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Introduction

In 1872 Boltzmann proposed his famous equation to explain the properties of dilute gases,
i.e.

∂ρ(x,p)

∂t
+

p

m
· ∇ρ(x,p) + F · ∂ρ(x,p)

∂p
=

(
∂ρ(x,p)

∂t

)
coll

(1)

The equation describes the dynamics of the single particle marginal of the gas (ρ(x,p)),
under the influence of an external force F̂ , approximating the complicated interaction
with other particles by collisions:(

∂ρ(x,p)

∂t

)
coll

= ngas

∫
dΩdk

pr

m∗σ(pr,Ω)[ρ(p, t)ρ(k, t)− ρ(p′, t)ρ(k′, t)] (2)

where σ(pr,Ω), is the scattering cross section between two particles of mass m that are
scattered by an angle Ω and with relative momentum pr, and the momenta p′ and k′ are
implicitly determined by the conservation law p + k = p′ + k′ (for a detailed derivation
see [1–3]). The Botlzmann equation is so successful in describing the behavior of dilute
gases that it is now recognized as a fundamental equation in the kinetic theory of gases
and is a paradigm for the description of classical systems far from equilibrium [4,5].

Guided by the simplicity and the elegance of Boltzmann’s derivation many physicist
were attracted by the idea of extending Boltzmann’s model to the quantum mechanical
case [6–16]. Several efforts has been also done in mathematical physics to find a rigorous
derivation of the quantum version of the Boltzmann equation [17–21]. However, even a
rigorous treatment of the classical equation is missing due to the complexity of the prob-
lem (see [22–33] and literature there in for partial results and development).
The situation becomes more tractable if one restricts the problem to the case of a single
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particle interacting with a rarefied thermal bath, indeed the non linear term of the Boltz-
mann equation described in Eq. (1) becomes [2](

∂ρ(x,p)

∂t

)
coll

=

∫
dΩdqprσ(pr,Ω)[ρ(p, t)ρg(p

′)− ρ(p′, t)ρg(q
′)] (3)

where ρq(p) describes the stationary state of the rarefied thermal bath, and Eq. (3) becomes
the so called linear Boltzmann equation. Since the linear problem are easier, most promis-
ing results have been achieved in the study of the quantum behavior of a test particle in
a gas, leading to the well established field of collisional decoherence [34–47]. This field of
research was born to explain the emergent classicality -loss of quantum coherence- in the
macroscopic world but it is now interested in studying the general decoherence effects on
a quantum system due to collisional interaction with the surrounding environment.

The beginning of collisional decoehrence theory dates back to 1985 when Joos and Zeh [34]
proposed the first quantum collisional model describing the evolution of a system affected
by the interaction with a thermal bath. The main achievement of the Joos-Zeh model is to
show the presence of an irreversible damping of the system’s spatial interference due to
the environmental interaction, the so called spatial decoherence. Even if the model is of
great importance for the development of the theory, it is just a first step in understanding
the behavior of a quantum system affected by environmental interactions. Indeed, this
model is limited to the description of a very massive object in a regime where no friction
and only small spatial coherences are present. A drawback of the Joos-Zeh model is an
infinite growth of the system’s energy for long time scales, which is unphysical because
one expects a thermalization process that equilibrates the system’s energy with the gas
thermal energy.

In 1990 a step towards a consistent model describing a quantum particle in a thermal bath
was made by Gallis and Flemming [35]. They extended the Joos-Zeh result, deriving an
equation that correctly describes the dynamics of spatial coherences at all length scales.
However, they were not able to include friction. The first attempt in this direction has been
done in 1995, when Diósi published a work containing a collisional model describing the
dissipative behavior of massive particle in a thermal bath [36].

Five years later Hornberger and Vacchini extended Diósi’s result by removing the con-
straint of very massive particle [40]. They also claimed to have derived the quantum
counterpart of the linear Boltzmann equation, describing the classical dynamics of a test
particle affected by a rarefied thermal gas.
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However this result was obtained by making use of several heuristic arguments. These
were somehow necessary to overcome the difficulties which prevented the previous au-
thors from finding a consistent and general model describing the quantum dynamics of
a test particle affected by a rarefied thermal gas. The presence of inconsistencies in the
heuristic arguments adopted by Hornberger-Vacchini has been independently pointed
out by Kamleitner and Diósi [39, 48]. Furthermore, Diósi proposed a new model based
on incomplete collisions process [39], in the attempt to avoid the problems encounter by
Hornberger-Vacchini. Anyhow, as later pointed out by Honrberger-Vacchini, also this
model by Diósi is not satisfactory [49].

To summarize, important steps forward have been done in the last decades to understand
of the quantum behavior of a test particle affected by a thermal bath. However the most
refined theoretical collisional models proposed so far seem not to be in agreement with
each other. Furthermore, the open debate about which model is the one that correctly
describes a particle in a gas is a witness that the validity of these models is still unclear.
A better understanding of the quantum behavior of test particles in gases is not only de-
sirable, but would also help in understanding the non-classical process of decoherence,
which is believed to be of crucial importance in the quantum-classical transition. It is a
wide spread belief that the emergent of the classical properties in macroscopic systems
is due to decoherence phenomena produced by the unavoidable interaction with the sur-
rounding environment.

The aim of this thesis is to critically analyze the collisional models for the quantum be-
havior of a test particle interacting with a rarefied thermal bath, in order to understand
their validity. We start with a critical review of the state of the art in quantum collisional
models. Then, we study a very simple system, which is exactly solvable: A two-particle
system interacting via a Dirac delta potential in one dimension. We analyze the interac-
tion and estimate the collision time for Gaussian wave packets.
Then, we focus on the main problem of this thesis: the dynamics of a test particle in
a quantum gas. We first tackle it with an original technique that combines the Hartree
variational method with stochastic calculus techniques. In this way we properly describe
the non dissipative behavior of the test particle, and we gather interesting insight on the
dissipative process. Eventually, we provide a microscopic derivation of the collisional dy-
namics for a test particle in a rarefied thermal bath. We, shows the limits of this approach,
providing necessary conditions for the validity of collisional equation. We then conclude
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by summarizing the main results of this thesis.



Chapter 1

State of the Art

We critically review the state of the art of quantum collisional models. We can divide the
review into two parts, each of which is presented in a different section The first includes
models for infinitely heavy test particles. This assumption leads to recoil-less collisions,
where any change of the test particle’s position is neglected. The second includes models
which relax this hypothesis, and study the full interplay between friction, diffusion and
decoherence of a test particle interacting with a thermal bath. A review of all the mod-
els except for the "linear Boltzmann equation with finite intercollision" time proposed by
Diosi can also be found in [50] , where the authors use the so called "Quantum Linear
Boltzmann equation" to make the comparison.

1.1 Recoil-less Collisional Dynamics

The first model of a particle in a gas was given by Joos and Zeh [34]. It was derived in the
attempt to understand how the classical behavior of the macroscopic world emerges from
the quantum mechanical laws. Their idea was that classicality is a consequence of the
unavoidable interaction among macroscopic objects and the surrounding environment.
Precisely in the attempt to build a model describing the evolution of a macroscopic object
under the influence of photons or dust particles, they assumed the interaction to be col-
lisional. In particular, they assumed that the duration of the scattering process between
the macroscopic object and an environmental particle is short compared to the typical
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evolution time scales of the macro-object itself. Under this assumption, they claim, the
dynamics of the macroscopic object can be described by the free evolution, suddenly and
randomly perturbed by scattering events; formally they write:

iℏ
∂ρ̂

∂t
=
[
Ĥ0 , ρ̂

]
+
∂ρ̂

∂t

⏐⏐⏐⏐
scatt.

, (1.1)

where ρ̂ is the statistical operator describing the state of the system, Ĥ0 is the hamiltonian
generating the free evolution and ∂ρ̂

∂t |scatt. is the collisional contribution to the dynamics.
In order to find the analytic expression for such a collisional term in Eq. (1.1), the authors
make the key assumption of a recoil free scattering, i.e. they assume that the scattering
process does not affect the position of the macroscopic system :

|x⟩ |χ⟩ scattering−−−−−−→ Ŝ |x⟩ |χ⟩ = |x⟩ Ŝx |χx⟩ = |x⟩ |χx⟩ , (1.2)

where Ŝ is the scattering operator describing the collision process between the macro
object and the environmental particle, Ŝx = ⟨x| Ŝ |x⟩ is the scattering matrix for a macro-
object with center of mass in x, |χ⟩ is the state of the environmental particle before the
scattering, and |χx⟩ is the state of the environmental particle after the scattering, that
obviously depends on the position of the macro-object. The hypothesis of a recoil free
scattering is justified when the mass of the macroscopic object is much larger than the
mass of the environmental particle, a condition that the authors assume to be satisfied
for a scattering with dust or light. Describing the macroscopic object by a wave function
φ(x) in the position basis, the authors write the density matrix of the scattering center x
as

ρ̂(x,x′) = φ(x)φ∗(x′) ⟨χ| Ŝ†
x′Ŝx |χ⟩ . (1.3)

In order to consider a very general recoil free collision process, they make the natural
assumption of translational invariant interactions. Accordingly, they find

⟨χ| Ŝ†
x′Ŝx |χ⟩ =

∫
dk dk′dk′′ Sx′(k,k′)S∗

x(k,k
′′)χ(k′)χ(k′′)

=

∫
dk dk′dk′′ S(k,k′)S∗(k,k′′)e−ik′(x−x′)e−ik′′(x−x′)χ(k′)χ(k′′), (1.4)

with S(k,k′) the usual scattering matrix in momentum, S∗(k,k′) its complex conjugate
and χ(k) = ⟨k|χ⟩ the environmental wave function in momentum. They express the
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scattering matrix in terms of the scattering amplitude f(k,k′), i.e.

S(k,k′) = δ3(k− k′) +
i

2πk
f(k,k′)δ(k − k′), (1.5)

and they further approximate the environmental particle state with a momentum eigen-
state:

χ(k) ≃ L−3/2δ3(k− k0), (1.6)

where k0 is the momentum of the incident particle and L3 the normalization volume.
The approximation in Eq. (1.6) is justified under the very natural assumption that the
interacting environment is a rarefied gas in thermal equilibrium. Substituting Eq. (1.5)
and Eq. (1.6) in Eq. (1.4) one gets

⟨χ| Ŝ†
x′Ŝx |χ⟩ =

∫
dk

L3
[δ3(k− k0)]

2 +
1

π2k2
|f(k,k0)|2 [δ(k − k0)]

2e−i(k−k0)(x−x′). (1.7)

This equation displays an ill-defined squared delta function, that needs to be handled
carefully. The square delta function problem is very common in scattering physics [51]
and is usually cured by adopting a specific replacement scheme for the divergent terms,
i.e.

[δ

(
k2 − k20
2m

)
]2 → T

2π

(
k2 − k20
2m

)
[δ3(k− k0)]

2 → L3

2π
δ3(P) (1.8)

where T is the duration time of the scattering process, and m is the mass of the scattered
particle. The replacement scheme in Eq. (1.8) can be easily understood in the framework
of time dependent perturbation theory, where the energy Dirac delta function is generated
by

lim
T→∞

1

2π

∫ T

−T
dτ ei

k2−k20
2m

τ = δ

(
k2 − k20
2m

)
=
m

k
δ(k − k0), (1.9)

and the three dimensional Dirac delta function is generated by

lim
L→∞

1

(2π)3

∫
L3

dx eik·x = δ3(k− k0). (1.10)



4 State of the Art

However, even if the authors do no explicitly state it, from their calculations one finds out
that they cure the divergent term by making the following replacement:

δ3(k− k0)]
2 ≃ L3 δ3(k− k0)

[δ(k − k0)]
2 ≃ Lδ(k − k0). (1.11)

They where probably guided by the fact that the Fourier representation of the momentum
Dirac delta function in one dimension is given by Eq. (1.10)

δ(k) =
1

(2π)

∫
dxeikx (1.12)

from which it follows directly that

[δ(k)]2 = δ(k)δ(0) =
1

(2π)2

∫
L
dx′e

i
ℏkx

′
∫
L
dx =

L

(2π)
δ(k), (1.13)

that is similar to the replacement in Eq. (1.11). As we will see, the unjustified replacement
adopted by Joos and Zeh in their computation will later lead Hornberger and Sipe [37]
to carry out a wave packet analysis of the scattering process and provide an un-usual
replacement rule (see Eq. (1.44) in this section) for the ill-defined square delta function.
Coming back to the work of Joos-Zeh, using the replacement rule in Eq. (1.11) one gets for
Eq. (1.7) the well defined expression

⟨χ| Ŝ†
x′Ŝx |χ⟩ = 1 +

i

4π2L2

∫
dk

k
|f(k,k0)|2 δ(k − k0)e

−i(k−k0)(x−x′). (1.14)

Expanding the exponential up to the second order, and integrating over the solid angle of
k the authors eventually obtain

ρ(x,x′)
scattering−−−−−−→ ρ̂(x,x′)

(
1− (k0 |x− x′|)2

8π2L2
σeff

)
≃ ρ(x,x′) exp

(
−(k0 |x− x′|)2

8π2L2
σeff

)
,

(1.15)

where

σeff :=
π

2

∫
d cos θ |f(cosθ)|2

[
(2− cos θ)2 − 1

]
(1.16)

is the effective scattering cross-section. The result of Eq. (1.15) is then extended to n subse-
quent independent scattering processes by multiplying the effective cross-section by the
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factor n. Joos-Zeh furthermore identify the number of scattering process n as the num-
ber of particles passing trough the surface L2 of the normalization volume L3 in a time
interval t, i.e.

n = L2 · flux · t = L2 · particle density · mean velocity · t = L2N

V
vt, (1.17)

which leads to

ρ(x,x′)
n−scattering−−−−−−−−→ ρ(x,x′) exp

(
−Λ(x− x′)2t

)
(1.18)

where Λ is the localization rate and is defined by

Λ :=
k20σeffNv

8π2V
. (1.19)

Performing the time derivative of Eq. (1.18) they eventually obtain

∂ρ(x,x′)

∂t

⏐⏐⏐⏐
scatt.

= −Λ(x− x′)2ρ(x,x′) (1.20)

or in an equivalent operatorial form

∂ρ̂

∂t

⏐⏐⏐⏐
scatt.

= −Λ [x̂ , [x̂ , ρ̂]] . (1.21)

This is the well known Joos and Zeh master equation for collisional decoherence.

One observes that Eq. (1.20) describes an irreversible damping of the interference terms
of the density matrix ρ̂(x,x′), due to the interaction of the system with the environ-
ment. One furthermore observes that the decay rate Λ(x − x′)2 of spatial interferences,
grows to infinity when |x− x′| → ∞, proving an unphysical behavior of the equation
for long length-scales [35]. This is not surprising because the approximation performed
to obtain Eq. (1.15) from Eq. (1.14) (Taylor expansion) is valid only for small values of
(k−k0)(x−x′). This implies that the Joos-Zeh master equation is not able to correctly de-
scribe the system behavior in presence of spatial interference phenomena on large length
scales.

Gallis and Fleming [35] later extended the Joos-Zeh result to all length scales. They did so
by keeping the exact expression of Eq. (1.14), (without expanding the exponential). Calcu-
lations very similar to those performed by Joos and Zeh lead to the following result:

∂ρ̂

∂t

⏐⏐⏐⏐
scatt.

=

∫
dkdk′n(k)v(k)

2k4
δ(k − k′)

⏐⏐f(k,k′)
⏐⏐2 (e i

ℏ (k−k′)·x̂ρ̂e−
i
ℏ (k−k′)·x̂ − ρ̂

)
; (1.22)
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where n(k) is the number density of scattering particles with momentum k and v(k) =

k/m is their speed. Eq. (1.22) is the well known collisional term of the Gallis-Fleming
master equation. One can observe that Eq. (1.22) is well behaved for |x− x′| → ∞, in-
deed

lim
|x−x′|→∞

∂ρ(x,x′)

∂t

⏐⏐⏐⏐
scatt.

=

∫
dk
n(k)v(k)

2k4
|f(k,k)|2 ρ(x,x′), (1.23)

which is finite and independent from the spatial separation |x− x′|, as one expects from
physical considerations [35].

