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Abstract  

 
 The Standard Probabilistic Seismic Hazard Assessment (PSHA) method cannot fill in the 
knowledge gap in the physical processes behind an earthquake. It can supply only generic 
guidelines based on attenuation relationships. A more adequate definition of the seismic ground 
motion can be given by the Neo-Deterministic Seismic Hazard Analysis (NDSHA), which is based 
on the possibility of efficiently computing realistic synthetic seismograms, by taking into account 
the physics of seismic waves generation and propagation. NDSHA has been applied in many 
countries (Panza et al., 2013), and has not yet been contradicted by observation. Earthquake hazard 
assessment studies in Sumatra were based on PSHA, therefore we decided to apply NDSHA. 
However, due to the complexity of fault systems and of tectonic setting, with high seismicity and 
significant destructive earthquakes in that region, some modifications are required. 
  Sumatra Island is almost completely surrounded by several types of faults, from Sunda 
subduction, strike-slip and branching Sumatra fault, Ninety East Ridge and Investigator Ridge. For 
the application of NDSHA, the faults have been classified into 15 different seismogenic zones,  
based on tectonic setting and clustering of focal mechanisms. Due to the size, shape and complexity 
of the seismogenic zones, an enhanced source definition procedure has been successfully developed 
starting from the standard version NDSHA. Several new features and options have been 
implemented in the magnitude smoothing procedure, so that it is now possible to request ellipsoidal 
smoothing with azimuthal decay and enhanced source depth definitions.  

The structural model for density, Vp, Vs, Qp, and Qs has been compiled from regional data 
for deep layers and using the global model (Crust 2.0 and Litho 1.0) for the upper ones. The model 
consists of 49 layered structures, each associated with a polygon belonging to a 1°x1° grid, rotated 
54° to be mostly aligned with the coastline.  

An updated procedure for the quick generation of ground shaking scenarios based on the 
computation of synthetic seismograms by the modal summation technique allowed the rapid 
execution of parametric tests successfully used to validate the structural model for the case study of 
the Takengon earthquake scenario July 2, 2013 M6.1. The results have been compared, for 
frequencies up to 10 Hz, with the ShakeMap produced by USGS, and with the accelerograms 
recorded by BMKG. A satisfactory agreement has been obtained for both comparisons, except for 
the stations located on thick sedimentary layers that induce strong site effects, neglected in the 
quick parametric modelling.    
 NDSHA has been used on the regional scale, i.e. the whole Sumatra and adjacent islands, by 
calculating synthetics seismogram from all the sources obtained applying the modified smoothing 
procedure to the events available in the historical seismicity catalogues. 2,612 sources have been 
defined, and 953 receiver sites. An updated algorithm for path definition has been defined in order 
to reduce the number of synthetic seismograms required to obtain the hazard maps. For each 
receiver site the most significant sources have been sorted out, speeding up the computations by a 
factor of 4.5 without compromising the quality of the final hazard map.   
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 NDSHA has been applied also to the local scale using high resolution data describing the 
lateral heterogeneities along selected profiles, for microzonation purposes. A hybrid method that 
combines the 1D modal summation technique with the 2D finite differences technique has been 
used to generate the synthetic seismograms, and to identify the amplification pattern along the 
profile. We investigated the local site effects observed for the sedimentary basin at Banda Aceh 
City. The basin is located between two bedrock structures, characterized by the Lhoknga limestone 
and the Ulee Batee volcanic rock. We considered two scenarios, from the subduction zone and from 
the strike slip zone. The simulation results evidenced the correlation between amplifications and the 
thickness of the sedimentary layers.  
 The enhanced NDSHA was successfully applied in Sumatra taking into consideration 
complex seismogenic zones, both on a regional and local scale. Future studies should improve the 
definition of the structural model, mostly for its upper part, by performing regional surface wave 
tomography instead of using global data. Detailed investigations should be also dedicated to the 
definition and characterization of proper extended source models for mega earthquakes. 
Keywords: Sumatra, NDSHA, Source Definition Procedure, Microzonation. 
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Riassunto 
 

 Il metodo probabilistico standard per la stima della pericolosità sismica (PSHA) non può 
riempire adeguatamente il vuoto di conoscenza sui processi fisici che scatenano un terremoto. Può 
solo fornire delle linee guida generiche basate sull’utilizzo di relazioni di attenuazione. Una 
descrizione più adeguata del moto del suolo si può ottenere mediante la metodologia 
neodeterministica (NDSHA), basata sul calcolo efficiente di sismogrammi sintetici mediante la 
tecnica della somma dei modi, eventualmente accoppiata con le differenze finite nel caso di 
modellazioni a scala locale. 
 NDSHA è già stato applicato in molte nazioni (Panza et al., 2013), e i suoi risultati non sono 
stati ancora contradetti dalle osservazioni. Per quanto riguarda Sumatra, le stime di pericolosità 
sismica disponibili finora erano tutte basate su PSHA, e si è pertanto deciso di applicare NDSHA 
anche a questa regione. A causa della complessità tettonica dell’isola, dell’elevata sismicità e della 
presenza di terremoti distruttivi di magnitudo molto elevata, si è ritenuto opportuno implementare 
alcune modifiche agli algoritmi solitamente utilizzati per definire le sorgenti sismiche e i percorsi 
sorgente-sito. 
 L’isola di Sumatra è quasi completamente circondata da faglie di stile diverso: dalla 
subduzione di Sunda ai sistemi di faglie ramificate strike-slip di Sumatra, per finire con i Ninety 
East Ridge e l’Investigator Ridge. Per l’applicazione di NDSHA le faglie sono state raggruppate in 
15 zone sismogenetiche, definite in base allo stile tettonico, all’ubicazione delle faglie attive e alla 
distribuzione spaziale dei terremoti finora osservati. A causa delle dimensioni delle zone 
sismogenetiche, della loro forma e della loro complessità, si è ritenuto opportuno estendere le 
capacità dell’algoritmo che porta alla definizione delle sorgenti sismiche in NDSHA, soprattutto per 
quel che riguarda la procedura di lisciamento delle magnitudo riportate nei cataloghi storici della 
sismicità. È quindi ora possibile, in aggiunta alle opzioni finora disponibili, definire il lisciamento 
su forma ellittica con la possibilità  di un decadimento azimutale del valore di magnitudo, nonché 
agire con più parametri sulla profondità delle sorgenti. 
 Il modello strutturale di densità, Vp, Vs, Qp e Qs è stato compilato a partire da modelli a 
scala regionale uniti a modelli globali (Crust 2.0 e Litho 1.0) per gli strati superiori. Il modello è 
costituito da 49 strutture stratificate, ciascuna associata a un poligono che appartiene a una griglia di 
1°x1°, ruotata di 54° per essere grossomodo allineata con la linea di costa. 
 È stata parimenti aggiornata la procedura per la rapida generazione di scenari di scuotimento 
del suolo, così da poter effettuare rapidamente dei test parametrici, usati con successo per la 
validazione del modello strutturale fatta utilizzando le registrazioni del terremoto M=6.1 di 
Takengon del 2 luglio 2013. Il risultato della modellazione è stato confrontato con le ShakeMaps  
prodotte dall’USGS e con gli accelerogrammi registrati da BMKG. Un accordo soddisfacente è 
stato ottenuto per entrambi i confronti, se si escludono le stazioni ubicate su una spessa coltre 
sedimentaria generatrice di forti effetti di sito, trascurati in queste rapide modellazioni 
parametriche. 
 NDSHA è stato applicato a scala regionale, cioè all’intera isola di Sumatra e alle isole 
minori immediatamente adiacenti, generando i sismogrammi sintetici a partire dalle sorgenti 
ottenute con la procedura di lisciamento applicata ai cataloghi storici disponibili. Sono state definite 
2612 sorgenti e 953 siti di osservazione dello scuotimento del suolo. L’algoritmo per la selezione 
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dei percorsi significativi da utilizzare nella generazione dei sismogrammi è stato adattato alle 
dimensioni e alle caratteristiche dell’area in esame, così da poter ridurre il numero di sismogrammi 
sintetici necessari per la definizione delle mappe di pericolosità sismica. Per ciascun sito di 
osservazione vengono così selezionate le sorgenti più significative, senza compromettere la qualità 
dei risultati ottenuti ma riducendo di un fattore 4.5 i tempi di calcolo. 

NDSHA è stato successivamente applicato anche a scala locale usando dati ad alta 
risoluzione descrittivi delle eterogeneità laterali del modello strutturale in corrispondenza di alcuni 
profili selezionati a scopo di microzonazione. Un metodo ibrido che combina la tecnica modale con 
le differenze finite è stato usato per la generazione dei sismogrammi sintetici e per identificare i 
pattern di amplificazione lungo i profili. Sono stati studiati gli effetti di sito per il bacino 
sedimentario di Banda Aceh, localizzato fra le strutture calcarea di Lhoknga e le rocce vulcaniche 
di Ulee Batee. Sono stati considerati gli scenari di scuotimento associati sia a terremoti avvenuti 
nella zona di subduzione che nel sistema di faglie trascorrenti. I risultati delle simulazioni mostrano 
una buona correlazione fra le amplificazioni ottenute rispetto a una condizione di bedrock e lo 
spessore della coltre sedimentaria. 

La versione estesa e migliorata di NDSHA è stata in questo lavoro applicata a Sumatra 
tenendo in considerazione il complesso sistema di zone sismogenetiche sia a scala regionale che a 
scala locale. In una continuazione delle ricerche sarebbe opportuno migliorare la definizione del 
modello strutturale, soprattutto nella sua parte più superficiale, mediante analisi tomografica delle 
onde di superficie. Studi dettagliati dovrebbero anche essere dedicati alla caratterizzazione delle 
faglie responsabili dei terremoti di magnitudo più elevata e alla modellazione del rilascio 
dell’energia sismica. 
Parole chiave: Sumatra, NDSHA, Definizione delle sorgenti sismiche, Microzonazione 
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Abstrak 

 
 Metode Probabilistic Seismic Hazard Assessment (PSHA) memiliki keterbatasan dalam 
memahami perhitungan secara fisis proses terjadinya suatu gempa bumi. Semua perhitungan hanya 
didasarkan pada persamaan attenuasi. Perhitungan yang lebih teliti tentang tingkat bahaya gempa 
bumi dapat dilakukan dengan metode Neo-deterministik Seismik Hazard Assessment (NDSHA) 
yang menggunakan proses komputasi yang efesien untuk melakukan perhitungan fisis dari sumber 
gempa saat gelombang seismik dibangkitkan hingga proses perambatannya hingga mencapai 
penerima. Metode NDSHA telah diterapkan di banyak negara (Panza et al., 2013) dan sejauh ini 
menunjukkan kecocokkan dengan hasil pengamatan lapangan. Kebanyakan kajian bahaya gempa di 
Sumatera didasarkan pada metode PSHA, sehingga dirasa perlu untuk menerapkan metode 
NDSHA. Namun karena Sumatera memiliki sistem sesar dan kondisi tektonik yang rumit, intensitas 
gempa yang tinggi, serta banyaknya gempa bumi besar yang merusak, sehingga perlu dilakukan 
modifikasi metode yang selama ini telah digunakan.  
 Pulau Sumatera dikelilingi oleh berbagai tipe patahan, dari subduksi Sunda, patahan geser 
serta pencabangannya,  Ninety East Ridge, dan  Investigator Ridge. Untuk menerapkan metode 
NDSHA, zona sumber gempa dibagi kedalam 15 bagian yang didasarkan pada kondisi tektonik dan 
mekanisme gempanya.Pengayaan versi standar NDSHA telah berhasil dilakukan untuk menagani  
besarnya variasi kekuatan gempa, distribusinya, dan komplektisitas sumber zona gempa. Disamping 
itu telah ditambahakan fasilitas baru diantaranya proses smoothing magnitudo gempa,ellipsoid 
smoothing serta penentuan kedalaman sumber gempa.  

Model struktur kerapatan massa, Vp, Vs, Qp, dan Qs diperoleh dari hasil kompilasi data 
regional dan khusus untuk lapisan atas digunakan model global (Crust 2.0 dan Litho 1.0). Model 
tersebut terdiri dari 49 struktur dan setiap poligon meliputi area 1°x1° grid yang diputar  54° 
sehingga sejajar dengan garis pantai.  

