSE
performance is evident: the signals with the greatest bandwidth attain the best
asymptotic performance. This was expected, since signal with a widest band have a
greater GB. Secondly, the performance obtained by the two synchronization signals,
namely the PSS and the SSS, is very similar, and is worse than the performance of
all the other considered signals. This is because they have the smallest bandwidth
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Figure 5.8 — Plots of ¢- \/Z(v) for the considered LTE reference signals and various
bandwidth configurations N§B. The SNR threshold 7, is also shown.

occupation, equal to 930 kHz, which is even smaller than the bandwidth of the ref-
erence signals with N2 = 6, which is equal to (NFENEB — 5)Af = 1005kHz.
Thirdly, the performance of the CRS and of the PRS is equal for all the channel
bandwidth configurations. The only slight difference that one can notice for the
value Ng}? = 6 is due to the frequency domain (FD) misalignment of the two sets of
pilots, which results in the CRS having a pilot at a slightly higher frequency than the
PRS’s highest frequency pilot. As one can see, this phenomenon is less evident at
higher bandwidths, i.e., for Ngf > 6. Finally, consider the SNR thresholds achieved
by the various LTE signals. As one can see, the values of vy, for signals having the
same bandwidth configuration (i.e., the same value of NE2) are very similar (even
not distinguishable in the plot).

5.6 Conclusions

The TOA estimation RMSE performance of realistically modelled OFDM signals has
been investigated in the AWGN channel, using a model that considers the waveform
directly at the output of the DAC.

Firstly, the usage of OFDM waveforms for TOA estimation have been studied
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from a signal design point of view. Two sets of power distributions on the avail-
able sub-carriers have been defined to evaluate the estimation RMSE performance
both in the asymptotic and threshold regions by using the CRB and the ZZB. The
developed analysis has confirmed that, for a given maximum bandwidth, the power
distribution influences the estimation RMSE both in the asymptotic and threshold
regions. Analysis using a novel performance figure, introduced to quantify the es-
timation RMSE threshold behavior, has revealed the existence of a trade-off in the
performance of the timing measurements of OFDM signals. More precisely, a widely
spaced power distribution, concentrated on the edges of the available bandwidth,
has the positive effect of determining a small asymptotic estimation RMSE but the
negative effect of giving a poor estimation RMSE threshold behavior. The analysis
has also shown that, to obtain a satisfactory threshold performance with an equis-
paced sub-carrier power distribution, a high density of active sub-carriers is required.
Similarly, a certain number of active sub-carries has to be employed if they have to
be placed contiguously on the edges of the available bandwidth. Future work aims
to extend the TOA performance analysis to multipath channels, by exploiting the
bounds of [18,68], and adopting the presented framework as a reference best-case
indication.

Secondly, the framework developed for the asymptotic and threshold performance
analysis of physically realizable OFDM waveforms has been exploited for a brief
comparison between the available LTE reference signals. While the synchronization
signals are characterized by a small bandwidth, which corresponds to a poor perfor-
mance, the CRS and the PRS resulted equally good as TOA estimation reference
signals, achieving identical performance both in the threshold and asymptotic RMSE
regions for all the channel bandwidth configurations.
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Chapter 6

Algorithms for TOA estimation
of real LTE signals

This chapter presents the results of work undertaken in close collaboration with the
Hochschule fiir Technik Rapperswil and with the support of u-blox UK Lid. Datasets
of real Long Term Evolution (LTE) signals collected from the commercial network of
the town of Rapperswil, Switzerland, have been processed for extracting time-based
pseudorange measurements. Different measurements environment have been tested,
mncluding an outdoor vehicular and an indoor scenario, both characterized by strong
multipath propagation. Algorithms have been developed for effectively separating mul-
tipath and tracking the direct path, in order to estimate unbiased pseudoranges, which
have been then used for evaluating position fizes. This demonstrated the feasibility
of a positioning system based solely on the use of LTE signals.*

6.1 Introduction

The estimation of the distance between a mobile receiver and a base station (BS)
performed by measuring the time of arrival (TOA) of the transmitted signals is a
difficult task in harsh propagation environments. This is because the reception of
several differently delayed paths influences the estimated TOA and ultimately the
estimated distance. Indeed, only the direct path (DP) TOA provides an unbiased

!The content of this chapter was partly published on F. Knutti, M. Sabathy, M. Driusso,
H. Mathis, and C. Marshall, “Positioning Using LTE Signals,” in European Navigation Conference
(ENC 2015), Apr. 2015, and on M. Driusso, F. Babich, F. Knutti, M. Sabathy, and C. Marshall,
“Estimation and tracking of LTE signals time of arrival in a mobile multipath environment,” in 9th
International Symposium on Image and Signal Processing and Analysis, pp. 276-281, Sep. 2015, and
has been submitted for second review in M. Driusso, F. Babich, F. Knutti, M. Sabathy, H. Mathis
and C. Marshall, “Vehicular position tracking using LTE signals,” IEEE Transactions on Vehicular
Technology, Feb. 2016. Moreover, a patent on some of the topics described has been submitted
as C. Marshall and M. Driusso, “Calculating a ranging measurement in a cellular communications
network,” EPO application 15195460.9, filed on Nov. 2015, assigned to u-blox AG.
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estimate of the distance between the transmitter and the receiver, which is crucial
for obtaining a precise position fix. Hence, appropriate processing is needed for
identifying the DP among the different received paths.

In this part of the thesis, the topic of the TOA estimation of real Third Gen-
eration Partnership Project (3GPP) Long Term Evolution (LTE) signals for posi-
tioning in multipath conditions is addressed. The effectiveness of sub-space based
super-resolution algorithms (SRAs) when employed for multipath separation is in-
vestigated. Several approaches have been developed in the presented work for com-
bining the received LTE signals in order to improve the TOA estimates’ quality.
Moreover, a DP TOA tracking technique has been tested on real LTE signal samples
for performing range estimations along subsequent measurement. All the developed
algorithms have been applied to real LTE data collected in the field. The obtained
results demonstrated the effectiveness of the SRAs for tackling multipath and the
feasibility of a positioning system that relies on TOA measurements of LTE signals.

The work described in this chapter has been realized in close collaboration with
the Institute for Communication Systems (ICOM) of the Hochschule fiir Technik
Rapperswil (HSR), Switzerland, and with u-blox UK Ltd. In particular, the ICOM
team realized the setup used for the different measurement campaigns in which the
real LTE data fed into the developed algorithms was gathered. Moreover, the actual
measurements and the preprocessing software needed for storing and sorting the
gathered data were realized at the HSR. Finally, the ranges evaluated by running
the developed algorithms on the measured data were passed back to the ICOM team,
who performed the positioning. The work coming from HSR is briefly presented in
Section 6.3 and Section 6.8.

The remainder of the chapter is organized as follows. In Section 6.2, a review of
the related works found in the literature is presented, together with a motivation for
the presented approach. The setup used for the in-the-field measurements developed
at the HSR is described in Section 6.3, together with the measurement locations and
with the parameters of the LTE signals received. Section 6.4 explains the different
signal combining strategies adopted to improve the quality of the TOA estimates
together with the SRAs. Section 6.5 introduces some simple TOA estimators that
were used for benchmarking the proposed approach. Section 6.6 describes the main
developed algorithm, referred to as EKAT, which was used to identify the DP TOA
and track it along subsequent measurements. Section 6.7 explains how the timing
measurements obtained with EKAT and with other simpler benchmark algorithms
are converted to actual ranges. This section includes the description of the algorithm
adopted to combine the measurements from multiple cells pertaining to the same BS,
and the description of the procedure used for the estimation of the clock bias and
drift of the BSs. Section 6.8 briefly illustrates the adopted positioning algorithm,
developed at the HSR for assessing the validity of the estimated ranges at a posi-
tioning level. Finally, Section 6.9 comments the obtained ranging and positioning
results, followed by some final considerations, in Section 6.10.
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6.2 Related works and motivations

As has already mentioned in Chapter 2, the LTE standard itself offers positioning
capabilities, providing the so-called positioning reference signal (PRS) and network-
centered procedures for localizing the user equipment by exploiting PRS time dif-
ference of arrival (TDOA) measurements [24, 26]. Several works, based on com-
puter simulations or experimental evaluations, have been published on the subject
of TDOA based positioning systems that exploit LTE signals in harsh propagation
environments. The work in [62] evaluates through computer simulations the accuracy
of the PRS when used in TDOA-based localization systems under different types of
interference. In [63], the same authors extend the timing performance analysis to
multipath channels. In [60], the PRS is exploited for realizing a joint time and ampli-
tude multipath channel estimation. An experimental evaluation is presented in [69],
where the timing performance of different hardware platforms is compared by using
emulated LTE signals in line of sight (LOS) multipath-free channels. In [70, 71],
different LTE signals generated with prototyping hardware are exploited for assess-
ing the feasibility of indoor positioning based on LTE signals TDOA measurements.
In [72], an opportunistic approach for positioning that exploits the LTE cell specific
reference signal (CRS) is proposed. The authors of [73] proposed a passive radar
system exploiting the LTE CRS and the LTE base stations as illuminators of oppor-
tunity. The work described in [74] proposes a method for pseudorange measurements
with LTE signals that is robust in detecting the first received path. In [75], an op-
portunistic BSs synchronization method is proposed, that exploits the LTE CRS and
the a priori knowledge of the BSs’ positions.

Interestingly, the authors of [75] recognized that newly deployed LTE commer-
cial networks are not mature yet for TDOA based positioning, mainly because of a
lack of PRS transmission and because of non-synchronized BSs. This is in accor-
dance with the early measurements performed at the HSR and documented in [76].
The limited operators’ efforts in deploying services and infrastructure needed for
performing positioning with LTE signals may be mainly motivated by the fact that
the PRS transmission reduces the resources available to transport customers’ data.
Consequently, new approaches are needed in order to enable LTE-based positioning
services that are more appealing for use in practice in operators’ networks.

The approach followed in this part of the thesis moves from these motivations.
The proposed system is mobile-centered and uses the signals transmitted by the cur-
rently deployed commercial LTE networks. The LTE CRS is exploited for estimating
the ranges between the BSs and the mobile receiver. Differently from the majority of
the existing literature, the proposed system is based on TOA measurements, avoid-
ing any BSs synchronization requirement. However, it relies on two assumptions.
Firstly, the positions of the BSs have to be known to the receiver. Secondly, each
BS has to make its clock properties available to the positioning engine (PE) which
performs the location estimation, enabling a reasonably approximate knowledge of
each BS’s clock offset and drift in respect to a reference time. The PE might be
internal within the network, or located on the mobile receiver. In the presented
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experiments, the BSs positions were acquired from a public database, and the BSs’
clock properties were estimated in a preliminary phase.

Within this approach, the algorithms developed during the activities of the PhD
mainly focus on the TOA estimation of the LTE CRS in multipath conditions. Sev-
eral works have been realized on the subject of multipath-robust TOA estimation.
The authors of [70] proposed a cross-correlation based TOA estimator with non line
of sight (NLOS) mitigation together with a particle filter for performing indoor po-
sitioning with LTE signals generated ad-hoc using prototyping hardware. In [15,16],
super-resolution algorithms and frequency diversity techniques are employed for in-
door static ranging measurements using wideband sounding signals. State-space
approach algorithms specifically designed for channel sounding can also been em-
ployed for TOA estimation in multipath environments, such as the ones of [77-79].
However, specific hardware is required for these algorithms, which is usually too
complex for real time consumer product implementation.

In the proposed algorithm, the TOA estimation is performed by using the estima-
tion of signal parameters via rotational invariance techniques (ESPRIT) algorithm
and by exploiting opportunistically the CRS pilot tones. The LTE CRS was chosen
as the reference signal for TOA estimation, because it is mandatory to be transmit-
ted, and because occupies the full channel bandwidth, offering high resolution for
multipath separation. The ESPRIT algorithm was previously used in [37] for para-
metric channel estimation. A state-space approach similar to [78] is then adopted for
tracking the estimated DP TOA. Moreover, a novel measurement noise covariance
estimation is performed, using the ESPRIT performance bound of [80]. The capa-
bilities of the developed algorithm were explored using the real LTE data gathered
with a portable setup at the HSR, both in outdoor and indoor multipath scenarios.
To the best of the author’s knowledge, there are no works in the literature that pro-
pose an experimental in-the-field validation of a multipath-robust LTE signals TOA
estimation system for positioning.

6.3 Measurements in real conditions

The proposed approach has been tested with a live data set of commercial LTE
signals recorded in Rapperswil, Switzerland. The measurement setup was developed
at the HSR by the ICOM team, and is documented in [76,81-83]. In the following, a
brief review of the used test-beds and of the three considered measurement scenarios
is presented. Moreover, details on the particular LTE parameters found during the
measurements in Rapperswil are given. This does not limit the generality of the
obtained results.

Note that the first of these three measurement sessions consists of small prelim-
inary datasets. Conversely, the latter two measurement sessions, held in an outdoor
vehicular and in an indoor scenario, respectively, are those on which the proposed
TOA estimation algorithm has been actually applied. Hence, with the exception
of the preliminary results presented in Section 6.9.3, the rest of the chapter always
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’ parameter operator 1 | operator 2
B 15 MHz 10 MHz
NEB 75 50
Ng. = NEB NEB 900 600
carrier frequency fc 1815.1 MHz 1869 MHz
Natt 1024
Af=1/T; 15kHz
NEB 12
NDL 7
base time unit T o Ts/2048
I = 0 cyclic prefix (CP) length Ty 0 160-T5 o
[ >0 CP length T, ; 144-T5 o

Table 6.1 — LTE physical layer parameters - outdoor measurements (28 August 2014)
refers to the two main datasets.

6.3.1 Measurement scenarios

The first measurement session consisted of a preliminary test held at the HSR with
a basic version of the measurement setup, documented in [76]. During this test, only
the LTE signals coming from a single BS of a single operator in LOS conditions were
continuously recorded. The test-bed was placed in a corridor inside the university
building, as shown in Figure 6.1, where just a large glass wall separated the receiver
and the BS. Figure 6.1c shows both the test-bed in the corridor and the transmitting
base station where the recorded signals came from. Two measurements were realized.
In the first one, 120 seconds of data were acquired leaving fixed the receiver in the
“Start” position indicated in the map of Figure 6.1d. In the second one, the receiver
was moved as depicted in the map of Figure 6.1d, resting for 15 seconds at each of the
“Start”, “Stopover” and “Final” positions. The acquired signal data was analyzed
off line. Two cell IDs were detected, respectively Nﬁ%ﬂ = 84 and Nﬁ%ﬂ = 86, which
correspond to the sectors highlighted in Figure 6.1d. The recorded LTE signals
pertain to a normal CP 15MHz LTE channel configuration with 2 antenna ports,
which corresponds to the signal parameters that are summarized for operator 1 in
Table 6.1. The goal of this preliminary set of measurements was to have a clear set
of LTE signals to be used for testing the TOA estimation algorithms.