As previously mentioned the replacement rule of Eq. (1.11), adopted both by Joos-Zeh and
Gallis-Fleming, is not a consistent replacement rule for the square delta function that ap-
pears in Eq. (1.7). Motivated by this fact and by a discrepancy among the experiment and
the theoretical predictions [42], Hornberger and Sipe re-derived the Gallis-Fleming master
equation. They carried out a careful wave packet analysis of the scattering process. After
a cumbersome and lengthy calculation, they were able to reproduce the Gallis-Fleming
result rescaled by a 1/2π factor, which is confirmed by experiments [42]. They further-
more provide a new replacement rule for the ill-defined square delta function in Eq. (1.7),
i.e.

|δ(k − k0)f(k,k0)|2 →
L3

2πσ(k)
δ(k − k0) |f(k,k0)|2 , (1.24)

claiming the necessity of this replacement when treating the problem without passing
trough a wave packet analysis. Adler, in a later work [52], showed that it is possible to
obtain Hornberger-Sipe results without passing through a wave packet calculation, nor
using the unusual replacement rule in Eq. (1.24). Following the strategy earlier adopted
by Diósi in [36] (where the correct replacement rule in Eq. (1.8) is adopted), Adler was able
to re-derive Eq. (1.22) with the correct 2π factor. He continued his analysis by making a
comparison between Hornberger-Sipe result [37] and Diósi work [36]. We will not report
here the details.

In the next section we will discuss the more interesting result obtained by Diósi in [36]
in the attempt to overcome the limitations of the Gallis-Fleming and Joos-Zeh models.
As it is shown in [53, 54], the assumption of recoil-free collisions in these models leads
to an infinite growth of the system’s kinetic energy on long time scales. This divergent
heating effect restricts the validity of the models to only short times. We will discuss the
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most relevant attempt to overcome this problem, by including recoil and friction effects
in collisional dynamics.

1.2 Collisional Dynamics with Recoil

To our knowledge, the first attempt to deal with the problem of the infinite heating effect
in collisional models was done by Diósi in [36]. The author considers a single collision in
the interaction picture (I):

ρ̂ISE
scattering−−−−−−→ Ŝρ̂ISEŜ

†, (1.25)

where Ŝ is the unitary scattering operator and ρ̂SE the statistical operator describing the
system plus environment. Equation (1.25) is analogous to the one in Eq. (1.2) by Joos-
Zeh; however here no assumption of recoil-free scattering is made. After introducing the
transition operator T̂ , through the relation Ŝ = 1 + iT̂ , Diósi finds that the change of the
statistical operator ρ̂SE due to one collision is

∆ρ̂ISE = Ŝρ̂ISEŜ
† − ρ̂ISE =

i

2

[
T̂ + T̂ † , ρ̂ISE

]
+ T̂ ρ̂ISE T̂

† − 1

2

{
T̂ †T̂ , ρ̂ISE

}
. (1.26)

In order to obtain a collisional master equation, he assumes that the time derivative of the
statistical operator in the interaction picture can be approximated by the change due to a
collision over the collision time ∆t, i.e.

∂ρ̂IS
∂t

≃ ∆ρ̂IS
∆t

=
1

∆t
TrE∆ρ̂ISE . (1.27)

With Eq. (1.27) he implicitly assumes that the collision described by Eq. (1.26) lasts for
very short time scales. This assumption is equivalent to the assumption of short collision
time made by Joos and Zeh in [34]. He further assumes that the collision incoming states
are uncorrelated1, i.e. the incoming state is in a factorized product ρ̂SE = ρ̂S ⊗ ρ̂E , where
ρ̂S and ρ̂E describes the state of the system and of the environment respectively. The
environmental state ρ̂E describes n uncorrelated identical particles per unit volume, all of
them in the same stationary state ρE(k). He then introduces the standard representation

1This assumption is the quantum analogous to the molecular chaos assumption made by Boltzmann in
his seminal work.
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of the transition operator,

T̂ =
1

2πm∗

∫
dPidkfdkif(k

∗
f ,k

∗
i )δ(Ek∗

f
− Ek∗

i
) |Pi − kf + ki,kf ⟩ ⟨Pi,ki| (1.28)

where

M∗ =M +m, m∗ =
mM

M∗ , k∗
i =

M

M∗ki −
m

M∗Pi, k∗
f = kf − m

M∗ (ki +Pi), (1.29)

M, P⃗ and m, k⃗ are respectively the mass and the momentum of the system and of the gas
particle. In this way Diósi derives the following identity:

TrE
(
T̂ ρ̂IS ⊗ ρ̂E T̂

†
)
=

2πn

m∗2

∫
dPidP

′
idkidkf ρE (ki) ⟨Pi| ρ̂IS

⏐⏐P′
i

⟩
·f(k∗

f ,k
′∗
i )δ(Ek∗

f
− Ek∗

i
) |Pi + ki − kf ⟩

⟨
P′

i + ki − kf

⏐⏐ f∗(k′∗
f ,k

′∗
i )δ(Ek′∗

f
− Ek′∗

i
).

(1.30)

By observing that
⏐⏐k′∗

i − k∗
i

⏐⏐ = ⏐⏐⏐k′∗
f − k∗

f

⏐⏐⏐ = (m/M∗) |P′
i −Pi|, and under the assump-

tion that the system’s density matrix in momentum representation ρ̂s(Pi,P
′
i) is almost

diagonal, i.e. (m/M∗) |P′
i −Pi| ≃ 0, the author approximates

k′∗
f ≃ k∗

f , k′∗
i ≃ k∗

i . (1.31)

Exploiting this prescription in Eq. (1.30), he eventually obtains

TrE
(
T̂ ρ̂IS ⊗ ρ̂E T̂

†
)
=

2πn

m∗2

(
M∗

M

)3 ∫
dk∗

i dk
∗
f

⏐⏐f(k∗
f ,k

′∗
i )
⏐⏐2

[δ(Ek∗
f
− Ek∗

i
)]2
√
ρE (ki)e

−i(k∗
f−k∗

i )x̂ρ̂ISe
i(k∗

f−k∗
i )x̂
√
ρE (ki). (1.32)

The approximation just performed leads to an ill-defined square delta function in Eq. (1.32),
that Diósi cures with the standard replacement of Eq.(1.8), i.e.

δ(E)|E=0 = ∆t/2π. (1.33)

By rewriting Eq. (1.32) in polar coordinates and integrating over the modulus of the vector
ki one obtains

∂ρ̂IS
∂t

⏐⏐⏐⏐
scatt.

=
n

m∗2

(
M∗

M

)3 ∫
dEdΩ∗

i dΩ
∗
f k

∗2dσ(θ
∗, E∗)

dΩ∗
f

·
(
V̂k∗

fk∗
i
ρ̂ISV̂

†
k∗

fk∗
i
− 1

2

{
V̂ †
k∗

fk∗
i
V̂k∗

fk∗
i
, ρ̂IS

})
, (1.34)
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where dσ/dΩ = |f |2 is the center of mass differential cross-section and

V̂k∗
fk∗

i
=

√
ρ̂E

(
k∗
i +

m

M
(P̂+ k∗

f )
)
e−i(k∗

f−k∗
i )·X̂. (1.35)

Equation (1.34) is the main result of Diósi’s paper. One observes that Eq. (1.35) is a func-
tion not only of the system position operator x̂ but also of the system momentum operator
P̂. The presence of the momentum operator p̂ in Eq. (1.35) is a witnesses that Eq. (1.34) ac-
counts for recoil effects. In fact, as it can be easily shown, the collisional process described
by Eq. (1.34) does not preserve the position states of the system, i.e.

∂ |x⟩⟨x|
∂t

⏐⏐⏐⏐
scatt.

̸= 0. (1.36)

The author then proves the existence of a steady state for the dynamics described by
Eq. (1.34) and that such a steady state is the Gibbs state ∝ exp[−βP2/2M ], with inverse
temperature β. This fact guarantees that the system kinetic energy goes to the finite
asymptotic value E = 3

2β
−1 on the long time scale, witnessing the presence of friction

in the dyamics.

An equation similar to Eq. (1.34) was later developed by Vacchini, exploiting the formal-
ism of multi-particle quantum field theory in [55]. Since a detailed analysis of Vacchini’s
work goes beyond the purposes of this review, we just stress the fact that the main dif-
ference of the results in [55] from Eq. (1.34) is due to a different approximation scheme
adopted by Vacchini. The author, differently from Diósi, applied the following approxi-
mation scheme along the derivation (compare with. Eq. (1.31))

k∗
i ≃

k∗
i + k′∗

i

2
≃ k′∗

i k∗
f ≃

k∗
f + k′∗

f

2
≃ k′∗

f (1.37)

This replacement leads to a different formula from Eq. (1.34). However, it is easy to show
that Vacchini and Diósi results are equivalent when in Vacchini’s work the gas is chosen
to be described by Boltzmann statistics. We stress that the assumption of almost diagonal
system state ρ̂S in momentum representation is a crucial point in Vacchini and Diósi re-
sults. In fact, the replacement in Eq. (1.37) and Eq. (1.31) holds true only in this case.

Hornberger and Vacchini [40] later proposed a new approach to remove the limitations
of the previous derivations. They started from Eq. (1.25) but, differently from Diósi, they
explicitly introduce a rate operator Γ̂ to take into account the collision probability in a



10 State of the Art

small time interval ∆t. The authors then assume the rate operator Γ̂ to be the classical
collision rate function promoted to an operator function:

Γ̂ =
n

m∗

⏐⏐⏐rel(P̂, k̂)
⏐⏐⏐σtot(rel(P̂, k̂)), (1.38)

where P̂ and k̂ are respectively the momentum operators of the system and of the gas
particle, rel(P,k) the relative momentum between the system and a gas particle and n

the gas particles density. Exploiting the monitoring approach [56] and assuming a factor-
ized incoming state ρ̂SE = ρ̂s ⊗ ρ̂E , the authors obtain the following effective equation of
motion

∂ρ̂S

∂t
=

1

iℏ

[
Ĥ , ρ̂s

]
+ Lρ̂S +Rρ̂S (1.39)

where the superoperators L and R depend on the transition (T̂ ) and rate (Γ̂) operators as
follows:

Lρ̂S = TrE
(
T̂ Γ̂1/2[ρ̂s ⊗ ρ̂E ]Γ̂

1/2T̂ †
)
− 1

2
TrE
({

Γ̂1/2T̂ T̂ †Γ̂1/2 , [ρ̂S ⊗ ρ̂E ]
})

, (1.40)

Rρ̂S = iTrE

([
Γ̂1/2 T̂ + T̂ †

2
Γ̂1/2 , ρ̂S ⊗ ρ̂E

])
. (1.41)

In order to find an explicit expression for Eq. (1.39) they assume the environment to be
described by the Botlzmann distribution µ(k) of box normalized momentum states

ρ̂E(k,k) =
(2πℏ)3

Ω
µ(k), (1.42)

and with the help of Eq. (1.28) they rewrite the first term of Eq. (1.40) as follows:

⟨Pf |TrE
(
T̂ Γ̂1/2[ρ̂S ⊗ ρ̂E ]Γ̂

1/2T̂ †
) ⏐⏐P′

f

⟩
=

(2πℏ)3

Ω

2πn

m∗2

∫
dkidkf µ (ki)

·f(k∗
f ,k

∗
i )δ(Ek∗

f
− Ek∗

i
)
√
Γ(k∗

i )⟨Pf − kfi|ρ̂S

⏐⏐P′
f − kfi

⟩√
Γ(k′∗

i )f
∗(k′∗

f ,k
′∗
i )δ(Ek′∗

f
− Ek′∗

i
).

(1.43)

If one considers the diagonal matrix elements of Eq. (1.43) one obtains a squared Dirac
delta function, that the authors regularize by introducing the replacement rule

(2πℏ)2

|Ω|

⏐⏐⏐f(k∗
f ,k

∗
i )δ(Ek∗

f
− Ek∗

i
)
⏐⏐⏐2 → δ(Ek∗

f
− Ek∗

i
)
⏐⏐⏐f(k∗

f ,k
∗
i )
⏐⏐⏐2

Γ(k∗
i )

(1.44)
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previously proposed by Hornberger and Sipe [37] (see Eq. (1.24) sec. 1.1). As previously
mentioned the replacement rule in Eq. (1.44) is unusual. However, the authors choose
to use this for two reasons: first, the standard replacement in Eq. (1.8) would lead to
the presence of an un-wanted ∆t factor in the collisional term, and more importantly
this unusual replacement scheme allows the authors to remove the rate operators (Γ̂)

dependence in Eq. (1.43), which would produce a quadratic dependency of the collision
term on the scattering cross section. They also extend the replacement in Eq. (1.44) to the
off-diagonal matrix elements of Eq. (1.43) by formally taking the square root of Eq. (1.44),
i.e.

2πℏ√
Ω
f(k∗

f ,k
∗
i )δ(Ek∗

f
− Ek∗

i
) →

√
δ(Ek∗

f
− Ek∗

i
)f(k∗

f ,k
∗
i )√

Γ(k∗
i )

. (1.45)

This extension is here needed to remove the rate operator Γ̂ also in the non diagonal
terms. Exploiting Eq. (1.45) one ends up with the square root of a product of two energy

conserving-delta functions with argument
k∗2
f −k∗2

i

2 − (k∗
f − k∗

i ) ·Q , where Q = m
M∗

Pi−P′
i

2 .
The authors argue that Q should be replaced by Q⊥, i.e. the component of Q orthogonal
to k∗

f − k∗
i , and, by resorting to Eqs. (1.39 ,1.40, 1.41), they eventually end up with the

following master equation:

∂ρ̂s
∂t

=
1

iℏ

[
Ĥ , ρ̂s

]
+

∫
dQ

∫
Q⊥

dk

|Q|

(
L̂Q,kρ̂SL̂

†
Q,k − 1

2
ρ̂SL̂

†
Q,kL̂Q,k − 1

2
L̂Q,kL̂Q,kρ̂S

)
,

(1.46)

with L̂Q,k = eix̂·QL̂k,Q(P̂) and

L̂k,Q(P̂) =
nm

m2∗ f

[
rel(k⊥Q,P⊥Q)− Q

2
rel(k⊥Q,P⊥Q +

Q

2
)

]√
ρ̂E(P⊥Q +

m

m∗
Q

2
+
m

M
P∥Q)

(1.47)

where the integration over the gas particle momentum k is performed over the plane
perpendicular to the momentum transfer Q, and the vector with index ∥Q denotes vector
components parallel Q.

In the original paper the authors derive, as limiting cases, Joos-Zeh [34], Gallis-Fleming [35]
(with the correct 2π factor) and Vacchini [55] results, showing the generality of Eq. (1.46).
Later, Diósi [39] and Kamleitner [48], independently, questioned on the validity of Horn-
berger-Vacchini derivation. In particular, they questioned the fact that the replacement
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adopted by Hornberger-Vacchini for the off-diagonal terms of Eq. (1.43) is not justified,
because the off-diagonal terms do not present any divergence to be cured, unlike the di-
agonal terms. Diósi and Kamlaitner also notice that a complete collision event described
by Eq. (1.43) would destroy all momentum coherences in the state of the system [39, 48],
but the replacement (Q → Q⊥) adopted by Hornberger and Vacchini for the off-diagonal
terms removes this feature of the collision event.