Prosedur untuk membuat skenario goncangan tanah berdasarkan perhitungan seismogram 
sintetik dengan teknik modal summation yang dapat dihitung secara cepat dengan bantuan program 
tes parametrik. Program tersebut telah berhasil diperbaharui serta dilakukan validasi pada model 
struktural untuk studi kasus gempa Takengon 2 Juli 2013 M6.1. Perbandingan tersebut berhasil 
dilakukan dengan membandingkan hasil simulasi pada frekuensi maksimum 10 Hz, dengan 
ShakeMap (peta goncangan tanah) yang dihasilkan oleh USGS dengan akselerogram yang direkam 
oleh BMKG. Perbandingan tersebut menunjukan hasil yang akurat kecuali pada beberapa stasiun 
yang terletak di lapisan sedimen tebal yang mengalami efek tapak yang kuat dan faktor tersebut 
diabaikan pada test parametrik. 
 NDSHA telah digunakan dalam skala regional, yaitu di Sumatera dan di pulau terdekat 
lainnya, dengan menggunakan data sintetis seismogram dari sumber gempa yang didefinisika dari 
prosedur smoothing yang telah diperkaya dalam penelitian ini. Setelah memasukan data dari katalog 
sejarah kegempaan maka terdefinisikan 2.612 sumber gempa dan 953 lokasi penerima. Selain itu, 
algoritma jalur sumber-penerima telah berhasil diperbaharui dan yang digunakan untuk menentukan 
seismogram sintetik yang kemudian akan digunakan untuk menghasilkan peta bahaya gempa. 
Dengan memilih jalur sumber-penerima yang relatif signifikan,  maka proses komputasi dapat 
dipercepat hingga 4.5 kali tanpa mengurangi kualitas hasil akhir dari perhitungan peta bahaya 
gempa.  
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NDSHA telah diaplikasikan juga untuk skala lokal dengan menggunakan data resolusi 

tinggi yang mampu menggambarkan heterogenitas lateral pada profil tertentu untuk tujuan 
mikrozonasi. Metode hybrid, yang merupakan gabungan teknik modal summation 1D dengan 
teknik finite differences 2D, telah digunakan untuk menghasilkan seismogram sintetik serta mampu 
mengidentifikasi pola amplifikasi pada suatu profil. Pada penelitian ini telah diteliti efek tapak lokal 
untuk cekungan sedimen di Kota Banda Aceh. Cekungan ini terletak di antara dua struktur batuan 
dasar, ditandai dengan batuan kapur Lhoknga dan batuan vulkanik Ulee Batee. Pada penelitian ini 
digunakan dua skenario, dari zona subduksi dan dari zona sesar. Hasil simulasi membuktikan 
adanya korelasi antara amplifikasi dan ketebalan lapisan sedimen. 
 Metode NDSHA yang diperkaya telah berhasil diterapkan di Sumatera dengan kemampuan 
menangani zona sumber gempa yang kompleks baik dalam skala regional maupun lokal. 
Pengembangan lebih lanjut dimasa yang akan datang diharapkan dapat menggunakan model 
struktur lapisan bagian atas yang lebih akurat dengan menggunakan data tomografi regional bukan 
dari data global. Khusus untuk gempa-gempa besar harus dilakukan penyelidikan yang lebih rinci 
dengan menggunakan model sumber gempa extended.  
 
Kata kunci: Sumatera, NDSHA, Definisi Sumber Gempa, Mikrozonasi. 

 



 
 

viii 

 

Table of Contents  
 
 
Neo-Deterministic Seismic Hazard Assessment (NDSHA) for Sumatra: Application at 
Regional and Local Scales 
Abstract  
Riassunto 
Abstrak 
Table of Contents 
 
 

 
i 

ii 
iv 
vi 

viii 

1. Introduction  
1.1 Previous Seismic Hazard Maps for Sumatra 
1.2 Current Seismic Hazard Map 
1.3 Early Effort to Produce Deterministic SHA for Sumatra 
1.4 The Neo-Deterministic Seismic Hazard Assessment (NDSHA) 
1.5 The Advantages of Using NDSHA for Sumatra 
1.6 Area and Scope of Study 
 
 

1 
1 
2 
4 
5 
6 
8 

2. Seismogenic Zones of Sumatra 
2.1 Tectonic Settings 
2.2 Active faults in and around Sumatra 
2.3 Seismicity of Sumatra 
2.4 Earthquake Catalogs 
2.5. Seismogenic Zones 
 
 

10 
10 
11 
13 
14 
18 

3. Enhanced Source Definition 
3.1 Original Version of Source Definition Algorithm 
3.2 Enhanced Magnitude Smoothing Algorithm 
3.3. Enhanced Source Depth Definition 
3.4 Application to the Sumatra Seismogenic Zones 
 
 

25 
25 
28 
38 
40 

4. Geology and Structural Model of Sumatra  
4.1 Geology of Sumatra 
4.2 Compilation of Available Tomography Data 
4.3 Observational Sites and Rotated Cellular Polygons 
4.4 Structural Model of Sumatra 
 

47 
47 
49 
55 
57 



 
 

ix 

 

5. Modal Summation Technique and Validation 
5.1 The seismic wavefield and Modal Summation 
5.2 Parametric Test for Modal Summation Technique  
5.3 Validation to the Takengon Earthquake 2013 M6.1 
5.4 Comparison with the Observed Intensity for the Takengon Earthquake 
5.5 Insights on the Synthetic Seismograms for the Takengon Earthquake 
5.6 Analysis of Response Spectra for the Takengon Earthquake 
 
 

61 
61 
65 
70 

 
75 
80 
91 

6. Regional Scale NDSHA for Sumatra 
6.1. The Neo-Deterministic seismic Hazard Assessment at Regional scale 
6.2. The Performance of Standard Version of NDSHA in Sumatra (OS-OP) 
6.3. Enhanced Source Definition and Standard Paths Generator (ES-OP) 
6.4. Enhanced Source Definition and Updated Paths Generator (ES-UP) 
6.5. An Efficient Path Generator for Reducing Computational Time 
6.6. Comparison with Current Official PSHA 
 

96 
96 
98 

105 
116 
123 
129 

 

7. Local Scale NDSHA (Microzonation) for Banda Aceh City 
7.1 NDSHA for Local Scale method with Hybrid Method  
7.2 Location and Geology of Banda Aceh City 
7.3 Basin Structure of Banda Aceh 
7.4 Source Definition for Local Scale NDSHA 
7.5 Simulation for Subduction Source 
7.6 Simulation for Strike Slip Source  

134 
134 
136 
140 
143 
146 
147 

 

8. Conclusions and Suggestions 
8.1 Conclusions 
8.2 Suggestions 

150 
150 
154 

References 157 
 
 
 



 
 1 

 
 

1. Introduction 
 
 
 Located in the western part of Indonesia, Sumatra is the second biggest island in the 

country. Measured at about 1,790 km in length and 435 km in width, the island crosses the equator 

near the center. The interior of Sumatra is dominated by two geographical regions: the Barisan 

Mountains in the west and the swampy plains in the east. The volcanic activity mostly occurs along 

the Barisan Mountains chain, where the active volcano Mount Kerinci resides at about the midpoint 

of the chain. The volcanic activity endows the region with fertile land and beautiful sceneries, for 

instance those around Lake Toba. Furthermore, the volcanic activity also enriches the region with 

deposits of coal and gold. And because Sumatra is located on the Pacific Ring of Fire, it also 

experiences some of the most powerful earthquakes ever recorded, such as those in 1797, 1833, 

1861, 2004, 2005, 2007, 2012. 

 The Great Sumatran fault (a strike-slip fault) and the Sunda megathrust (a subduction zone) 

dominate the entire length of the island along its west coast. On 26 December 2004, the western 

coast and islands of Sumatra, especially the Aceh province, were struck by a tsunami following the 

Indian Ocean M9.0 earthquake. More than 170,000 Indonesians were killed, mostly in Aceh. Other 

more recent earthquakes that struck Sumatra include the March 2005 and the October 2010 Sumatra 

earthquakes.    

 

1.1 Previous Seismic Hazard Maps for Sumatra 
 The first available seismic hazard assessment study of Indonesia, which includes Sumatra 

island, and used in the seismic building code in Indonesia dates back to 1983, and it is based on 

Beca and Ferner (1978) work (Figure 1.1, left). In 2002, the Minister for Public Work, Pekerjaan 

Umum (PU), released a new seismic hazard map based on probabilistic method (PSHA) under 

Standard National Indonesia (SNI 03-1726-2002) (Figure 1.1, right).    

Since the seismic hazard map was published in SNI 03-1726-2002, many updates needed to 

be incorporated in the next seismic hazard map in order to get a more accurate and more reliable 

estimation of peak ground acceleration. These updates include the recent seismic activities, the 

latest research works regarding fault characteristics around Java and Sumatra, the improvements of 

the method in seismic hazard assessment, and the latest provisions in International Building Code 

2000   (IBC 2000) (Irsyam, 2008). Those updates from 2002 to 2010 should have improved the 
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estimation of  PGA in the hazard map. However, according to the score of GSHAP, they had done 

little in improving the estimation. The result showed that PSHA alone has a poor predicting 

capability, which had been confirmed in the studies by Kossobokov & Nekrasova (2012) and 

Nekrasova & Kossobokov (2012). 

 

 

 
 

Figure 1.1 The early hazard map used for building code from 1983 to 2000 (SNI, 2002) (left). The seismic 
hazard map, approved by SNI, was used from 2002 to 2010.  (right). 

 
  

1.2 Current Seismic Hazard Map 
 
 In 2009, PU established a team to revise and update the SNI 03-1726-2002 seismic hazard 

map by using not only a probabilistic method (PSHA) but also a deterministic method (DSHA). The 

outcome was the current seismic hazard map standardized at a national scale. This hazard map is 

known as the building code of SNI 1726-2012.  

The team’s assessment used three seismic source models: fault zone, subduction zone, and 

gridded seismicity. The earthquake source models were derived by taking into account all available 

information from earthquake catalogs, tectonic settings, geographical and geological data, and focal 

mechanisms. The fault source was treated as a plane in a three-dimensional space, where the 

calculation of a distance from a site takes place on a certain point along the plane. The fault 

parameters used to develop the seismotectonic sources were fault traces, focal mechanism, slip-rate, 

dip, length and width of the fault.  

 Because the ground motion records needed to develop an attenuation relationship (GMPE) 

in the Indonesian region were insufficient, the relationships from the regions were used instead. The 

selection of the other regions was based upon the similarity on the source characteristic, geologic 

and tectonic conditions where the attenuation functions had already been developed. Most of the 

attenuation relationships in the assessment were those from the Next Generation Attenuation 
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(NGA), which was derived using the worldwide observed earthquake data. 

 The new Indonesian building code, SNI 1726-2012, follows the concept of MCEG, used by 

ASCE 7-10 for the purpose of geotechnical calculation. The calculation combines both the results 

from PSHA within 2% probability of exceedance in 50 years (2,500 years earthquake) and from 

DSHA within the area located near the active fault. Both approaches are utilized according to the 

procedure proposed by Leyendecker et al. (2000). 

 The map shows the PGA estimation involved in the recent Indonesian Earthquake Resistant 

Building Code SNI 1726-2012 (Figure 1.2). SNI 1726-2002 partially adopts the concept of Unified 

Building Code (UBC) 1997, for better preparedness for any potential disaster caused by a strong 

earthquake. The occurrence of many strong earthquakes in Indonesia (e.g 2004, 2005 and 2009 

earthquakes) motivated the release of this map. Some of these major earthquakes were the 2004 

Aceh Earthquake (Mw 9.0–9.3), which was followed by a tsunami, and the 2005 Nias Earthquake 

(Mw 8.7). These earthquakes underline an urgent need to consider a new conceptual approach and 

technological shift shown in the transition of UBC 1997 to IBC 2000, which later evolved further 

into the current IBC 2006.  

  

Figure 1.2, (left) Seismic Hazard Map of Indonesia (SNI 1726-2012): 10% probability of 
exceedance in 50 years (URL: http://loketpeta.pu.go.id/peta/zonasi-gempa-indonesia-4). (right) The 
same data plotting scale we used in this study. 
   

The probabilistic and deterministic maps for estimation of seismic hazard in Indonesia have 

been developed based upon updated available seism tectonic data, implementing new fault models, 

incorporating new GMPE as NGA, and dividing seismic sources into the fault, subduction, and 

background zones. Due to the absence of GMPE developed using data observed from the Indonesia, 

as well as to the disruption of the tensor nature of the earthquake ground motion, predicted by 

continuum mechanics, in the computed strong motion, caused by the adoption of these 

relationships, there is a need for a reliable and rigorous definition and characterization of seismic 

hazard parameters. 
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1.3 Early Effort to Produce Deterministic SHA for Sumatra 
 
 As an active fault, Sumatra Fault can cause a significant hazard because of its shallow 

hypocenters and its proximity to the highly populated areas. However, the proximity from the active 

faults does not always mean a uniform level of hazard. Although the slip rate is high in some 

portions along the active faults, they may not accumulate a significant strain to produce a large 

earthquake. That is the case as shown by Natawidjaja & Triyoso (2007). Their study investigated 

the Sumatra Fault and attempted to produce the DSHA map. By taking into account the fault 

segmentation and the source parameters, the map hypothesized to show the expected PGA within 

the maximum credible earthquake (MCE) as shown in Figure 1.3 (left).  

 

 
 
Figure 1.3 Exercise to produce DSHA 
based on attenuation relationship (left) 
with source they define from several 
study (top), after Natawidjaja & Triyoso 
(2007) 

 
 In addition, they also used the attenuation relationship developed by Fukushima & Tanaka 

(1990). The examples of the results are shown in Figure 1.3. In general, the results indicate that the 

earthquakes with a magnitude of 7 give out PGA > 0.3g and PGA > 0.5g for the distance of the 

source site less than 45km and 10km, respectively. Based on those physical characteristics of an 

earthquake source, Fukushima & Tanaka (1990) consider the saturation of acceleration amplitude in 

a near-source region, whose extent depends on the size of the earthquake. The attenuation 
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relationships that Fukushima & Tanaka (1992) proposed are also used by GSHAP (1999) for 

Indonesia and Malaysia. Petersen et al. (2004) found that these attenuation relationships are reliable 

to have been applied for the sites up to 500 km away from the seismic sources of the subduction-

zone type, whereas the attenuation relationships proposed by Young et al. (1997) give inconsistent 

values for the sites more than 200 km away.  