The second dataset was acquired during a vehicular data gathering session, docu-
mented in [81]. LTE signals were recorded in the area of Rapperswil SG, Switzerland,
with the equipment installed in a van. The route was chosen such as to include ur-
ban, sub-urban, and open-field areas, as the Global Positioning System (GPS) track
in Figure 6.2a suggests. This routing allows the performance of the proposed system
to be analyzed in different mixed propagation environments. The time needed for
driving the route shown was about 20 minutes, at speeds up to 50 km/h. This session
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(b) Second part of the path.
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Figure 6.1 — Photos and map of the preliminary measurement scenario [76].
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’ parameter ‘ operator 1 | operator 2 | operator 3
B 20 MHz 15MHz 15 MHz
NEB 100 75 75
Ny = NEB NBB 1200 900 900
carrier frequency fc¢ 1815.1 MHz 1870 MHz 1850.1 MHz
Natt 1536
Af =1/T; 15kHz
NEB 12
NDL 7
base time unit T o Ts/2048
I =0 CP length Ty, o 160-T5 o
1> 0 CP length Tty 144-Ty o

Table 6.2 — LTE physical layer parameters - indoor measurements (18 June 2015)

was held on the 28th August 2014. At that time, two operators were found in the
LTE network of Rapperswil, which was set to frequency domain duplexing (FDD),
with a normal CP and a two antenna port configuration. Table 6.1 summarizes all
the useful LTE parameters found during the measurements. Because of the channel
bandwidths used, a sample rate of 25 MSPS is enough for an un-aliased reception of
the LTE signals from both operators. Given the length of the measurement session
and the big amount of data to be stored (1 second at 25 MSPS with 16 bit I/Q
samples corresponds to 100 MB of data), only 10ms of data were recorded every
second.

The third dataset was acquired during an indoor NLOS data gathering session,
documented in [82]. LTE signals were recorded in building 2 of the HSR, with the
equipment installed on a trolley. The test route started outdoors, in the area in front
of building 2, which is slightly below the ground level, and surrounded by concrete
facilities. As the laser track of Figure 6.2b shows, the route continued following
a square shaped path inside the HSR building 2, and returned outdoors, with a
duration of approximately 15 minutes. This routing allows the performance of the
proposed system to be analyzed in indoor propagation environments, characterized
by NLOS propagation and strong multipath. This session was held on the 18th June
2015. At that time, three operators were found in the LTE network of Rapperswil,
which was set to FDD, with a normal CP and a two antenna port configuration.
Table 6.2 summarizes all the useful LTE parameters found during this last set of
measurements. Again, the sample rate used is 25 MSPS, and only 10 ms of data
were recorded every second.

6.3.2 Measurement setup

The setup used to gather the live data consists of a set of universal software radio
peripheral (USRP) N210 software defined radios (SDRs), which use a high precision
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Figure 6.2 — Ground truth and satellite views for the outdoor and indoor measurement
scenarios. In the outdoor case, the ground truth is assumed to be the measured GPS
track, while in the indoor case, the ground truth is assumed to be given by the positions
measured using a laser distance sensor.
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Figure 6.3 — Flow graph of the portable measurement setup used in the outdoor ve-
hicular scenario. The setup was installed in a van.

10 MHz reference clock of a GPS-locked Rubidium frequency standard. A conven-
tional personal computer was used as a system controller and for data storage. The
data recording equipment was installed on a trolley and energy was supplied by a
battery-powered DC to AC converter, allowing field usage. In the case of the prelim-
inary measurements, no further instruments were used, and, given the short duration
of the session, the LTE signals were recorded continuously [76].

For the outdoor and indoor datesets, the setup used was more elaborated, also
because the goal of the measurements was to receive the highest possible number
of different operators and cells. For this reason, a dedicated USRP was used for
each operator to cover the different downlink carrier frequencies fc. The recorded
data was GPS time stamped and therefore coherent sampling between the USRPs
was guaranteed. This allows the LTE signals of the different operators to be used
in combination. As said previously, to reduce the amount of data to be saved, only
10ms chunks of contiguous data were stored every second. Two versions of the
measurement setup were realized. The first version, used in the outdoor vehicular
measurements session, consisted of two USRPs, since two operators were detected at
that time, and is shown in Figure 6.3. When available, the GPS fix corresponding to
the reception position of each recorded chunk was saved, to be used as a ground truth.
The second version of the measurement setup, used in the indoor measurements
session, consisted of three USRPs, since three operators were detected at that time,
and is shown in Figure 6.4. Again, the GPS fix corresponding to the reception
position of each recorded chunk was saved when available. Data analysis reported
in [82] showed that GPS position fixes were available only in the outdoor portion
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Figure 6.4 — Flow graph of the portable measurement setup used in the indoor scenario.
The setup was installed on a trolley.

of the route of Figure 6.2b. Hence, a further position sensor was required in this
measurement session, in order to ensure ground truth data collection even in indoor
areas. As the setup of Figure 6.4 shows, a laser distance sensor was used for this
purpose.

6.3.3 Cell search and coarse synchronization

The preliminary dataset was processed by the ICOM team with the simple steps
described in [76]. Indeed, this dataset contained the LTE signals coming from a
single very close BS transmitting with known cell IDs. Moreover, the signals were
recorded continuously throughout the measurement session. Hence, the cell search
and symbol-level synchronization were realized using the canonical method based on
the correlation of the received signal with the primary synchronization signal (PSS)
and the secondary synchronization signal (SSS). Further details on this technique
are available in [35].

The procedure followed for the outdoor and indoor datasets is different, and is
described in [83]. In this case, the measured datasets were searched for signals from
available BSs by means of an exhaustive search against a list of cell identities of all
BSs in the area. Since the BS locations were assumed to be known, the location
information provided by the Swiss Federal Office of Communications (OFCOM) was
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Figure 6.5 — Test route and detected LTE cells for the indoor dataset. Each indexed
marker corresponds to a BS, which transmits on several cells, having the indicated
NICBH. The orientation of the cells is approximate. The cells of a third BS pertaining
to operator 2 (NSS! =459 and NSS! = 460), located souther across the lake, were also
detected.

used [84]. After discovering all available base stations, frame and symbol timing for
each base station were acquired correlating the received signal with the CRS. This
method is suited for discovering all the cells of the surroundings, and not only the
one received with the highest power. Afterwards, the 10 ms chunks which contain the
signal of a certain BS were marked per BS. From every chunk of raw data, for every
BS received in that chunk and every cell pertaining to each BS, all the orthogonal
frequency division multiplexing (OFDM) symbols containing the CRS were saved
for further processing. Since the duration of each chunk is 10 ms, roughly 40 OFDM
symbols were saved for each detected cell in each chunk. Together with each chunk,
also the Coordinated Universal Time (UTC) timestamp (V) of its reception and
the offset Atg introduced in respect to t(Y) for synchronizing at a symbol level were
saved.

In the case of the indoor dataset, the recorded samples contained signals from a
total of 5 BSs, with 2 BSs from operator 1, 2 BSs from operator 2 and 1 BS from
operator 3. Figure 6.5 shows the locations of the BSs used, except for a distant
BS across the lake in south-southwesterly direction (BS 3 operator 2). The cells
detected during the indoor measurements are shown in Figure 6.5, where each marker
identifies one of the three active operators.

Similarly, in the case of the outdoor dataset, the recorded samples contained
signals from a total of 9 BSs, with 6 BSs from operator 1 and 3 BSs from operator
2. Figure 6.6 shows the locations of the BSs used, except for a distant BS across
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Figure 6.6 — Test route and detected LTE cells for the outdoor vehicular dataset. Each indexed marker corresponds to a BS, which
transmits on several cells, having the indicated Zwm:. The orientation of the cells is approximate. The cells of a third BS pertaining
to operator 2 (N5 =460 and N&5!'=461), located souther across the lake, were also detected.
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the lake in south-southwesterly direction (BS 3 operator 2) and another BS situated
on a hill to the north (BS 4 operator 1, not considered for positioning). Moreover,
the cells detected during the outdoor measurements are also shown, with a different
marker identifying one of the two active operators.

6.4 Time-frequency combining of the received signals

Notation. In the remainder of this chapter, the index ¢ is generally employed as a
discrete time index identifying the t'" performed measurement either in the outdoor
vehicular or in the indoor scenario, with ¢(Y) being the corresponding UTC epoch.

As explained in Section 3.1, the multipath channel encountered by a signal prop-
agating from a BS to a mobile receiver may be modeled with the following channel
impulse response (CIR) and channel frequency response (CFR) [20]:

L—-1
h(r) =Y hé(r—m), (6.1)
=0

L-1
H(f)=> he 7?0m, (6.2)
=0

Using an estimate 7y of the DP TOA 79, the pseudorange p = c- 7y can be evaluated,
from which a distance estimate d can be calculated. The relation between the pseu-
dorange p and the distance estimate d between the BS and the receiver is discussed
in Section 6.7. Thanks to the OFDM modulation that underlies their physical layer,
LTE downlink signals offer a very convenient way of estimating the CFR using the
CRS pilot tones. This CFR estimate constitutes a convenient and substantial basis
for the DP TOA estimation.

Let T;l,ns [n],n=0,..., Ngg—1 be the result of the analog-to-digital conversion of

the I'" OFDM symbol (after CP removal) received in the slot n at the measurement
time t from cell 7. Just the OFDM symbols carrying the CRS were saved, hence
[ € {0,4}. Moreover, since a measurement index ¢ corresponds to a 10ms chunck
of saved data, approximately 20 slots are contained in each chunk, and hence n; €
{0,...,19}.

Using the OFDM demodulation principles explained in Section 2.1, the con-
tent of the sub-carriers in the received signal can be easily accessed as i,l,ns [k] =
DFT{T;,l,nS [n]}. Hence, a simple least squares (LS) CFR estimation [33] is pos-
sible thanks to the knowledge of the CRS symbols SZ;’ n Kl ko€ CZ:l,ny where

Z:ﬁns = {6k+n§’p, k=0,..., Nyt — 1} is the set of equispaced sub-carrier indices oc-
cupied by a CRS symbol, and mf’p € NNJ[0, 5] is the frequency domain (FD) shift that
characterizes each CRS mapping depending on NICBH, p, and [. More particularly:

iy Ri,  [6k+rP
HZ:II?nS[ ]: ::i;ng[ ip] ’ k:O, s 7Nt0t -1 (63)
St,l,ns [6]“"'%,[]
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for p = {0,1}. As one can see, this procedure leads to a total of four CFR LS
estimates for every slot in every measurement chunk ¢, one per antenna port for
each OFDM symbol carrying CRS (two antenna ports p = {0,1}, two symbols
carrying CRS per slot). These CFR estimates are used in the presented framework
for estimating the DP TOA 7.

This approach is particularly useful because it permits a convenient integration
of the proposed positioning approach into LTE communication modules. Indeed, the
CFR LS estimation of (6.3) is commonly performed by LTE receivers for coherently
demodulating the user data [85], and can be passed, without additional computa-
tions, to a ranging module, that performs the processing required for the estimation
of 7 0-

6.4.1 CFR estimates time-frequency merging

As explained in Section 6.3, only the two OFDM symbols of a slot containing the
CRSs are stored during the preprocessing for every chunk of saved data. According
to the mapping depicted in Figure 2.7b, the two CRSs of a slot pertaining to the
same antenna port p occupy different sub-carriers. More particularly, |/€6’p —ryP| =3,
meaning that the sub-carriers of the two CRSs of a slot are characterized by a relative
FD shift of 3A f. If the propagation channel is sufficiently correlated, i.e., the relative
speed v between the transmitter and the receiver is sufficiently low, this aspect
of the CRS design may be exploited by merging the two estimates ﬁtl:g,ns [k] and

fIZ:ZnS [k] pertaining to the same slot ns, as shown in Figure 6.7. This time-frequency

combination permits to obtain the CFR estimate PAIZ,];S [k], which is characterized by
a frequency separation of Afncrs = 3Af between samples (the subscript mCRS
stands for “merged CRS”). More particularly, H’Z:gs (k] = ﬁ;’ﬁk)’ns [|k/2]], where the
function I(k) selects the CFR estimate to assign to the index k according to:

4-(k)y, if k5P < KLP
(k)= 2 o oip o ip (6.4)

and k = 0,...,2N;ot — 1. An example result of this merging procedure applied to
real data is shown in Figure 6.8.

A wireless fading channel tap h; can be considered correlated both in envelope
|hi| and phase ¢, = arg{h;} in the time interval At if its amplitude and phase
correlation coefficients are above a certain threshold py,. According to the Jakes’
model, the envelope and phase normalized time correlation coefficients are a function
of both the time interval At and Doppler frequency fp, and are equal to [86]:

pin (foA) = J§ (21 foAt) (6.5)
pon (o) = 3T (o AD)-[1+ T(fpAD)] — Qo). (6.6)

In (6.5)-(6.6), Jo(-) is the zero-order Bessel function of the first kind, I'(z) =
-1

5 sin ! (|Jo(27z)|), and Q(z) = ﬂ% o0 n72-Jg"(2wx). The curves of Figure 6.9
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Figure 6.7 — Example of merging the CFR LS estimates evaluated using the two CRSs
of a slot, for each antenna port.

depict the expressions above. As one can see, a correlation threshold of py, = 0.9
approximately imply fpAt < 0.025 for having correlated envelope and phase, with
/o = fc-v/c and fc being the carrier frequency. Without loss of generality, and
using the LTE system parameters measured in Rapperswil, the time interval between
two CRSs in a slot is equal to At = 4Ty + Z?:o Tepy ~ 285 ps, and the carrier fre-
quency may be assumed equal to fo = 1850 MHz. Then, the relative speed between
transmitter and receiver must be v < 51.2km/h in order to have correlated channel
gains. At a speed of v = 51.2km/h = 14.2m/s, the distance covered in At = 285 us
is d = 4mm, which correspond to a negligible difference in the signal TOA (only
d/c ~0.013ns). Hence, if the speed constraint that ensures the channel gains corre-
lation is respected, the CFR estimates merging of (6.4) has negligible consequences
on the signal TOA, while decreases the FD sampling interval.

Since v = 51.2km/h is higher than the achieved maximum speed in both the
outdoor vehicular and the indoor measurement scenarios, the CFR time-frequency
combining strategy was adopted in the proposed work. The benefits of merging the
CFR estimates ﬁ;f n, k] consist in an increased number of samples for each CFR

estimate Iffzgs [k] and in a smaller frequency separation A fi,crs < Afcrs between
adjacent samples. Depending on the TOA estimation algorithm adopted, this may
correspond to increased resolution and increased maximum TOA computable.