Motivated by these observations Kamleitner made a detailed study of the interaction pro-
cess of two particles in one dimension [57], and further derived a master equation for the
one dimensional dynamics of a quantum particle undergoing random collisions with gas
particles [48]. Diósi, instead, proposed a new collisional equation where a finite inter-
collision time is explicitly present [39]. He stresses that the presence of a finite inter-
collision time is in contrast with the infinite time necessary for the process leading from
an ingoing collision state to an outgoing collision state in standard scattering theory. Diósi
suggested then the possibility of a non complete scattering process, introducing a finite
time in the collision process. To introduce a finite time in the collision and further solve
the problems related to the energy delta functions present in previous works, he replaces
the energy dirac delta functions in Eq. (1.30), with a "smoothened" delta function

δ(E) → δτ (E) =
sin(τE/2)

πE
. (1.48)

probably guided by the fact that the energy Dirac delta function in the scattering matrix
is generated by

δ(E) =
1

2π
lim
τ→∞

∫ τ/2

−τ/2
ds e−iE s = lim

τ→∞

sin(τE)

πE
. (1.49)

He then estimates the inter-collision time to be

τ =

√
πβm

σn
(1.50)

where σ is the total scattering cross section, n the gas density, β the inverse temperature,
m the mass of the gas particle. Exploiting Eq. (1.26), Eq. (1.30) and the replacement in
Eq. (1.48), he eventually obtains the following dynamical equation

∂ρ̂s
∂t

= − i

ℏ

[
Ĥ , ρ̂S

]
+

2πn

τm∗2

∫
dkdQ ρ̂E(k)

(
V̂ (k,Q)ρ̂SV̂

†(k,Q)− 1

2

{
V̂ †(k,Q)V̂ (k,Q) , ρ̂S

})
,

(1.51)
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where

V̂ (k,Q) = e
i
ℏQ·X̂f(k̂∗f , k̂

∗
i )δτ (Êfi). (1.52)

Furthermore in his work Diósi stresses the fact that the coherence between different mo-
mentum eigenstates is heavily suppressed by a complete scattering process and the per-
sistence of any coherent dynamics is only due to incomplete quantum collisions, contrary
to the previous understanding of the behavior of a quantum particle in a gas. (for ex-
ample, Hornberger-Vacchini’s model displays a persistent coherence in momentum that
is suppressed only after several complete collision events). However, Diósi’s work is not
free form inconsistencies, as pointed out by Hornberger and Vacchini in [49]. The colli-
sional contribution to the dynamics described by Eq. (1.51) is non linear in the gas density
ngas, because of the definition of the inter-collision time τ in Eq. (1.50). However, from the
physical point of view one would expect a linear dependence on ngas in Eq. (1.51) [49].
Moreover, the definition of the inter-collision time τ in Eq. (1.50) depends on the gas state
only, but the inter-collision time should depend both on the test and the gas particles.
However Hornberger and Vacchini show that a more appropriate definition of the inter-
collision time, i.e.

τ−1[ρ̂S ] =

∫
dP ⟨P| ρ̂S |P⟩ngas

∫
ρE(P)vrel(k,P)σ[Erel = m∗v

2
rel(k,P)/2] (1.53)

where vrel(P,P) = [k/m − P/M ] the relative velocity, and m∗ the relative mass, would
yield to a non linear time evolution equation for the state ρ̂S . They furthermore show that
the master equation in Eq. (1.51) displays an infinite position diffusion effect in the limit of
ngas → 0. However, in this regime the master equation should describe a free evolution,
and diffusion effects produced by collisional contributions should disappear.
From this review on collisional models of decoherence, one may deduce that there is not a
common understanding of the dynamics of a quantum particle in a gas. While recoil-less
collisional models have been experimentally tested [42], it is still not clear the validity of
collisional models in presence of dissipative phenomena. The presence of two different
heuristic models describing the same physical situation with different predictions, shows
a lack of understanding in the fundamental process underlying the behavior of a quantum
particle in a gas.

In order to make a step forward in the understanding of the problem we will analyse the
case study of two particles interacting via a dirac delta potential in one dimension. This
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simple model has the virtue of being exactly solvable, allowing us to achieve a better un-
derstanding of the collision process, disregarding complicated mathematical details. We
will then study the case of a test particle in a thermal gas, exploiting a technique based
on the Hartree variational method combined with stochastic calculus techniques. This
original treatment of the problem will allow us to correctly describe the non dissipative
behavior of the test particle, and further to have insight on the dissipative phenomena.
Last, in order to show the limits of a collisional treatment in the quantum mechanical
framework, we provide a microscopic derivation of a quantum collisional dynamics for
the test particle in a gas. Unlike previous derivations we obtain the collisional dynam-
ics starting from the Hamiltonian dynamics of a test particle interacting with an ideal N
particle gas.



Chapter 2

Trials

We discuss the lack of a common understanding in the dynamics of a quantum test par-
ticle in a rarefied gas. The origin of problems is probably related to the difficulties that
one encounters in setting necessary conditions for a collisional description of the interac-
tions. To find the origin of these difficulties, we start our analysis by following Kamleitner
steps [57]. We analyze the dynamics of two particles interacting via an infinite Dirac delta
potential in one dimension (Section 2.1). This model is exactly solvable and can be ex-
ploited to gain insight on the interaction dynamics of two particles. However, the model
is too simple to achieve a full understanding of the three dimensional interaction process.
However, it is not possible to solve this model in more than one dimension, thus prevent-
ing the possibility of having a detailed analysis of a two particle interaction process in
three dimensions.

Because of the impossibility of finding an exactly solvable model for the interaction of
two particles in three dimensions, we looked at the problem from a completely new per-
spective. Starting from the full Hamiltonian describing N+1 particles and exploiting the
Hartree variational method, we reduce the problem to the effective dynamics of a single
particle affected by an external stochastic potential (Section 2.2). This stochastic approach
gives useful insight on the recoil effects in a collisional dynamics, but it is still too simple
to correctly describe the full dynamics of a quantum particle in a gas. Accordingly we
decided to approach the problem from a fully microscopic point of view, in order to un-
derstand the limits of a collisional approach in the quantum mechanical framework. This
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will be presented in chapter 3.

2.1 Collison in one Dimension

We analyze the case two particles interacting via an infinite Dirac delta potential, in one
dimension. This analysis will help us to understand the process that governs a colli-
sion without taking into account unnecessary details. A similar analysis has been already
performed by Kamleitner in [48] to obtain a quantum 1-Dimensional Brownian model;
however different resolutive method is here used and different conclusions are reached.
The Schrödinger equation in the position representation is given by

iℏ
∂

∂t
ψ(x1, x2; t) = H(x1, x2)ψ(x1, x2) (2.1)

where the Hamiltonian H(x1, x2) is

H(x1, x2) =
ℏ

2m1

∂2

∂x21
+

ℏ
2m2

∂2

∂x22
+ lim

α→∞
αδ(x1 − x2) (2.2)

with m1 (m2) the mass and x1 (x2) the position of the first (second) particle. It is conve-
nient to introduce the centre of mass (xs) and relative coordinates(xr), which are defined
by

(x1, x2) = (xs + µ2xr; xs − µ1xr), (xr, xs) = (x1 − x2; µ1x1 + µ2x2) (2.3)

with µi = mi/(m1+m2). Equation (2.3) allows to rewrite Eq. (2.2) in the more convenient
form

iℏ
∂

∂t
ψ̃(xr, xs; t) = H̃(xr, xs)ψ̃(xr, xs), (2.4)

with

ψ̃(xr, xs) ≡ ψ(xs + µ2xr; xs − µ1xr), (2.5)

H̃(xr, xs) ≡ H(xs + µ2xr, xs − µ1xr) =
ℏ

2mr

∂2

∂x2r
+

ℏ
2ms

∂2

∂x2s
+ lim

α→∞
αδ(xr) (2.6)

where ms = m1+m2 and mr = m1m2/ms are respectively the total and the reduced mass
of the two-particle system. The problem of finding the solution of Eq. (2.4), can now be
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replaced by the equivalent problem of finding a ψ̃(xr, xs, t) such that:

ψ̃(xr, xs; t) = 0 for xr = 0; (2.7a)

ψ̃(xr, xs; t) is continuous around xr = 0; (2.7b)

ψ̃(xr, xs; t) is a solution of the free Schrödinger equation , if xr ̸= 0. (2.7c)

A wave function that satisfies these conditions can be written as follows

ψ̃(xr, xr; t) = N [ϕ(xr, xs, t)− ϕ(−xr, xs, t)], (2.8)

where N is a normalization constant, and ϕ(xr, xs, t) is a generic solution of the free
Schrödinger equation. Conditions (2.7a) and (2.7b) are trivially satisfied by Eq. (2.8). What
is left to show is that also condition (2.7c) is satisfied. To prove this, one may notice that
ϕ(−xr, xs, t) can be obtained from ϕ(xr, xs, t) by the action of the parity transformation Pr

defined as

Pr : (xr, xs) → (−xr, xs). (2.9)

Since such a transformation leaves the Hamiltonian unchanged, i.e.

H̃(−xr, xs) = H̃(xr, xs), (2.10)

if ϕ(xr, xs, t) is a solution of the free Schrödinger equation, then also ϕ(−xr, xs, t) is. By
linearity one finds that condition (2.7c) is satisfied.

The center of mass reference frame is a very useful tool to find the solution of Eq. (2.2), but
we are interested in the expression in the original reference frame, where the dependence
on the two particles’ coordinates is explicit. Exploiting Eq. (2.3), one may rewrite the
solution of the problem in the original coordinates system, i.e.

ψ(x1, x2, t) = N [ϕ(x1, x2, t)− ϕ(x̃1, x̃2, t)] (2.11)

where ϕ(x1, x2, t) is a solution of the free Schrödinger equation and

(x̃1, x̃2) = (2µ2x2 + µrx1, 2µ1x1 − µrx2) (2.12)

with µr = (µ1 − µ2).
We notice that Eq. (2.11) does not allow for localized particles states, because it describes
a superposition state between ϕ(x1, x2, t) and ϕ(x̃1, x̃2, t). This unphysical behaviour can
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be removed by restricting the space of solutions of Eq. (2.1) to the half plane described
by x1 < x2. In fact an infinite potential prevents the two particles to cross each other,
implying that the request that at the initial time particle 1 is on the left of particle 2
ψ(x1, x2, 0) = 0 for x1 > x2, restricts the configuration space to the half plane with x1 < x2.
This condition can be implemented by multiplying Eq. (2.11) by a step function that sets
the wave function to zero if x1 > x2, i.e.

ψ(x1, x2, t) = N
′
[ϕ(x1, x2, t)− ϕ(x̃1, x̃2, t)]θ(x2 − x1). (2.13)

The term ϕ(x1, x2, t) may be now understood as the in-going state and ϕ(x̃1, x̃2, t) as the
out-going state of the interaction process.

In order to describe the full interaction process, we require that the two particle are not
interacting at the initial time and also that they did not interact before that time. In other
words the contribution of the out-going state to the wave function must be negligible at
t = 0:

Pint(t = 0) ≃ 0, (2.14)

where

Pint(t) =

∫
dx1dx2 |ϕ(x̃1, x̃2, t)θ(x2 − x1)|2 . (2.15)

gives the probability that the two particles have already interacted. Under condition
(2.14), one may define the collision time as the time in which the probability that the two
particles have already interacted passes from a negligible contribution, ε (approximately
small), to a significant contribution, 1− ε :

τc = t2 − t1 , with [t1, t1] = {t > 0 | ε ≤ Pint(t) ≤ 1− ε }. (2.16)

The parameter ε is necessarily arbitrary, though small. The only restriction is that one
cannot choose ϵ = 0, because it would imply an infinite collision time.

Since an explicit formula for the collision time cannot be derived from (2.16) for an arbi-
trary initial state, we now restrict the analysis of the collision time to the case of Gaussian
initial states (a similar analysis was already provided by Kamleitner in [57]), i.e.

ψ0(x1, x2) = N2[ϕ1(x1)ϕ2(x2)− ϕ1(x̃1)ϕ2(x̃2)]θ(x2 − x1) (2.17)
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where

ϕi(x) ≡
1

4

√
πσ2i

exp

(
−(x− xi0)

2

2σ2i
+
i

ℏ
ki0x

)
(2.18)

with xi0, ki0 and σi the average initial position, the average initial momentum and the
initial variance of the i-th particle. Exploiting Eq. (2.15) and Eq. (2.18), and after a lengthy
calculation one finds

Pint(t = 0) =
1√
π

∫ ∞

x10−x20√
σ1+σ2

dx e−x2
. (2.19)

The condition (2.14) leads to the following constraint on the initial state

|x10 − x20| ≫
√
σ21 + σ22. (2.20)

This inequality is telling that the two particles are freely evolving only if their wave func-
tions have negligible overlap. Extending the results of Eq. (2.19) the state at a generic time
t, one obtains

Pint(t) =
1√
π

∫ ∞

at

dxe−x2
, (2.21)

with

at =
x1t − x2t√
σ21t + σ22t

, (2.22)

where

σ2it = σ2i + (miℏσi)−2t2, xit = xi +
ki
mi
t. (2.23)

If t1 and t2 in Eq. (2.16) are chosen such that at1 ≃ −1 and at2 ≃ 1, which implies that
during the collision process Pint(t) goes from a value of cca. 0.1 to a value of cca. 0.9 one
obtains the following inequality

−1 <
x1t − x2t√
σ21t + σ22t

< 1. (2.24)

From this inequality and exploiting the definitions (2.23) it is now easy to obtain the fol-
lowing collision time

τc =
2trmr(σ

2
1 + σ21)

1/2

k2r t
2
r − (σ21 + σ21)m

2
r

(2.25)
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where tr = ℏ−1
√
((m1σ1)−2 + (m2σ2)−2)(σ21 + σ21) is the characteristic time scale in which

the spread of the gaussian wave packet doubles, and kr = k1µ2−k2µ1 is the mean relative
momentum between the two particles. It is interesting to note that under the assumption
tr ≫ t the inequality (2.24) can be approximated to

−1 <
x1t − x2t√
σ21 + σ22

< 1 (2.26)

and then the collision time is

τc ≃ 2
√
σ21 + σ22

mr

kr
= 2
√
σ21 + σ22v

−1
r (2.27)

which is the time needed to travel twice the total initial spread of the two gaussians√
σ21 + σ22 with the mean relative velocity vr = kr/mr between the particles.

It is important to notice that the collision time τc differs from zero even with a Dirac delta
potential, contrary to what happens in the classical case, where we have instantaneous
interactions in the case of a contact potential. A non zero collision time, even with a zero
range potential, depends on the fact that the wave functions are spatially extended. In
fact from Eq. (2.27) one may deduce that the collision time is proportional to the time
needed for the two Gaussians to cross each-other. This result suggests that in order to set
the collision time to zero one should also set the spatial extension of the wave function
to zero, leading to a classical description of the dynamics, contrary to the original goal of
providing a quantum description of the collision.

If we restrict the analysis to the casem1 ≫ m2, and the two particles have momenta of the
same magnitude, and Eq. (2.27) can be further simplified as

τc ≃ 2
√
σ21 + σ22 v

−1
2 . (2.28)

The above equation suggests that, in the regime m1 ≫ m2, the collision dynamics is fully
determined by the light particle. Equation (2.28) also suggests that, if the light particle
is fast enough, the collision process can be considered as instantaneous, even if the wave
packets of the two particles are spatially extended. Since the condition m1 ≫ m2 is di-
rectly connected to the recoil-free assumption made by Joos-Zeh and Gallis-Flemming,
this analysis confirms the validity of the recoil-free collisional models in the quantum me-
chanical framework, but, on the other side, this also suggests that when the condition
m1 ≫ m2 does not hold, a collisional description can be achieved only in the classical
regime.
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However, the model here considered is too simple to give a conclusive answer on the
validity of a collisional approach in quantum theory, and further analysis is required.
The first step would be to extend the analysis made for Gaussian states to generic wave
packets. This is not an achievable task, because it requires the inversion of the condition
(2.16), that can be done only in simple cases. One could also think to extend the analysis
to the 3-dimensional case, however the procedure used here to solve Eq. (2.1) cannot be
exploited for systems in more than 1 dimension. Indeed, in n dimensions with n>1 there is
no transformation like Eq. (2.9), that preserve the free Hamiltonian and, at the same time,
can be used to write a solution for the interacting problem in the form (2.11). The fact
that finding exact solutions for the Schrödinger equation (2.1) in tree dimensions (whose
potential is the simplest possible one) is a very difficult task, combined with the fact that
the analysis here performed can be carried out explicitly only for specific wave functions
suggest that an alternative approach is needed to gain further insight in the quantum
collisional dynamics.