 The deterministic seismic hazard map strongly depends on the attenuation equations being 

applied to the whole area. This assumption does not take care of the characteristics of the structural 

models, which differ from place to place. A study to evaluate an earthquake-hazard potential 

requires a set of appropriate data on the fault segmentations that determine the maximum credible 

earthquake (MCE) from the fault slip rates and the geometry fault ruptures. Therefore, this study 

uses this source of information to reliably define and characterize the MCE using the available 

modern instrument. Natawidjaja & Triyoso (2007) have studied the Sumatra strike slip fault to 

define the MCE based on the field geology and the historical seismicity. The defined values from 

their study are also used in this study.  

1.4 The Neo-Deterministic Seismic Hazard Assessment 
 Recent advances in the physical knowledge of seismic waves generation and propagation 

processes, along with the improving computational tools, make possible the realistic modeling of 

the ground shaking caused by an earthquake, taking into consideration the complexities of the 

source, and of the propagation path. A neo-deterministic scenario-based approach to seismic hazard 

assessment (NDSHA) has been developed for naturally supplying  the realistic time series of 

ground shaking, including reliable estimates of ground displacement readily applicable to the 

seismic isolation techniques. The NDSHA procedure, which represents a drastic enhancement of 

DSHA, permits incorporating, as they become available, new geophysical and geological data, as 

well as the information from the different Morph structural Zonation (MZ) developed for the space-

time identification of strong earthquakes. All this leads to the natural definition of a set of scenarios 

of expected ground shaking at the bedrock. On the local scale, further investigations can be 

performed taking into account the local soil conditions, in order to compute the seismic input 

(realistic synthetic seismograms) for engineering analysis of relevant structures, such as historical 

and strategic buildings (Panza et al., 2013).  

 The NDSHA approach has already been applied in several regions worldwide, including a 

number of local scale studies accounting for two-dimensional and three-dimensional lateral 

heterogeneities in inelastic media. A pilot application of the approach, including the detailed 

evaluation of the expected ground motion accounting for site effects and seismic engineering 

analysis, has been carried out at a site located in the Friuli Venezia Giulia Region (NE Italy). 
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Furthermore, some applications using a highly efficient analytical methodology developed for 

modeling the propagation of the seismic wavefields in three-dimensional inelastic media are 

presented. This procedure, based on the computer code developed from a detailed knowledge of the 

seismic processes and the propagation of seismic waves in heterogeneous media, allows not only 

the detailed study of instrumental and macroseismic data but also the realistic estimate of the 

seismic hazard, in those areas for which scarce (or no) historical or instrumental information is 

available, and the relevant parametric analysis: different source and structural models can be taken 

into account to create a wide range of possible ground shaking scenarios from which to extract 

essential information, including uncertainty ranges, for decision making (Panza et al., 2013). 

 NDSHA is an innovative, but already well consolidated, procedure that supplies realistic 

time histories, with very solid physics roots, from which it is natural to retrieve peak values for 

ground displacement, velocity, and design acceleration in correspondence of earthquake scenarios 

(e.g. Parvez et al., 2010; Paskaleva et al., 2010). The synthetic seismograms can be efficiently 

constructed with the modal summation technique (e.g. Panza et al., 2001; La Mura et al. 2011) to 

model ground motion at sites of interest, using the available knowledge of the physical process of 

the earthquake generation and wave propagation in realistic media, and this makes it possible to 

easily perform detailed parametric analysis that permits to account for the uncertainty in input 

information. 

 In addition, the proposed methodology for seismic microzoning has been successfully 

applied to several urban areas worldwide in the framework of the UNESCO/IUGS/IGCP projects 

“Realistic Modeling of Seismic Input for Megacities and Large Urban Areas” (e.g. Panza et al., 

2001, 2001b, 2002), as well as in the framework of various scientific networks like “Seismic 

Hazard and Risk Assessment in North Africa”, "Seismic microzoning of Latin America cities" and 

“Seismic Hazard in Asia”. The methodology has been applied to assess the importance of non-

synchronous seismic excitation of long structures, like dams and bridges, as well. 

1.5 The Advantages of using NDSHA for Sumatra 
 NDSHA addresses some issues largely neglected in a traditional hazard analysis, namely 

how crustal properties affect attenuation: ground motion parameters are not derived from overly 

simplified attenuation relations, but rather from the synthetic time histories. Starting from the 

available information on the Earth’s structure (mechanical properties), seismic sources, and the 

level of seismicity of the investigated area, it is possible to estimate PGA, PGV, and PGD or any 

other parameter relevant to seismic engineering, which can be extracted from the computed 

theoretical signal.  
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 The evidenced limits of PSHA estimates, which are due not only to scarcity of data, but also 

to the not valid physical model and the mathematical formulation employed (Castanos H. e Lomnitz 

C., (2002), PSHA: is it Science? Wang, 2011; Paskaleva et al., 2007, 2010; ), become unacceptable 

when considering the number of casualties and injured people (Wyss et al., 2012). The evolving 

situation makes it compulsory for any national or international regulation to be open to 

accommodate the most important new results, as they are produced and validated by the scientific 

community.   

 

Table 1.1 List of the deadliest earthquakes occurred during the period 2000-2011, and the 
corresponding intensity differences, ΔI0 = I0M − I0(mPGA) , among the observed values and 
predicted by GSHAP. I0(M) and I0(mPGA) are computed from the observed magnitude M and the 
maximum GSHAP PGA around the observed epicenter, see (Panza et al., 2013, Kossobokov and 
Nekrasova, 2010). 

Region Date M Fatalities Intensity 
difference ΔI0 

Sumatra-Andaman “Indian Ocean 
Disaster” 

26.12.2004 9.0 227898 4.0 

Nias (Sumatra, Indonesia) 28.03.2005 8.6 1313 3.3 
Padang (Southern Sumatra, Indonesia) 30.09.2009 7.5 1117 1.8 
 
 The lessons learnt from the largest earthquakes, occurred in Sumatra during the last decade 

(table 1.1), show that the performances of the standard probabilistic approach to a seismic hazard 

assessment (PSHA) as implemented by GSHAP are very unsatisfactory (e.g. Kossobokov and 

Nekrasova, 2010). This is due not only to scarcity of data (epistemic uncertainty) but also to the not 

valid physical model and mathematical formulation employed (Wang, 2011; Paskaleva et al., 2007; 

Castanos and Lomnitz, 2002). Moreover, it is nowadays recognized by the engineering community 

that PGA estimates alone are not sufficient for the adequate design, in particular for special 

buildings and infrastructures, since not only the velocities but also the displacements may play a 

critical role, and the dynamical analysis of the construction response requires a complete time series 

of ground motion. Therefore, the need for an appropriate estimate of the seismic hazard, aimed not 

only at the seismic classification of the national territory, but also at the capability of properly 

accounting for the local amplifications of ground shaking (with respect to bedrock), as well as for 

the fault properties (e.g. directivity) and the near-fault effects, is a pressing concern for seismic 

engineers. 

 The implementation of NDSHA is challenging due to the complex tectonic setting, high 

seismicity, and the not-well-known but complex structural model of Sumatra. An earthquake with a 

magnitude of 9 can generate a global disaster. In turn, such a disaster will attract many scientist to 

investigate the area and also help to increase the awareness of natural disaster in Indonesia and 
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worldwide. Compared to other regions, Sumatra has no well recorded history of earthquakes. 

Ambiguity in determining the historical earthquakes also gives some difficulties especially those 

occurred inland. Other significant difficulties come from the limited information available about the 

crust structure model in the uppermost 20 km, which may significantly influence the result of 

synthetic seismogram from which the pickup PGA to be put in a hazard map. The complexity of the 

tectonic setting in Sumatra can create its own challenge when applying the NDSHA method. 

Therefore, a detailed evaluation and improvement in the smoothing procedure adopted in NDSHA 

is also needed to treat each seismogenic zone individually depending on its tectonic setting 

complexity, more details is available in Chapter 5. For a practical requirement, especially for the 

capital city of Banda Aceh, which is located in an alluvium sediment zone, this study also 

investigates the amplification effect using such a hybrid method (Fah et al., 1994 and Panza et al, 

2009). This study will be used to mitigate an earthquake disaster in Banda Aceh and to help to 

create a plan to deal with any seismic hazard in the future.  

 

1.6 Area and Scope of Study 

 Indonesia is the world's 15th largest country in terms of land area, and world's 7th-largest 

country in terms of combined sea and land area. There are 17,508 islands between 11°S and 6°N 

latitudes, and 95°E and 141°E longitudes. During the last decades, many seismic hazard studies 

concerning Sumatra have been carried out, e.g. Petersen et al. (2004) (PSHA) and Natawijaya et al. 

(2007) (DSHA). Sumatra is the most active tectonic zone in Indonesia because of the presence of 

the oblique subduction process that produced the Sumatra Fault, along which several destructive 

earthquakes have occurred. Consequently, the application of NDSHA in Sumatra is challenging.   

The Sumatra region is affected by complex tectonic settings and seismicity; therefore, this 

study emphasizes on the effort to construct appropriate seismogenic zones for NDSHA. In Chapter 

2, we introduce 15 seismogenic zones to accommodate this complexity, and each zone has been 

treated individually according to its tectonic setting and seismic activity, and this cannot be done 

with the existing version of NDSHA. Therefore, we focus on the procedure enhancement for the 

source smoothing by updating the NDSHA original version as discussed in Chapter 3. Using the 

physical simulation based on NDSHA, we construct the structural model for Sumatra. We combine 

the tomography data from the global and regional data to construct the structural model for VP, Vs, 

density, and attenuation as further discussed in Chapter 4. In order to test the structural model, we 

produce and update the parametric test of the modal summation program for the investigation of the 

sensitivity of SH according to different input parameters. The updated parametric test routine is 

used to verify the Takengon earthquake with a magnitude of 6.1 that occurred on 2 July 2013 as 
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shown in Chapter 5. The application of the source definition produced by the enhanced smoothing 

procedure completes the NDSHA calculation at a regional scale. In order to decrease the time 

needed for the seismic hazard computation, we develop a new procedure to explore the efficient 

source-receiver paths. The efficiency of the NDSHA calculation at a regional scale is shown in 

Chapter 6. In order to estimate the effect of the seismic performance on some existed buildings, 

NDSHA can operate at a local scale. In Chapter 7, the result of the site characterization illustrates 

the city of Banda Aceh according to its sedimentary layers. 

 

  
Figure 1.4 (left) Regional scale study in Sumatra: the red box delimits the seismogenic zones and 
the blue box the seismic zones. (right) Local scale study for microzonation of the city of Banda 
Aceh. 
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2. Seismogenic Zones of Sumatra 

 

2.1 Tectonic Setting 
 Prior to the 2004 devastating earthquake, the Sumatra subduction zone received relatively 

little attention compared to other zones either those in Japan or the United States. This strong 

earthquake and the associated large seismic sea waves were like a lesson for the communities living 

around active seismogenic zones where the earthquake and tsunami hazards can be severe. Since 

the work done by Fitch (1972), Sumatra was often cited as a classic example of slip partitioning, 

which occurs when the relative motion between two obliquely converging plates is taken up on 

multiple, parallel faults.  

 
Figure 2.1 Plate tectonic setting of Sumatra. Vectors show relative velocities of plate pairs as 

labeled (McCaffrey, 2009). 
 

 Sumatra is part of a long convergent belt that extends from the Himalayan front southward 

through Myanmar and continues south past the Andaman and Nicobar Islands and Sumatra, south 

of Java and the Sunda Islands (Sumba, Timor), and then wraps around towards the north, see Figure 

2.1. This trench accommodates the northward motion of the Australian plate into Eurasia. 

Additionally, the trench is known with several local names but here is called the Sunda subduction 

zone, in general, and sometimes the Sumatran subduction zone, when referring to the stretch 
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offshore Sumatra. West of Sumba, the dense lithosphere of the Indian Ocean seafloor subducts 

beneath the continental Sunda shelf, whereas to the east, the lighter continental Australian 

lithosphere thrusts beneath the oceanic lithosphere. The along-strike change in the average density 

of lithosphere being subducted coincides with changes in the character of the tectonics.  

 Sumatra is situated on the Sunda continental margin and exposes granitic rocks as old as 240 

Ma (Hamilton 1979). Generally, from northeast to southwest, the island's geology is characterized 

by oil-bearing sedimentary basins in the northeast, the Barisan mountains (Figure 2.2), which 

include the volcanic arc and Sumatran fault, running along the length of the island near the 

southwest coast, the offshore forearc basins, the forearc high (islands of the Simeulue-Enggano 

ridge), the deep trench, and the subducting oceanic plate. Sumatra was rifted from the northern edge 

of Australia (north of New Guinea) during the Triassic to early Jurassic (~200–250 Ma). Sumatra 

would have been a stable continental margin from then until the subduction began to occur in the 

Cretaceous (possibly ~100 Ma). 