6.4.2 Combining CFR estimates from multiple slots

After the merging procedure described above, the merged CFR estimates fIZﬁS [k]
of all the slots pertaining to each measured 10 ms chunk are available. Hence, an

appropriate method for combining these estimates is needed, in order to obtain a
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Figure 6.8 — Result of the merging procedure for the CFR estimated during the outdoor
vehicular measurements using the CRSs of antenna port p = 0, cell ID N£S!! = 84, base
station 1, operator 1, measurement time ¢ = 1, slot ny = 4. The plot on the right is a
particular of the plot on the left.

single CFR estimate representative of the measurement time ¢, one per antenna port
p and per detected cell i. In the presented approach, two methods are proposed.
The application of one particular method depends on the type of mobility that
characterize the measurement environment to which the analyzed signals pertain.

In high mobility environments, such as the vehicular outdoor measurement sce-
nario of Figure 6.2a - Figure 6.6, a selection method based on the signal-to-noise ratio
(SNR) is proposed. A selection method is preferred to a combining method since
in a high mobility environment the correlation between subsequent CFR estimates,
which would be required by a combining method, cannot be ensured. The CFR
estimate between the fIZ”ﬁS [k], ns = 0,...,19 corresponding to the highest received
SNR is chosen as representative of the chunk acquired at measurement time ¢, i.e.
H}P[k] = H}'? [k], where:

tns
s = arg max {'y(fltlf;s [k:])} . (6.7)

In (6.7), the operator ~(-) associates to the CFR ﬁ;ﬁs [k] the corresponding estimated
instantaneous SNR. Several estimators designed for the estimation of the SNR of
OFDM signals may be employed, such as [87,88]. However, the methods proposed in
these papers are more suited for average SNR estimation, and require a long training
before producing reliable estimates. That is why, in the presented results, the fast
heuristic SNR estimator inspired by [89,90] has been employed, which is based on a
x? statistical analysis of each power delay profile (PDP). For the estimated merged
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Figure 6.9 — Normalized correlation coefficients for envelope and phase of a wireless
fading channel gain as a function of time and Doppler frequency.

CFR pertaining to each slot ng, the corresponding CIR is first computed as:

hin [n] = IDFT{H P R, n=0,..., 2Nt — 1. (6.8)
Then, the PDP is computed as ]hz’p [n]|?, and the heuristic SNR estimator is defined
as:
. h 2 + 5.2
7 (H5,[4]) = max S0, Znert i, 00~ NG 03], (6.9)
o Ny, - 6%

where Ny, is the set having cardinality NI = n [Ay,] of the indexes n for which the
PDP is above the noise threshold wy, Ny, = 2+ Niot — N;{l, and &?U is an estimate of
the mean square value of the noise w(n] that corrupts the CIR estimate. Under the
assumption of complex Gaussian noise, 62, and wy, can be evaluated by exploiting
some statistical properties of the y? distribution. In particular, the square magnitude

W?2 of a complex Gaussian random variable CN(0,1) is x? distributed with k = 2

degrees of freedom, and has average E[W?] = k and median {W2} ~ k- (1 = %)3.

Under the assumption that median{|w[n]|?} ~ med1an{|hz’p [n]|?}, which holds if
the duration of the actual CIR is much shorter than the observation window, the
noise mean square value can be estimated as:

E [W?]
~ medi h”p _— 1
rheciat {‘ Ul } median {W?} (6.10)
Similarly, the noise threshold value wy, can be estimated as:
Fen®)

wen ~ median {Ih”’ n ]|2} (6.11)

median {W?2}’
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Figure 6.10 — Example of an SNR estimation using the fast heuristic estimator of
(6.9). The merged CRSs used for the estimation pertain to the outdoor dataset, and
have been received from the antenna ports of cell ID Nfﬁ“ = 72, BS 3, operator 1, at
measurement time ¢t = 600, slot ny = 17. The time axes is expressed as distance offsets.

where FX_QI(Q)() is the inverse cumulative density function (CDF) of the x?(2) distri-
bution. In the proposed results, a value of p = 0.99 has been used. An example of
SNR estimation performed with (6.9) is shown in Figure 6.10.

On the other hand, for low mobility environments such as the indoor scenario of
Figures 6.2b - Figure 6.5, a combining method can be employed, since low mobility
ensures a certain degree of correlation between subsequent CFR estimates. Even
a simple average between subsequent slots’ CFR estimates can increase the SNR
thanks to the averaging of noise, and this gives rise to substantial improvements in
the channel estimation. Since the duration of a slot is of 0.5ms, under the same
assumptions of Section 6.4.1, the relative speed between transmitter and receiver
must be (Ns —1)-0.5-1073-v-fo/c < 0.025 & v < (]\/5%18'11 m/s in order to combine
N slots. If this constraint is satisfied, then the estimated CFR representative of
the measurement time ¢ can be obtained as a coherent average of Ny < 20 CFRs
pertaining to subsequent slots, as:

- ; Nl
HP = A > HE. (6.12)

s
ns=0

Given the very low speeds that characterize the indoor measurement scenario, the

averaging method of (6.12) has been used for the indoor dataset, with a number of
Ng = 18 slots to be combined. Again, such an average has negligible consequences
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from the TOA estimation point of view, since the distance traveled for At = 17-
0.5ms = 8.5ms at v = 8.11/17 ~ 0.48m/s is d ~ 4mm, which corresponds to a
TOA variation of d/c ~ 0.013 ns.

6.5 Some basic TOA estimators

By exploiting the CFR estimates obtained after time-frequency merging (Section
6.4.1) and time combining (Section 6.4.2), denoted as H;P[k], k = 0,...,2Niot — 1, a
simple TOA estimation may be realized using an approach similar to [91]. Following
that approach, a discrete CIR estimate is first computed as:

hy?[n] = IDFT{H,;”[k]}, n=0,...,2N¢ot — 1, (6.13)

and then the TOA is obtained with a parabolic interpolation around the maximum
of (6.13), as:

ng = argmsmxﬂﬁ[n”}, (6.14)

5 (Rl — 1| |hlA0 +1]]) )
|h[fo + 1]|—2|h[Ag]|+|hlAo — 1]] )

70 = Toir (ﬁo-i- (6.15)

where the indices i,p,t have been omitted for notational simplicity and Tgrr is
the time resolution of the computed CIR, which can be increased with straight-
forward up-sampling techniques. Throughout the remainder of the chapter, this
method will be referred to as IDFT-MAX (IM). Since Tcir = m

hiP[n] is made of 2Ny samples, then the CIR of (6.13) spans the time interval
[_2Afi,cas’ 2Aficas) = [—11.11 ws, 11.11 ,us). It is evident that the reduced FD
separation between the CFR samples due to the merging procedure of Section 6.4.1
permits a widening of the interval observable for TOA estimation.

Although attractive for its computational simplicity, the method of (6.13)-(6.15)
is not robust against multipath, because harsh propagation environments are typi-
cally characterized by a DP which is not necessarily the strongest path. A simple
countermeasure consists in the computation of the Ny, highest CIR peaks, where
Ny, is a parameter subject to empirical tuning. The measure is considered as a
LOS case only if the maximum of the CIR is the earliest peak between the Nip,. In
this case, the DP TOA is assumed to be the interpolated CIR maximum, similarly
to (6.15). Otherwise, the measurement is discarded. This method is referred to as
IDFT-LOS (IL), it is quite robust in identifying NLOS measurements, but it has
the drawback of discarding measurements without producing TOA estimates.

Other TOA estimation methods based on the CIR evaluation are the threshold
based methods of [92-94]. However, these have not been considered in the presented
work because of the difficulties encountered in defining a threshold selection method
that suited all the different propagation environments encountered during the test
route.

and since
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Figure 6.11 — Examples of CIRs and simple TOA estimations. Both the estimations

pertaining to antenna ports p = 0 and p = 1 are shown.

The DP TOA estimates

obtained with IM are also shown, together with the multipath TOA estimates obtained

with ESPRIT, indicated with {7 }lL:p(; ! (where L7 is the estimated number of multipath
components). The IL estimator uses Ny, = 3. All time estimates are expressed as

distance offsets.
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Examples of IM and IL TOA estimates are shown in Figure 6.11. The estimates
are obtained exploiting the CRSs transmitted from the two antenna ports of cell
Nfﬁn = 51, BS 1, operator 2 of the outdoor dataset, shown in Figure 6.11a, and
of cell Nfﬁ“ = 237, BS 1, operator 3 of the indoor dataset, shown in Figure 6.11b.
The ESPRIT multipath TOA estimates, computed as described in Section 6.6.1, are
also shown as a reference, since they constitute a more precise estimate. As one can
note, the CIRs pertaining to different antenna ports exhibit different multipath, but
similar DP TOA. In the cases of Figure 6.11a and Figure 6.11b antenna port p = 0,
the IM estimations fails to locate what appears to be the DP (i.e., the path at offset
around 500 m for Figure 6.11a and the path at offset around Om for Figure 6.11b).
In all these three cases, the IL estimator correctly recognizes the measurements as
NLOS cases, and discards them.

These simple CIR based estimators were considered as a benchmark of the pro-
posed algorithm, also because similar estimators are being considered by standards
committees for modeling LTE receivers in positioning applications [95].

6.6 The EKAT algorithm

The main contribution of this part of the thesis work consists of a DP TOA esti-
mator which is robust against multipath and that enables further insights on the
effects of multipath on TOA based ranging. The algorithm is shown to overcome
the detrimental effects of multipath suffered by the simple algorithms considered in
Section 6.5. The proposed method is referred to as “ESPRIT and Kalman filter
for time of Arrival Tracking” (EKAT). Briefly, EKAT relies on the ESPRIT SRA
for separating multipath and performing the TOA estimation, and on a Kalman
filter (KF) for tracking the estimated pseudorange along subsequent measurements.
Moreover, EKAT exploits a bound-based estimation of the measurements reliability
for filling the KF measurement covariance matrix, and an empirical selection of the
DP TOA among the estimates produced by ESPRIT. Its flow graph is represented
in Figure 6.12, with the blocks described in the following sections.

6.6.1 ESPRIT-based multipath TOA estimation

As shown in Section 3.1, the CFR of a mobile multipath channel, expressed in
(6.2), can be seen as a sum of L complex sinusoids, having “frequency” equal to 7,
Vi. After sampling this CFR with interval A fi,crs, one obtains the discrete signal
Hlk] = ZZL;()l hye??mkAfmers T which is a so-called harmonic model [36]. Hence, as
explained in Section 3.1, sub-space based SRAs can be employed for the estimation
of the delays 7;, VI, provided that an estimate of H|[k| is available.

EKAT uses for this purposes the CFR estimates ﬁz’p[k], k=0,...,2N¢t — 1,
obtained with the merging and combining methods explained in Section 6.4. The
minimum descriptive length (MDL) criterion is applied for the estimation of L,
and the ESPRIT algorithm is then used for the estimation of the 7;, VIi. More
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Figure 6.12 — Flow graph of the EKAT algorithm applied to the signals measured from
the cell 7.

particularly, for each detected cell i, measurement instant ¢, and antenna port p,
MDL and ESPRIT are applied to H,”[k] as follows.

The samples of [;”[k] are arranged in length M snapshots a”[k], which are
used to build the so-called data matrix X;*:

X;" = g [@ (0], &[N - 1]] € CMN, (6.16)
2Pk = [H{Pk), - HPlk+ M —1]] " e M, (6.17)

where N = 2Nyt —M +1 and M is a design parameter of the SRA. M is usually
chosen as M = m- Ny -2, with m being a parameter subject to empirical tuning, as
shown in Section 6.9.2. Higher values of M ensures increased resolution in multipath
separation, at the cost of decreased averaging of noise [15].

In the remainder of this section, the indices ¢, ¢, p will be omitted for notational
simplicity. As explained in Section 3.1, the data matrix X is related to an estimate
of the auto-correlation matrix R, of x[k] by the relation R, = X . X" e CM*xM
Hence, estimates of the eigenvalues of R,, denoted with Ay > --- > Ap, can be
obtained by taking the square of the singular values of X, obtained with a singular
values decomposition (SVD) as X = U-X-LY. The matrices U € CM*M and
LeCN*N are unitary, and ¥ € CM*N is a diagonal matrix with the singular values
o1 > .-+ > oy in the main diagonal, where (0;)?> = X\;, i = 1,..., M. Using the
estimated eigenvalues, the MDL criterion can be applied for the estimation of L in
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the considered CFR, by calculating the metric [15,37]:

! 1/(M—k)
MDL(k) = —N(M—k) log{ ik ZzM_l - }+ p(k), (6.18)

M—k i=k g
where p(k) = 1k(2M — k)log N. Then, L is estimated by minimizing the metric
of (6.18), i.e., as L =arg mingeo,... . m—1y MDL(k). Once the number of multipath

components has been estimated, the ESPRIT algorithm is applied by using the
following matrix computations on the singular vectors of U, as:

T - ~MxL

U, :U[IﬁOﬁX(Mfﬁ)] eCMx s (619&)

Us1 = [Iy10n1])-Ug € CM71XE (6.19b)

U572 = [OM_lIM_1]~U5 € (CMilX[:, (6.19C)

v =l U, ech*, (6.19d)

Finally, the L eigenvalues 9y, . .., ¥; _, of ¥ are computed, and then used to evaluate
the multipath TOA as:

1 .

f]=—————ar ,0=0,--- L —1. 6.20

L= oA ons g{vi} (6.20)

From the fact that arg{«;} € [-m, ), VI, it follows that ESPRIT is capable of esti-

mating a TOA in the interval [— QAfi\CRS’ QAfiCRS) = [—11.11 ws, 11.11 us) around

the instant of measure ¢. Again, it is evident that the decrease in the FD separation
between the CFR samples due to the merging procedure described in Section 6.4.1
permits a widening of the interval observable for TOA estimation.

As a result of the whole procedure described above, a set of Li» (t) multipath
TOA ToP(t)={7P(t) < --- < Trin(r)_1 ) 18 produced using the merged CFR estimate
corresponding to the antenna port p of the it" sector at each measurement time ¢.
It has to be noted that a well known shortcoming of the MDL criterion is that it
tends to overestimate L in case of large snapshot lengths M and high SNR values
(i.e., low o2, values) [96-98]. Hence, overestimated values of L may cause ESPRIT
to produce TOA outliers, which may be even smaller than the actual DP TOA 7.
EKAT overcomes this weakness using the measurement selection strategy described
in Section 6.6.4.

An example of the results obtained with the described multipath TOA estimation
procedure is depicted in the plots of Figure 6.13. There, for each measurement index
t, up to the first 4 paths estimated using the CRSs of cell Nfﬁu = 52 operator
2 (Figure 6.13a) and of cell N&S! = 52 operator 2 (Figure 6.13b) pertaining to
the outdoor vehicular dataset are shown for each antenna port. All the values are
expressed as pseudoranges, obtained as c- (7;F(t) + Atl), where At! is the time
offset introduced in respect to t for the cell 7 symbol level coarse synchronization, as
explained in Section 6.3.3. As one can see, the first detected path has almost the same
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Figure 6.13 — Results of the ESPRIT multipath TOA estimations in representative
time intervals of the outdoor vehicular dataset. All the plotted values are pseudoranges
obtained multiplying by c the estimated TOA. The multipath estimates of both antenna
ports p =0 and p = 1 are shown.
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TOA for the two antenna ports, while the other paths are different. This is evident
in the interval [2350, 2430] of Figure 6.13a, where there is almost no multipath from
p = 0, while from p = 1 at least a second multipath component is received after the
first. Another important aspect to highlight is the constant slope of all paths that
is visible across the whole displayed measurement interval of Figure 6.13a, which is
a detrimental consequence of the BS clock drift.