2.2 Variational Method for Collisional Dynamics

In this section we study the evolution of a target particle interacting with a rarefied ther-
mal bath, by exploiting the Hartree variational method combined with stochastic calculus
techniques. This method allows to unravel interesting details related to dissipation in col-
lisional dynamics, bypassing the problem encountered in the previous section of finding
exact solutions to the dynamics. To our knowledge, this is the first time that these two
method are combined together in the field of open quantum systems. The full Hamilto-
nian of a test particle interacting with other N particles is given by

Ĥ =
P̂2

2M
+

N∑
i=1

p̂2
i

2m
+

N∑
i<j

V̂ij +
N∑
i

V̂ (X̂− x̂j) (2.29)

where capital letters labels the target particle and i,j the gas particles. Since solving explic-
itly the dynamics is not an achievable task, we simplify the problem by making use of the
Hartree variational method. We assume that the gas particles, in thermal equilibrium, are
described by un-correlated wave functions, and that the correlation produced by the in-
teraction between the test particle and one bath particle are quickly removed by the bath
particles’ mutual interaction. Accordingly, we restrict the Hilbert space to the subspace of
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the factorized state vectors:

|Ψ⟩ = |ψS⟩ |ϕ1⟩ |ϕ2⟩ . . . . |ϕn⟩ (2.30)

We then consider the mean value of the Hamiltonian ⟨Ψ| Ĥ |Ψ⟩ as a functional, and we
look for the stationary solution of this functional, with the constraint ⟨Ψ|Ψ⟩ = 1, i.e.

δ{⟨Ψ| Ĥ |Ψ⟩ − λ[⟨Ψ|Ψ⟩ − 1]} = 0 (2.31)

where the Lagrange multiplier λ is associated to the state vector normalization constraint
⟨Ψ|Ψ⟩ = 1. The general variation of the state (2.30) is given by

|δΨ⟩ = |δψS⟩ |ϕ1⟩ |ϕ2⟩ . . . |ϕn⟩+
n∑

i=1

|ψS⟩ |ϕ1⟩ . . . |δϕi⟩ . . . |ϕn⟩ . (2.32)

Actually it is not necessary to consider the above general variation, to find an effective
equation for the test particle alone. It is sufficient to restrict the analysis to variations
along the test particle’s direction

|δSΨ⟩ = |δψS⟩ |ϕ1⟩ |ϕ2⟩ . . . |ϕn⟩ . (2.33)

Indeed, variations along the bath particles direction would give an unsolvable equation
describing the effective dynamics of the bath particles, which we are not interested in.
Exploiting Eq. (2.31) and Eq. (2.33) one obtains

λ |ψS⟩ =

{
P̂2

2M
+

n∑
i=1

⟨ϕi| V̂ (X̂− x̂i) |ϕi⟩

}
|ψS⟩ . (2.34)

form which one reads the test particle effective Hamiltonian to be

Ĥeff =
P̂2

2M
+

n∑
i=1

⟨ϕi| V̂ (X̂− x̂i) |ϕi⟩ . (2.35)

It is worth to stress that Eq. (2.35) is valid only under the hypothesis that Eq. (2.30) is a
good approximation for the state at any time.

Expanding the bath particles states |ϕi⟩ in position eigenbasis, Eq. (2.35) can be rewritten
as

Ĥeff =
p̂2

S

2M
+

∫
dy η(y, t)V (X̂− y) (2.36)
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where η(y, t) =
∑

i | ⟨ϕi,t|y, t⟩ |2 can be understood as the local gas density. This associa-
tion allow us to rewrite η(y, t) as

η(y, t) = η̄ + ζ(y, t) (2.37)

where η̄ = N/V is the average number of particles per unit area, and ζ(y, t) describes the
fluctuations around the average η̄. In order to model these fluctuations, we assume ζ(y, t)
to be a real gaussian stochastic field with mean and variance defined as

E [ζ(x, t)] = ζ̄(x, t),

E [ζ(x, t)ζ(y, τ)] = f(x, t;y, τ), (2.38)

where f(x, t;y, τ) is a symmetric function under exchange (x, t) → (y, τ), and E[. . . ] de-
notes the average over the probability distribution of ζ(x, t). Since the gas is in thermal
equilibrium it is reasonable to assume stationary and translationally invariant fluctuations
with zero mean, i.e.

ζ̄(x, t) = 0

f(x, t;y, τ) = f(x− y, t− τ). (2.39)

We furthermore expect the thermal bath dynamics to be much faster than the test particle’s
dynamics, so we also assume the fluctuations to be delta correlated in time, i.e.

f(x, t;y, τ) = g(x− y)δ(t− τ). (2.40)

Under these assumptions, one finds that the system state ρ̂(t) evolves accordingly to the
following average master equation ( see app. A for detailed calculations)

∂

∂t
ρ̂(t) = − i

ℏ

[
P̂2

2M
, ρ̂(t)

]

− 1

2ℏ2

∫ ∞

0
dτ

∫
dydzE[ζ(x, t)ζ(y, τ)]

[
V (y − X̂) ,

[
V (z− X̂) , ρ̂(t)

]]
= − i

ℏ

[
P̂2

2M
, ρ̂(t)

]
− 1

2ℏ2

∫
dydz g(x− y)

[
V (y − X̂) ,

[
V (z− X̂) , ρ̂(t)

]]
(2.41)

Rewriting the interaction term V (x̂S − y) in Fourier components, i.e.

V (X̂− y) =
1

(2πℏ)3

∫
dQ Ṽ (Q) e

i
ℏQ·(y−X̂) (2.42)
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and performing the spatial integrals in Eq. (2.41), one eventually obtains

∂

∂t
ρ̂(t) = − i

ℏ

[
P̂2

2m
, ρ̂(t)

]
+

1

2ℏ2(2πℏ)3

∫
dQ g̃(Q)|V (Q)|2(e

i
ℏQ·X̂ρ̂(t)e−

i
ℏQ·X̂ − ρ̂(t)).

(2.43)

with

g̃(Q) =

∫
dye

i
ℏQ·(x−y)g(x− y) =

∫ ∞

0
dτ E [ζ(x, t)ζ(y, t− τ)] e

i
ℏQ·(x−y). (2.44)

Equation (2.44) can be theoretically computed with the help of thermal quantum field
theory [58]. Let ρ̂E = Z−1e−βĤE be the state of the thermal bath, ϕ†(x) and ϕ(x) the
creation and annihilation fields of the bath and η̂(x) = ϕ̂†(x)ϕ̂†(x) its density operator.
One may write the average spatial density as

η̄ ≡ E [η(x)] = TrE
(
ϕ̂†(x)ϕ̂(x) ρ̂E

)
=

∫
dkdQ e

i
ℏQ·x TrE

(
â†(k)â(k+Q) ρ̂E

)
=

∫
dkdQ δ(q)TrE

(
â†(k+Q)â(k) ρ̂E

)
(2.45)

where â†(k) and â(k) are respectively the creation and annihilation field in momentum
representation, and write the gas fluctuations as the real part of the quantum transition
amplitude, i.e.

E [ζ(x, t)ζ(y, τ)] = E [η(x, t)η(y, τ)]− E [η(x)]E [η(y)]

= Re
[
TrE
(
ϕ̂†(x; t)ϕ̂(x; t)ϕ̂†(y; τ)ϕ̂(y; τ) ρ̂E

)
− TrE (η̂(x) ρ̂E)TrE (η̂(y) ρ̂E)

]
=

∫
dkdk′dQdQ′e

i
ℏQ·xRe

[
e

i
ℏQ

′·ye
i
ℏ

k2−(k−Q)2

2m
te

i
ℏ

k′2−(k′−Q′)2
2m

τ

]
TrE
(
â†(k)â(k−Q)â†(k′)â(k′ −Q′) ρ̂E

)
− η̄2

(2.46)

with ϕ̂(x, t) ≡ eiĤE tϕ̂(x)e−iĤE t. Exploiting Wick’s theorem at finite temperature one may
rewrite the trace in Eq. (2.46) as

TrE
(
â†(k)â(k−Q)â†(k′)â(k′ −Q′) ρ̂E

)
=

δ(Q+Q′)δ(k′ − k−Q)TrE
(
â†(k)â(k) ρ̂E

)(
1± TrE

(
â†(k′)â(k′) ρ̂E

))
+ δ(Q)δ(Q′)TrE

(
â†(k)â†(k) ρ̂E

)
TrE
(
â†(k′)â†(k′) ρ̂E

)
(2.47)
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to eventually obtain

E [ζ(x, t)ζ(y, τ)] =

∫
dkdqRe

[
e

i
ℏ (x−y)Q e

i
ℏ

k2−(k−Q)2

2m
(t−τ)

]
· TrE

(
â†(k)â(k) ρ̂E

)(
1± TrE

(
â†(k−Q)â(k−Q) ρ̂E

))
=

∫
dkdqRe

[
e

i
ℏ (x−y)Q e

i
ℏ

k2−(k−Q)2

2m
(t−τ)

]
n(k)(1± n(k−Q)) (2.48)

where η(k) = TrE
(
â†(k)â(k) ρ̂E

)
is the gas particles. Neglecting this quantum mechanical

correction1 in Eq. (2.48) , exploiting Eq. (2.44) and the identity,

1

π

∫ ∞

0
dτe±ixτ = δ(x)± iP

(
1

x

)
(2.49)

where P(·) denotes the principal value, one may rewrite Eq. (2.44) as follows:

g̃(Q) = δ

(
k2

2m
− (k−Q)2

2m

)
n(k). (2.50)

Replacing the above expression in Eq. (2.43) one eventually obtains

∂

∂t
ρ̂(t) = − i

ℏ

[
P̂2

2m
, ρ̂(t)

]

+
2π

m2

∫
dQ δ

(
k2

2m
− (k−Q)2

2m

)
n(k)|fb(Q)|2(e

i
ℏQ·X̂ρ̂(t)e−

i
ℏQ·X̂ − ρ̂(t)) (2.51)

where

fb(Q) = −(2π)2ℏm |V (Q)| . (2.52)

and fb(Q) is the scattering amplitude in Born approximation [51]. One can easily check
that Eq. (2.51) is equivalent to the Born approximation of the Gallis-Flemming master
equation accordingly, it does not take into account recoil effects on the test particle. How-
ever, the derivation of the master equation Eq. (2.51) here presented suggests that dissi-
pation cannot appear under the assumption assumption in Eq. (2.40) of delta correlated
bath time fluctuations, or in other words, zero collision time. Indeed one can see from
g̃(Q) in Eq. (2.48) and the derivation that lead to the expression in Eq. (2.50), that the bath
energy dirac delta, and with that, the dependence on the bath particle momentum in the

1note that n(k) ≪ 1 because we restrict to the case of a rarefied thermal gas
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collisional term of Eq. (2.43), is strictly related to the possibility that the gas particle has
to evolve during the interaction process. On the other side, there is no dependence on the
test particle momentum in the collision term, and the free evolution contribution of the
test particle during the interaction process is zero because the bath fluctuations are Dirac
delta correlated in time. In order to verify this hypothesis, we relax the assumption in
Eq. (2.40) of delta correlated fluctuations in time, and we assume a finite correlation time
τc, i.e.

E [ζ(x, t)ζ(y, τ)] = f(x− y, t− τ) = 0 ∀ t ≥ τc. (2.53)

Similarly to what done for Eq. (2.41), in the app. A we also provide detailed calculation for
the average master equation generated in the case of a finite correlation in time. Exploiting
this results in the case of study, we obtain the following master equation

∂

∂t
ρ̂(t) = − i

ℏ

[
P̂2

2M
, ρ̂(t)

]

+
1

2ℏ2

∫ ∞

0
dτ

∫
dydz f(y − z; τ)

[
V (X̂− y) ,

[
VI(X̂− z;−τ) , ρ̂(t)

]]
+O((τc/t)

2) ∀t > τc,

(2.54)

with VI(x̂S − y, τ) the interaction potential in interaction picture defined as

VI(x̂S − y; τ) = e
i
ℏ

P̂2

2M
τV (X̂− y)e−

i
ℏ

P̂2

2M
τ . (2.55)

Expanding the correlation function in Fourier components, i.e.

f(x, t) =
1

(2πℏ)4

∫
dQdω e

i
ℏ (Q·x+ωt)f̃(Q, ω) (2.56)

and integrating Eq. (2.54) over the spatial variables dy, dz, one obtains

∂

∂t
ρ̂(t) = − i

ℏ

[
P̂2

2M
, ρ̂(t)

]
+

1

8πℏ3

∫
dQdω f̃(Q, ω)e−

i
ℏωτ |V (Q)|2

·
∫ ∞

0
dτ

[
e−

i
ℏQ·X̂ ,

[
e−

i
ℏ

P̂2

2M
τ e

i
ℏQ·X̂ e

i
ℏ

P̂2

2M
τ , ρ̂(t)

]]
+O((τc/t)

2).

(2.57)
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Exploiting the canonical commutation relation [x̂ , p̂] = iℏ, and recalling the symmetry
property of the correlation function, (f(Q, ω) = f(−Q,−ω)), one obtains

∂

∂t
ρ̂(t) = − i

ℏ

[
P̂2

2M
, ρ̂(t)

]
+

1

8πℏ3

∫
dQdω f̃(Q, ω) |V (Q)|2[∫ ∞

0
dτe

i
ℏ

(
p̂2

2M
− (p̂−Q)2

2M
−ω

)
τ (
e

i
ℏ x̂Qρ̂(t)e

i
ℏ x̂Q − ρ̂(t)

)
+

∫ ∞

0
dτ
(
e

i
ℏ X̂·Qρ̂(t)e

i
ℏ X̂·Q − ρ̂(t)

)
e
− i

ℏ

(
P̂2

2M
− (P̂−Q)2

2M
−ω

)
τ
]
+O((τc/t)

2). (2.58)

This equation can be rewritten in a more explicit manner by exploiting Eq. (2.49) to even-
tually obtain2

∂ρ̂(t)

∂t
= − i

ℏ

[
P̂2

2M
, ρ̂(t)

]
+

1

8ℏ2

∫
dQdω f̃(Q, ω) |V (Q)|2

·

[{
δ

(
P̂2

2M
− (P̂−Q)2

2M
− ω

)
,
(
e

i
ℏ X̂·Qρ̂(t)e−

i
ℏ X̂·Q − ρ̂(t)

)}

+ P

⎛⎝⎡⎣( P̂2

2M
− (P̂−Q)2

2M
− ω

)−1

,
(
e

i
ℏ X̂·Qρ̂(t)e−

i
ℏ X̂·Q − ρ̂(t)

)⎤⎦⎞⎠⎤⎦+O((τc/t)
2).

(2.59)

One can easily check that the equation above displays recoil effects. It is sufficient to
see that the collision term of the above master equation does not leave the position state
unchanged, because of its dependence on the momentum operator p̂. This confirms the
necessity of bath fluctuations with correlation time different from zero to have dissipa-
tive phenomena. It is also worth noticing that, under the assumption of almost diagonal
system’s state in momentum representation, i.e.[

P̂

M
, ρ̂(t)

]
≃ 0, (2.60)

2A careful reader may notice that this equation is not in Lindblad form and is then a not completely
positive equation. However, Eq. (2.59) has been derived under the assumption τc ≪ τ , meaning that cannot
be used to describe the early stage of the evolution but only such states that are evolved at time t by the action
of Eq. (A.8). It is exactly the action of Eq. (A.8) that select the class of possible states that are accessible when
τc ≪ t and consequently the class of state compatible with the approximated dynamics.
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Eq. (2.59) takes the following simpler expression

∂

∂t
ρ̂(t) ≃ − i

ℏ

[
P̂2

2M
, ρ̂(t)

]

+
1

4ℏ2

∫
dQdω f̃(Q, ω) |V (Q)|2 δ

(
P̂2

2M
− (P̂−Q)2

2M
− ω

)(
e

i
ℏ X̂·Qρ̂(t)e−

i
ℏ X̂·Q − ρ̂(t)

)
.

(2.61)

This equation is very similar to Eq. (2.43), with the only difference of the collisional term
that here displays an explicit dependence on the test particle momentum. Moreover, the
presence of an energy Dirac delta function guarantees an energy preserving collision pro-
cess where Q is the transferred momentum.