2.2 Active faults in and around Sumatra 
 The rate and direction of the subduction of the lithosphere under the Sunda forearc, however, 

are further modified by the independent motion of the forearc. Fitch (1972) explained the presence 

of the Sumatran fault and other similar faults inboard subduction zones by the process now known 

as slip partitioning. That is, in some cases of oblique subduction where the two plates do not 

converge at the right angle to the strike of the trench, it requires smaller overall shear force to share 

the shearing (trench-parallel) component of the relative motion between two separate faults (Figure 

2.3a) instead of on one fault. In the case of partitioning, one fault is the subduction thrust, which 

takes up all of the trench-normal slip (the dip-slip component) and some fraction of the trench-

parallel slip (the strike-slip component). A second fault, within the overriding plate and commonly 

strike-slip in nature, takes up a portion of the trench-parallel motion. The subduction thrust and 

strike-slip fault isolate a wedge of forearc called the sliver plate (Figure 2.2a right). The slip rates 

on the separate faults can be inferred from their geometries and knowledge of the overall 

convergence (Figure 2.2b right). 

 The Sumatran fault, unlike other great transcurrent faults, is highly segmented (Katili, 1974, 

Bellier et al., 1997, Sieh & Natawidjaja, 2000). Most segments are less than 100 km long, and only 

2 of the 19 segments identified by Sieh & Natawidjaja (2000) are longer than 200 km. The 

segments are separated by step-overs of a few kilometers or more. The importance of the short 

segments and wide step-overs is that they limit the area that can slip in a single event, and 

magnitudes tend to be limited to Mw ~7.5 or smaller throughout (see figure 2.2-left). 
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Figure 2.2 (left) Physiographic map of the Sumatran region. The triangles indicate the locations of 
active volcanoes. The thick red lines are faults. (right)  (a) Block diagram showing the geometry of 
the sliver plate and its motion under conditions of oblique subduction. (b) The vector geometry of 
such a system. (McCaffrey 2009) 
 

  

Figure 2.3 (left) Map of the principal active traces of the Sumatran fault zone (SFZ). TheSFZ can 
be divided into 20 fault segments. Ends of segments are mostly major fault step-overs of 4 km-
width or more of separations, (Sieh & Natawidjaja, 2000).  (right) Sunda subduction zone or 
Sumatra subduction zone (McCaffrey, 2009). 
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2.3 Seismicity of Sumatra 
 An incidental feature of the Sunda subduction zone is the non-volcanic forearc ridge that 

pops up above sea level forming many islands between the trench and the mainland. The islands 

allow near-trench, land-based observations that are not possible at most other subduction zones. The 

forearc ridge is the top of a thick sequence of sediments and sections of sea floor, known as the 

accreted wedge, which are folded, faulted, and plastered onto the upper plate, see Figure 2.4.  

 

 
 
 
 
 
 
Figure 2.4. Schematic cross-
section of the Sumatran plate 
boundary, where * marks major 
source of earthquake activity. 
http://www.virtualuppermantle.info/Merapi.htm 
  

 

 Sumatra is among the most active regions on Earth in terms of earthquakes, owing to the 

confluence of multiple plates moving at very high relative speeds. The earthquake activity around 

Sumatra has multiple sources: thrust earthquakes on the subduction fault, strike-slip earthquakes on 

the Sumatran fault, deeper earthquakes within the subducting lithosphere, and volcanic earthquakes, 

see Figure 2.4.  

 The earthquake size is now defined by the moment magnitude Mw = 2/3 (log Mo − 9.1) 

(Hanks & Kanamori 1978), where the seismic moment Mo is given b µ×d×L×W. The rigidity µ is 

an elastic constant that varies from ~2 to ~7 × 1010 N m−2 within the region of a shallow earthquake 

activity. The factor L is the length of the fault, which can reach hundreds of kilometers for thrusts or 

strike-slip earthquakes, and W is the dimension of the fault surface in the direction of dip into the 

Earth. The amount of slip in the earthquake, d, in general scales with L by a factor of 10−5 (Wells & 

Coppersmith 1994) so that magnitudes are largely determined by the slip area LW. 

 The largest of these earthquakes are associated with subduction thrust faults, where the slip 

on the boundary between the subducting and overriding plate can occur over a very wide area. The 

maximum depth to which a slip occurs during crustal earthquakes may be temperature limited, and 

thus, under normal conditions, crustal earthquakes are shallow. Hence, for a near-vertical strike-slip 

fault like the Sumatran fault, will at most be ~20 km, and the earthquake magnitude Mw is typically 

less than ~8.0. In fact, Mw for earthquakes on the Sumatran fault appears to be limited at ~7.6, 

possibly also due to the high degree of segmentation (i.e., limiting L) as noted earlier. Earthquakes 

on the Sumatran fault are shallow strike-slip events and reveal right lateral motion (Figure 2.4); that 
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is, the southwest side of the fault moves northwest relative to the northeast side. In the past two 

centuries, the Sumatran fault has produced more than a dozen notable and damaging earthquakes. 

 Because subduction thrust faults dip at relatively low angles (< 30º) into the earth and 

because the sliding of the cold upper portions of the oceanic lithosphere deep into the earth cools 

the fault to greater depths, the width  in subduction thrust earthquakes can reach hundreds of 

kilometers, thus allowing much larger earthquakes to take place. For this reason, most earthquakes 

around the world that reach magnitudes in excess of 8.0 are at the subduction zones.  

  

  
Figure 2.5. Seismicity of Sumatra from USGS earthquake catalog (left) for all magnitude ranges. 
(right) plot only above 6 with filled circle and dots for lower magnitudes. 
 

2.4 Earthquake Catalogs 
 The first step of any seismic hazard assessment is identification of seismic sources that can 

affect the area of study, this step needs as can as possible complete, long and accurate earthquake 

catalog. One of the important advantages of NDSHA is that it is not necessary to involve the 

earthquake recurrences nor the “return period”, which are subject to large uncertainties, the former, 

and physics rootless, the latter. The needed parameters are earthquakes location and magnitude 

Maximum Historical Earthquake (MHE) or MCE. In this study we make use of the available 

earthquake catalogs to establish homogeneous and completed one as show in table 2.1.  

 In this study, the USGS catalogs are used for the time span from 1907 to 2015 to define the 

location, configuration, and the potential seismic sources in and around the Sumatra region. The 

data freely available can be downloaded from http://earthquake.usgs.gov/earthquakes/search/. This 

catalog is the most complete catalog used in this study in terms of the number of data and time 
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duration. A historical earthquake catalog is also accessible from the USGS website since 2014, and 

it goes back to 1797. The USGS catalog shows the increasing earthquake depth corresponding to 

the increasing distance from the Sunda Trench.  

 

Tabel 2.1: list of earthquake catalog for Sumatra limited to the interest region  
 

catalog 
depth (km) magnitude time Number of data 

min max Min max begin end  
USGS 0.3 631.4 3.7 9 1907-01-04 current 14132 
USGS history 20 564 6.6 8.8 1797-11-24 1971-02-04 21 
Engdahl 4.4 601.7 5.5 9 1907-1- 4 2007-9-29 327 
ISC 10 596.3 5.22 9 2007-08-08 1914-06-25 727 
BMKG 1 650 1.8 8.3 2008-11-27 2012-11-01 5195 
Pesicek 0.424 630.2 3.6 7.1 1960-1-7 2009-12-25 5514 
 

  
Figure 2.6: Plot of the USGS catalogs with different depth color bar scale. This important to take 
care the depth of earthquake 
 
 The USGS catalog, in this study is combined with the catalogs from Engdahl et al. (1998), 

ISC (International Seismological Center), BMKG (Badan Meteorologi, Klimatologi, dan Geofisika) 

and Pesicek et al., (2010). The Engdahl catalog is a global catalog of locations and magnitudes of 

instrumentally recorded earthquakes from 1900 to 2008 (Engdahl et al., 1998). ISC provides several 

earthquake parameters such as an event location, an origin time, and focal mechanisms. The ISC 

event catalog has two categories the reviewed ISC Bulletin and ISC Bulletin. The reviewed ISC 

Bulletin is a subset of the ISC Bulletin that has been manually reviewed by the ISC analysts. This 
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includes all events that have been relocated by the ISC, (Engdahl et al., 1966, ISC, 2013).  The 

Indonesia government under the BMKG, who has the responsibility for the operation of several 

seismometers and accelerometers, produces an earthquake catalog for Indonesia and is used in this 

study to cover the lower magnitude earthquakes, where the seismicity is low. Pesicek et al. (2010) 

makes their relocated earthquake available from their study for the body wave tomography in 

Sumatra. The relocated earthquakes are important to determine the depth of an earthquake source 

for the strike-slip earthquake along the Sumatra fault. Figure 2.7 shows the relatively uniform 

distribution in the catalog by Pesicek et al. (2010) compared to the other catalogs. The catalog 

discussed here is based on the 3 centuries of observation.  However, the earthquake is a geological 

phenomenon, which needs a long record to adequately characterize the fault. This is particularly 

important for the Sumatra fault as the near seismic zone along with any less recorded seismic 

activity more than the subduction zone. In order to improve the poor earthquake catalog for the 

Sumatra fault, the earthquake information geological investigations (Natawidjaja and Triyoso 2007) 

is used after applying some updates in the estimated earthquake magnitude based on the detailed 

evaluation of the geologic and historical records. 

 

 

   

   
Figure 2.7 : Distribution of magnitude versus  depth, in km, for several catalogs 
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 In order to combine several earthquake catalogs compiled by different authors with different 

details and completeness, we use an advanced selection procedure, namely eqc4select.exe (in 

original version handled by the beginning part of ecells.out). The program combines several 

catalogs by applying basic selection criteria to single catalogs, namely default.eqc. The 

catalogs list can be put in the file default.cat, or put in the passing parameter, e.g.: 

 
   eqc4select.exe sumfull.cat  
 
This selection procedure is very useful when dealing with huge data sets with different format, and 

it also is useful to remove any errors in the data if they are not in the proper range. This selection 

procedure reduces the number of the recorded events significantly and will be useful for the 

subsequent calculation (smoothing process). Finally, an analysis is needed to define the selection 

criteria for this procedure based upon the experience, knowledge, and needs, e.g. 
 
#     file                    depth     magnitude       year 
#polygon   catalog         min   max    min   max     min   max 
sumg.poc  usgs2015.eqc      8    200     4     9     2010   2016 
sumg.poc  usgs2015.eqc      8    200     4     9      
sumg.poc  usgs2015.eqc      8    200     
sumg.poc  usgs2015.eqc     
 
 The polygon is the first selection criteria, and for this study we use the same polygon 

because we are using the global earthquake catalog. The BMKG is a national catalog that covers the 

whole Indonesian territory, and in the following study it is used by extracting the seismicity for the 

Sumatra region (95E- 108E, 8S-8N). This selection will work for the original standard format 

(.eqc) and comma-separated values (.csv). The csv format is easy to edit because it does not 

depend on characters but is separated by commas and is also easy to edit using a spreadsheet 

program like libreoffce-cal or excel, which can even be loaded to QGIS directly for visualization. 

 

Table 2.2: Configuration file to be passed to eqc4select.exe for selecting earthquake for as 
input for next step smoothing process. 
polygon     catalog       dmin   dmax    Mmin   Mmax   ymin  ymax   col 
----------------------------------------------------------------------- 
sumg.poc  history.eqc       10   200     4     9     1000   1990   0     
sumg.poc  usgs2015.eqc      15   200     4     9     1900   1961   0     
sumg.poc  pesicek.eqc       2    200     3.5   8     1960   2010   0         
sumg.poc  usgs2015.eqc      8    200     4     9     2010   2016   0     
sumg.poc  bmkg.eqc          10   100     3     9     2008   2013   0 
sumg.poc  engdahl.eqc       2    300     3     9     1907   2008   0  
sumg.poc  isc.eqc           10   300     5     9     1914   2008   0  
sumg.poc  danny7.csv        10   200     4     9     1000   2100   0       

 
 First optional selection criteria for minimum and maximum depth (dmin and dmax) could be 

used to remove the deep earthquakes, which are not significant contributors to hazard. Second 

optional criteria for minimum and maximum magnitude could be used if we do not really trust the 
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lower and upper limit of the magnitude given by the earthquake catalogs. So, the smoothing 

procedure could be applied individually for each seismotectonic zone. The third optional selection 

criteria is the range of time of observation in the unit of year, this option could be used with the 

highly trusted period of a specific catalog. For instance, during the period 1960-2010, we prefer to 

use the relocated earthquake catalog Pesicek et al. (2010) to that of by USGS. Meaning that the 

USGS catalog is used from 1960-1961 and from 2010-2016, as shown in Table 2.2. The initial 

combination of all catalogs contains 25910 records, and after preforming the selection produce the 

number of records reduces significantly to 13317 records. Figure 2.8 shows the seismicity before 

and after applying the selection procedure.  

 

 
 

Figure 2.8 (left) Combination of all catalogs. (right) Plot after performing the selecting procedure 
of the events from different catalogs.  