6.6.2 State-space model

The estimation of the multipath TOA described in Section 6.6.1 is needed for sepa-
rating the delayed paths from the DP, which is then tracked for positioning purposes
with the procedure described in the following. For each detected cell i, EKAT per-
forms the tracking of the DP TOA along the different measurement times ¢ using
a state-space approach similar to [78]. More specifically, consider the state vector
defined as the DP TOA 7{(¢) of cell i and its rate of change A7i(t), i.e.:

Ci(t) = [ra(), Ari(t)] " € R (6.21)

In the following, the index ¢ will be dropped for notational simplicity. The evolution
in time of {(¢) is modeled as described in [77], with the following recursive relation:

Ct)=F-¢(t—1)+q(t—1), F= B ﬂ , (6.22)

where the entries of the vector q(t) € R?, that models the process noise, are zero
mean white Gaussian processes. The covariance matrix of g(t), according to the
model of [77], is chosen to be constant and equal to:

2

Q-s[aa"0) 4[] §| (6.23)

where ¢ € RT is a design parameter that is proportional to some increasing function
of the receiver speed. Consider then the following measurement equation:

2u(t) = F-C(t) + (), F= E 8] , (6.24)

where the entries of the vector r(t) € R?, that models the measurement noise, are
zero mean white Gaussian processes. The covariance matrix R(t) = E[r(¢t)r(t)] €
R2%2 is evaluated according to the procedure described in Section 6.6.5. As one
can see, (6.24) defines two available measurements for the first component of {(t),
i.e., two measurements of the DP TOA. The approach of EKAT is to exploit the
two TOA estimates corresponding to the CRSs received from the two antenna ports
p=0and p =1 as the two DP TOA measurements contained in zg(t).

As a final note, the transmit antenna ports are usually positioned in a way to
provide a certain degree of diversity to the receiver. As an example, when two
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antenna ports are configured, these usually provide polarization diversity [76], i.e.,
the two antennas transmit electromagnetic fields with orthogonal polarizations. As a
consequence, the signals received from the two antenna ports travel through different
multipath channels, though sharing the same DP delay. Consequently, the DP TOA
measurements from the two antenna ports can be threated as affected by uncorrelated
noise, and hence R(t) is diagonal.

Thanks to the linear dynamic system defined by (6.22)-(6.24) it is possible, using
a conventional KF, to evaluate an estimate of the state vector, and ultimately track
the DP TOA [28]. As one can see from Figure 6.12, the KF takes as an input a
selection zg(t) of the TOA measurements performed with ESPRIT, together with
the matrix R(¢), and outputs an estimate of the state, denoted with é’(t) e R?,
and the covariance matrix of the estimated state, denoted with P(t) € R2*2. As a
consequence of the definition in (6.21), the tracked DP TOA is the first component
Co(t) of the estimated state ¢(t) = [Co(t), C1(¢)]T. Moreover, the upper left element
of the estimated state covariance P(t), denoted with Po,o(t)7 corresponds to the
variance of the tracked DP TOA.

6.6.3 DP TOA tracking with a Kalman filter

The Kalman filtering for the estimation of the state ¢(¢) pertaining to the i'" BS
sector follows the approach of [28] and consists of the following set of recursive matrix
equations:

¢ (t) =F-L(t-1), (6.25)
P (t)=F-P(t—1)-FT +Q, (6.26)
W(t) = P(t)-H - [R(t) + H-P~(t)-H"] ', (6.27)
{(t) = ¢ (1) + W(t): [zr(t) —H-{ (1)], (6.28)
P(t) = [I, - W(t)-H]-P(1), (6.29)

where ¢ (t), P(t), ¢(t), P(t) and W(t) correspond to the predicted state, the
predicted state covariance, the estimated state, the estimated state covariance, and
the KF gain, respectively. The calculation of the first estimated state ¢ (to) and
the corresponding covariance f’(to) is performed in a similar way to the two step
initialization procedure of [28], by exploiting the measurements zg(ty), zg(t_1),
where ty and t_; are two time measurement indexes not displaced more than Djy;
measurement instants, i.e., tp —t_1 < Dipit. This is for allowing KF initialization
even in the case of measurements not being continuous. This is important as a
particular cell ¢ is not necessarily received continuously in all measurement instants
due to obstacles in the propagation environment or because of deep fades.

During initialization, the measurement vector z%(t) = [z]ia’o(t), zg’l ()T for cell 4
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is filled with the smallest TOA estimated by ESPRIT from each antenna port, i.e.:

2i(to) = [zgo(t), 2! (t)} Lo Af 4+ min{T(t0)}, A+ min{T"(t9)}] "

_ i 0 i il T 9
= |Atg + 75" (to), Atg+ 75 (to)| € R" (6.30)

As one can note, the ESPRIT estimates are saved in zg(t) after being added to the
time offset At introduced in respect to t(U) by the coarse symbol level synchroniza-
tion to cell 4. The initial measurement covariance matrix R¥(tg) is filled accordingly,
as described in Section 6.6.5. Then, upon defining the mean measured TOA at tg
and ¢_1, and the variance of the former, as (the index ¢ being dropped for simplicity):

20 = 1 (2R (to) + 24 (o)) , (6.31)
zo1 =3 (22(t-1) + 25(t-1)) (6.32)
ro = 1 (R%(to) + R'(to)), (6.33)

the initial state and the corresponding covariance matrix are evaluated as [28, p.247]:

Cto) = [20, (20 — 2—1)/AT]" € R?, (6.34)

5 . To TO/AT 2%2
P(to) = ro/AT QTO/(AT)Q eR , (6.35)

where AT = T'(to—t_1), and T is the interval between two measurements (7' = 1s in
the proposed outdoor vehicular and indoor setups). The measurement vector of the
time instants following the initialization phase is filled as described in the following
section.

6.6.4 DP TOA measurement selection

The measurements passed to the KF are selected from the results of the ESPRIT
based multipath TOA estimation of Section 6.6.1. Indeed, for each cell i and mea-
surement time ¢, ESPRIT produces one set of TOA estimates per antenna port,
i.e. YHO(t) and Y% (t). Each set of multipath TOA estimates contains L"?(t) TOA
measurements, p € {0, 1}. Hence, a selection mechanism which chooses the DP TOA
among the L*P(t) time measurements in each set Y"P(t) has to be implemented. This
choice permits the selection of the entries zi’(¢), p € {0,1}, of the measurement vec-
tor 2% (t) = [zg’o(t), z]ia’l (t)]T that feeds the KF, as Figure 6.12 depicts. Unfortunately,
the selection mechanism cannot be a simple choice of the earliest TOA because of
the possible estimated TOA outliers mentioned in Section 6.6.1.

During the initialization of the KF (i.e., for ¢t < ty), the value of z]ia’p(t), pe{0,1},
is selected taking the smallest TOA in the set T*P(t), i.e., z]g’p(t) = Até+7°é’p(t), t < tp,
as described in (6.30). After initialization (i.e., for ¢ > tg), zh(t) is selected from
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TP (t) according to:

min{©P(¢t)} n[OP(t)] > 0

: N A0 n[OP(t)] = 0, LiP(t) > 0
) =At+< Y iy ’ : 6.36
ZE () S Zg(t—l) Ll’p(t):() ( )
[10]-¢ (2) sparse missing measure

~—

In (6.36), ¢ (t) is the predicted state of the KF and ©%P(t) is the subset of the

ESPRIT estimates containing only the time values that, compared to the previous

KF estimation of the DP TOA (o(t — 1), do not imply a receiver movement with a
(1)

speed higher than vy, i.e.:

(1) = {TeT () : Zlr—Cot — D] < vl S T(), (6.37)
where Ur(&gx is a design parameter representing the maximum allowed receiver speed.
The set of (6.37) may be non-empty only if (:'(t — 1) and hence éo(t — 1) exist,
otherwise is left empty, i.e., ©P(t) = &. Again, as one can note from (6.36), the time
offset At! introduced in respect to +(U) by the coarse symbol level synchronization is
added to the actual ESPRIT estimates.

The measurement selection strategy of (6.36) is needed for dealing with the fol-
lowing three problems. Firstly, the ESPRIT multipath TOA estimation may produce
outliers with TOA much earlier than the real DP TOA, and these are discarded ac-
cording to a maximum allowed receiver speed ’UI(IQLX, by comparing the estimated
TOA in T*P(t) with the previous DP TOA estimation (o(t — 1). This happens es-
pecially when the MDL criterion overestimates the number of receiver multipath
components. Secondly, it may happen that, in a particular measurement, despite a
particular cell ID being detected, the MDL criterion fails to find multipath compo-
nents in the considered signal, producing L? (t) = 0. In this case, the value of the
previous measurement is used. Thirdly, as already explained in Section 6.6.3, the
CRS from a particular cell may not be detected continuously through the measure-
ment period. It may in practice happen that at a certain t the receiver suffers of a
deep fade or shadowing, resulting in a sparse missing measure.

For managing the discontinuity of the measurements, a states machine has been
defined for each cell, which is represented in Figure 6.14. In this state machine,
the state transitions depend on the time At, elapsed from the last measurement
available for the particular cell. The initial state qg corresponds to a first measure
available for a certain cell. As explained in Section 6.6.3, if a second measurement
is available before Dj,;; measurement times, the initial state is evaluated, and the
KF enters the state qi. Afterwards, if there is a third measurement available in
At, < Dipit, the state qo is entered and the first run of the KF is performed using
the initial state ¢ (to), previously evaluated in the state q;. Then, the KF stays in
the state qg if the measurements are discontinuous, with At, being less than Djy;t,
otherwise reinitialization occurs. Conversely, if the measurements are continuous,
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Aty > Dipjt, or
7 1o (®) = Co(t—At)| > vl

At < Dinit (in this case
Aty < Dinit a2 - KF runs C(to) < ¢€(1)
start — At: > Dinit with ¢ (to)

Aty > Dmax Or

At, > Duax or £ =Cot=1)] > vl

TAL ICo(t)—Co(t—Ats)] > vlils

q3 - KF runs
normally

qq - KF runs

without meas.

1 < Aty < Dmax
1< Aty < Dmax At, =1

Figure 6.14 — States diagram showing how the discontinuous measurements are man-
aged during the run of the Kalman filter. Every state transition happens when a TOA
measurement is available, and the destination state depends on the discrete time interval
At, elapsed since the last measurement, and on the fulfillment of the speed constraint

ﬁ\éo(t)—éo(t—ﬁtzﬂ < vl

ie., if At, = 1, the KF goes in the state q3 and runs normally according to the
equations of Section 6.6.3. In this state, if the CRS from the particular cell is not
received for more than Dy, consecutive measurements (e.g., when the BS is too
far for being detected), the tracking is stopped and the KF reinitialized to state
qo- On the other hand, if the step between two discontinuous measurements is less
than Dy,,x measurement instants, the KF enters the state q4. Here, the filter runs
in the usual way, and substitutes the missing measurements with the measurement

prediction [1 0]-¢ (¢), until the actual real measurement index is reached. There,
the KF runs with the real estimates, and then returns to q3 in case of continuous
measurements, or stays in qg in case of further discontinuities.

At each state transition from q;, i > 2, the new estimated state é’ (t) is com-
pared to the previous state estimate ¢ (t — At,) (At, = 1 in the case of q3). If
the new state imply a receiver movement with a speed higher than UI(IBX, ie., if
ﬁﬁo(t)—éo (t—Aty)| > 02, the KF is reinitialized to state qo. This is an heuris-
tic check for avoiding the KF to start a wrong track. This may happen when the
measurement selection process fail in passing to the KF the correct path, and the
received multipath times of arrival are mismatched.

An example of the measurement selection is depicted in Figure 6.15, where the
selected values 2% (t) are represented as pseudoranges after being multiplied by ¢, and
showed together with the pseudorange c-éo(t) tracked by EKAT. The represented
data is the same of Figure 6.13. The measurement intervals in which the KF is
reinitialized to state qg due to discontinuous measurements are also highlighted.

1< Atz S Dinit
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Figure 6.15 — Example of measurement selection. In each figure, the two upper plots
depicts the results of the ESPRIT TOA estimation from antenna ports p =0 and p = 1,
and the bottom plot shows the selected measurements zp(t), p = {0,1}, together with
the tracked DP TOA. All the plotted values are pseudoranges obtained multiplying by
¢ the estimated TOA. The (x) highlights intervals where the KF is reinitialized to state
qo due to more than Dy,,x consecutive missing measurements.
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6.6.5 Measurement noise variance evaluation

As mentioned in Section 6.6.2, EKAT evaluates the measurement noise covariance
matrix R(t) assuming that the two measurements of the DP TOA 2z2(¢) and 2} (¢)
are subject to independent Gaussian noise. This results in a diagonal measurement
covariance matrix, i.e., R(t) = diag{[R°(¢), R'(¢)]}. The values of the two measure-
ment noise variances RP(t),p € {0,1}, pertaining to each DP TOA estimate, are
evaluated with the approach of [80], that permits the computation of the variance
of the error ¢ = 7, — 7 relative to the I'" TOA estimated with ESPRIT. Indeed,
equation (39) of [80] expresses the error variance of ESPRIT when used for estimat-
ing the angle of arrival (AOA) of narrowband waveforms on a linear uniform array.
This equation exploits the knowledge of the true number of incoming waves, together
with the singular vectors and singular values of the exact data matrix, which is built
in the same way as (6.16)-(6.17), except that the real data values are used instead
of the noisy ones. However, this approach is not feasible for real scenarios, since the
real data is unknown.