Even if Eq. (2.61) seems a good dissipative equation, its dynamics does not allow the
thermal state

ρeq(P̂) = Zβe
− p2

S
2M (2.62)

as stationary state (as one would expect from physical considerations), forcing us to re-
ject the equation as a good dissipative equation. To prove that ρeq(P̂) is not a station-
ary solution of Eq. (2.61), we replace Eq. (2.62) in Eq. (2.59) and exploit the symmetry of
Eq.(2.62)

ρeq(P̂) = e
β

(
Q2+2Q·P̂

2M

)
ρeq(P̂+Q). (2.63)

The result is

∂ρeq(P̂)

∂t
=

1

4ℏ2

∫
dQdω

{
f̃(Q, ω)

⏐⏐⏐Ṽ (Q)
⏐⏐⏐2 δ((p̂S +Q)2

2m
− P̂2

2m
− ω

)
ρeq(p̂−Q)

− f̃(Q, ω)
⏐⏐⏐Ṽ (Q)

⏐⏐⏐2 δ( P̂2

2M
− (P̂−Q)2

2M
− ω

)
eβ

Q2+2Q·P̂
2M ρeq(P̂+Q)

}
. (2.64)

From Eq. (2.64) it is easy to show that ∂ρeq
∂t = 0 only if[

f̃(Q, ω)δ

(
(P̂+Q)2

2M
− P̂2

2M
− ω

)
= f̃(−Q, ω)δ

(
P̂2

2M
− (P̂+Q)2

2M
− ω

)
eβ

Q2−2Q·P̂
2M

]
.

(2.65)
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Equation (2.65) holds true only for f̃(Q, ω) = 0, (because of the symmetry f̃(Q, ω) =

f̃(−Q,−ω) imposed by the assumption of real Gaussian bath fluctuations), proving that
ρeq is not a stationary state of the dynamics described by Eq. (2.59). This argument leads
us to conclude that a stochastic approach based on real Gaussian noise is not enough to
describe the behaviour of a particle in a gas when also dissipative phenomena are present.
One could then think to use a complex Gaussian noise to model the bath fluctuations,
i.e.

E [ζ(x, t)ζ(y, τ)] = g(x− y, t− τ), E [ζ(x, t)ζ∗(y, τ)] = f(x− y, t− τ). (2.66)

However this choice would lead to a non Hermitian coupling in Eq. (2.36) and conse-
quently lead to a dynamics that would violate the very basic request of trace preservance
and positivity. In order to restore trace preservance and positivity of one might modify
Eq. (2.36) as follows:

Ĥeff (t) =
P̂2

2M
+

∫
dy η(y, t)V (X̂− y)

+

∫ t

0
dτ

∫
dydzV (X̂− y)[f(y − z, t− τ)− g(y − z, t− τ)]

δ

δζ(z, τ)
(2.67)

where δζ(z, τ) is a functional derivative on the noise field, as it is usually done in other
fields of research [59]. This equation differs from Eq. (2.36) for the term in the second line.
However, the addition of this term has no evident physical explanation, preventing any
motivated interpretation for the modified Hamiltonian in Eq. (2.67) and its dynamics. This
fact prevents us from exploiting the method here developed in order to derive a consistent
dissipative model for the dynamics. Due to the impossibility of further exploiting this
method to gather more information on the mechanism underling dissipative dynamics,
we decided to tackle the problem of a the collisional dynamics from a purely microscopic
perspective.
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Chapter 3

Microscopic treatment of Collisional
Dynamics

Starting from a full Hamiltonian treatment we derive the short time scale evolution of a
test particle in a rarefied thermal bath. Exploiting this result and physically motivated
arguments, we build a piece-wise model for the long time behaviour of the test particle.
The piece-wise model provide a natural scheme to obtain a coarse-grained theory where
instantaneous collisions appears. The collision term obtained from the coarse-graining is
not expressed in terms of the standard scattering operator, as one expect. However we,
show that -in the limit of a collisional description- it can be replaced by a new opera-
tor fully characterized by scattering operator provided by the standard scattering theory.
Eventually we estimate the free evolution time scale and the collision time scale proving
the limits of a collisional dynamics in the quantum mechanical framework.

3.1 Test particle in a dilute gas

The aim of this section is to derive a model describing the behaviour of a test particle in a
thermal bath from a microscopic treatment of the dynamics.
We consider an ideal gas (E) of N-indistinguishable,1 non interacting particles, with mass

1here the indistinguishability should be understood in a wide sense: either lack of information or a prop-
erty of the quantum particle.
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m, confined in a box of large volume Ω with periodic boundary conditions, described by
the Hamiltonian

ĤE =
N∑
i=1

Ĥi =
N∑
i=1

p̂2
i

2m
, (3.1)

where x̂i and p̂i are position and momentum operators of the i-th gas particle. A test
particle (S) described by the Hamiltonian

ĤS =
P̂2

2M
(3.2)

interacts with the gas through the following interaction potential

Ĥint =
N∑
i=1

V (X̂− x̂i) (3.3)

where X̂ and P̂ are the position and the momentum operator, and and M is the mass of
the test particle.
We also assume the system and environment state ϱ̂SE to be initially uncorrelated, i.e.

ϱ̂SE(0) = ϱ̂S ⊗ ϱ̂E . (3.4)

The dynamics of the whole system is described by the following Liouville von Neuman
equation

∂ϱ̂SE(t)

∂t
= − i

ℏ

[
ĤS + ĤE + Ĥint , ϱ̂SE(t)

]
. (3.5)

Tracing Eq. (3.5) over the N particles degrees of freedom, one obtains the test particle
reduced dynamics, described by

∂ϱ̂S(t)

∂t
= − i

ℏ
Tr[1...N ]

[
ĤS + ĤE + Ĥint , ϱ̂SE(t)

]
= − i

ℏ

[
ĤS , ϱ̂S(t)

]
− i

ℏ

N∑
i=1

Tri
[
V (X̂− x̂i) , ϱ̂S,i(t)

]
(3.6)

where Tri[·] is the trace over the degrees of freedom of the i-th particle of the gas, Tr[1...N ][·] =∏N
I=1 Tri[. . . [·]], ϱ̂S = Tr[1...N ][ϱ̂SE ] is the reduced statistical operator of the test particle (S)

and ϱ̂S,i = Tr[1...i−1,i+1...N ][ϱ̂SE ] the reduced statistical operator of the system composed by
the test particle (S) and the i-th particle of the gas.
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Under the assumption of indistinguishable gas particles ϱ̂S,i = ϱ̂S,j ∀ i, j ∈ 1, . . . , N ,
Eq. (3.6) can be rewritten as

∂ϱ̂S(t)

∂t
= − i

ℏ

[
ĤS , ϱ̂S(t)

]
− i

ℏ
N Tr1

[
V (X̂− x̂1) , ϱ̂S,1(t)

]
(3.7)

where the interaction with an N particles gas is reduced to the interaction with a single
particle of the gas.
In order to fully determine the reduced dynamics of ϱ̂S(t) one needs to determine the
evolution of ϱ̂S,1(t). A dynamical equation for ϱ̂S,1(t) can be easily obtained by tracing
Eq. (3.5) over the degrees of freedom of the gas particles 2, . . . N :

∂ϱ̂S,1(t)

∂t
= − i

ℏ

[
ĤS + Ĥ1 + V (X̂− x̂1) , ϱ̂S,1(t)

]
. (3.8)

Since there is no interaction between the particles of the gas, Eq. (3.8) is a closed equation
and, if combined with Eq. (3.7), it allows to describe the reduced dynamics of the system.
It is convenient to rewrite the system of Eq. (3.7) and Eq. (3.8) in their respective interaction
pictures, labelled by the superscript I :

ϱ̂I
S,1(t) = Û †

0(t)ϱ̂S,1(t)Û0(t) , ϱ̂I
S(t) = Û †

S(t)ϱ̂
I
S(t)ÛS(t) (3.9)

with:

Û0(t) = e−
i
ℏ (Ĥs+Ĥ1)t , ÛS(t) = e−

i
ℏ Ĥst. (3.10)

Equations (3.7) and (3.8) now become⎧⎪⎪⎨⎪⎪⎩
∂ϱ̂I

S(t)

∂t
= N Tr1

[
∂ϱ̂I

S,1(t)

∂t

]
(3.11a)

∂ϱ̂I
S,1(t)

∂t
= − i

ℏ

[
VI(X̂− x̂1; t) , ϱ̂

I
S,1(t)

]
(3.11b)

with:

V̂I(X̂− x̂1; t) = Û0(t)V̂ (X̂− x̂1)Û
†
0(t). (3.12)

The formal solution of the system of Eqs. (3.11a, 3.11b) with initial condition ϱ̂s,1(t0) =

ϱ̂s ⊗ ϱ̂1 can now be written in the from

ϱ̂I
S(t) = MI

t(ϱ̂s) = NTr1
(
ÛI(t)ϱ̂S ⊗ ϱ̂1Û

†
I (t)− ϱ̂S ⊗ ϱ̂1

)
+ ϱ̂s (3.13)
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where

ÛI(t) = T
{
e−

i
ℏ
∫ t
0 dτV̂I(τ)

}
(3.14)

and T {. . . } is the time ordering operator (in writing the interaction operator VI(τ), we
have suppressed the explicit dependency on X and x1 to keep the notation compact).
Equation (3.13) can be now conveniently rewritten in the Schrödinger picture:

ϱ̂S(t) = Mt(ϱ̂S) = US
t (MI

t(ϱ̂s)) (3.15)

with US
τ (·) the free-evolution dynamical map defined by

US
t (ϱ̂S) = ÛS(t)ϱ̂S(t)Û

†
S(t). (3.16)

It is important to keep in mind that Eq. (3.13) describes the interaction dynamics of a
single particle in a gas under the assumption of non-interacting gas particles. This ap-
proximation holds in the case of a rarefied gas in thermal equilibrium, where the average
contribution to the dynamics due to the mutual interaction of the gas particles is negligi-
ble.

The lack of interaction between the particles of the gas does not allow the gas to equili-
brate back after having interacted with the test particle, asymptotically bringing the gas
far from the equilibrium. This means that the model in Eq. (3.13) describes the correct
short time behaviour of the test particle interacting with a rarefied thermal bath, but fails
in describing the long time behaviour of the test particle. However, under the assump-
tion that the bath re-equilibration time (τr) is negligible compared to the typical times of
the test particle dynamics2, one can approximate the bath re-equilibration process as an
instantaneous event that restores the gas to equilibrium after the interaction process be-
tween the bath and the test particle. This assumption allows to describe the long time
behaviour of a test particle in a thermal bath through a piecewise dynamics: the test par-
ticle evolves according to the Eq. (3.13), for short time intervals τ , and at the end of each
time interval, the gas particle is traced out and replaced by a new one in a thermal equi-
librium state

ϱ̂S(t = nτ) = Mτ ◦ · · · ◦Mτ  
n−times

(ϱ̂S) (3.17)

2It is important to notice that the test particle dynamics is governed not only by the free evolution but
also by the interaction with the bath, accordingly the typical re-equilibration time of the bath should be much
faster than both the typical variation time of the freely evolving particle and of the typical variation time of
the interaction dynamics.
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where Mτ is the dynamical map describing the short time dynamics of the test particle
according to Eq. (3.15), i.e.

Mτ (ϱ̂S) = US
τ (MI

τ (ϱ̂S))

= ÛS(τ)NTr1
(
ÛI(τ)ϱ̂S ⊗ ϱ̂1Û

†
I (τ)− ϱ̂s ⊗ ϱ̂1

)
Û †

S(τ) + ÛS(τ)ϱ̂SÛ
†
S(τ), (3.18)

ϱ̂1 descirbes the typical particle of a rarefied bath in thermal equilibrium and is there-
fore given by the Boltzmann distribution µ(p̂1) in a box normalized momentum states,
i.e.

ϱ̂1 =
(2πℏ)3

Ω
µ(p̂1) =

(2πℏ)3

Ω

(
β

2πm

)3/2

e−β
p̂2
1

2m . (3.19)

Clearly the piecewise dynamics here derived is in general highly dependent on the choice
of the time interval τ . This fact prevents Eq. (3.17) from being a good dynamical descrip-
tion of the system in exam. However, if the time interval τ is much bigger than the typical
variation time (τint) of the interaction process (in such a way to let the interaction exhausts
his contribution on the dynamics), but much smaller then the typical variation time of the
freely evolving particle (τfree) (because the model in Eqs. (3.11a) and (3.11b) fails in de-
scribing the long time behaviour of the test particle, as mentioned in the previous page),
one can obtain a piecewise dynamics independent from the time interval τ .

Summarising, a piecewise dynamics described by Eq. (3.17) should satisfy the following
conditions

τr ≪ τint ≪ τ ≪ τfree. (3.20)

Now that we have outlined a scheme to treat the dynamics of a particle in a gas, we want
to understand if within this scheme the interaction process between the test particle and
the gas can be described as a collision, like in the classical case. In the next section we
explore this possibility.

3.2 Collisional Effective Dynamics

Aim of this section is to describe the interaction between the test particle and a gas particle
occurring in the time interval τ of the piecewise dynamics described by Eq. (3.17) as a
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collision event. We follow the idea that the collision is an emergent dynamical property of
the dynamics in which bounded states of the interaction are not allowed: the interaction
is effective only in specific regions of the configuration space of the system and it does
not allow the system to remain confined in these regions. We furthermore assume that
the typical variation time of the interacting system (τint) is much shorter than the typical
variation time (τfree) of the freely evolving system:

τint ≪ τfree. (3.21)

This condition allows to define a time scale τ , in which the free evolution gives negligible
contributions to the dynamics, whereas the interaction process has enough time to evolve
the system to a steady state of the interaction. The outcome of the interaction process after
a time interval τ is understood as a collision if time scales smaller than τ are unaccessible
to the theory. In this framework, a system satisfying (3.21) and described by an effective
theory having temporal resolution τ such that τint ≪ τ ≪ τfree, is expected to display an
effective dynamics dominated by free evolution suddenly interrupted by instantaneous
collision events.
A simple example of emergent collision is the interaction process of two classical charged
particles. The fundamental laws of physics explain the interaction process as the influence
of electromagnetic field generated by one particle to the motion of the other, and vice
versa. Since the electromagnetic field is spatially extended, the interaction process lasts
for a finite time t, related to the initial velocity of the particles and the strength of the
interaction. However, a coarse-grained theory in which both the spatial extension of the
e.m. field and the time length of the interaction process are unaccessible, describes the
interaction process between the two particles as a local and instantaneous collision.
The model developed in sec. 3.1 satisfies (3.21), meaning that a satisfactory piecewise
dynamics can always be reduced to a collisional dynamics.

An interesting feature of the piecewise dynamics defined by Eq. (3.17) is that it provides
a natural scheme to develop the coarse-grained theory with a time resolution bigger than
τ . Indeed, Eq. (3.17) can be rewritten as

ϱ̂S(t = nτ) =
n∑

i=0

∆ϱ̂S(ti) (3.22)

where t0 = 0 and

∆ϱ̂S(ti) ≡ Mτ (ϱ̂S(ti))− ϱ̂S(ti) (3.23)
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with Mτ (ϱ̂s) the dynamical map describing the short time behaviour of the test particle,
as defined by Eq. (3.18). The request of a time resolution bigger than τ is mathematically
equivalent to performing the limit τ → 0 in Eq. (3.22), under the constraints of Eq. (3.20).
Multiplying and dividing Eq. (3.22) by τ and performing the limit one eventually ob-
tains:

ϱ̂S(t) = lim
τ→0

n∑
i=0

∆ϱ̂S(ti)

τ
τ =

∫ t

0

∂ϱ̂S(τ)

∂τ
dτ. (3.24)

If this limit exists, Eq. (3.24) describes the effective collisional theory unable to resolve
time scales smaller than τ . In the next section we perform a detailed analysis of Eq. (3.24)
in order to find necessary conditions on the existence of a collisional dynamics describing
the behaviour of a test particle in a gas under the very natural assumption that collisions
should be described by the action of the standard scattering operator Ŝ defined by

Ŝ = lim
τ→+∞

T
{
e−

i
ℏ
∫ τ
−τ V̂I(s)ds

}
. (3.25)

3.2.1 General conditions for collisional dynamics

We now analyse the term ∆ϱ̂s
τ of Eq. (3.24) in order to find general conditions for the

existence of the limit τ → 0 in Eq. (3.24).
Substituting Eq. (3.18) in Eq. (3.23) one obtains

∆ϱ̂S(t)

τ
=

US
τ (ϱ̂S(t))− ϱ̂S(t)

τ
+

US
τ [MI

τ (ϱ̂S(t))− ϱ̂S(t)]

τ
. (3.26)

The first term on r.h.s. represents the change of the system due to the free evolution:
it describes the dynamics of the system when there is no interaction at all. The second
term is an additional contribution to the dynamics produced by the interaction with the
thermal bath. One observes that this second term is composed by MI

τ (ϱ̂S(t))− ϱ̂S(t), that
represents the change of the system due to the interaction with the thermal bath, and the
action of the free-evolution map US

τ , representing residual changes of the system due to
the free evolution, after the interaction process. This considerations allow to understand
MI

τ (ϱ̂S(t))− ϱ̂S(t) ≡ ∆ϱ̂S |coll as the generator of the collision events in the coarse grained
theory, if conditions (3.20) are satisfied.
Under the assumption

τ ≪ τfree (3.27)
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one expects the free-dynamics to give a negligible contribution. This allows to expand
the free evolution super-operator defined by Eq. (3.16) in Taylor series and truncate the
expansion to the first perturbative order, i.e.