 

2.5. Seismogenic Zones 
 In an anthropized area, it is now technically possible to identify zones in which the heaviest 

damage can be predicted. A first-order zoning can be carried out at the regional scale, based on the 

knowledge of the average properties of seismic sources and on the structural models. 

Microzonations are possible as well, provided that detailed information about the source, path, and 

local site conditions are available. A drastic change is required in the goal of zoning that must be a 

pre-disaster activity performed to mitigate the effects of the next earthquake, using all available 

technologies. Seismic zoning can use the scientific data banks, integrated in an expert system, by 

means of which it is possible not only to identify the safest and most suitable areas for urban 
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development, but also to define the seismic input that is going to affect a given building.  

 Starting from the available information on the Earth’s structure, seismic sources, and the 

level of seismicity of the investigated area, it is possible to estimate the peak ground acceleration, 

velocity, and displacement (PGA, PGV, and PGD, respectively) or any other parameter relevant to 

seismic engineering, which can be extracted from the computed theoretical signals. This procedure 

allows us to obtain a realistic estimate of the seismic hazard in those areas for which scarce (or no) 

historical or instrumental information is available and to perform the relevant parametric analyses 

(Panza et al., 2001).  

 

 
 

Figure 2.9. (left) Faults related to seismogenic zones. (right) Selected focal mechanics from QGIS 
by magnitude and strike direction pattern. 
 
 Sumatra is surrounded by several kinds of faults, from subduction, strike slip, spreading, 

inter-plate from Ninety East Ridge and Investigator Ridge as show in Figure 2.9. There are several 

simple seimogenic zones already introduced after (Petersen et al., 2004) for use with PSHA. But the 

available seismogenic zones (e.g. Petersen et al. 2004) are too simple to fulfill the NDSHA 

requirement, complexity of earthquake rupture process and recent tectonics affecting Sumatra. So 

there is a need for updating the seismogenic model to accommodate the new data and studies.  

Based on Figures 2.9 and 2.8 and on the spatial distribution of focal mechanisms from 

International Seismological Centre (ISC 2013) Bulletin, we define 15 seismogenic zones (see Table 

2.3).  

 

1. The Aceh zone is characterized by a relatively high seismic activity with a relatively shallower 

depth and the maximum recorded magnitude is about 6.7. There are several earthquakes, which 
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have occurred in this zone e.g. 21 January 2013 M6.1 that causes some damage in Tangse, and 2 

July 2013 M 6.1 that caused 39 fatalities, 420 injured in Takengon. The last earthquake namely the 

Takengon earthquake will be discussed extensively in the next chapter for the verification of the 

computed data.  The dominant focal mechanism in this zone is the strike slip mechanism. The 

Sumatra fault starts to divide at its northern tip into two branches: western branch (the Banda Aceh 

zone) and eastern branch (the Lokop zone). The Western branch starts to branch out again in the 

north of Zone 1 into the Aceh fault and the Selimum fault. The Western branch is intensively 

monitored by AGNeSS network (Ito et al. 2008, 2012, Gunawan et al. 2014, Tabei et al. 2015) and 

AGOGO network (Irwandi et al., 2010). Recently, geological investigations are carried out to assess 

the activity of the Aceh fault, and the result showed it is now inactive and completely vanishing in 

the Andaman Sea. On the other hand, the Selimum fault becomes an active fault and continues 

toward Weh Island. Accordingly to the nomenclature by Natawijaya et.al 2007 (Figure 2.3), there 

are 4 segments in this seismogenic zone: Aceh fault, Seulimeum fault, Tripa fault, and Batee fault. 

2. The Semangko zone  which is aligned along the Great Sumatra fault, is characterized by a narrow 

zone of seismic activity, and it is strongly segmented with a specific MCE for each segment as 

explained by Natawijaya et al. (2007). There are debates among geologists about whether the 

middle part of the Sumatra fault is splitting into two faults (i.e. Angkola and Barumun segments) or 

is due to the presence of the pull-apart basin: the most accepted hypothesis is the presence of the 

pull-apart basin. This seismogenic zone is the main contributor to hazard in Sumatra due to the 

earthquake shallow focal depth and to its proximity to the populated areas. Several recent 

destructive earthquakes occurred with a high frequency ground motion caused a relevant damage to 

the low buildings, like that of on 6 March 2007 with M6.3 at depth 19 km that caused 68 fatalities 

and more than 460 injured. 

3. The Krakatau zone, the head of the Sumatra fault, also contains the southern part of the Sumatra 

fault. In this zone, the islands of Krakatoa are located in the Sunda Strait between Java and Sumatra. 

The fault plane solution for earthquakes inside this zone is relatively not uniform; there are also 

strike slip, oblique subduction mechanisms and volcanic origin earthquakes in this zone. A 

destructive earthquake occurred on the 15 February 1994 with M6.9 at 23km focal depth and caused 

196 fatalities, 2.000 injured. Almost all buildings in Liwa town collapsed.  

4. The Jawa Sea zone or the Java Subduction zone is the Java Sea part of the Sunda Subduction 

zone where the dominant focal mechanism is relatively a pure thrust (strike=270º, dip=29º, and 

rake=89º) because the Australian plate is moving perpendicular to the Sunda plate. This 

seismogenic zone represents low hazard to Sumatra, but it will be significant for several important 

cities in Indonesia like Bandung or Jakarta. On 2 September 2009, a large earthquake M ~7.0 



21 
 

caused 46 fatalities on Java without any significant effects on Sumatra.  In spite of the low expected 

hazard from the Java zone, conservatively, this study considered the zone as a potential source of 

hazard and provided a wide view about the other possible sources. 

5. The Lokop zone: the Sumatra fault is at the first-order divided into the Lokop fault on the 

northern part, and it is not considered in the existed PSHA map (SNI 1726-2012). On 20 November 

1994, the earthquake with magnitude 6.1 occured but was not well documented. This branching will 

become clearer if we look at a large scale where the Andaman zone is diverging and forming the 

Mergui Basin (Curray 2005).   

  

 

 
 

Figure 2.10. (left) the Mergui basin shows the existing active faults in seismogenic zone of Lokop  
(Curray & Munasinghe 1991; Curray 2005; Chakraborty 2008, which is not discussed in the 
current standard PSHA (right) Maximum magnitude and slip rate of influenced seismic source 
(clipped from: Irsyam et al., 2010 and Irsyam et al., 2013) 
 
6. The NSR (North Sumatra Ridge) zone is named after Curray (2005). This zone is too far from 

Sumatra as it is from the Java Sea zone, and it has no historical impacts on the studied region. 

However, we considered this zone to be conservative. The recent large earthquake M 7.2 in this 

zone was on 26 December 2004 as an aftershock of the 2004 Sumatra-Andaman earthquake.   

7. The Meulaboh zone, which is the northern part of the Sunda subduction zone, is classified as an 

intermediate depth earthquake (range ~45-90km) zone even though this definition does not follow 

the standard classification of earthquakes based on the focal depth. A big earthquake happened on 0 

May 2010 with magnitude 7.2 at depth 61.4 km with no relevant damage (in a long period) and 

generated 50cm tsunami that caused some panic among people living along the coastline because 
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they experienced the 2004 tsunami earlier.  

8. The Padang zone is the southern intermediate depth subduction zone (with the earthquake depth 

range ~30-80km). A big earthquake, known as the Bengkulu earthquake, happened on 12 

September 2007 with magnitude 7.6 and depth 35km caused 21 fatalities. Another large earthquake 

happened on 30 September 2009 (the Padang earthquake) with M 7.6 at depth 80 km and caused 

1117 fatalities, 1214 serious injured, and 1688 minor injured. In reference to the USGS (2009) 

poster, on the basis of the currently available fault mechanism information, and the earthquake 

depth of 80 km, it is likely that this earthquake occurred within the subducting Australian Plate 

rather than on the plate interface itself. The recent earthquake was deeper than the typical 

subduction thrust earthquakes that generally occur at depths less than 50 km.  

9. The Nias zone, which is the northern shallow depth subduction zone, generates mega earthquakes 

and tsunami such as the Sumatra Andaman earthquake on 26 December 2004 M 9.1 and the Nias 

earthquake on 28 March 2005 magnitude 8.6 at depth 30 km. This subduction zone is classified as 

the swallow depth earthquakes zone (range ~10-30 km) with strike 325º dip 7º  and rake 100º.  

10. The Mentawai zone, which is the southern shallow depth subduction zone, generated the 

earthquake on 12 September 2007 with magnitude 8.5 at depth 34 km. Another large earthquake 

occurred on 4 June 2000 with magnitude 7.9 at depth 33 km, strike 328º, dip 9º, and rake 114º near 

Pagai Island.  

11. The Interplate zone or Inter-plate strike slip ridge is far from Sumatra and the adjacent island. 

The zone produced an unexpected earthquake on 11 April 2012 with magnitude 8.6 and depth 20 

km as a result of strike-slip fault within the oceanic lithosphere of the Indo-Australia plate and was 

reactivated from the Ninety East Ridge as far as east 97°E. This earthquake is also known as the 

Indian Ocean earthquake with strike 199º, dip 80º, and rake 3º.  

12. The Sunda Trench zone, with relatively small magnitude earthquakes, is well known as a low 

hazard zone to Sumatra in comparison to the subduction zone. We introduced this seismic zone 

because it is located before the contact between the oceanic crust (Australia plate) and the 

continental crust (Sunda plate), and it has a mechanism with strike 321º, dip 64º, and rake 7º, which 

is different from the characteristic of the subduction zone,.  

13. The Medan zone takes its name from the biggest city in Sumatra as the northern deep 

subduction zone. Most of the earthquakes here are deep (150-215km) earthquakes, and the zone is 

considered a minor contributor of hazard. The biggest earthquake in this zone occurred on 1 

December 2006 with magnitude 6.3 at depth 204 km.  

14. The Palembang zone gets its name from the location of the second largest city in Sumatra, and 
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the zone is located in the polygon of the outhern deep subduction zone. Most of the earthquakes are 

at the 100-150km depth and contributing low hazard to Sumatra. The largest earthquake here 

occurred on 15 May 2015 with magnitude 6.0 with depth 150 km.  

15. The Jakarta zone gets its name from the capital city of Indonesia. Most of the earthquakes here 

are at ~300 km depth. The largest earthquake occurred in this zone was on 8 August 2007 with 

magnitude 7.5 at depth 280 km.  

 Generally speaking, we can classify the seismogenic zones based on their contribution to 

hazard in Sumatra into three types: high, moderate and low. The zones contributing to high hazard 

are Aceh, Semangko, Krakatau, Meulaboh, Padang, Nias, Mentawai; the zones contributing 

moderate hazard are Lokop, Inter-plate, Medan, Palembang; the zones contributing low hazard are 

Java Sea, NSR, Sunda Trench, Jakarta. 

 The definition and characterization of the seismogenic zones are complicated and not an 

easy process to study them and furthermore need to incorporate all available information for 

accurate and precise demarcation. The details of focal mechanisms used for the definition of the 

seismogenic zones in this chapter are presented in Table 2.3 and the corresponding beach ball is 

shown in Figure 2.11. Accordingly, we need a comprehensive study to define an optimized 

seismogenic zonation by integrating all information from different disciplines.  

 

 
Figure 2.11. Selected focal mechanisms for each seismogenic zone. 
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Table 2.3.  Focal mechanisms definition for the seismogenic zones for each seismogenic zones 
 

Poly.  
index 

Strike 
(º) 

Dip 
(º) 

Rake 
(º) 

Depth 
(km) 

Related event 
date 

 M 
max 

Description  name 

1 313 72 168 12 2013-01-21 6.1 Spreading strike slip fault from Aceh to Andaman 
Tail Sumatra Sumatra Fault 

Aceh zone 

2 324 87 179 9 2009-10-01 6.5 Long Great Sumatra Fault Semangko zone 

3 315 71 176 16.2 1994-02-15 6.8 Head Sumatra Sumatra Fault Krakatau zone 

4 270 29 89 38 2000-10-25 6.7 Java Subduction Jawa Sea Zone 

5 1 68 150 15 2003-09-13 5.2 Branching Sumatra Fault to Lokop  Lokop Zone 
6 351 27 121 13.6 2004-12-26 7.2 North Sumatra Ridge zone NSR zone 

7 284 21 63 45 2010-05-09 7.2 Northern intermediate subduction zone Meulaboh Zone 

8 236 23 34 36 2001-02-13 7 Southern intermediate subduction zone Padang zone 

9 325 7 100 30 2005-03-28 8.2 Northern shallow subduction zone Nias zone 

10 328 9 114 24.4 2007-09-12 8.5 Southern shallow subduction zone Mentawai zone 

11 199 80 3 25 2012-04-11 8.6 Inter-plate strike slip ridge  Inter-plate zone 

12 321 64 313 7 1982-11-11 6.2 Sunda Trench Sunda Trench zone 
13 191 80 46 211 1999-11-11 6.1 Northern deep subduction zone Medan zone 

14 291 7 71 217.1 2002-06-16 5.7 Southern deep subduction zone Palembang zone 

15 330 30 155 304.8 2007-08-08 7.5 Deep java subduction zone Jakarta zone 
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3. Enhanced Source Definition 

 

3.1 Original Version of Source Definition Algorithm  
 
NDSHA can provide strong ground motion synthetic seismograms based on a realistic physical 

simulation by elaborating the available seismogenic zones and structural models taken from the 

geological and geophysical data. Surely we have to play with the varied computational time for the 

calculation. For instance, after the compilation and selection of the seismic catalogs in previous 

chapter, we consider 13317 events. In the seismicity plot, there are several events within the same 

cell area (grid). Thus, we need to decide the source definition (only a single source event) of which 

event is representative for the given grid cell. The first part in definition of seismic sources is the 

handling of the seismicity data as shown in Figure 3.1. Basically, what is needed is an evenly 

spaced distribution of the maximum magnitude over the territory, but the data available from the 

earthquake catalogs are widely scattered. Furthermore, the earthquake catalogs are both incomplete 

and contaminated with errors, so a smoothed distribution is preferable (Panza et al., 1990).  