In contrast, EKAT relies on the use of the noisy data matrix X and of the
estimated value L of received multipath components. More particularly, to estimate
the measurement noise variance Var(e;) of the ' detected path by using the noisy
data matrix and the approach of [80], consider, in addition to the matrices (6.19a)-
(6.19d), the following matrix decompositions of U and X:

Uo = U0y, 11y i)' € CMxM-L) (6.38a)
U, = [Ty 104_1]- U, € CM-DX(M-L), (6.38b)
Uoo =[0n11y1]- Uy € CM-1)x(M-L) (6.38¢)

DITIE" 22
> = [ % *] , X; eCtrL, (6.38d)

Then, the error variance relative to the [*" ESPRIT estimate can be calculated by
exploiting the approach of [80] as:

2-2

Var () = %HWU;(UO,Q —1U,1) HQHEEL‘HH% (6.39)
2 is an estimate of the variance of the noise affecting the CFR samples
H [k] and w;, v;, 1y are respectively the I*" left eigenvector, right eigenvector and
eigenvalue of the ESPRIT rotational matrix ¥ of (6.19d). The parameter C; in
(6.39) is defined in [80] for the case of AOA estimation as a constant that relates the
first order perturbation Av; on the I** AOA, to the corresponding eigenvalue of the
ESPRIT rotational matrix. More particularly:

where &

AQ?Z = Cl -Jm {Awl} s (6.40)
i

where: 1) is the ['' eigenvalue of the ESPRIT rotational matrix ¥; Av; and Ay are
the first order perturbations due to noise on the I** AOA and on the corresponding
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eigenvalue, respectively. Similarly, C; can also be defined for the ESPRIT TOA
estimation case. In this case, the noise-less ESPRIT rotational matrix is given by
diag{t1,...,¥r}, where ¢y = e 727AfmcrsT [80]. Hence, from the perturbation
equation:

U + Aty = e 72 A mers (A7) (6.41)
it follows that: Ay o N
o — mCRSAT _ 1 (6.42)
By considering the imaginary part of (6.42) one obtains:
Jm {Aﬂfl} = —sin (27A fucrs A7) ~ —27A fincrs AT, (6.43)

where the approximation sin(z) ~ = was used, which holds since A7 is a small value.
Then, from (6.43) one obtains:

1 Aty }
Ar = — Tm , 6.44
l 27 A fimcRs { Py (6.44)

which implies that, in the case of TOA estimation, C; = —1/(27A ficrs), VI. Fi-
nally, the noise variance estimation 2, is obtained exploiting the eigenvalues of Rx,
which are already available since they have been used in previous stages of the sys-
tem for feeding the MDL algorithm. More particu}arly, the approach of [99] is used,

which exploits the M — L smaller eigenvalues of R, as:

1

~2

O = = )\z 6.45
Ty (6.45)

The error variances Var(¢) are evaluated using (6.39) for each multipath TOA esti-
mate 7,7 (t) € T*P(t) obtained at ¢ for the CRS of sector i, antenna port p.

Finally, the value of the measurement error variance RP(t) is determined in ac-
cordance with the choice of (6.36), i.e.:

Var (e) n[@(t)] >0 )
Ry {0 Var(eo)  nlO(0] =0, LE2(6) >0 (6.46)
y-RP(t—1) L"P(t) =0

vo-RP(t — 1) sparse missing measure

In (6.46), I’ is the index corresponding to the TOA selected by the min{©%P(¢)},
and v1,y2,70>1 are design parameters used to increase the unreliability due to the
use of a previous measurement, of a predicted measurement, and of a measurement
implying a receiver speed higher than Ur(&a)m, respectively. As one can see, the variance
choices of (6.46) reflect the measurement choices of (6.36).
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Figure 6.16 — Comparison between the average value of Var(e;) (red solid lines) and
Var(¢é;) (black dotted lines). The RMSE of an ESPRIT estimation (blue dash-dotted
lines) is also shown as a reference.

Monte Carlo simulations were performed to assess the effectiveness of this ap-
proach. The simulations showed a substantial agreement between the values of error
variance calculated using the exact data matrix, denoted with Var(¢;), and the values
Var(¢;) obtained using the noisy data X, provided that the noise variance o2, deter-
mines a signal-to-noise ratio corresponding to an above-threshold estimation. Since
Var(¢;) is evaluated using a noisy data matrix, its value depends on the particular
noise realization, and hence the average value E[Var(¢;)] has been considered in the
simulations. As an example, consider Figure 6.16, where the values of error variance
are calculated for different values of noise variance o2, and using the L = 4 paths
channel defined as:

70 = —1.075 ps, ho = 0.4+ j0.5, (6.47a)
71 = 0.006 s, hi =1+ 0.39, (6.47b)
79 = 0.358 us, he = 0.2+ j0.1, (6.47¢)
73 = 1.369 s, hs = 0.15. (6.47d)

The root mean square estimation error RMSE(7;) = (E[(7; — 71)?])'/? obtained with
an ESPRIT estimation of the multipath TOA is also shown, revealing the correctness
of the error variance estimation.
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6.7 Ranges evaluation

After the estimation of the DP TOA for each detected cell ¢ at each measurement
index t, a pseudorange can be easily evaluated. Indeed, depending on the adopted
DP TOA estimator, the pseudorange for the i*t detected cell ID at measurement
time ¢t was evaluated as:

Atl + 7y (1) IM (Section 6.5)
pi(t) =c- QS Ati+ 7 (t) L (Section 6.5) . (6.48)
0 EKAT (Section 6.6)

In (6.48), At! is the delay introduced in respect to (V) during the preprocessing
phase of Section 6.3 for synchronizing to cell ¢, and:

7(t) = min {79P()}, z e {IM,IL}, 6.49
7(t) pggg){ll}{fx()} z € { } (6.49)

where 727 (t) denotes the IM or IL TOA estimate at time ¢ from antenna port p.
Note that At! is not added in the case of the EKAT estimator because it is already
considered during the DP tracking, as one can see from (6.36).

The plots of Figure 6.17 depict the results of a range estimation from selected
cells using the three considered methods on the CRSs collected during the outdoor
vehicular measurements. For a clearer understanding of each estimator’s perfor-
mance, all the plotted values are not pseudoranges but actual ranges, thanks to the
application of the clock correction explained later in Section 6.7.2. The ESPRIT
multipath ranges are also shown for each transmitted antenna port in the two top
plots of each figure, for a clearer understanding of the multipath influence in the
performance of each estimator. The GPS measured distance is also shown as a ref-
erence. As one can see, the benefits of the EKAT algorithm are evident, since it
correctly tracks the DP, determining a consistent range estimate, which is almost
equal to the GPS range measure. Conversely, the IM estimator is biased by multi-
path, especially in the interval [2250, 2300] of Figure 6.17a, where the fourth received
path (clearly visible in the two top plots) is mismatched with the DP. This can be
seen also in the interval [600,640] of Figure 6.17b. Finally, it is evident that the
IL estimator gives substantial benefits compared to IM, being more robust against
multipath detrimental effects, at the cost of discarding suspect NLOS measurements
and hence producing fewer estimates.

In Figure 6.18, similar results are shown in the case of the indoor measurements.
Again, all the plotted values are actual ranges, which are obtained by applying the
correction explained in Section 6.7.2 to the pseudoranges evaluated as in (6.48). The
ESPRIT estimates are also shown in the two upper plots of each figure, together
with the laser and the GPS ranges. In the indoor case, the ranges evaluated with
the laser distance sensor are necessary beyond the GPS ranges, since GPS reception
is absent in indoor environments, as the discontinuities of the GPS track in Figures
6.18a-6.18b demonstrate. Indeed, at t >~ 750 of Figure 6.18a, the receiver exits from
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Figure 6.17 — Examples of range estimations on selected portions of the outdoor ve-
hicular dataset. All the plotted values are actual ranges since already corrected for bias
and drift. The upper two plots show the ESPRIT estimates, while the bottom plot
depicts the ranging results of the three considered algorithms (i.e., EKAT, IM and IL).
The GPS range is also shown as a reference.
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Figure 6.18 — Examples of range estimations on selected portions of the indoor dataset.
All the plotted values are actual ranges since already corrected for bias and drift. The
upper two plots show the ESPRIT estimates, while the bottom plot depicts the ranging
results of the three considered algorithms (i.e., EKAT, IM and IL). The GPS and laser
ranges are also shown as a reference.
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the HSR building (and the GPS track reappears), and at ¢t ~ 200 of Figure 6.18b,
the receiver enters the HSR building (and the GPS track disappears). Similarly to
the outdoor case, these indoor examples show the robustness of the EKAT algorithm
against multipath. This is particularly evident in the interval [530,600] of Figure
6.18a, where the EKAT tracked DP TOA is close to the laser track, while the IM
estimator selects the second path received from antenna port p = 1 as the signal
TOA. Similarly, in the intervals [160,240] and [300, 350] of Figure 6.18b, the IM
estimator fails in recognizing the DP TOA, while the EKAT track is very close to
the laser ground truth.

6.7.1 Combining cells of the same base station

Since the aim of the performed pseudorange measurements is to calculate a position
fix based on the BS position knowledge, a single range per BS is needed, instead of
multiple ranges corresponding to each cell controlled by every BS. Hence, a method
for selecting a single measurement from multiple cells controlled by the same BS is
needed. More particularly, let ICJ- be the set of the cell IDs controlled by BS j, and
let K;j(t) C K; be the set of BS j cell IDs that are visible by the receiver at the
measurement time ¢. Given the pseudoranges {pi(t)}ick; (1), the selection method
has to define a strategy for selecting the cell index i’(t) € K;(t) that selects the
per-BS pseudorange ﬁ?s(t) = pir(r)(t) for the measurement time ¢. Without loss of
generality, a generic selection method can be defined as the choice of an index that
minimizes a specific metric, as:

argmin;ep; () {mi(t)}  n[Ai(t)]>0

arg mingexc iy {mi(t)} n[Ai(t)]=0 ; (6.50)

K;(t) ai’(t):{

where m;(t) is the metric to be minimized, which depends on the specific method
adopted.

In (6.50), the set A;(t) is defined as the collection of cell IDs corresponding to the
cells having pseudoranges that, compared to the previous estimation of the per-BS
pseudorange ,5;-38 (t —1), do not imply a receiver movement with a speed higher than

(2)

Umax, 1.€.:
. 1, . .
Aj(t) = { € i)+ Il (= 1) = pu(t)] < I&J} CK),  (651)

where T is the interval between two measurements (7' = 1s in the proposed setup).
Similarly to (6.37), also the set A;(t) may be non-empty only if ﬁ?s(t — 1) exists,

otherwise is set to A;(t) = @. The parameter vl(ﬁgx has to be set according to the ex-

pected receiver’s maximum speed, which is determined by the environment and type
of mobility (e.g., pedestrian, vehicular), and is subject to empirical tuning. Simi-
larly to (6.36), the method of (6.50) is needed for guaranteeing robustness against
estimated TOA outliers.
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A simple selection method is to choose the cell corresponding to the earliest
estimated pseudorange, i.e., m;(t) = p;(t). This method is the more intuitive, and
it is used for combining pseudoranges evaluated with the IM and IL algorithms.
It has the drawback of not being robust against earlier-than-LOS TOA outliers. A
better method, which is used for combining the EKAT pseudoranges, is based on the
exploitation of the estimated variance of the tracked DP TOA. At every measurement
time, for each BS, the cell corresponding to the measured range with the smallest
estimated variance at that particular time is selected. In other words, the metric
to be minimized is the estimated TOA variance, i.e., m;(t) = P&O(t). This method
may be more robust against TOA outliers, since usually they have a high estimated
variance.

An example of the combination of multiple cell estimates pertaining to the same
BS is shown in Figure 6.19 for some BSs received in the outdoor vehicular dataset,
and in Figure 6.20 for some BSs received in the indoor dataset. Again, for a clearer
understanding of the combining performance, all the plotted values are actual ranges,
corrected for transmitter time offset as explained in Section 6.7.2. All the figures
represent the EKAT estimates obtained from each cell and combined according the
variance method described above. In other words, the EKAT estimates pertaining
to each BS’s cells, shown in the upper plot, are selected on the basis of their variance
]5870 (t), which is shown in the form of distance standard deviation c - (]58’0 (t))Y/? in
the bottom plot.

Figure 6.19a represents the result of the cell combining corresponding to BS 1
operator 2, which controls the cell IDs {51, 52, 53}. This is a typical case of dominant
cell ID received through all the measurement interval, that is NICBH = 53, and the
other sectors received occasionally, e.g., thanks to back-lobes and/or side-lobes of
the transmitting antenna. As one can see, the earlier-than-LLOS TOA outliers are
discarded, e.g., at ¢t ~ 2610 and t ~ 2635.

Figure 6.19b represents the result of the multi-cell combining corresponding to
BS 2 operator 1, which controls the cell IDs {183,184, 185}. In this case, the receiver
is probably moving from a zone covered by cell NICB“ = 184 (where cell NICBH =185 1is
still visible), to a zone dominated by cell NICBH = 183. Considering multiple sectors
permits here to select the best cell ID to use for ranging during this sort of handover,
which occurs around measurement index ¢ ~ 2160. Moreover, the tracked range from
Nfﬁu = 184 at t ~ 2230 is correctly ignored regardless of its slightly lower variance,
thanks to the outliers discarding strategy of (6.51).

Finally, Figure 6.19c represents the result of the multi-cell combining correspond-
ing to BS 3 operator 1, which controls the cell IDs {183,184, 185}. Here, the TOA
outliers at ¢t ~ 730 and ¢ ~ 750 are successfully discarded.

The benefits of the cell combining method are evident also in indoor propagation
scenarios. Consider as an example Figure 6.20a, where the results pertaining to
BS 1 operator 1 in a representative time interval are depicted. As one can see,
Nﬁ%ﬂ = 84 is received with the highest SNR and hence it is the cell that produces
the more reliable estimates, which are correctly selected by the combining algorithm.
This is in accordance with the cell orientation depicted in Figure 6.5. Note also the
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Figure 6.19 — Examples of multiple cell combining of the EKAT pseudoranges in
selected time intervals from the outdoor vehicular dataset. All the plotted values are
actual ranges since already corrected for bias and drift.
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Figure 6.20 — Examples of multiple cell combining of the EKAT pseudoranges in
selected time intervals from the indoor dataset. All the plotted values are actual ranges
since already corrected for bias and drift.
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outlier from cell Nfﬁ“ = 86 that is discarded at t >~ 430. Similarly, Figure 6.20b and
Figure 6.20c show the results pertaining to BS 1 operator 2 and BS 1 operator 3,
respectively. As one can see from Figure 6.20b, cell NI"BH = 53 is likely received with
the highest SNR, and hence it produces the estimates with the lowest variance. This
causes a successful outlier rejection from cell NICBH =51 at t ~ 860.

6.7.2 Correction for base station bias and drift

In this section, the relation between the measured pseudoranges and actual distances
is discussed, for applying the general concepts of Section 1.2.2 to the specific case of
the used LTE measurements. Suppose that the propagation channel is observed at
the receiver, thanks to a LTE CRS transmission from BS j, at the UTC epoch t(Y).
The corresponding estimated pseudorange is ,6}35 (t), which is evaluated in respect to

t(U) and hence corresponds to the UTC estimated DP TOA:
TOA;(t) =tV + B (1) Je. (6.52)

Consider then the unknown UTC epoch at which the CRS exploited for the TOA
estimation was transmitted from the BS j, referred to as time of transmit (TOT),
that can be expressed as:

TOT;(t) =tV + 0;(t) /e + k- ATcrs, (6.53)

where the parameter p;(t)/c is the unknown offset of the BS clock in respect to
UTC time t(), and k- ATcgg = k - 10ms, k € Z, is the ambiguity due to the CRS
transmission periodicity. This ambiguity can be easily solved since the introduced
offset is very large, i.e., c: ATcrs = 3-10° m, and hence the value k = 0 is set. Finally,
the actual distance estimate between the receiver and the transmitter, referred to as
range, is given by:

dj(t) = ¢-(TOA;(t) = TOT;(t)) = p7°(t) — 0;(1). (6.54)

Hence, the clock offset p;(t)/c of the BS j must be known to the receiver in order to
calculate the actual range estimate d;(t).