US
τ ( · ) = 1− i

ℏ
HS( · )τ +O(τ2/τ2free) (3.28)

where HS is the infinitesimal change given by the free-dynamics:

HS(ϱ̂S) =
[
ĤS , ϱ̂S

]
. (3.29)

Under the further assumption

τint ≪ τ (3.30)

one is allowed to Taylor expand the collision term around τ = ∞ to obtain

MI
τ (ϱ̂S)− ϱ̂S = [MI

τ (ϱ̂S)− ϱ̂S ]|τ=∞ +O(τint/τ) (3.31)

where (Mτ (·)− ϱ̂S)|τ=∞ = ∆ϱ̂S |coll is the change of the system given by a full collision.
Exploiting Eq. (3.28) and Eq. (3.31) one may now rewrite Eq. (3.26) as follows

∆ϱ̂S(t)

τ
= − i

ℏ

[
ĤS , ϱ̂S

]
+

∆ϱ̂S(t)|coll
τ

− i

ℏ

[
ĤS ,∆ϱ̂S |coll

]
(3.32)

where the first term describes the infinitesimal change of the system given by the free
evolution, the second term the change of the system given by collisions and the third term
the interplay between free-evolution and collisions occurring in the time interval τ .

One observes that Eq. (3.32) is well defined in the limit for τ → 0 only if ∆ϱ̂S |coll is propor-
tional to τn with n ≥ 1. Moreover ∆ϱ̂S |coll gives a finite and non negligible contribution
to the coarse-grained dynamics in Eq. (3.24) only if n = 1. Accordingly one can conclude
that in a good collisional dynamics the rate of collisions should have linear dependency
on the time resolution τ , i.e.

∆ϱ̂S(t)|coll ∝ τ. (3.33)

If the relation above holds true, the second term of r.h.s. in Eq. (3.32), describing the inter-
play between free-evolution and collisions, would be proportional to τ , and it would give
negligible contribution in the limit of τ → 0. Accordingly the coarse-grained dynamics in
Eq. (3.24) becomes:

ϱ̂S(t) =

∫ t

0

∂ϱ̂S(s)

∂s
ds (3.34)
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with
∂ϱ̂S(s)

∂s
≡ − i

ℏ

[
ĤS , ϱ̂S(s)

]
+

∆ϱ̂S(s)

τ

⏐⏐⏐⏐
coll

(3.35)

where the first term on r.h.s. of Eq. (3.35) describes the free evolution dynamics and the
second term on r.h.s. the collisional contribution to the dynamics defined by

∆ϱ̂S |coll = [MI
τ (ϱ̂S)− ϱ̂S ]|τ=∞ = NTr1

(
ÛI(τ)ϱ̂S(t)⊗ ϱ̂1ÛI(τ)− ϱ̂S ⊗ ϱ̂1

)⏐⏐⏐
τ=∞

(3.36)

where Eq. (3.13) has been used for the last equality. One immediately sees from Eq. (3.36)
that the collisional term ∆ϱ̂s|coll has an uncommon expression: it is not described by the
action of the scattering operator Ŝ contrary to the equations commonly present in litera-
ture [34–36, 39, 40, 55]. However, we will show that it is possible to replace the collision
map in Eq. (3.36) with an equivalent map depending only on the scattering operator Ŝ.
The replacement will be useful not only for the comparison with the existing literature,
but will be also useful to give an estimation of the collision time.

3.2.2 Collisional contribution and scattering operator

In this subsection we focus on the collisional term defined in Eq. (3.36) before taking the
limit τ → ∞, i.e.

∆ϱ̂s|coll = MI
τ (ϱ̂s)− ϱ̂s = NTr1

(
ÛI(τ)ϱ̂S(t)⊗ ϱ̂1ÛI(τ)− ϱ̂S ⊗ ϱ̂1

)
. (3.37)

The operator ÛI(τ) defined by Eq. (3.14) has a similar structure to the scattering operator
in Eq. (3.25), but it is not symmetric in time. However, exploiting the unitarity of the free
evolution, Û †

0(τ)Û0(τ) = 1, the operator ÛI(τ) can be rewritten as

ÛI(τ) = Û †
0(τ/2)Ŝτ Û0(τ/2) (3.38)

where Ŝτ is the incomplete scattering operator defined by

Ŝτ = T
{
e
− i

ℏ
∫ τ/2
−τ/2

ds V̂I(s)
}
. (3.39)

Exploiting Eq. (3.38), Eq. (3.10), the ciclicity of the trace and the fact that
[
Ĥ1 , ϱ̂1

]
= 0, one

may rewrite the collision term of Eq. (3.37) as follows

∆ϱ̂S |coll =

ÛS(τ/2)NTr1
(
Ŝτ Û

†
S(τ/2)ϱ̂S(t)⊗ ϱ̂1ÛS(τ/2)Ŝ

†
τ − Û †

S(τ/2)ϱ̂s(t)⊗ ϱ̂1ÛS(τ/2)
)
Û †

S(τ/2).

(3.40)
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Similarly one can rewrite the map MI
τ (ϱ̂S) as

MI
τ (ϱ̂S)− ϱ̂S = US

−τ/2 ◦ (Cτ − 1) ◦ US
τ/2(ϱ̂S) (3.41)

where

Cτ (ϱ̂S) = NTr1
(
Ŝτ ϱ̂S ⊗ ϱ̂1Ŝ

†
τ − ϱ̂S ⊗ ϱ̂1

)
+ ϱ̂S , (3.42)

that has a structure similar to the collision term heuristically derived in [34–36, 39, 40, 55],
exploiting scattering theory. Inverting Eq. (3.41) one obtains

Cτ (ϱ̂S)− ϱ̂S = US
τ/2 ◦ (M

I
τ − 1) ◦ US

−τ/2(ϱ̂S). (3.43)

From Eq. (3.28) one can deduce that

US
−τ (ϱ̂S) = ϱ̂S +O(τ), (3.44)

and from previous considerations (see Eq. (3.33) and Eq. (3.31)) find that

(MI
τ − 1)(ϱ̂s) ∝ τ. (3.45)

Exploiting Eq. (3.43) and Eq. (3.45) one eventually ends up with

MI
τ (ϱ̂S) = Cτ (ϱ̂S) +O(τ3). (3.46)

The above equation allows to replace MI
τ (ϱ̂S) with Cτ (ϱ̂S) in the coarse-grained dynamics

described by Eq. (3.35), to obtain

∂ϱ̂S(t)

∂t
= − i

ℏ
HS(ϱ̂s(t)) +

Cτ (ϱ̂s(t))− ϱ̂S(t)

τ

⏐⏐⏐⏐
τ=∞

= − i

ℏ

[
ĤS , ϱ̂s(t)

]
+
N

τ
Tr1
(
Ŝτ ϱ̂S(t)⊗ ϱ̂1Ŝ

†
τ − ϱ̂S(t)⊗ ϱ̂1

)⏐⏐⏐⏐
τ=∞

. (3.47)

This equation describes the collisional dynamics of a test particle interacting with a rar-
efied particles thermal bath. As expected Eq. (3.47) confirms the possibility to describe
collisions through the action of the scattering operator Ŝ, under the assumptions in (3.20)
and the further assumption

(Cτ (ϱ̂S(τ))− ϱ̂S) ∝ τ. (3.48)



Collisional Effective Dynamics 41

In order to make a comparison with previous literature, we now introduce the incomplete
transition operator T̂τ , by Ŝτ = 1+ iT̂τ . Exploiting the unitarity of Ŝτ one obtains T̂ †

τ T̂τ =

i(T̂τ − T̂ †
τ ). Then, Eq. (3.47) can be rewritten in the more familiar form

∂ϱ̂S(t)

∂t

⏐⏐⏐⏐
coll

=
N

τ
Tr1

(
i

2
[T̂τ − T̂ †

τ , ϱ̂S(t)⊗ ϱ̂1]−
1

2
{T̂ †

τ T̂τ , ϱ̂S(t)⊗ ϱ̂1}+ T̂τ (ϱ̂S(t)⊗ ϱ̂1)T̂
†
τ

)⏐⏐⏐⏐
τ=∞

(3.49)

from which one may recognize a Lindblad type structure. The assumption (3.48) can be
rewritten as

Tr1
(
[T̂τ − T̂ †

τ , ϱ̂S(t)⊗ ϱ̂1]
)
∝ τ, Tr1

(
{T̂ †

τ T̂τ , ϱ̂S(t)⊗ ϱ̂1}
)
∝ τ,

Tr1
(
T̂τ (ϱ̂S(t)⊗ ϱ̂1)T̂

†
τ

)
∝ τ. (3.50)

In order to evaluate the action of the incomplete transition operator in Eq. (3.49) and to
verify the assumption above, we now focus on the behaviour of the incomplete scattering
operator Ŝτ in the large τ limit.

3.2.3 Incomplete Scattering operator in the large τ limit

According to the definition in Eq. (3.39) the incomplete scattering operator is defined
as

Ŝτ |φ⟩ ≡ T
{
e
− i

ℏ
∫ τ/2
−τ/2

dτV̂I(τ)
}
|φ⟩ . (3.51)

For our purpose it is convenient to use the following equality:∫
dτV̂I(τ) =

∫
dτ lim

ε→0
eετ V̂I(τ) (3.52)

and the Vitali theorem to rewrite Eq. (3.51) as follows

Ŝτ |φ⟩ = lim
ε→0

T
{
e
− i

ℏ
∫ τ/2
−τ/2

dτ eετ V̂I(τ)
}

(3.53)

This regularized expression for the incomplete scattering operator allow us expand Ŝτ in
the energy eigenbasis avoiding divergence problems that can arise from this expansion,
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as it will be clear later. Expanding the exponential and resolving the time ordering T {. . . }
one obtains the following expression:

Ŝτ = lim
ε→0

∑
n=0

(−i)n

ℏn

∫ τ/2

−τ/2
dτ1· · ·

∫ τn−1

−τ/2
dτn e

ετi V̂I(τ1) . . . e
ετn V̂I(τn). (3.54)

Denoting with |λ⟩ the basis of eigenstates of the free Hamiltonian, i.e. Ĥ0 = ĤS + Ĥ1,
Ĥ0 |λ⟩ = Eλ |λ⟩, and exploiting the definition of V̂I(t) given in Eq. (3.12) , we rewrite
Eq. (3.54) as follows:

Ŝτ = lim
ε→0

∑
n=0

(−i)n

ℏn

∫ τ/2

−τ/2
dτ1· · ·

∫ τn−1

−τ/2
dτn

n∏
i=0

(∫
dλi

)
|λ0⟩

n∏
i=1

e−iℏ(Eλi−1
−Eλi

−iε)τi ⟨λi−1| V̂ |λi⟩ ⟨λn| (3.55)

We now focus on the first term of this series, i.e.

T̂1 = − i

ℏ
lim
ε→0

∫
dλ0 dλ1

∫ τ/2

−τ/2
dτ e−

i
ℏ (Eλ1

−Eλ0
−iεℏ)τ1 |λ0⟩⟨λ0| V̂ |λ1⟩⟨λ1|

=

∫
dλ0dλ1δτ (Eλ0 − Eλ1)f1(λ0, λ1) |λ0⟩⟨λ1| . (3.56)

with f1(λ0, λ1) = −i2π ⟨λ0| V̂ |λ1⟩ and

δτ (x) =
1

2πℏ

∫ τ/2

−τ/2
dτ e−

i
ℏxτ =

sin(xτ/2ℏ)
2πx

, lim
τ→∞

δτ (x) = δ(x). (3.57)

As one may notice the δτ (x) defined above is exactly the "smoothened" delta function
(see (1.48)) used by Diósi to derive Eq. (1.51), describing a collisional dynamics with finite
collision time.
The second term of the series in Eq. (3.55), reads

T̂2 |φ⟩ = − 1

ℏ2
lim
ε→0

∫
dλ0 dλ1 dλ2

∫ τ/2

−τ/2
dτ1 e

− i
ℏ (Eλ1

−Eλ0
−iεℏ)τ1∫ τ1

−τ/2
dτ2 e

− i
ℏ (Eλ2

−Eλ1
−iεℏ)τ2 |λ0⟩⟨λ0| V̂ |λ1⟩⟨λ1| V̂ |λ2⟩⟨λ2|φ⟩

=− 2π lim
ε→0

∫
dλ0 dλ1 dλ2

[
δτ (Eλ0 − Eλ2 − iℏε)
(Eλ1 − Eλ2 + iℏε)

−δτ (Eλ0 − Eλ1 − iℏε)e−
i

2 ℏ (Eλ1
−Eλ2

−iεℏ)τ

(Eλ1 − Eλ2 + iℏε)

]
|λ0⟩⟨λ0| V̂ |λ1⟩⟨λ1| V̂ |λ2⟩⟨λ2|φ⟩ . (3.58)
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One observes that the first term in the square brackets in Eq. (3.58) has the same behaviour
as T̂1. The second term instead displays an oscillating term and it is consequently sup-
pressed in the limit of large τ . Accordingly, in the limit of τ → ∞, Eq. (3.58) can be
approximated by

T̂2 ≃
∫
dλ0 dλ2 δτ (Eλ0 − Eλ2)f2(λ0, λ2) |λ0⟩⟨λ2| (3.59)

with:

f2(λ0, λ2) = lim
ε→0

2π

∫
dλ1

⟨λ0| V̂ |λ1⟩⟨λ1| V̂ |λ2⟩
(Eλ1 − Eλ1 + iℏε)

(3.60)

Analyzing the other terms of the expansion in Eq. (3.55) one finds more involved contri-
butions, containing a relevant term proportional to δτ (Eλf

− Eλi
) and oscillatory terms

(that are negligible in the large τ limit). In this regime one is then allowed to write the
n-th term of the series as

T̂n =

∫
dλfdλiδτ (Eλf

− Eλi
)f(λf , λi) |λf ⟩⟨λi| (3.61)

where fi(λf , λi) is the n-th order contribution of the scattering amplitude and contains all
the dependence on the interaction potential. Summing up all the terms of the series in
Eq. (3.54) we obtain the scattering operator

Ŝτ = 1+ iT̂τ (3.62)

where the incomplete transition operator T̂τ is defined by

T̂τ =

∫
dλf dλi δτ (Eλf

− Eλi
)f(λf , λi) |λf ⟩⟨λi| (3.63)

where f(λf , λi) =
∑∞

n=1 fn(λf , λi) is the scattering amplitude and contains all the depen-
dence on the interaction potential of the scattering process. Associating now the eigen-
vector |λ⟩ with the tensor product of the test and gas particle momentum eigenstates, i.e
|λ⟩ ≡ |P,k⟩ and recalling that V̂ is invariant under global translationsone obtains the text-
book expression [51] of the transition operator, where the energy preserving Dirac delta
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function has been replaced with the "smoothened" delta function in (3.57), i.e.

⟨P,k|T̂τ |P′,k′⟩ =

=
1

2πℏm∗ δ
3
(
P+ k−P′ − k′) δτ (P2 −P′2

2M
+

k2 − k′2

2m

)
f
(
rel(k,P), rel(k′,P′)

)
=

1

2πℏm∗ δ
3
(
P+ k−P′ − k′) δτ (rel(k,P)2

2m∗ − rel(k′,P′)2

2m∗

)
f
(
rel(k,P), rel(k′,P′)

)
(3.64)

where
rel(k,P) =

m∗

m
k− m∗

M
P (3.65)

and m∗ = mM/(m+M) is the reduced mass.