 

 
Figure 3.1. Red box is source definition procedure from full flow-chart of the deterministic 

procedure for seismic hazard assessment at regional scale (Panza et al., 1990). 
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 The smoothing procedure is shown in Figure 3.2. The punctual distribution of the epicenters 

given in Figure 3.2a is discretized into cells (Figure 3.2b), and the maximum magnitude of the 

events pertinent to each cell is retained. In the case where the earthquake catalog contains different 

estimates of magnitudes (e.g., Mb, Ms, or M from the macroseismic epicentral intensity, I0), the 

maximum among them is considered. It is then convenient to represent the data graphically, and the 

symbols are associated with the magnitude ranges (Figure 3.2c). In most cases, the smoothing 

obtained by considering just the discretized cells is not enough. A centered smoothing window is 

then considered so that the earthquake magnitudes are analyzed not only in the central cell but also 

in the neighboring ones. The idea of a constant magnitude within each seismogenic area (choosing 

the maximum available value) has been shown to be a poor choice, since for the larger seismogenic 

areas, it leads to an overestimation of the seismicity. Three possible smoothing windows are shown 

in Figure 3.2d.  

 

 

 
Figure 3.2. Discretization and smoothing of seismicity. (a) Distribution of epicenters; (b) definition 
of cells and choice of the maximum magnitude; (c) graphic representation; (d) smoothing windows 
of radius n=1, n=2, n=3; (e) smoothed distribution of magnitude.(Panza et al., 1990) and (f) 
updated smoothing version result.  
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Their radius is expressed in terms of the number of cells n. In the example, the values n=1, n=2 and 

n=3 are considered. By applying those windows to the distribution in Figure 3.2c, the results of 

Figure 3.2e are obtained. At a first glance, it appears that the distribution of the maximum 

magnitude given by the window with n=3 is quite exaggerated with respect to the starting data of  

Figure 3.2c. Its intersection with a hypothetic seismogenic area (shown in Figure 3.2a) gives quite a 

reasonable distribution (Figure 3.2b), which allows us to account for errors in the location of the 

source and for its extension in space. The smoothing corresponding to radius n=3 (smoothing 1) is 

chosen to produce the deterministic maps of hazard.  

 The proposed smoothing procedure is applied to the compiled earthquake catalog and the 

seismogenic zone (see Chapter 2: Figure 2.7-right and Figure 2.9), where the whole territory is 

discretized with a grid size (0.2ºX 0.2º). The map shown in Figure 3.3 is the result of the application 

of the original version of the source definition procedure. The result also shows some limitations of 

the original procedure, which is not adequate for the Sumatra seismogenic zone, and the proposed 

improvement will be discussed in this chapter.  

 

 
Figure 3.3. Source definition generated by the original version. 
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3.2 Enhanced Magnitude Smoothing Algorithm 
 Due to the complexity and variety of the seismogenic zones in Sumatra, there is a need for an 

advanced smoothing procedure, which has been developed from the original version. In the original 

version, it is only possible to set the characteristic of smoothing globally “entire zones” in 

makehaz.par, the main configuration file.  

 

Parameters for program makehaz                           (v0004) 
. . . . . 
---------------------------------------------------------------- 
SOURCE DEFINITION 
---------------------------------------------------------------- 
5.0               Min magnitude associated with the run 
0  99             Min and maximum magnitude taken from catalogues 
1000 2009         First and last year in catalogue   (years) 
  .2              Cell size                          (degrees) 
  3               Smoothing radius                   (cells) 
  0               Min. events for smooth             (count) 
  0  50           Min and max depth                  (km) 
0                 Source depth (sdepth)     (0=sut,999=auto,x=km) 
---------------------------------------------------------------- 
 

Listing 3.1. The part of lines of makehaz.par for settings the smoothing procedure for entire 
territory  
 

The parameters should be put strictly in order; this means it is not acceptable to insert additional 

comment lines, unless after adding numbers of spaces of value in some line as show in listing 3.1. 

In order to make the setting of the seismogenic zone more flexible, we can no longer use a rigid 

format for the machine-oriented interface (machine friendly). Then, we have to start using a flexible 

format for the human-oriented interface (user friendly) instead of a fixed and rigid format read only 

by a computer program. The new format should have high flexibility to adding new lines or 

command lines, but should not follow a strict order; also it is possible to insert updated parameters 

and to update the version of software without introducting any new standard format for a new 

version.  

 In order to make a user friendly configuration file format, we also should tell the computer how 

to distinguish and understand each line in the file. Therefore, we use three techniques of 

recognition: in order, tag notation, and extension of the file. This technique could be integrated 

without affecting the core computer program. We use a familiar symbol for making commands (in 

this case, we use symbol # or !, as a familiar symbol in Bash and Fortran).  

 For the handling of the earthquake catalogs, the original version uses the configuration file 

cells.par, and the updated version also uses a single configuration file namely 

eqc4select.par as discussed in the previous chapter.  On the other hand, for the handling of 

the smoothing procedure, the original version needs only one configuration makehaz.par but the 
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updated version needs two configuration files: eqc4smooth.par and namejob.pas as show 

in Listing 3.2. 

 

File eqc4smooth.par 
#collection of file and parameter needed for smoothing 
test 
dummy.pos 
dummy.fps 
dummy.pas 
dummy.eqc 
dummy.dph 
frame 95 99 -5 -1  
 
File dummy.pas 

 

#tag  zone  radius   divsel    slope  group  minRun  minCare  maxCap     sstrike     sdip  sdepth  dcare 

SUZ   0   3    0.1   0    0     0     5      9     0     0  20   50 
SMO   1   4 
SMO   2   2 
CES   3        0.2 
CES   4   4    0.2 
 

File : dummy.eqc.csv 
year,mm,dd, second  , lat  ,  long  , mag, depth, note 
2000,01,01,     0.00, -2.00,    96.0, 7.0,   5.0, 001 
2000,01,01,     0.00, -2.00,    98.0, 7.0,   5.0, 001 
2000,01,01,     0.00, -4.00,    96.0, 7.0,   5.0, 001 
2000,01,01,     0.00, -4.00,    98.0, 7.0,   5.0, 001 

Listing 3.2. The configuration file for updated version smoothing procedure file 
eqc4smooth.par, individual control for each seismogenic zones file dummy.pas,  and the 
earthquake catalog file dummy.eqc.csv to produce dummy test map figure 3.3. 
 

 

In:  *.eqc *.poc makehaz.par 
   ecell.out 

in: *.eqc *.poc default.cat 
  eqc4select.exe  à selected.eqc 

   ecell.out    à *.cel 
in:makehaz.par 
   esmooth.out  à *.gri 
in: *.pos  
   einscat.out  à *.mag  
in: *.pos *.fps 
   eselmec.out  à *.mec 
   emecmed.out  à *.sut (final) 

 
 
in: *.pos *.fps *.pas 
in: eqc4smooth.par 
  eqc4smooth.exe  à *.sut (final) 
  

Listing 3.3: List of programs to produce source file *.sut: (left) the original version with 5 program 
(right) the updated version with two programs.  
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 There are several steps to get the final source definition as shown in Figure 3.2. The original 

version uses 5 separated programs for each step as shown in Listing 3.3 (left), but the updated 

version reduces these steps into a compact single program namely eqc4smooth.exe, see Figure 

3.4. 

 

 

Figure 3.4. Updated version of 
enhancement source definition procedure 
and the location of two programs 
eqc4select.exe and 
eqc4smooth.exe. 

 

There are two ways for executing this program: without or with the passing parameter. Without the 

passing parameter will read the default configuration file eqc4smooth.par, and with the passing 

parameter, there is the possibility to read the other file names, e.g.: 

 eqc4smooth.exe                        

 eqc4smooth.exe dummy_par.par  

The final output of the program is the generation of the source definition file test.sut. This 

file becomes the input in the next stage of the NDSHA [sites associated with each source] as shown 

in Figure 3.1. However, the updated version remains to produce the intermediate files (*.cel, 

*.ung, *.unm, *.zs.uni) to keep it compatible with the original version.  

 

 

Figure 3.5. Source definition (test.sut) 
described in the configuration file (listing 3.2).  
zone 1 with setting radius=4,divsel=0.1º 
zone 2 with setting radius=2,divsel=0.1º 
zone 3 with setting radius=3,divsel=0.2º 
zone 4 with setting radius=4,divsel=0.2º 
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 In Listing 3.2, the configuration file eqc4smooth.par declares the project name test and 

read the parameter of smoothing (*.pas) from the file dummy.pas. The first line is used as a 

comment line; this is a good way to always keep the first line for a comment line which can be used 

to recognize the file (type or version) and is also important for QGIS as a column definition. After 

the comment line, the program gives the possibility for setting the default parameters by putting the 

SUZ tag with polygon number 0. Without this line, the default parameters value will be provided by 

the software. 
 
#tag   zone  radius   divsel    slope  group  minRun  minCare  maxCap     sstrike     sdip  sdepth  dcare 

SUZ   0   3    0.1   0    0     0     5      9     0     0  20   50 
 
The third line (SMO 1 4) and the fourth line (SMO 2 2) with tag SMO will set the radius 

smoothing 4, and 2 cells for zone 1 and 2 sequentially. In addition, the size of the source cell 

divsel=0.1º is taken from the default value 3, which is defined in the second line as shown above. 

Moreover, the fifth line (CES 3 0.2) with the CES tag will set the cell size 0.2º but the smoothing 

radius value is the default one. The last line (CES 4 4 0.2) gives the possibility to set the 

parameters, i.e. the smoothing radius, 4 cells, and the size of cell 0.2º in a single line. This 

flexibility of adopting the individual smoothing parameters for each zone could help in 

appropriately addressing the uncertainty for each zone based upon the amount of available 

knowledge about the earthquake parameters and the other zone definition-based characters. The 

Figure 3.5 shows that by adopting those different parameters will lead to a different source 

definition (each polygon contains single event). The detailed description of the proposed format for 

reading the smoothing parameters is showed in Table 3.1. Each line begins by a tag name column 

(e.g. SUZ, CES, SMO, MIG, ELP, SDP) and the second column is the given number of 

each zone (polygon). The separator of the field in the configuration file is made using the space bar 

character only as using a tab character is not allowed.  

 The smoothing parameters can be categorized into: magnitude smoothing, magnitude 

limitation, ellipticity, and depth enhancement, see Table 3.1. The first parameter for the magnitude 

smoothing is the radius. The choice of the smoothing radius and its units being used (cell or degree) 

is based upon the evaluation of the analyst. Using a smoothing radius unit in degree could be more 

compatible with a real map and could maintain the real size of the smoothing area even when the 

cell size is changing. The program will recognize the distance in degrees; the negative value means 

that the unit is in degrees (e.g. -0.6 mean 0.6º). For example, the zones 1, 2, 3, 4 have radius = 3, 3, 

-0.6, -0.6 sequentially. Therefore, Zone 1 and 2 have a radius 3 cell, whereas Zone 3 and 4 have 

radius 0.6º geographically. When applying a different cell size, divsel = 0.1, 0.2, 0.1, 0.2 for zones no 

1, 2, 3, 4 respectively, the zones with radius defined in degrees unit (3 and 4) will keep the same 
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geographical radius even for a different cell size, as shown in Figure 3.7 (left). The advantages of 

using the proposed smoothing parameters for each zone will reduce the source resolution for the far 

source zones and increase the source resolution for the near source zones relative to the site of 

interest. This feature should solve the problem in Figure 3.3 area box I, where the inter-plate zone is 

a far source zone. 

 
Table 3.1. Tags rule for controlling parameters of smoothing process for each seismogenic zone.  
tag zone Magnitude Smoothing Magnitude Limitation Ellipticity Depth 
SUZ N Radius Divsel slope group minRun minCare maxCap sstrike sdip sdepth dcare 
CES N Radius Divsel          
CES N  Divsel          
             
SMO N Radius Divsel slope group        
SMO N Radius  slope group        
SMO N Radius  slope         
SMO N Radius           
             
MIG N     minRun minCare maxCap     
MIG N     minRun minCare      
MIG N     minRun       
             
ELP N        sstrike sdip   
             
SDP N          sdepth dcare 
SDP N          sdepth  
 
 One of the steps in the original smoothing version, from Figure 3.2c to 3.2e, does not consider 

the polygon zones. The seismogenic zones only take into account the focal mechanism and are used 

to remove the source definition outside the seismogenic zones. In the updated version, this step 

considers the polygon zones information. There are several features that can be enhanced by 

considering the polygon zones during this step. One of the enhanced features in the updated version 

is the zone grouping, where the smoothed cells cannot penetrate into a different group number, see 

Figure 3.7 (right) between zone 1 and 2. The special group (number 0) will be affected from all the 

groups as shown in Figure 3.8. The grouping feature will create a partitioning effect for each 

different group and transparent effect for the same group. This effect is important to solve the 

problem shown in the box (P) (Figure 3.3) in which the events from the zones in the strike slip 

Sumatra fault system do not reach the subduction zones as shown in Figure 3.6c and 3.6d. 