6.7.3 Base station bias and drift estimation

The proposed approach assumes that each BS makes available parameters such as
clock drift and bias in respect to UTC, enabling the receiver to evaluate the clock
offset p;j(t)/c with a reasonable accuracy for every t. Unfortunately, in our real
field test, o;j(t) is unknown, so it is estimated by exploiting the GPS position fixes
available for the receiver. Indeed, the knowledge of both the BS and the receiver
position permits a straightforward calculation of the distance d;(t), which can be
used to estimate o;(t).

The instantaneous BS clock offset (expressed as a distance) o;(t) is an unknown
function of time ¢, and depends on several parameters, including the deviation of the
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Figure 6.21 — Examples of pseudoranges correction for BS’s clock bias and drift.

BS clock to the ideal frequency, and environmental parameters such as temperature,
power voltage, and pressure [100]. The BS clock offset is estimated by assuming
a linear model for p;(t), namely p;(t) = ©; + t-0;, where ®; represents the clock
bias (measured in meters) and 9; represents the clock drift (measured in meters per
second), which is assumed to be constant.

Let 7; be the set of all measurement times in which both a receiver GPS fix (and
hence the distance d;(t)) and an LTE pseudorange pA?S (t) from BS j were available
during the real field test. In the case of the outdoor vehicular test, at almost every
instant in which a certain BS was received, also a GPS position fix was available.
Conversely, in the case of the indoor test, position fixes were available only in the
part of the test route outside the HSR building 2, i.e., at the beginning and at the
end of the test.
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6 | 67855 -0.0186 2 L
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1 | 44004 0.1853 3 T 1 [ 52456 -0.0006
2 [ 2 [ 54029 -0.0612 —
; 50 0.0346 (b) Indoor scenario

(a) Outdoor scenario

Table 6.3 — Complete results of bias and drift estimation.

A simple least squares approach permits to estimate the bias ®; and the drift 0
for any sub-set 7; C 7; as:

(D;,0 —argmln Z |d; (t) ABS t)+D+t- o2 Y. (6.55)
o0 teT;

The accuracy of the estimation of (6.55) depends on both the accuracy of the LTE
pseudoranges ﬁ?s(t) and on the number and distribution of the considered measure-
ment instants 7;. Indeed, a low number of observations sufficiently spaced in time
may be more effective for the estimation of the drift than a high number of subse-
quent measurements concentrated in a small time interval. For both the outdoor
vehicular and indoor datasets, the whole set 7, and the EKAT pseudoranges were
used in order to obtain the most precise bias and drift estimates.

Examples of corrected EKAT pseudoranges are depicted in Figure 6.21. In each
plot, the pseudoranges corrected for bias only [)}38(7&) — ®; and for both bias and

drift d}BS (t) are shown together with the ground truth. The drift term J?S(O) +0;-t

is also shown, where the term J}SS(O) is added just for a clearer understanding of
the drift effects on the range estimates. Figure 6.21a depicts the complete estimated
range pertaining to BS 1 operator 2 of the outdoor vehicular dataset, where the GPS
track is used as the ground truth. Figure 6.21b depicts the complete estimated range
pertaining to BS 1 operator 1 of the indoor dataset. Here, the laser track is used as
the ground truth.

Finally, all the complete results obtained for the bias and drift estimation in the
cases of the outdoor vehicular and indoor measurement scenarios are summarized in
Table 6.3a and in Table 6.3b, respectively. As one can note from the table pertaining
to the outdoor scenario, BSs pertaining to operator 2 generally exhibit heavier drift
effects. This is in accordance with the clock properties measurements reported in
[101].
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6.8 Estimating receiver position

The ranges calculated with the procedures described in the previous sections are
exploited for estimating and tracking the receiver position in both the outdoor ve-
The ICOM team of the HSR im-
plemented the positioning engine needed for such purpose, which was then fed with
the ranges produced by the proposed TOA estimation algorithms, and particularly
with the EKAT algorithm. In this section, a brief review of the adopted positioning
techniques is presented. An interested reader may find additional details in [82].

hicular and the indoor measurement scenarios.

An extended Kalman filter (EKF) is used to estimate the receiver position. Ana-
lyzing the geographical properties of the base stations used, shows that their heights
differ only slightly. In conjunction with the base station spread, which is large com-
pared to the height differences, the situation is close to all base stations lying in
one plane. Hence, the rover position is solved in two dimensions only. The prob-
lem space is constrained to two dimensions by using local east-north-up coordinates
(ENU), with the up component set to zero. A second order model is used to describe
the rover position. Hence, the state vector is £(t) = [p(t)T, p(t)*, p(t)T]T € RS,
containing the 2D rover position p(t) = [x(t), y(t)]T € R2, the 2D rover speed
p(t) = [#(t), (t)]T € R?, and the 2D rover acceleration p(t) = [#(t), 4(t)]T € R2.
Whenever measurements to at least two base stations are available a measurement
update is performed. The constant acceleration second order model leads to the
following state transition model:

10 At, 0 A2 0 ]
1
01 0 At A0 sAL2
00 1 0 tp 0 N B
€D=100 0o 1 0o |t UFal-1 (6.56)
o0 0 o0 1 0
0o 0 0 0 1

where At is the elapsed time since the last position estimate at ¢ —1, and qp(t) € RS
is the zero mean white Gaussian process noise of the position state equation, having
constant covariance matrix Q, = E [qp(t)qgI (t)]. In the case of (6.56), the discrete
time index ¢ does not identify subsequent measurements, as in the previous sections,
but identify subsequent measurement times characterized by a number of visible BSs
N(t) > 2. The measurement vector is zp(t) = [2p,1(t), - . ., 2, n(1)] T, where N(2) is the
number of received BSs at time ¢, and each component 2, ,(t) is the measured range
between the receiver and the n*® BS, which is given by the non-linear observation
model:

zpa(t) = [pgs — @), n=1,....,N(), (6.57)

with the vector plis € R? representing the known 2D location of the n'™ received BS.
According to [28], the linearization of (6.57) around the predicted position p~(t),
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which is produced by the EKF, leads to the following linear observation model:

(B~ (1) = Pis) " /IPps—P~ (@) 03 03
(B~ (1) = pis)"/IPRs—P~ ()| 03 03

H,(t)= eRN®X6, (6.58)

(& (1)~ sV /Ipps™p~ (0] 0f 0F
The matrix of (6.58) is evaluated at every iteration of the EKF, which produces at
each step an estimate p(t) of the receiver position at time ¢. Again, the measurements
are supposed to be corrupted by a zero mean Gaussian noise vector r,(t) € RN®)
having covariance matrix R, = E [rp(t)rg (t)]. The process noise matrix Qp and the
measurement uncertainty matrix R, were supposed time invariant and were tuned
empirically. When using pseudoranges obtained with the EKAT algorithm, a time
variant measurement uncertainty matrix R (¢) may be adopted, and populated on
the diagonal with the estimated pseudorange variances. This should help in reducing
the effects on the position estimate of the ranging outliers.

6.9 Results

This section summarizes the ranging and positioning results obtained with the live
data captured by using the setup of Section 6.3. Pseudorange estimations were firstly
performed from the detected cells with the algorithms of Sections 6.4-6.6, namely
IDFT-MAX (IM), IDFT-LOS (IL) and EKAT (E). Then, cell pseudoranges were
combined with the method of Section 6.7.1, in order to obtain a single pseudorange
for each BS, which was corrected for clock bias and drift, according to the procedure
of Section 6.7.2. Finally, these range estimates were used in the positioning filter of
Section 6.8 to evaluate a position estimate. Before the presentation of the obtained
results, a brief review of the parameters used in the exploited algorithms is offered
in Sections 6.9.1-6.9.2. Moreover, some of the preliminary results obtained in the
first phases of the work by applying the plain ESPRIT algorithm to the preliminary
measurement dataset are shown in Section 6.9.3.

6.9.1 Parameters used

The IM estimator was run as described in Section 6.5, while for the IL algorithm
the number of searched CIR peaks was set to Ny, = 3. The EKAT algorithm
was run with two different sets of parameter depending on the type of mobility
in the particular measurement scenario of application. For the outdoor vehicular
scenario, the following parameters were used: Dinit = 1, Dpax =3, ¢ =5 - 10719,
vggx =70m/s, 'I)I(I?gx =30m/s, 790 =1 = 100, 2 = 10. For the indoor scenario, the
following parameters were used: Dinit = 8, Dmax =10, ¢=5- 1072, vfﬁgx =40m/s,
Ur(i)m =30m/s, y90 =71 =100, 72 =10. Moreover, a value of m =0.48 was chosen for
setting the dimensions of the data matrix X, with the particular procedure described
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in Section 6.9.2. For the outdoor vehicular scenario, the positioning EKF used a
process covariance matrix given by:

Qp - dlag{[Q1At§, Q1At§7 qut§)7 QQAtf)a qs, Q3]} € (C6><67 (659)

where ¢; = (6m)?, g2 = (0.5m/s)?, g3 = (0.0092m/s?)?, and At, > 1 is used here
as a dimensionless scaling factor that has the purpose of increasing the uncertainty,
i.e., the more time has passed since the last measurement update the more the
measurement variances are increased. Conversely, the process covariance matrix
used by the positioning EKF' in the indoor scenario is:

Qp = dlag{[Q1At§, Q1At§,, 92, 42, 43, Q3]} € (C6><6‘ (660)

where ¢; = (0.1m)?, g2 = (0.01m/s)?, g3 = (0.001m/s?)?, and, again, At, > 1 is
used as a dimensionless scaling factor. In (6.60), the uncertainty go corresponding
to the speed is not scaled by At, because of the limited speeds involved in the
indoor scenario. Finally, the positioning EKF used the following measurement noise
covariance matrix:

R, = diag{[r,r,...,r]} € CNOXNW) (6.61)

where, the values of r differ depending on the adopted ranging algorithm. The value
of r = (40m)? was set in the IL/IM case. In the EKAT case, a smaller value of
r = (10m)? was used, in order to give more trust to the ranges evaluated by this
algorithm.

6.9.2 SRA tuning

Carefully selecting the value of the M parameter is of crucial importance for the
super-resolution algorithm to give reliable and accurate results. As pointed out
in [15], the value of M determines a trade-off between resolution and stability of the
SRA estimation results.

In the ESPRIT-based approach proposed in Section 6.6.1, a single length 2 - Nyt
CFR estimate H;P[k], k = 0,...,2 - Nyot — 1, feeds the SRA. Because overlapped
length M snapshots are used to build up the data matrix X € CM*N of (6.16), its
dimensions are related through the equation N = 2- Nyot — M + 1. Hence, increasing
M corresponds to decreasing N, which ultimately means that the data matrix is
made of less overlapped snapshots. This corresponds to less reliable estimates, since
the autocorrelation matrix estimate is calculated using a lower number of snapshots
and hence is more sensible to the fluctuations due to noise. On the other hand,
increasing M determines an increased resolution of the SRA [36,43], i.e. the SRA is
able to distinguish closer instant of arrivals. Hence, M has to be carefully selected for
achieving the best trade-off between resolution and reliability. Usually, M is chosen
as some fraction of the length of the initial CFR sampling, i.e., M = m - 2 - Niot.
Consequently, selecting a value for M is equivalent to selecting a value for m.
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Figure 6.22 — Multipath TOA of the first L. = 10 detected paths in the interval
[58's, 59s] of the preliminary measurements dataset, antenna port p = 0, cell N5 =
84. Here, the ESPRIT TOA estimation has been used with M = 144 on the merged
CFR estimates. For a clearer visualization, just one estimation every four performed
estimations is shown.

For choosing the most appropriate value of m to be used in the presented mea-
surements, the following method has been used (further considerations on the SRA
tuning can be found in [15,102] and references therein). By inspecting the results
derived from the application of ESPRIT to the signal coming from antenna port
p =0, cell NICBH = 84, of the preliminary measurements, an interval of 1s containing
constant multipath was selected. This interval is shown in Figure 6.22, where an
ESPRIT TOA estimation is applied using the length 2 - Niot = 300 merged CFR
estimations and a value of M = 144. Several ESPRIT TOA estimations were then
run on that interval using different values of M. More particularly, M was set to
M =m-2- Nyt with m € M = {0.01,0.02,...,0.6}. Then, a number of Lyax = 10
paths was fixed, and, for each value of M and for each estimation, the first L.x
estimated paths’ TOA were stored, namely:

iAW), A ), me M, n=0,... N1, (6.62)
where N is the number of estimations performed in the 1s considered interval. The
values of Lyax = 10 was chosen since in the considered interval at least 10 multipath
components were always detected at every estimation. Then, for each value of m €

M, the statistical average and variance of each estimated TOA were computed,
namely:

1 . (m
um = = N #H ), (6.63)
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Figure 6.23 — Calculation of m using the length 2 - Nio; = 300 merged CFR estimates
obtained with the CRS of a single slot.
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Figure 6.24 — Calculation of m using the length 2 - Ny, = 300 merged CFR obtained
by averaging the estimates of Ny = 10 subsequent slots’” CRSs.
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m?_ L X () (m)) 2
o = 3 (H" ) - ) (6.64)
n=0

Finally, the value of m that minimized the sum of the empirical multipath TOA
variances was chosen, i.e.:

[/max_1
3 . 2
m = arg ml/{l/t{ E aﬁl ) } . (6.65)

me
=0

This procedure was performed twice. In the first run, which results are represented in
Figure 6.23, the ESPRIT TOA estimation was applied to the merged CFR estimates
of all the received slots in the analyzed interval. This led to a total of N = 2000
estimations, since 1s of continuous data corresponds to 100 frames, which contain
20 slots each, hence N = 100 - 20 = 2000. In the second run, which results are
represented in Figure 6.24, the ESPRIT TOA estimation was applied to groups of
N = 10 merged CFR estimates combined with the averaging method of (6.12). In
this case, N = 200 estimations were performed, since a TOA estimate is computed
every Ny = 10 slots (1s corresponds to 100 frames, which contain 20 slots each,
hence N = 100 - 20/10 = 200). As can be seen from Figures 6.23b-6.24b, the value
of m was near 0.5 in both cases. Hence, the value of m = 0.48 has been selected to
be used in the EKAT algorithm.