3.2.4 Evaluation of the Collision term

Next, we evaluate the collision contribution of Eq. (3.49) exploiting the result of Eq. (3.64).
The term

ϱ̂′S = Tr1
(
T̂τ ϱ̂S ⊗ ϱ̂1T̂τ

)
, (3.66)

is equivalent to

⟨P|ϱ̂′S |P′⟩ =
∫
dP′′dP′′′dkdk′dk′′ϱS(P

′′,P′′′)ϱ1(k
′,k′′)⟨P,k|T̂ |P′′,k′⟩⟨P′′′,k′′|T̂ |P′,k⟩,

(3.67)
where

ϱS(P
′′,P′′′) ≡ ⟨P′′|ϱ̂S |P′′′⟩

ϱ1(k
′,k′′) ≡ ⟨k′|ϱ̂1|k′′⟩. (3.68)

If we introduce the new variable Q = P − P′′, and replace Eqs. (3.19) and (3.64) in
Eq. (3.67), the two δ3-functions due to momentum conservation imply k = k′ − Q and
P′′′ = P′ −Q. Thus, we end up with

⟨P|ϱ̂′S |P′⟩

=
2πℏ
m∗2Ω

∫
dQdkρ(P−Q,P′ −Q)µ(k)δτ (Ef − Ei) δτ

(
E′

f − E′
i

)
f (Pf ,Pi) f

∗ (P′
f ,P

′
i

)
,

(3.69)
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where

Pi = rel (k,P−Q)

Pf = rel (k−Q,P)

P′
i = rel

(
k,P′ −Q

)
P′

f = rel
(
k−Q,P′) , (3.70)

and Ei,f = P 2
i,f/(2m

∗), E′
i,f = P ′2

i,f/(2m
∗) are the corresponding energies; Pi,f ,P

′
i,f have

to be understood as functions of the momenta k,Q,P and P′. From a physical point of
view, the interpretation of Eq. (3.69) is straightforward: it displays the product of the two
center-of-mass probability amplitudes, as well as a "smothened" δ-functions for the partial
energy conservation associated with the incomplete collisions

P−Q → P

k → k−Q (3.71)

and

P′ −Q → P′

k → k−Q. (3.72)

Equation (3.69) can be then put in an operatorial form:

ϱ̂′S =
2πℏ
m∗2Ω

∫
dQdkµ(k)e

i
ℏQ·x̂L̂τ,Q,k ϱ̂S L̂

†
τ,Q,ke

− i
ℏQ·x̂ (3.73)

where:

L̂τ,Q,k(P̂) = f(P̂f , P̂i)δτ (Êf − Êi), (3.74)

with f(P̂f , P̂i) the scattering amplitude defined in Eq. (3.64), promoted to operator func-
tion and

P̂i = rel
(
k, P̂

)
P̂f = rel

(
k−Q, P̂+Q

)
= P̂i −Q,

Êi,f =
P̂2
i,f

2m∗ . (3.75)
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With a straightforward calculation one can rewrite the other terms of Eq. (3.49) in terms
of L̂τ,Q,k(P̂) as

Tr1
(
[T̂τ − T̂ †

τ , ϱ̂S ⊗ ϱ̂1]
)
=− i (πℏ)2

m∗Ω

∫
dkµ(k)

[
(L̂τ,0,k + L̂†

τ,0,k) , ϱ̂S(t)
]

Tr1
(
{T̂ †

τ T̂τ , ϱ̂S ⊗ ϱ̂1}
)
=− (2πℏ)

m∗2Ω

∫
dQdkµ(k)

{
L†
τ,Q,kLτ,Q,k , ϱ̂S(t)

}
. (3.76)

Replacing now Eq. (3.73) and Eq. (3.76) in Eq. (3.49) one obtains

∂ϱ̂S(t)

∂t

⏐⏐⏐⏐
coll

= − i n(2πℏ)
2

2m∗τ

∫
dkµ(k)

[
(L̂τ,0,k + L̂†

τ,0,k) , ϱ̂S(t)
]

−n(2πℏ)
m∗2τ

∫
dQdkµ(k)

(
1

2

{
L†
τ,Q,kLτ,Q,k , ϱ̂S(t)

}
+ e

i
ℏQ·x̂L̂τ,Q,kϱ̂S(t)L̂

†
τ,Q,ke

− i
ℏQ·x̂

)⏐⏐⏐⏐
τ=∞

(3.77)

where n = N/Ω is the density of the gas. One observes that the second line of the equation
above exactly recovers Diósi master equation (1.51) if the evaluation at τ = ∞ is replaced
by Eq. (1.50). The term in the first line instead is a shift of system’s energy due to the
background gas, which Diósi sets to zero. Recalling now Eq. (3.57) one notices that

δτ (0) =
1

2πℏ

∫ τ/2

−τ/2
=

τ

2πℏ
,

δ2τ (E) =
1

(2πℏ)2

∫ τ/2

−τ/2
ds1

∫ τ/2

−τ/2
ds2e

− i
ℏE(s1+s2) =

τ

2πℏ
δτ (E). (3.78)

Exploiting the above equations and Eq. (3.74) one obtains

L̂τ,0,k =
τ

2πℏ
f(P̂i, P̂i),

L̂†
τ,Q,k(P̂)L̂τ,Q,k(P̂) =

τ

2πℏ

⏐⏐⏐f(P̂f , P̂i)
⏐⏐⏐2 δτ (Êf − Êi). (3.79)

Which can be exploited together with Eq. (3.74) to rewrite Eq. (3.77) in the more explicit
form

∂ϱ̂S(t)

∂t

⏐⏐⏐⏐
coll

= − i2πℏn
m∗

∫
dkµ(k)

[
Re(f(P̂i, P̂i) , ϱ̂S(t)

]
− n

m∗2

∫
dQdkµ(k)

1

2

{⏐⏐⏐f(P̂f , P̂i)
⏐⏐⏐2 δτ (Êf − Êi) , ϱ̂S(t)

}
+
n(2πℏ)
τm∗2

∫
dQdkµ(k)e

i
ℏQ·x̂f(P̂f , P̂i)δτ (Êf − Êi)ϱ̂S(t)δτ (Êf − Êi)f∗(P̂f , P̂i)e

− i
ℏQ·x̂

⏐⏐⏐⏐
τ=∞

.

(3.80)
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The last term of this equation depends on τ−1, meaning that the condition (3.50) is in
general not verified. However, the fact that the dependence on τ is contained also and
only in the two energy Dirac delta function indicates that condition (3.50) can be satisfied
only in the case where:

δτ (Êf − Êi)ϱ̂S(t)δτ (Êf − Êi) ∝ τ (3.81)

under the integral
∫
dqdk . Equation (3.78) suggests that condition above can be verified

in the case where the energy Dirac delta function commutes with the statistical operator
ϱ̂S(t), i.e. [

(Êi − Êf ) , ϱ̂s(t)
]
= 0 (3.82)

under the integrals
∫
dQdk. Indeed under this assumption, and exploiting Eq. (3.78) it is

easy to verify the following

δτ (Êf − Êi)ϱ̂S(t)δτ (Êf − Êi) =
τ

2πℏ
δτ (Êf − Êi)ϱ̂S(t). (3.83)

It is now interesting to notice that, exploiting Eq. (3.75), assumption (3.82) can be equiva-
lently rewritten as

[
P̂i ·Q , ϱ̂S(t)

]
= 0 , that can be further reduced to[

m

m+M
P̂ , ϱ̂S(t)

]
= 0 (3.84)

exploiting Eq. (3.75), Eq. (3.65) and the arbitrariness of Q. Equation (3.84) shows that
assuming (3.82) ensure not only the commutativity of the Energy Dirac delta function with
the statistical operator ϱ̂S(t), but also commutativity of the scattering amplitude f(P̂i, P̂f )

with ϱ̂S(t) and furthermore constraints the state of the system ϱ̂S(t) to be diagonal in
momentum eigenbasis. Substituting now Eq. (3.83) exploiting the commutativity between
ϱ̂S(t) and f(P̂i, P̂f ) and taking the limit τ → ∞, one eventually obtains a well defined
collisional term:

∂ϱ̂S(t)

∂t

⏐⏐⏐⏐
coll

= − i2πℏn
m∗

∫
dkµ(k)

[
Re(f(P̂i, P̂i)) , ϱ̂S(t)

]
− n

2m∗2

∫
dQdkµ(k)

{⏐⏐⏐f(P̂f , P̂i)
⏐⏐⏐2 δ(Êf − Êi) , ϱ̂S(t)

}
+

n

m∗2

∫
dQdkµ(k)e

i
ℏQ·x̂

⏐⏐⏐f(P̂f , P̂i)
⏐⏐⏐2 δ(Êf − Êi)ϱ̂S(t)e

− i
ℏQ·x̂, (3.85)
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which displays no explicit dependence on τ , confirming that condition (3.50) is satisfied
under assumption (3.82). Notice that even if Eq. (3.85) it is not written in Lindblad form, it
is still correct on the subspace of the states that satisfies condition (3.84). Indeed Eq. (3.85)
does preserves the diagonal form of ϱ̂S(t).

Before going further it is convenient to summarize what has been done to obtain Eq. (3.85).
We started by deriving the dynamics governing the short time scale evolution of a test
particle in a rarefied thermal bath. Exploiting this result, we build a piece-wise model
describing not only the short time behavior but also the long time behavior of the test
particle, that showed to be valid only under assumption (3.20). This model provided a
natural scheme to obtain a coarse-grained theory where (instantaneous) collisions appear,
described by Eq. (3.26). From Eq. (3.26) we were able to identify the collisional contribu-
tion to the dynamics as in Eq. (3.31). Once identified the collision term we learned the
necessity of the condition (3.33) in order to derive a well defined collisional dynamics. We
then showed that, under the assumption (3.33), the collisional term in Eq. (3.26) can be
equivalently described by Eq. (3.42) where the collisions are described by the action the
standard scattering operator Ŝ. We then analyzed the collision term, finding that condi-
tion (3.33) is verified under assumption (3.84) and under this assumption we eventually
derived Eq. (3.85). Going further one may now notice that the classical regime, where
the system’s state is described by an ensemble of momentum eigenstates, i.e. ϱ̂s = ϱ̂S(P̂),
and the diffusive regime, where m/M → 0, are probably the only two cases satisfying
Eq. (3.84). It is also interesting to notice that the first is the regime in which the classi-
cal Linear Boltzmann equation was derived, and the second one is the regime in which
Joos-Zeh and Gallis-Flemming models were derived.

Next we explicitly compute the collisional term in Eq. (3.85) for these two particular
cases.
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Classical case

Under the assumption that the state of the system is described by an ensemble of momen-
tum eigenstates, i.e. ϱ̂S = ϱS(P̂), Eq. (3.85) can be rewritten as

∂ϱS(P̂, t)

∂t

⏐⏐⏐⏐⏐
coll

= − i2πℏn
m∗

∫
dkµ(k)

[
Re(f(P̂i, P̂i) , ϱS(P̂, t)

]
− n

m∗2

∫
dQdkµ(k)

⏐⏐⏐f(P̂f , P̂i)
⏐⏐⏐2 δ(Êf − Êi)ϱS(P̂, t)

+
n

m∗2

∫
dQdkµ(k)e+

i
ℏQ·x̂

⏐⏐⏐f(P̂f , P̂i)
⏐⏐⏐2δ(Êf − Êi)e−

i
ℏQ·x̂ϱS(P̂−Q, t) (3.86)

Commuting now the first exponential operator, e
i
ℏQ·x̂ in the last line with

⏐⏐⏐f(P̂f , P̂i)
⏐⏐⏐2 δτ (Êf−

Êi), performing the change of variable k → k + Q and then Q → −Q, one ends up
with

∂ϱ̂S(P̂, t)

∂t

⏐⏐⏐⏐⏐
coll

= − n

m∗2

∫
dQdk

⏐⏐⏐f(P̂i, P̂f )
⏐⏐⏐2 δ(Êf − Êi)

(
µ(k)ϱ̂S(P̂, t)− µ(k−Q)ϱ̂S(P̂+Q, t)

)
.

(3.87)

Since the integrated function is diagonal in the momentum eigenbasis, we are now al-
lowed to perform the following change of variables Q → Q+ P̂i, rewrite dQ in polar co-
ordinates, and integrating over the modulus of the vector Q one eventually obtains

∂ϱ̂S(t)

∂t

⏐⏐⏐⏐
coll

= −n
∫
dkdn

|P̂i|
m∗

⏐⏐⏐f(P̂i + Q̂, P̂i)
⏐⏐⏐2 (µ(k)ϱS(P̂)− µ(k+ Q̂)ϱS(P̂− Q̂)

)
(3.88)

with n the unit vector associated to the solid angle and Q̂ =
⏐⏐⏐P̂i

⏐⏐⏐n − P̂i the collision
momentum transfer operator. This Equation describes the classical result obtained by
Boltzmann.

Diffusive regime

In the diffusive regime, where the mass ratio m/M between the gas particle and the test
particle approaches zero and the momenta k and P of the gas and the test particle respec-
tively are comparable, condition (3.84) is always verified, giving no constraint on the state
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of the system ρS(t) and the reduced mass and the relative momentum defined Eq. (3.75)
can be approximated has follows:

m∗ =
mM

m+M
≃ m

rel(k,P) =
m∗

m
k− m∗

M
P ≃ k (3.89)

and P̂i P̂f in Eq. (3.75) become:

P̂i = k+Q

P̂f = k (3.90)

Substituting above relations in Eq. (3.86) one ends up with

∂ϱ̂S

∂t

⏐⏐⏐⏐
coll

=
n

m2

∫
dQdk δ

(
k2

2m
− (k+Q)2

2m

)
µ(k) |f(k,k+Q)|2

[
e

i
ℏQ·x̂ϱ̂S(t)e

− i
ℏQ·x̂ − ϱ̂S(t)

]
. (3.91)

This equation exactly recover the results for the recoil-free dynamics analysed in sec. 1.1.
From a simple comparison with Eq. (1.22) one immediately recognize the Gallis-Flemming
collisional term, rescaled of a 2π factor. However, as already discussed in sec. 1.1 only
with this rescaling the Gallis-Flemming master equation is able to reproduce experimantal
data [42].

3.2.5 Time scales estimation

What is now left to verify is under which regime condition (3.21) holds. In order to do
so, in the next section we give an estimation of both the interaction time scale τint and the
free time scale τfree.

Free-time scale

The action of the free evolution in a time interval τ on a generic state ϱS is given by

ϱ̂S(t+ τ) = US
τ (ϱ̂S(t)) (3.92)



Collisional Effective Dynamics 51

where US
τ (·) is the free-evolution dynamical map defined by Eq. (3.16).

Let us write this equation in Taylor series to obtain

ϱ̂s(t+ τ) = ϱ̂S(t) +

∞∑
n=1

(
−i τ
ℏ

)n

Hs ◦ · · · ◦ HS  
n−times

(ϱ̂s(t)) (3.93)

with HS(·) the infinitesimal change given by the free dynamics defined in Eq. (3.29). The
request that τfree ≫ τ is equivalent to require that, in the time interval τ , only the first
term of the above series contributes, that is

ϱ̂S(t+ τ) = ϱ̂s(t) +HS(ϱ̂s(t))τ +O(τ2/τ2free). (3.94)

In order to estimate τfree we expand Eq. (3.93) in eigenbasis |λ⟩ of the free hamiltonian
Ĥs, ĤS |λ⟩ = Eλ |λ⟩ to obtain

ϱ̂S(t+ τ) =

∫
dλLdλR

∑
n=0

1

n!