The smoothing algorithm from the original version provides the same magnitude value for the 

whole smoothing radius as showed in Figure 3.3 box P.  Applying this algorithm to Sumatra will 

produce the overestimation of the ground motion parameters because the magnitude 9 smoothing 

earthquake is very close to the land as shown in Figure 3.9 (left). Therefore, there is a need to 

enhance the smoothing algorithm by decreasing the magnitude with the distance by adopting a 

slope parameter value based upon the assigned magnitude as show in Figure 3.9 (right). 
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a. original version 

 
b. updated version 

  
c.  original version 

  
d. updated version 

Figure 3.6. The comparison between original version (problem taken from Figure 3.3) and updated 
version. a. and b. for resolution issue. c. and d. for partitioning issue.  
 
 

 
 

Figure 3.7 (left) The smoothing radius in degree will preserve the geographical size of smoothing 
area where as radius in cells cannot keep it. {radius =3, 3, -0.6, -0.6, divsel=0.1, 0.2, 0.1, 0.2} 
(right) the zones can be grouping where the smoothing effect will be transfer if the same group. 
{group = 0, 1, 0, 0} 
 

 

Figure 3.8 Dummy zone for detailed 
explanation the grouping effect 
(portioning and transparent). The zone 
1, 2, 3, 4 has group number = 1, 1, 4, 0 
sequentially.  
  
Same group number (polygon 1 and 2 
with number 1) will affected each other 
(transparent).  
 
Different group number (polygon 1 and 
3 with number 1 and 4) will not affected 
each other (partitioning).  
 
Special group (number 0) will affected 
from all groups number as shown in 
polygon 4. 
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Figure 3.9.  Magnitude of source definition from original version (right) and (left) updated version.  
 

The magnitude smoothing algorithm requires the introduction of the slope parameter. The slope 

value will determine how rapidly the magnitude decreases with respect to the distance from the 

epicenter of the event. If the slope parameter is 0, it will be similar to the original version. Figure 

3.10 shows the smoothing algorithm that uses a simple linear approximation to determine the 

smoothing magnitude: 

!!"!!"!!"# = !!"# − !"#$%&'( ∗ !"#$%                                          (3.2) 

This enhanced magnitude smoothing process is implemented successfully in the updated version as 

shown in Figure 3.11 for a dummy test.  

 

 
Figure 3.10. Different slope parameters, red line slope=0, green=0.3, blue=0.6. Slope with 0 slope 
parameter is mean original version. (Vertical axis magnitude and horizontal axis distance from 
center event). Minimum run magnitude minRun=4.5.  
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Figure 3.11. Effect of different slope values 
(slope=0, 0.5, 1, 1.5) for zones 1, 2, 3, 4 with 
fixes radius of 3 cells. The zone 1 has slope=0 
the magnitude for all smoothing point same 
magnitude 7.5 similar with original version. In 
zone 2, 3, 4 the magnitude 7.5 only in the center 
other point will decrease according distance and 
slope parameter.  

 

 

 In reality the smoothing process is not dealing with several earthquakes like the dummy test. In 

the case of Sumatra, we deal with a big number of the selected earthquakes (13317 in this study). 

Therefore, we need to control the limitation of the data involved in the smoothing process and to set 

the lower and upper limit for each zone. For information, the program eqc4select.exe also 

performs the limitation procedure (minimum and maximum magnitude criteria) for each catalog as 

mentioned in Chapter 2. Three parameters, minRun, minCare, maxCap are introduced, which are 

the minimum magnitude to be adopted for each cell, the minimum magnitude will be adopted from 

the catalog, and the maximum magnitude will be defined for each cell, respectively (see Figure 

3.12). 

 The parameter maxCap is the maximum magnitude and will be defined for each zone. If the 

magnitude of the events inside the seismic zones is above the maxCap, it will be terminated to 

maxCap. There are two main reasons to introduce this parameter. The first reason is that we are less 

confident about the MCE value from the geological study in a specific zone. Other limitations come 

from the point source consideration for the big magnitude sources for which the extended source 

representation should be considered.  In the case of Sumatra, the MCE for the Semangko zone is 

obtained by Natawijaya (2009) with magnitude about 7.8 based on the surface geology and 

historical studies, but if it was based on the instrumental record, it is more accurate to put 

maxCap=7.5. On the other hand, the Sunda subduction zone can generate the mega earthquake 

(Sumatra-Andaman 2004) with M~8.9-9.3. Because of the limitation of the point source 

approximation for the big magnitude events, we terminate the maximum earthquake magnitude to 

9.0 even if it was more in the catalog by setting maxCap=9.   
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Figure 3.12. Diagrammatic explanation of the 
parameters for magnitude limitation in the source 
smoothing algorithm for each seismogenic zones.  
 
maxCap= maximum cap (terminated) magnitude 

will define for cells 
minRun=  minimum magnitude will run (set) for 

cells 
minCare= minimum magnitude will care (take) from 

the catalogs  
 

 Parameter minRun is the minimum magnitude that will be adopted for the cells. This value is 

based on our knowledge about the minimum magnitude for the specific seismogenic zone based on 

the statistical analysis of seismicity, seismotectonic, and geodynamic of the zone. Adopting 

minRun=0 will be useful for the rare earthquake, and those that look like a small cluster, for 

example, the deep Sumatra subduction zone (polygon no 13 and 14). Adopting minRun=0 is useful 

for the seismogenic zones that have the strike-dip mechanism where there are no additional details 

about the exact location of the faults or their makeup, but we just decide to increase the area of the 

seismogenic zones, such as the Aceh zone and the inter-plate zone. For the areas that we trust have 

a certain minimum magnitude, we can set the value, for example, for the Sumatra fault (Semangko 

and Krakatau zone) we set minRun=5.5.  The Sunda subduction zone has a greater minimum 

magnitude value; thus, we set minRun=6 for the intermediate depth zones (Meulaboh and Padang) 

and minRun=6.8 for the shallow depth subduction zones (Nias and Mentawai).  

 As mentioned at the beginning paragraph of this chapter, the purpose of the smoothing process 

is to deal with the uncertainties associated with the parameters in the earthquake catalogs. Using 

smoothing regardless the azimuthal distribution (circular smoothing) is a good option, if there is no 

information about the preferred orientations. However in some cases, we know the Sumatra strike-

slip fault generates an earthquake along a narrow zone. Therefore, we enhanced the geometrical 

smoothing algorithm by introducing the ellipsoid factor parameters sstrike and sdip, see Figure 

3.13. The choice of the name sstrike (smooth strike) and sdip (smooth dip) is due to the fact that the 

value is mostly similar to those of the geological strike and dip and use the same convention as Aki 

and Richards (1980).  The major axis is following the strike line, and the minor axis is parallel to 

the dip direction, see Figure 3.13.  
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Figure 3.13. Enhanced geometrical smoothing 
procedure. The picture shows the example with 
parameter radius=8 cells; slopes=1; sdips=60; 
sstrikes=328. The length of the mayor axis is equal 
to the radius and the minor axis is given by the 
formula 
 

!"# !"#$! =
!"#$%&'()
!"#$%&'"(  

 

 The implementation of the ellipsoid smoothing feature is not trivial, after some effort we 

successfully developed this algorithm, and Figure 3.14 shows the dummy test for several variations 

of sstrike and sdip. Figure 3.14 (left) shows that a different sdip with a constant sstrike=0 will 

produce an ellipsoid easily, but when the sstrike is not zero for a different sdip, an advanced 

algorithm is needed. Nevertheless, the updated version is successfully doing this job as shown in 

Figure 3.14 (right).    

  

Figure 3.14. Ellipsoid smoothing effect at radius=3 for (left) sstrike=0 with various sdip= 0 ,   30,   
60,   70. (right) At sdip=60 with various sstrike=0, 45, 90,315.  
 

For the subduction zones where the dip value is smaller than 60°, the ellipsoid smoothing is not 

really necessary because the smoothing geometry remains close to the circular geometry. But for 

the strike slip with the dip greater than 60°, the ellipsoid smoothing should be considered because 

the smoothing geometry is changing significantly, see Figure 3.14. Therefore, the application of this 

procedure is important for the Aceh zone and the inter-plate zone, where the strike slip fault could 

generate earthquakes in a narrow zone area. The updated smoothing version can carry out this job 

successfully, and the comparison with the original version is shown in Figure 3.15. 
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o1)    u1)   

o2)              u2)   

Figure 3.15.  o1, o2) Original version creates 
circular smoothing effect. u1, u2) Updated 
version produce create geometrical feature.  

 

3.3. Enhanced Source Depth Definition  
 Beside the earthquake magnitude, the focal depth can greatly affect the estimated earthquake 

ground motion and peak ground motion parameters. In the original smoothing algorithm, the depth 

of the earthquake source is computed as a function of magnitude (10 km for M<7, 15 km for M≥7) 

(see Equation 3.1), but it is also possible to assign to each source an average depth determined from 

the analysis of the available catalogs. Keeping the focal depth fixed (for classes of magnitude) and 

shallow is important due to the large errors generally affecting the focal depth reported in the 

earthquake catalogs, and due to the fact that the strong ground motion is mainly controlled by 

shallow sources (Vaccari et al., 1990).  

 

ℎ =
10!" ,! < 7
15!" , 7 ≤ ! < 8
20!" ,! ≤ 8

	   (3.1)	  

  
 The original smoothing algorithm provides four options for determining the depth. The first 

option sets a fixed value of depth for all the polygons, but for the depths lower than 10km, the depth 

is set to 10. The second option, by putting 999, will determine the depth according to the magnitude 

following the tabulation (3.1). The third option makes it possible to read the depth from the focal 

mechanics file (.fps). With the fourth option, by putting 0, the program will read the source 

information including the focal depth from the given *.sut file. The last option will be used, if the 

original NDSHA version at the regional scale needs to read the source definition file generated by 

the updated smoothing program.  

 The option provided by the original smoothing version cannot be sufficient to handle the 

complexity of the Sumatra seismogenic zones. One of them, the focal depth of the subduction zone, 

increases from the trench zone through the forearc zone until the backarc zone as shown in Figure 

3.16. The change in the focal depth depends on the location; therefore, we add a new feature in the 
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updated version to have the possibility to take the depth from the depth distribution file (.dph).  

The focal depth will be interpolated from the scattered depth distribution in format 3 column 

x(long)  y(lat)  d(km). With the updated smoothing program, it is possible to pick up the depth from 

the maximum earthquake in each cell in the region, see Table 3.2. We successfully implemented 

this features as show in Figure 3.17. 

 

Table 3.2. Option for sdepth parameter and how to get depth information for each zone 

Option  Explanation  
0 
27 

999 or c 
fps 

file.dph 
d 

set depth fix 10km (if lower than 10 will bring to 10km). 
set depth to a given value 27km. 
depth as function of magnitude, see equation 3.1. 
depth is taken from .fps file (per polygon) 
depth is interpolate from depth distribution file.dph 
take from depth of maximum magnitude in the cell 

 

 

  
Figure 3.16. The depth of hypocenter is changing gradually following the slab plate interface at the 
subdution zone. http://faculty.smu.edu/hdeshon/research.html,  
Yao et al., 2013, http://staff.ustc.edu.cn/~hjyao/research.htm 
 

 

Figure 3.17. Plot of the depth 
of the source, after smoothing 
process with parameter in each 
zone sequentially:  
sdepth=dph, dph, fps, 60   
divsel=0.1, 0.2,  0.1, 0.2  
and radius=4 for all zones.  
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3.4 Application to the Sumatra Seismogenic Zones  
 
 The new features and control on the individual seismotectonic zone give us more pros and the 

flexibility in using the analyst’s knowledge to set the parameters. The challenge does not only come 

from the increase of the number of the parameters for each zone but also from the very large 

number of the parameters in case many zones are used. In the case of the Sumatra seismogenic 

zones, there is a need to control 15 zones. Compared with the original version, that is extremely 

simple, we are able to control a few variables, such as radius, divsel, minRun, minCare, maxCap, 

sdepth for all of the zones. Therefore, we should have a good knowledge about the seismogenic 

zones before using the enhanced features from the updated smoothing procedure; otherwise, we can 

work with the original version by only adopting the default parameters being used in the original 

version, and this choice will certainly lead to very conservative results that can be considered as the 

upper bounds indicators.  