6.9.3 Preliminary TOA estimation results

The preliminary measurements from cell IDs NICBH = 84 and NICBH = 86 of BS 1
operator 1 described in Section 6.3 were used to asses the feasibility of multipath
TOA estimation of real LTE signals by means of super-resolution algorithms. The
ESPRIT TOA estimation described in Section 6.6.1 was applied to the CFR esti-
mates evaluated exploiting the received CRS and combined in time and frequency
as described in Section 6.4. During these preliminary experiments, only the TOA
estimation was performed on the real data, with no tracking of the DP nor bias and
drift correction.

As explained in Section 6.3, differently from the two main datasets used to eval-
uate the performance of the EKAT algorithm, the preliminary dataset is made of
continuous recorded samples. Hence, after coarse frame and symbol timing, the
subsequent received CRSs were used to evaluate the CFR estimates pertaining to
each received cell and antenna port, and were then merged as described in Section
6.4.1. Ten subsequent merged channel estimates were then averaged as described
in Section 6.4.2, i.e., Ny = 10. Finally, each merged and averaged CFR estimate
was used to feed the ESPRIT multipath TOA estimation of Section 6.6.1, where m
was set to m = 0.48. Since during the preliminary measurements operator 1 had an
LTE channel bandwidth configuration of 15 Mhz, corresponding to Ng. = 900 sub-
carriers, then each merged CFR estimate contained 2 - Niot = 300 samples, which
correspond M = 144 and N = 157 if m = 0.48 is used. These settings correspond
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Figure 6.25 — Results of ESPRIT multipath TOA estimation using the CRSs of N5 =
84 from the preliminary measurement dataset in a representative time interval. Both
the received antenna ports are shown in the same plot.
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Figure 6.26 — Results of ESPRIT multipath TOA estimation using the CRSs of N5 =
86 from the preliminary measurement dataset in a representative time interval. Both
the received antenna ports are shown in the same plot.
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Figure 6.27 — First estimated path (likely the direct path) from antenna port p = 0 of
cell NES! = 84, “Start” position, static measurements.

to a TOA estimation every Ny = 10 slots, which correspond to 200 estimations per
second.

The estimation procedure was applied to both the static and the moving prelim-
inary datasets, and both p = 0 and p = 1 antenna ports were considered. Moreover,
the CRSs coming from both fo)” = 84 and Nﬁ%ﬂ = 86 were taken into account for
the estimation.

Figure 6.25 shows the results obtained using the CRS of cell ID N£S! = 84, for
both the static and moving scenarios. As one can see, especially for p = 0 in Figure
6.25a and for p = 1 in Figure 6.25b, the estimation of the DP as well as the multipath
components is quite clear and continuous along subsequent measurements. The
static case of Figure 6.25a correctly exhibits almost constant multipath behaviour,
and fluctuations probably imputable to noise. The multipath TOA estimated in the
moving case, represented in Figure 6.25b, exhibits time variant multipath from time
73.5s, which roughly corresponds to the time where the received started moving
from the “Stopover” position. Equivalently, Figure 6.26 shows the results obtained
using the CRS of cell ID NfBﬂ = 86, for both the static and moving scenarios, for
which considerations similar to the ones done for Nﬁ%ﬂ = 84 hold.

Comparing the cases of the two different cell IDs NICB“ = 84 and NICB“ = 86, it is
evident that the estimations for NICBH = 84 are more stable in the static case, while
the estimations for NICBH = 86 are more stable in the case of the moving scenario. This
means that likely in the “Start” position (where all whole static measurement was
conducted, refer to Figure 6.1d), the signal coming from the cell having Nﬁ%ﬂ =84
is stronger than the Nﬁ%“ = 86 signal. Conversely, the results suggest that in the
“Stopover” position (where the receiving station is in the considered measurement
time interval [67s, 77s]) the signal coming from the cell having NS = 86 is stronger
than the Nﬁ%ﬂ = 84 signal. Moreover, using analogous considerations, one can note
that the signal coming from antenna port p = 0 is stronger in the static case (hence
in the “Start” position) while the signal coming from antenna port p = 1 is stronger
in the moving case (hence in the “Stopover” position), both in the case of NICBH =84
and NICBH = 86.

The results of this preliminary set of measurements demonstrated the feasibility
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’ Op. ‘ BS ‘ Ntot ‘ ng Py P | ni Py P

1 905 | 887 098 0.02| 640 0.71 0.29
2 11604 | 1569 0.98 0.02 | 898 0.56 0.44
1 3 | 1067 | 947 0.89 0.11 | 720 0.67 0.33
5 | 909 | 876 0.96 0.04 | 531 0.58 0.42
6 | 359 | 347 097 0.03 | 236 0.66 0.34
1 12730 | 2730 1.00 0.00 | 1918 0.70 0.30
2 2 | 534 | 458 0.86 0.14 | 282 0.53 0.47
3 12292 | 2270 0.99 0.01 | 1320 0.58 0.42

(a) Outdoor vehicular measurement scenario.

’Op.‘BS‘nto‘c‘nE Py, Pg | n Py, P

1 1 1902|900 0.99 0.01|657 0.72 0.28
2 | 516 | 627 1.00 0.00 | 261 0.50 0.50
9 1 1902|900 0.99 0.01 | 586 0.64 0.36
3 | 554 | 713 1.00 0.00 | 356 0.64 0.36
3 1 | 867 | 888 1.00 0.00 | 504 0.58 0.42

(b) Indoor measurement scenario.

Table 6.4 — Coverage statistics for the different employed estimators.

of LTE timing measurements with SRAs for ranging purposes, with the DP TOA
being estimated within the remarkably small interval of 3ns in the best case, as
shown in Figure 6.27.

6.9.4 Ranging results

After the preliminary assessment of the capabilities of the ESPRIT algorithm on
real LTE signals described in the previous section, the EKAT algorithm was devel-
oped, which is capable of detecting and tracking the DP TOA, to be used for the
actual pseudorange estimations. EKAT was applied to the outdoor vehicular and
indoor datasets described in Section 6.3, which are more complete and comprehen-
sive datasets, more suited for the testing of positioning applications. To assess its
effectiveness, EKAT was also compared to the simpler pseudorange estimators of
Section 6.5.

Firstly, the employed pseudorange estimators, namely IM, IL and EKAT, were
compared in terms of coverage. Indeed, differently from the IM estimator, EKAT
and IL do not produce an estimate for each input measurement. EKAT requires
measurements displaced by less than Dy,a-T in order to produce pseudoranges, and
it may happen that a measurement does not correspond to an estimate. Similarly,
IL discards a measurement if one of the Ny, CIR highest peaks appears before the
CIR maximum. Tables 6.4 show, for each BS and each operator in each measure-
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’ Op. ‘ BS ‘ ey (m]  eglgs [m] ‘ ey [m]  eglgs [m] ‘ eds [m]  egig5 [m] ‘
1 11.49 56.47 8.65 53.34 10.16 50.68
2 13.67 127.20 9.20 63.97 8.26 23.24
1 3 18.51 175.26 11.62 107.99 8.94 47.96
) 16.07  107.38 12.73 41.06 11.86 37.64
6 3.37 65.26 3.03 19.53 3.40 12.20
1 20.52 102.74 17.82 61.71 14.21 35.90
2 2 17.07  208.17 12.16 99.68 11.19 51.59
3 23.12 140.02 15.92 51.09 17.36 43.53
(a) Outdoor vehicular measurement scenario.
’ Op. ‘ BS ‘ ey [m]  efys [m] ‘ ey [m]  eflgs [m] ‘ ed’s [m]  efgs [m] ‘
1 1 6.20 50.45 3.43 28.83 3.19 9.21
2 23.21 89.81 22.99 89.64 7.98 17.42
9 1 21.19 97.97 19.52 76.76 5.02 14.62
3 17.51 49.98 14.67 27.57 8.64 46.01
3 1 25.91 79.17 12.79 90.87 8.83 22.16

(b) Indoor measurement scenario.

Table 6.5 — Ranging error statistics for the different employed estimators.

ment scenario, the total number of available measurements ni., and the number
of produced estimates n,, x € {E,IL}. The corresponding probabilities of having
a range estimate P, = min{ny/ni, 1} and of a ranging outage P2 = 1 — P} are
also shown. This particular definition of P is necessary because it may happen
that EKAT is run with no input measurements (state q4 of the state machine in
Figure 6.14), and hence it is possible that EKAT produces more estimates than
the number of input measurements. Note that the number of estimates produced
by IM is always equal to ne, hence P, = 1 and Pj; = 0. As one can see from
the results of Table 6.4, the discarding policy of IL results in a considerably lower
number of estimates than the total number of measurements available. Conversely,
EKAT delivers output results with a low outage probability, i.e., it almost always
produces an output result. Moreover, as one can note from Table 6.4b, in the indoor
measurement scenario EKAT produced a number of estimates often higher than the
number of input measurements. This is due to the high value for Dy, used for the
indoor measurements. A high value for Dy, can be used because of the low speeds
involved in the indoor measurements, which ensure a slowly changing propagation
environment.

Secondly, the range estimates ch (t) were compared to the recorded ground truth

d;(t) in order to produce error statistics, and ultimately to evaluate the performance
of each used pseudorange estimator. As already shown in the previous sections, the
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Figure 6.28 — CDFs of the ranging error £5° (a) and E" (b) for selected base stations
of the outdoor vehicular measurement scenario. In (a), the values ¢, for p = {0.5,0.95}
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GPS-based ranges were used as ground truth for the outdoor vehicular measurement
scenario, while the laser-based ranges were used as ground truth for the indoor mea-
surement scenario. Empirical cumulative density functions (CDF's) of the ranging
absolute error were evaluated as P(|€q4| < €) for each BS and each estimator, where
&4 = d — d. Since there may be measurement instants for which all three estimators
produce a pseudorange, and other instants in which just a sub-set of the estimators
outputs a pseudorange, two different criteria were adopted in order to evaluate the
CDF of gd'

The CDFs for the first type of error, denoted with £, are calculated considering
separately all the estimates produced by the three algorithms. The corresponding
error probability abscissas, defined as the value €, such that P(|E$| < e,) = p,
for p = {0.5,0.95}, were also evaluated. The results are shown for selected BSs of
the outdoor vehicular dataset in Figure 6.28a, and for selected BSs of the indoor
dataset in Figure 6.29a. The best error performance is always obtained by the
EKAT estimator, which exhibits an €95 and an gg.95 that are always smaller than
the corresponding values of the other estimators. This is particularly true in the
case of the indoor dataset of Figure 6.29a, mostly because EKAT is designed to cope
with obstructed LOS scenarios, which characterize indoor propagation. Moreover,
it is evident that the IL estimator obtains a better estimation of the range than
the IM estimator, sometimes even comparable with that of EKAT (e.g., for BS
5 operator 1 outdoor dataset, shown in Figure 6.28a). A complete comparison is
shown in Table 6.5, where the values of ¢, obtained for all the BSs are reported
for the two examined datasets. The results show that in the outdoor case of Table
6.5a, the p = 0.5 performance of EKAT and IL are comparable, while at p = 0.95
IL presents a higher error, probably because it cannot completely handle multipath
effects. Finally, as expected, the IM estimator shows the worst results, since by
definition it cannot face multipath effects. Conversely, in the indoor case of Table
6.5b, EKAT always obtains the best results, with the exception of the p = 0.95 case
of BS 3 operator 2, where the performance is worse than the IL one.

The CDFs for the second type of error, denoted with (ii“, are calculated simi-
larly to the ones of £$%', with the exception that they are plotted as a percentage
of the common number of input data. More particularly, P(|EP| <€) = P(|E$| <
€)/ min{nyet, n}, where n is the number of estimates produced by the considered algo-
rithm. The corresponding results are shown in Figure 6.28b for the outdoor dataset
and the same cases considered in Figure 6.28a, and in Figure 6.29b for the indoor
dataset and the same cases considered in Figure 6.29a. For each estimator, this type
of error definition combines the error performance and the ranging outage probability
P°, namely, the probability of not having a range estimation when a measurement
from a BS is available. As one can see, EKAT obtains the better trade off between
small error performance and an unlikely outage, while IL suffers from a high outage
probability. This probably happens because IL tends to produce an estimate only in
LOS conditions, which do not occur too frequently in the considered scenarios. As
an example, consider the case of BS 5 operator 1 outdoor dataset, represented in the
middle plots of Figure 6.28. According to £5* (Figure 6.28a), IL and EKAT exhibit
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almost the same performance. Considering 5(11]“ (Figure 6.28b), it is evident that the
statistics of IL pertain just to 58% of the possible range estimations, while EKAT
produces estimates of the same quality in 96% of cases. Similar considerations hold
for BS 3 operator 2 of the indoor dataset. Here, IL obtains an error 5%95 =27.57Tm
in just the 64% of the possible range estimations, while EKAT produces always an
estimate, at a cost of an increased error 6(})3_95 = 46.01 m. Nevertheless, EKAT has
still a better p = 0.5 error of 555 = 8.64m compared to 5%5 = 14.67m.

6.9.5 Positioning results

The ranges evaluated from both the outdoor vehicular dataset and the indoor dataset
were used in the positioning algorithm described in Section 6.8. The results obtained
are depicted in Figure 6.30 for the outdoor vehicular dataset, and in Figure 6.31
for the indoor dataset. In both cases, each plot corresponds to a different ranging
technique. Each marker in each plot is a position estimate, where the different marker
types represent the number of BSs N (¢) used for evaluating that particular position
fix. By using the ground truth data gathered during the live measurements (GPS
position fixes in the outdoor vehicular scenario, and laser positions in the indoor
scenario) as the true positions p, a positioning error was defined as &, = ||p — p||.
Error CDFs were evaluated as P(€, < ¢), which are shown in Figure 6.33 and Figure
6.34 for the outdoor vehicular scenario and the indoor scenario, respectively. The
same two error definitions of the ranging results section are adopted, namely the
error SSSt, that considers all the estimates produced by the positioning algorithm,
and the error Eli)n, that represents the results as a percentage of the common number
of inputs. In other words, P(c‘,’Ii)n < €) is obtained by scaling P(£5% < ¢) for the ratio
between the number of produced position fixes and the total number of instants
for which at least one range is available. Using the error definition of SSSt, error
probability abscissas were also evaluated as P(E5™ < ¢e,) =p, p = {0.5,0.95}, and
a root mean square (RMS) positioning error was evaluated as (E[(ESSt)Q])l/ 2. As
usually done in positioning contexts, €95 and g g5 are referred to as circular error
probability (CEP) and 95% radius (R95), respectively. Similarly to Section 6.9.5,
the error definition Eri)n permits to highlight a position fix probability PP and a
positioning outage probability P° =1 — PP.