[
− i

ℏ
(EλL

− EλR
)τ

]n
|λL⟩⟨λL| ϱ̂S(t) |λR⟩⟨λR| . (3.95)

From the equation above, one immediately sees that the first perturbative term dominates
the series only if

|(EλL
− EλR

) ⟨λL| ϱ̂s(t) |λR⟩ |
τ

ℏ
≪ | ⟨λL| ϱ̂S(t) |λR⟩ | ∀ |λL⟩ , |λR⟩ . (3.96)

this is equivalent to requiring

τ ≪ ℏ
supϱ̂s |EλR

− EλL
|

(3.97)

where supϱS |EλR
− EλL

| is the maximum distance ofEλR
−EλL

for ⟨λL| ϱS |λR⟩ ≠ 0. Since
the condition we want to satisfy is τ ≪ τfree, one can now assume that

τfree ≡
ℏ

supϱ̂s |EλR
− EλL

|
. (3.98)

The equation above allows us to estimate the time necessary for the free evolution to pro-
duce a relevant change in the system’s state ϱS . The definition of τfree given by Eq. (3.98)
is formal, however supϱS |EλR

− EλL
| can be understood as a measure of quantum co-

herence in the energy eigen-basis of the system state ϱ̂S(t), opening the possibility for
an experimental estimate of the free evolution time scales, trough a measurement of the
coherence in the energy of the system.
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Interaction time-scale

Next we give an estimation of the length of time interval τ necessary to contain a complete
collision process. A way to estimate the collision time scale is to check in which amount
of time after the interaction begin, conservation of the total free kinetic energy is restored.
Meaning that the two colliding particles are far enough to not interact anymore. Since the
requirement of a perfect conservation law implies an infinite collision time, we require the
less stringent condition: the variation of the energy (∆Ec) of the whole system must be
negligible compared to the free energy Ē ≡ Tr[(Ĥs+ Ĥ1)ϱ̂s⊗ϱ1] of the interacting system,
i.e.

∆Ec ≪ Ē. (3.99)

Indeed, under this assumption the energy violation produced by the interaction process
can be considered irrelevant for the free dynamics and, one can replace Ŝτ with the full
scattering operator Ŝ. We know from Eq. (3.62) and Eq. (3.63) that the incomplete scatter-
ing operator takes the following expression

Ŝτ = 1+ i

∫
dλfdλiδτ (Eλf

− Eλi
)f(λf , λi) |λf ⟩⟨λi| (3.100)

in the limit of large τ . The δτ (Eλf
−Eλi

) in the above equation shows that the relevant con-
tributions of the scattering process are given by matrix elements ⟨λf | Ŝτ |λi⟩, that satisfy
the condition ⏐⏐Eλf

− Eλi

⏐⏐ ≤ 2πℏ
τ
. (3.101)

This inequality suggests that the violation of the kinetic energy ∆Ec = Eλf
− Eλi

due to
the process described by Ŝτ is proportional to the inverse of the time interval τ during
which the collision occurs, i.e.

∆Efi ≃
2πℏ
τ

(3.102)

Combining this result with condition (3.99), one eventually obtains that the following
inequality

τ ≫ ℏ
Tr[(ĤS + Ĥ1)ϱ̂S ⊗ ϱ̂1]

(3.103)
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must be satisfied to have complete scattering process. Since the condition that we want to
satisfy is τ ≫ τint, one can now assume that

τint ≃
ℏ

Tr[(ĤS + Ĥ1)ϱS ⊗ ϱ1]
(3.104)

and exploiting Eq. (3.19) obtains

τint ∝
ℏ

Tr(ĤS ϱ̂s(t)) +
3
2 β

−1
. (3.105)

Not surprisingly this equation suggests that the time needed for the wave packets to pass
trough the interaction region is proportional to the total energy of the test particle plus
the bath particle. Even if the interaction time defined in Eq. (3.104) does not contain any
information of the interaction potential, it gives the magnitude of the time needed for the
wave packet to pass through the interaction region. This can be easily checked under the
choice of a Dirac delta potential γδ(X − x1) where the matrix elements ⟨λ| V̂ |λ′⟩ become
constant and no dependence of the shape of the interaction appears in the determination
of the relevant components of ⟨λf | Ŝ |λi⟩. Since we expect that the collision time increases
with the spatial extension of the interaction potential we deduce that Eq. (3.105) only gives
a lower bound for the interaction time.

3.2.6 Regime of Validity for Collisional Equation

Now that we provided an estimation for both τfree and τint we can discuss the validity
of condition (3.20). Substituting Eq. (3.98) and Eq. (3.105) and in (3.20) one obtains the
following necessary conditions

supϱS |EλR
− EλL

| ≪ ℏ
τ
≪ TrS

(
ĤS ϱ̂S(t)

)
+

3

2
β−1. (3.106)

The above inequality suggests that a collisional description can be achieved only if the
coherence in energy of the test particle ϱS is negligible compared to the energy of the test
and the bath particle that interact. One may also notice that the condition (3.84) that seems
to be necessary in order to guarantee (3.50) is in complete agreement with (3.106).
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Conclusions

Animated by the desire to arrive at a better understanding of the collisional process af-
fecting the quantum dynamics of a test particle in a gas, of the associated process of deco-
herence, we investigated the limits of a collisional model of this physical situation.

We first analyzed the literature of collisional models. As we have shown in the first chap-
ter, the research in this field, has produced two heuristic models that claim to describe in
total generality the behaviour of a quantum particle in a rarefied thermal gas. However
these models reach discordant predictions. In order to better understand the dynamics of
a collision process in a simple situation, we analyzed a system of two particles interact-
ing via an infinite Dirac delta potential in one dimensional case. As shown in the second
chapter this model is exactly solvable and can be exploited to study in full detail the in-
teraction. This model allowed to estimate the duration time of the collision between two
Gaussian wave packets. This time is proportional to the spatial extension of the wave
packets, suggesting that only the classical behaviour of a point-like particle in a gas can
be described in total generality as truly instantaneous collisions.

After this preliminary study we moved to the more interesting case of a test particle in a
quantum gas. In order to find a solution for the problem, we combined the Hartree varia-
tional method with stochastic calculus techniques. This original treatment of the problem
allows to correctly describe the non dissipative behaviour of the test particle, however
the method has proved unsuitable to correctly describe dissipative phenomena. Even if
this approach is not suitable for taking into account all phenomena underlying the dy-
namics, it shows that by describing the thermal bath as a system with no correlations in
time prevents the possibility to describe dissipative phenomena. This fact suggests that
dissipative phenomena can only appears if the collision process is sufficiently slow to let
the system evolves during the interaction. Indeed the bath correlation is strictly related
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to the duration time of the collision process, and a zero correlation time means that the
collision append in a negligible time compared to the free evolution dynamics.
Because of the impossibility to learn more about dissipative phenomena in collisional
models starting from heuristic models, we decided to tackle the problem from a different
perspective.
In Chapter 3 we provided a microscopic derivation of the collisional dynamics. More
importantly, we were able to find necessary conditions for the validity of a collisional ap-
proach in the description of a quantum particle in a gas. The very stringent conditions
we found, not surprisingly, confirm the validity of a collisional dynamics for quantum
systems in classical regime or the diffusive regime (see sec. 3.2.4), where dissipative phe-
nomena are negligible. Moreover, this analysis also suggests that these two cases are the
only ones in which a collisional description is possible. These results lead us to conclude
that collisional models are not suited for describing systems in which both quantum and
dissipative behaviour are present. To our opinion more sophisticated models and and
probably are needed in order to tackle the problem of describing dissipative phenomena
in the quantum mechanical scenario.



Appendix A

Stochastic master Equation

In this section we the derive approximated master equation associated to the dynamics
of a quantum system under the action of an Hermitian operator Ĥ plus a real stochastic
potential V̂t, i.e. evolving according to the Schrödinger equation

iℏ∂t |ψt⟩ = (Ĥ + V̂ (t)) |ψt⟩ . (A.1)

We restrict to the case of a stochastic potential with Gaussian distribution and zero mean
value, i.e.

E
[
V̂ (t)

]
= 0 E

[
V̂ (t)V̂ (τ)

]
(A.2)

where E [. . .] defines the stochastic average. It is convenient to study the dynamics in in-
teraction picture, where the state of the system |ψ⟩ evolves accordingly to the Schrödinger
equation

iℏ∂t |ψt⟩ = V̂I(t) |ψt⟩ , (A.3)

where V̂I(t) is the time dependent operator V̂ (t) in interaction picture and is defined
by

V̂I(t) = e−
i
ℏ ĤtV̂ (t)e

i
ℏ Ĥt. (A.4)

The solution of Eq. (A.3) with initial condition |ψ⟩ may now be formally written in the
form

|ψt⟩ = T (e−
i
ℏ
∫ t
0 dτ V̂I(τ)) |ψ⟩ . (A.5)
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Exploiting Eq. (A.5), the statistical operator ρ̂t ≡ E [|ψt⟩ ⟨ψt|] is equal to:

ρ̂t ≡ E
[
T (e

− i
ℏ
∫ t
ti
dτ V̂I(τ))ρ̂T (e

i
ℏ
∫ t
ti
dτ V̂I(τ))

]
(A.6)

where ρ̂ = |ψ⟩⟨ψ| is the initial state1.
It is now convenient to introduce the super-operator VI(τ) acting on the system state ρ̂
such that VI(t)ρ̂ ≡ −ℏ−1[V̂I(t), ρ̂] and rewrite Eq. (A.6) as

ρ̂t = E
[
T (e−i

∫ t
0 dτV(τ))

]
ρ̂ (A.7)

Exploiting the Gaussianity of the the stochastic operator and the Isserliss theorem one
may now rewrite Eq. (A.7) in the more convenient form

ρ̂t = T (e−
1
2

∫ t
0 dτ ′

∫ t
0 dτ ′′E[VI(τ

′)VI(τ
′′)])ρ̂, (A.8)

The time derivative of Eq. (A.8) yields to the equation

∂tρ̂t =T
(∫ t

0
dτ E [VI(t)VI(τ)] e

− 1
2

∫ t
0 dτ ′

∫ t
0 dτ ′′E[VI(τ

′)VI(τ
′′)]

)
ρ̂ (A.9)

but under the hypothesis that exist a time interval τc such that

E [VI(t)VI(τ)] ≃ 0 |t− τ | > τc, (A.10)

usually called correlation time, one can write Eq. (A.9) as

∂tρ̂t =T
(∫ ∞

0
dτ E [VI(t)VI(τ)]

)
ρ̂t +O((τc/t)

2) ∀ t > τc (A.11)

To show the validity of Eq. (A.11) one may rewrite Eq. (A.9) as

∂tρ̂t =T (

∫ t

0
dτ E [VI(t)VI(τ)] e

− 1
2

∫ t
τ dτ ′

∫ t
τ dτ ′′E[VI(τ

′)VI(τ
′′)]

e−
∫ t
τ dτ ′

∫ τ
0 dτ ′′E[VI(τ

′)VI(τ
′′)] ⊗ e−

1
2

∫ τ
0 dτ ′

∫ τ
0 dτ ′′E[VI(τ

′)VI(τ
′′)])ρ̂. (A.12)

Under the assumption that t > τc the term in first line of Eq. (A.12) restricts the variable τ
to be

τ ≥ (t− τc) (A.13)

1It is worth to notice the that Eq. (A.6) can be understood a Kraus decomposition of the dynamics ensuring
the dynamics to be completely positive
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and can be then approximated with∫ t

0
dτE

[
VI(t)VI(τ) ≃

∫ t

t−τc

]
E [VI(t)VI(τ)] ∝ τc. (A.14)

With the help of Eq. (A.13), one may also notice that∫ t

τ
dτ ′
∫ t

τ
dτ ′′E

[
VI(τ

′)VI(τ
′′)
]
≃
∫ t

t−τc

∫ t

t−τc

E
[
VI(τ

′)VI(τ
′′)
]
∝ τ2c ,∫ t

τ
dτ ′
∫ τ

0
dτ ′′E

[
VI(τ

′)VI(τ
′′)
]
≃
∫ τc

0
dτ ′
∫ 0

−τc

dτ ′′VI(τ
′ − τ)VI(τ

′′ + τ) ∝ τ2c ,∫ τ

0
dτ ′
∫ τ

0
dτ ′′E

[
VI(τ

′)VI(τ
′′)
]
≃
∫ t−τc

0

∫ t−τc

0
E
[
VI(τ

′)VI(τ
′′)
]
∝ τct (A.15)

Exploiting these results one is allowed to approximate Eq. (A.12) as

∂tρ̂τ =T (

∫ t

t−τc

dτ E [VI(t)VI(τ)])ρ̂τ +O((τc/t)
2) ∀ t > τc (A.16)

which can be equivalently rewritten as

∂tρ̂t =T (

∫ t

t−τc

dτ E [VI(t)VI(τ)])ρ̂t +O((τc/t)
2) (A.17)

because, for τ ≥ (t− τc) and t > τc,

ρ̂t = ρ̂τ +O((τc/t)
2). (A.18)

Performing now the change of variables τ → (t− τ), Eq. (A.17) may be rewritten as

∂tρ̂t =T (

∫ τc

0
dτ E [VI(t)VI(t− τ)])ρ̂t +O((τc/t)

2) (A.19)

Exploiting the assumption in Eq. (A.10) one may now replace the upper limit of the inte-
gral with +∞ to finally obtain

∂tρ̂t =T (

∫ ∞

0
dτ E [VI(t)VI(t− τ)])ρ̂t +O((τc/t)

2) (A.20)

which is the Eq. (A.11). Eq. (A.20) may be furthemrore conveniently rewritten in Schrödinger
picture as

∂tρ̂t = − iHρ̂t + T (

∫ ∞

0
dτ E

[
V(t)eiHτV(t− τ)

]
e−iHτ )ρ̂t +O((τc/t)

2) (A.21)
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where Hρ̂t = ℏ−1[Ĥ, ρ̂t].
It is also worth to notice that in the limit of τc/t→ 0, the stochastic process can be assumed
to be delta correlated in time, i.e.

E [V(t)V(t− τ)] ∝ δ(τ) (A.22)

and Eq. (A.20) becomes the exact master equation

∂tρ̂t = iHρ̂t + T (

∫ ∞

0
dτ E [V(t)V(t− τ)])ρ̂t. (A.23)



Bibliography

[1] L. Boltzmann. Lectures on gas theory. Courier Corporation, 2012.

[2] C. Cercignani. Theory and application of the Boltzmann equation. Scottish Academic
Press, 1975.

[3] S. Harris. An introduction to the theory of the Boltzmann equation. Courier Corporation,
2004.

[4] M. Le Bellac, F. Mortessagne, and G. G. Batrouni. Equilibrium and non-equilibrium
statistical thermodynamics. Cambridge University Press, 2004.

[5] S. R. De Groot and P. Mazur. Non-equilibrium thermodynamics. Courier Corporation,
2013.

[6] L. W. Nordheim. On the kinetic method in the new statistics and its application
in the electron theory of conductivity. Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, 119(783):689–698, 1928.

[7] E. A. Uehling and G. E. Uhlenbeck. Transport phenomena in einstein-bose and fermi-
dirac gases. i. Phys. Rev., 43:552–561, Apr 1933.

[8] J. Ross and J. G. Kirkwood. The statistical-mechanical theory of transport processes.
viii. quantum theory of transport in gases. The Journal of Chemical Physics, 22(6):1094–
1103, 1954.

[9] C. W. Gardiner and P. Zoller. Quantum kinetic theory: A quantum kinetic master
equation for condensation of a weakly interacting bose gas without a trapping po-
tential. Phys. Rev. A, 55:2902–2921, Apr 1997.



62 Bibliography

[10] R. F. Snider. Quantum-mechanical modified boltzmann equation for degenerate in-
ternal states. The Journal of Chemical Physics, 32(4):1051–1060, 1960.

[11] R. F. Snider. Perturbation variation methods for a quantum boltzmann equation.
Journal of Mathematical Physics, 5(11):1580–1587, 1964.

[12] D. Jaksch, C. W. Gardiner, and P. Zoller. Quantum kinetic theory. ii. simulation of the
quantum boltzmann master equation. Phys. Rev. A, 56:575–586, Jul 1997.

[13] C. W. Gardiner, P. Zoller, R. J. Ballagh, and M. J. Davis. Kinetics of bose-einstein
condensation in a trap. Phys. Rev. Lett., 79:1793–1796, Sep 1997.

[14] C. W. Gardiner and P. Zoller. Quantum kinetic theory. iii. quantum kinetic master
equation for strongly condensed trapped systems. Phys. Rev. A, 58:536–556, Jul 1998.
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