Figure 6.30a represents the positioning result obtained with the IM range esti-
mator applied to the data collected in the outdoor vehicular scenario. As explained
in Section 6.5, the IM estimator produces the typical timing outputs of a commu-
nications module. Hence, the corresponding bad positioning results demonstrate
the need for appropriate processing at the receiver in order to correctly extract the
TOA of a signal for positioning purposes. However, some good fixes are obtained in
the southern part of the route, which corresponds to open field regions, where the
propagation occurs mainly with LOS between the BSs and the receiver.

The need of appropriate signal processing for positioning is further evident in
the results of Figure 6.31a, where the position fixes obtained with the IM ranges
extracted from the indoor data are presented. In indoor environments, the propa-
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Figure 6.30 — Positioning solution for the considered ranging techniques applied to
the outdoor dataset. One marker corresponds to a position estimate, obtained with a
number N (t) of detected BSs. The ground truth is represented by the black solid line.
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Figure 6.31 — Positioning solution for the considered ranging techniques applied to the
indoor dataset. One marker corresponds to a position estimate, obtained with a number
N(t) of detected BSs. The ground truth is represented by the black solid line.
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gation mainly occurs by multiple reflections, and the LOS path is often obstructed.
This badly affects the performance of the IM estimator, indeed most of the position
fixes are outside the building, in south western direction, and the achieved RMS is
of 43 m, which is quite large for an indoor pedestrian scenario.

Figure 6.30b presents the positioning results obtained using the IL ranges ex-
tracted from the outdoor vehicular dataset. This results demonstrate that the very
simple NLOS detection algorithm of the IL pseudorange estimator is sufficient to
drastically improve the quality of the position fixes in outdoor environments, were a
nice CEP of 25.53 m is achieved. However, IL has the drawback of discarding all the
measurements detected as potential NLOS reception. The consequence of this fact
at a positioning level, is a reduced coverage, as can be seen by the low number of
position fixes produced with N(t) > 4 BSs. Moreover, the low coverage of IL is also
highlighted by its position fix probability Pjj = 0.72, as shown in the bottom plot
of Figure 6.33. As one can see from the orange dashed ellipses of Figure 6.30b, the
main positioning failures for IL happen in the north-western part of the route, and
in the region between BS 2 operator 1 and BS 1 operator 2. An inspection of the
CIRs measured in these areas revealed that these suffered the typical behaviours of
NLOS propagation and strong multipath. This explains the poor performance and
low coverage of IL in that regions.

Figure 6.31b presents the positioning results obtained using the IL ranges ex-
tracted from the indoor dataset. In this case, the NLOS detection strategy of IL
is not sufficient for producing reliable range estimates, probably because almost all
the measured CIRs correspond to NLOS cases. This results in bad position fixes,
with an RMS of 44.75m, and a large set of the position estimates outside the build-
ing. Hence, performing range estimations with the IL algorithm may be sufficient in
outdoor vehicular scenarios with open fields regions, but is not enough for a good
positioning in indoor environments.

Figure 6.30c represents the positioning results obtained using the ranges esti-
mated with the EKAT algorithm applied to the outdoor vehicular dataset, and a
satellite view of the same results is shown in Figure 6.32a. The plots show a notable
adherence of the estimated positions to the actual path. As one can see from the top
plot of Figure 6.33, EKAT achieves the best performance among the considered rang-
ing techniques, with a CEP of 20.96 m, an R95 of 63.71 m, and an RMS of 31.09 m.
Moreover, EKAT offers the best coverage, achieving a null outage probability, and
the highest number of position fixes obtained with N (¢) > 4 BSs. The quality of the
position fixes achieved by EKAT in the regions where IL fails is remarkable, thanks
to the ability of EKAT to cope with the detrimental effects of multipath. Finally,
most of the regions where the positioning fixes produced with the EKAT ranges
have a low quality, are characterized by a low number of BSs visible, as the green
dash-dotted ellipses of Figure 6.30c highlight.

Finally, Figure 6.31c represents the positioning results obtained using the ranges
estimated with the EKAT algorithm applied to the indoor dataset, and a satellite
view of the same results is shown in Figure 6.32b. As one can see from the top
plot of Figure 6.34, also in this case EKAT achieves the best performance among the
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for the considered datasets. The ground truths are shown as a reference.
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Figure 6.33 — CDFs of the positioning errors SS“ and 5;)“ for the considered ranging
techniques applied to the outdoor vehicular dataset. The CEP, R95 and RMS statistics
are highlighted for S;St, and the position fix probability PP is highlighted in the Eg‘
plot.

considered ranging techniques, with a CEP of 7.69 m, an R95 of 17.13 m, and an RMS
0f 9.61 m. Again, EKAT also offers the best coverage, achieving an outage probability
of P = 0.01, and the highest number of position fixes obtained with N(t) > 5
BSs. The quality of the position fixes achieved by EKAT in the indoor scenario
is remarkable, with a maximum error of approximately 20m, and the trajectory
performed by the received which is clearly visible and always inside the HSR building
(Figure 6.32b). Notably, the region where the worst positioning fixes are achieved
is the first part of the indoor dataset, which is highlighted with an orange ellipse in
Figure 6.31c. This part of the route is located outdoor of the HSR building, below the
ground level, and surrounded by massive concrete facilities. Hence, it is likely that
in this position, some of the LOS paths coming from the received BSs are completely
obstructed, leading to biased range estimations and consequently to wrong position
fixes. Interestingly, the positioning results achieved for the indoor dataset are even
better than the positioning results achieved with the outdoor dataset. This may
be due to the reduced mobility of the indoor dataset, that permitted to apply the
averaging technique described in Section 6.4.2, which drastically improved the quality
of the estimated ranges.
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6.10 Conclusions

An LTE downlink signals time of arrival estimation and tracking method has been
proposed and validated in the field, by using real measurements gathered in differ-
ent propagation scenarios. The considered cases are an outdoor vehicular dataset,
collected during a car drive in the town of Rapperswil, Switzerland, and an indoor
pedestrian dataset, collected in a test route through a building of the Hochschule fiir
Technik Rapperswil, Switzerland.

Preliminary measurements demonstrated the feasibility of extracting multipath
time of arrival measurements by using super resolution algorithms applied on real
LTE signals. In particular, time of arrival measurements of the LTE cell specific
reference signal have been exploited. Then, the EKAT algorithm has been developed,
which exploits the ESPRIT super-resolution algorithm for separating multipath, and
a Kalman filter together with a novel bound-based uncertainty estimation method for
tracking the direct path time of arrival. The use of experimental data collected in the
field has demonstrated that EKAT is capable of effectively reducing the detrimental
effects of multipath.

A combination of the received signals in the time and frequency has been ex-
ploited for improving the timing estimates. Furthermore, the estimates pertaining
to the signals coming from the multiple base stations’ antenna ports have been com-
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bined in the EKAT’s Kalman filter, realizing also a spatial combining, in addition
to the aforementioned time and frequency combining. The pseudoranges calculated
with EKAT have been then combined on a cell ID basis, in order to produce a single
pseudorange for every received BS. Hence, a combination of the signals on time,
frequency, spatial and cell ID domains has been exploited for improving the range
estimates. Finally, the pseudoranges evaluated with EKAT have been corrected for
base stations’ clock bias and drift, previously estimated. At a ranging level, the
performance of EKAT is always superior in respect to the one of the other consid-
ered TOA estimators, achieving CEP values ranging from 3.19m (best case, indoor
dataset, BS 1, operator 1) to 17.36 m (worst case, outdoor vehicular dataset, BS 3,
operator 2).

The evaluated ranges have been then used to feed a positioning filter. A CEP
of 25.53m and an RMS of 59.83 m with a coverage of the 72% have been obtained
using a simple CIR based timing algorithm with NLOS detection on the outdoor ve-
hicular dataset. This demonstrates the feasibility of LTE-based positioning systems,
even with simple signal processing at the receiver, at a cost of a limited coverage.
Improved CEP, RMS (20.96m and 31.09m, respectively), and universal coverage
throughout the test have been obtained with the more powerful EKAT algorithm,
demonstrating its benefits in correctly detecting the direct path in environments
characterized by multipath propagation. The benefits of the EKAT algorithm were
particularly evident when the algorithm was applied to the indoor dataset. In this
case, a CEP of 7.69m and an RMS of 17.13m were achieved, and almost all the
position estimates were inside the HSR building in which the measurements took
place, with a clearly visible estimated receiver trajectory.

The proposed approach demonstrates that positioning with LTE signals is pos-
sible, even without transmission of the LTE positioning reference signal. Improve-
ments are easily achievable in the positioning performance, e.g., by employing a
better navigation filter, and by exploiting the wider deployment of LTE cells/micro-
cells/pico-cells, and the transmission of LTE channels with a wider bandwidth. To
the best of the author’s knowledge, this is the first contribution proposing a real field
validation of a positioning approach that uses opportunistically the LTE downlink
signals.
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Chapter 7

Conclusions and future work

This thesis presented a research work on the estimation of the time of arrival (TOA)
of modern cellular systems downlink signals for positioning purposes. The Third
Generation Partnership Project (3GPP) Long Term Evolution (LTE) signals have
been considered, and the underlying orthogonal frequency division multiplexing
(OFDM) based physical layer has been exploited. The original contribution pre-
sented in the thesis is twofold.

The first addressed topic concerns the TOA estimation of OFDM waveforms from
a reference signal design perspective. A framework has been developed for assessing
the performance of OFDM signals used for TOA estimation. The simple case of
the additive white Gaussian noise (AWGN) channel has been considered, in order
to obtain performance assessments to be used as best case indications in more com-
plex propagation environments. The considered OFDM signals have been modeled
avoiding the use of the popular rectangularly shaped pulse, which determines a non
physically realizable signal, and considering the OFDM signal at the output of the
transmitting digital-to-analog converter (DAC). Then, different power distributions
on the available OFDM sub-carriers have been carefully defined, and used to explore
the TOA estimation performance both in the asymptotic and in the threshold root
mean square error (RMSE) regions. Moreover, a novel performance metric based on
the shape of the Ziv-Zakai bound (ZZB) curve has been defined, and exploited to
precisely evaluate the boundaries between the threshold and the asymptotic RMSE
regions. By using this metric, which targets the threshold RMSE, and the popular
Gabor bandwidth (GB), which targets the asymptotic RMSE, the TOA estimation
performance of the considered OFDM signals has been studied. As a final topic of
this thesis part, the developed framework has been applied to the most common LTE
reference signals, for establishing the most suited waveforms to be used as reference
signal for time based range measurements.

The analysis revealed a trade-off between the threshold and the asymptotic
RMSE, with the signal achieving the best asymptotic RMSE exhibiting also the
worst signal-to-noise ratio (SNR) threshold. This suggested that the Gabor band-
width is not the only parameter to consider for designing TOA reference signals, and
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that the SNR threshold should also be taken into account. The analysis also showed
that, to obtain a satisfactory threshold performance with an equispaced active sub-
carrier power distribution, a high density of active sub-carriers is required. Similarly,
a certain number of active sub-carriers has to be employed if they have to be placed
contiguously on the edges of the available bandwidth. Finally, the analysis of the
LTE reference signals revealed that from the point of view of fundamental TOA
measurement accuracy the normal cell specific reference signal (CRS) is as good as
the dedicated positioning reference signal (PRS).

Future works on the topic of the OFDM signals performance assessment may
include the extension of the proposed framework to more severe channels, like the
multipath fading channels, by using the ZZBs of [18,68]. Moreover, optimization
tools such as the genetic algorithms may be employed for finding power distribu-
tions on the OFDM sub-carriers that maximize some objective function that jointly
consider the threshold and the asymptotic RMSE performance.

The second addressed topic concerns the development of a TOA estimation al-
gorithm and its application to real LTE OFDM signals collected in the town of
Rapperswil, Switzerland, in harsh propagation environments. This part of the re-
search work has been undertaken in close collaboration with the Hochschule fiir
Technik Rapperswil (HSR), Switzerland, and with the support of u-blox UK Ltd.
The used datasets were collected from the team of the Institute for Communication
Systems (ICOM) of the HSR, by using a software defined radio (SDR) based portable
setup, which also collected ground truth data. The measurements took place in an
outdoor vehicular and in an indoor scenario, both characterized by strong multipath
propagation. The developed algorithm is referred to as ESPRIT and Kalman filter
for time of Arrival Tracking (EKAT), and combines a super-resolution algorithm
(SRA), which performs the multipath separation, with a Kalman filter (KF), which
tracks the estimated direct path (DP) TOA. SRAs were chosen for the TOA esti-
mation task since they naturally exploit the OFDM based physical layer of the LTE
downlink signals. More particularly, the estimation of signal parameters via rota-
tional invariance techniques (ESPRIT) algorithm has been used, in conjunction with
the LTE CRS, which was exploited as the reference signal. Techniques for combining
the received LTE pilot tones in the time, frequency, spatial and cell ID domains have
been adopted, which were used to exploit the intrinsic diversity offered by the CRS,
and to improve the robustness and the quality of the TOA estimates. The employed
KF has been designed in order to cope with the discontinuities typical of the real
datasets, and also features an heuristic selection of the DP among the measured
multipath TOA values, and a novel bound-based estimation of the measurements re-
liability. By exploiting the developed EKAT algorithm, several DP TOA values have
been tracked from the dataset measured at the HSR. The corresponding pseudor-
anges have been converted to actual ranges by correcting the transmitter clock bias
and drift, which were estimated in a previous phase for each received base station
(BS). Moreover, for analyzing the EKAT performance from a positioning point of
view, the evaluated ranges have been used to feed a positioning filter (implemented
by the HSR team).
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To the best of the author’s knowledge, this is the first real field validation of a
positioning approach that uses opportunistically the LTE downlink signals. By com-
paring the estimated ranges with the ground truth data, the performance of EKAT
has been assessed, achieving error values (50%) ranging from 3.19m (best case, in-
door dataset) to 17.36 m (worst case, outdoor vehicular dataset, BS 3, operator 2).
Concerning the positioning results, the ranges calculated with EKAT outperformed
the considered benchmark algorithms. In the outdoor vehicular scenario, EKAT
achieved a circular error probability (CEP) and a root mean square (RMS) error
of 20.96 m and 31.09m, respectively. In the indoor case, a remarkably small CEP
of 7.69m and RMS of 17.13m were achieved, and almost all the position estimates
were inside the HSR building in which the measurements took place, with a clearly
visible estimated receiver trajectory. The results obtained demonstrated that useful
positioning can be achieved with LTE signals in harsh propagation environments,
even indoors.

Multiple further developments are possible concerning the topic of real LTE sig-
nals TOA estimation in harsh propagation environments. Firstly, a tracking of all
the multipath components estimated by the ESPRIT algorithm may be realized,
similarly to the approach of [78]. The tracked multipath components may be ex-
ploited, together with the tracked DP TOA, for improving the positioning, thanks
to the concept of virtual sources, as explained in [79]. Finally, the TOA estimation
part of the EKAT algorithm may be replaced with simpler threshold based TOA
estimation algorithms, in order to reduce the computational burden caused by the
ESPRIT matrix manipulations.
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