    The choice of these values is based upon the analyst’s knowledge, which in turn is based on the 

available data. For example, from the instrumental catalog after 1960, the maximum magnitude is 

M7.0 in the Sumatra strike-slip, as show in Figure 3.18. Therefore, we do not really trust the MCE 

in the Sumatra fault that can be M7.8. In our opinion, the magnitude of 1943 earthquake ~7.8 is 

overestimated by geologists. The only point of weakness of using the analyst’s expertise is the short 

time span of the existing catalogs, which is relatively to the geological time scale. We choose the 

value of maxCup to be equal to M7.5 to be conservative but without exaggerating the controlling 

magnitude. For the Sumatra subduction zone we freely set the value to the maximum maxCup=9.0.  

 

  
Figure 3.18. (left) the time domain distribution of earthquake along Sumatran fault zone.  
                    (right) the location of big earthquake along the fault.  
 
 The Sumatra fault is segmented into several relatively small segments as show in Figure 3.3 

(left); each zone has its individual MCE; therefore, we prefer a small smoothing radius parameter 

(radius=2-3) for the Sumatra fault zones. On the other hand, the Sunda subduction zone is 
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characterized by the large segments as shown in Figure 3.3 (right) and the wide zone of an 

earthquake occurrence. Therefore, we prefer bigger smoothing radius parameter (radius=3 - 4) for 

the Sunda subduction zones.  

 The determination of the cell size (divsel) parameter is based on how sensitive the estimated 

hazard is to the adopted grid spaces. Generally, the near source zones are relatively more sensitive 

to the epicenter location than the far source ones. Therefore, we adopted a high grid resolution 

(divsel=0.15º - 0.2º) for the inland zones, e.g. Aceh, Semangko, and Lokop zones. We adopted a 

low grid resolution (divsel=0.3º - 0.4º) for the far source zones, e.g. the Java Sea zone, the inter-

plate zone, and the NSR zone. The default value given by the program for the general case is 

divsel=0.2º.  

 The default value of the slope is 0.3, and for the subduction zones, intermediate zones 

(Meulaboh Zone and Padang zone), and deep zones (Medan and Palembang zone), we use the slope 

value equal to 0.6. For the intermediate zone, care should be taken by making the smoothing value 

not diffused into the land area. For the deep zones, we want to make the event dominant only in a 

small spot region. Actually, we need a lot of parametric studies to understand what the appropriate 

value of the slope feature is for our estimation. 

 The main motivation for developing the updated smoothing procedure is that because we find 

more problems in the Sumatra seismogenic zone which need the adoption of the partitioning effect, 

which prevents it from the penetration of the smoothing effect into the neighboring zones. There are 

two group zones that have the smoothing number not equal to zero. The first is the Sumatra fault 

zone system (Aceh, Semangko, Krakatau, and Lokop zone) because the faults generate earthquakes 

in narrow zones namely group=1. The Second is the deep subduction zones system (Medan zone 

and Palembang zone); these zones are not affected by the Sumatra subduction zones as group=2. 

Others groups of the zones we set to group=0.  

 The last new feature in the updated magnitude smoothing procedure is the ellipsoid smoothing 

which has two parameters sstrike and sdip. This feature adopted only for the Sumatra strike slip and 

interplate strike slip, both have a geological dip greater than 60º. The selected parameter values for 

each seismogenic zone are shown in Table 3.3.   

 Because of the Sumatra strike slip zone overlay in the Sunda subduction zone, we have to 

extract the strike-slip shallow earthquake from the deep Sunda subduction zone earthquake. The 

contribution of the shallow depth earthquakes to the hazard is relatively small.  After plotting the 

depth with respect to the magnitude for each zone, we can recognize a clear separation in depth 

between more and less than about 50 km (except zone 1, see also Figure 3.23 polygon=1 for clear 

separation). 

 Table 3.3 gives information about the controlling parameters for the updated magnitude 
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smoothing process by eqc4select.exe program to pick up the maximum magnitude for each 

cell and the result is shown in Figure 3.20 (right). After picking up the maximum magnitude, the 

eqc4select.exe file makes smoothing with the neighbored cells by taking into account the 

seismogenic zones parameters for the final source definition, as shown in Figure  3.21 (right).  

 
Tabel 3.3 Configurations file for updated smoothing algorithm process for Sumatra seismogenic 
zones 
tag Zone radius divsel slope Group minRun minCare maxCap sstrike sdip sdepth dcare note 

SUZ 0 2 0.2 0.3 0 5 5 9 0 0 fps 300 default 

SUZ 1 2 0.2 0.3 1 0 5 7.5 313 67 20 50 Aceh zone 

SUZ 2 3 0.2 0.3 1 5.5 5 7.5 324 67 20 50 Semangko zone 

SUZ 3 2 0.2 0.3 1 5.5 5 7.5 0 0 d 50 Krakatau zone 

SUZ 4 3 0.3 0.3 0 0 5 9 0 0 dph 300 Jawa Sea Zone 

SUZ 5 2 0.15 0.3 1 5.2 5 7.5 0 0 d 50 Lokop Zone 

SUZ 6 3 0.4 0.3 0 0 5 9 0 0 dph 300 NSR zone 

SUZ 7 3 0.2 0.6 0 6 5 9 0 0 dph 150 Meulaboh Zone 

SUZ 8 3 0.2 0.6 0 6 5 9 0 0 dph 150 Padang zone 

SUZ 9 4 0.25 0.3 0 6.8 6 9 0 0 dph 100 Nias zone 

SUZ 10 4 0.25 0.3 0 6.8 6 9 0 0 dph 100 Mentawai zone 

SUZ 11 -1 0.3 0.3 0 0 6 9 199 72 fps 300 Inter-plate zone 

SUZ 12 -1 0.3 0.3 0 0 6 9 0 0 fps 100 Sunda Trench zone 

SUZ 13 3 0.18 0.6 2 0 4 9 0 0 d 300 Medan zone 

SUZ 14 3 0.18 0.6 2 0 4 9 0 0 d 300 Palembang zone 

SUZ 15 2 0.2 0.3 0 0 5 9 0 0 c 300 Jakarta zone 

 
   

     
Figure 3.19. Depth distribution with respect to magnitude of earthquake for Sumatra strike slip 
seismogenic zones. Relocated hypocenters from Pesicek et al. (2010).  
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Figure 3.20. Picking up the max magnitude in each cell (before smoothing process) : (left) original 
algorithm (right) updated algorithm  
 
 

  
Figure 3.21. Magnitude after smoothing process: (left) original version (right) updated version. 
 
 

The definition of the source magnitude (The figure 3.21 right) is one of the final results of the 

source definition. Another parameter is the focal mechanism, which is taken from the focal 

mechanism file (.fps) for the associated zones.  All values for the source definition are already 

completed except those for the source depth definition. Therefore, we have to understand the 

characteristic focal depth in each zone before adopting the sdepth parameter. The subduction 

process plays the main role in determining the focal depth as shown in Figure 3.22.  



44 
 

  
Figure 3.22. (left) The  depth distribution (right) The cross section of the hypocenter USGS (2010) 
 

 
 

  
 

 
  

  

Figure 3.23: plots of earthquakes depth (km) versus magnitude (data from Pesicek et al. 2010). 
The lower part is arranged based on the location from swallow (left) to deep (right) earthquakes 
for zones, following box in figure 3.21(left). 
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In order to determine the sdepth parameter, we tried to find the depth versus the magnitude 

relationship as shown in Figure 3.23. The Seismogenic zone in Aceh, as polygon 1, shows the 

median distribution about 20 km, thus we choose sdepth=20. It is also almost similar to the other 

strike slip zones.  For the deep subduction zones, it is relatively difficult to decide the source depth 

because the seismicity does not have a preferred depth, as shown in Figure 3.20. Therefore, we use 

the option sdepth=d, where the depth is taken from the maximum magnitude in the cells. The 

condition of the interplate zone can be represented by the earthquake on 11 April 2012 M8.6, and 

we put the value in the focal mechanism file, thus we set sdepth=fps.  

The focal depth for the subduction zones obviously starts from shallow (zone 12) to deep (zone 

13), as shown in the lower part of Figure 3.22. This gives us a strong motivation to use a slab 

distribution for the subduction zones 4,6,7,8,9,10. Fortunately, the slab information for a major 

subduction in the world has been publish by USGS as slab 1.0, see Figure 3.24. Thus, we can adopt 

the sdepth=dph, where the depth distribution is provided by the file sum_slabcut.dph (we crop 

and reduce the resolution from the original slab file to reduce the number of points).  

The final result of the source depth definition is shown in Figure 3.25 (right), in which the 

result from the updated version is compared with the result from the original one Figure 3.25 (left). 

The information about the event depth in the original version is taken from their source definition 

file (.sut), and the actual value does not enter the computation because at the path definition 

algorithm in hazard estimation, the depth is defined by the function of magnitude, see Equation 3.1 

The enhanced smoothing algorithm has successfully provided more realistic depth definition 

regarding the Sumatra subduction zone. 
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Figure 3.24. Slab 1.0 distribution for Sunda subduction zone (Hayes, 2012). 
 
 

 

  
Figure 3.25. Depth after smoothing source from original version (left) and updated version (right). 
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4. Geology and Structural Model of Sumatra 
 

4.1. Geology of Sumatra 
 
 Geologically, Sumatra forms the southwestern margin of the Sunda Craton, which extends 

eastwards into Malaysia Peninsular and the western part of Borneo (Figure 4.1). The backbone of 

the main island is formed by the Barisan Mountains, which extend the whole length of Sumatra in a 

narrow belt, parallel to, and generally only a few tens of kilometres, from the SW coast. A Pre-

Tertiary basement is exposed extensively in the Barisan Mountains and in the Tin Islands of Bangka 

and Billiton. The oldest rocks which have been reliably dated are the sediments of the 

Carboniferous-Permian age, although the Devonian rocks have been reported from a borehole in the 

Malacca Strait, and the undated gneissic rocks in the Barisan Mountains may represent a Pre-

Carboniferous continental basement. All the older rocks, which lie mainly to the NE of the Sumatra 

fault system, show some degree of metamorphism, mainly to low-grade slates and phyllites, but the 

younger Permo-Triassic sediments and volcanics are less metamorphosed.  

 The area to the SW of the Sumatra fault is composed largely of variably metamorphosed 

Jurassic-Cretaceous rocks. The Pre-Tertiary basement is cut by the granite intrusion that ranges in 

age from Permian to Late Cretaceous. Locally within the Barisans, the basement is intruded by the 

Tertiary igneous rocks and is overlain to the NE and SW by the volcaniclastic and siliciclastic 

sediments in the hydrocarbon- (oil and gas) and coal-bearing Tertiary sedimentary basins. These 

basins have backarc, forearc, and interarc relationships to the Quaternary to Recent volcanic arc. 

The lavas and tufts from these young volcanoes overlie the older rocks throughout the Barisans and, 

in particular, cover an extensive area in North Sumatra around Lake Toba. The recent alluvial 

sediments occupy small grabens within the Barisan Mountains, developed along the line of the 

Sumatra fault and cover the lower ground throughout Sumatra. These alluvial sediments are of the 

fluvial origin immediately adjacent to the Barisans, but pass into the swamp, lacustrine and coastal 

deposits towards the northeastern and southwestern margins of the island (Barber et al., 2005). 

 In terms of the Holocene epoch tectonics, Sumatra forms the active southwestern margin of 

the Sunda Craton (Sundaland), the southeastern promontory of the Eurasian Plate. The Indian 

Ocean plate moves with a velocity of about 7.7 cm/year in the north-northeast (NNE) direction, 

which become oblique to be subducted at the Sunda Trench. The profiles across the landward side 

of the Sunda Trench imaged the removal of the packages of the sediment from the downgoing plate 

to build a forearc ridge accretionary complex (Hamilton 1979; Karig et al. 1980). The oblique 
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subduction results in the northwestward movement of a 'sliver' plate (Curray 1989) decoupled both 

from the downgoing Indian Ocean plate and the Sunda Land plate, along the Wadati-Benioff zone, 

which dips northeastwards at 30º and along the vertical Sumatran Fault System. This fault system 

has a low dipping angle, a characteristics common to E- or NE-directed subduction zones (Doglioni 

and Panza 2015). The Wadati-Benioff zone intersects the fault at a depth of some 200 km. The 

active Sumatran Fault System runs the whole length of Sumatra through the Barisan Mountains, 

from Banda Aceh to the Sunda Strait, and it is paralleled by a line of the Quaternary volcanoes, 

mostly quiet, but some currently active. Sumatra is separated by a linear ridge, with the emergent 

islands in the marine basins more than 1000 m deep, extending from Simeulue in the north to 

Enggano in the south. The Malacca Strait and the Java Sea form the southern parts of the Sunda 

Shelf. Across the shelf, the seafloor is shallow with a depth of less than 200 m and remarkably flat.  

 
Figure 4.1. Simplified geological map of Sumatra (Barber et al, 2005), the cross-section along the 

(NE-SW) line is shown in figure 4.2. 
 

 
Figure 4.2. Diagrammatic section across the Sumatran Subduction System from the floor of the 

Indian Ocean to the Malay Peninsula, drawn to scale (Barber, 2005). 
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4.2 Compilation of the Available Tomography Data 

 The realistic seismic hazard estimation needs an as possible accurate source model and a 

structural model. NDSHA can provide the strong ground motion parameters based on the realistic 

physical simulation of the seismic wave propagation within the structural model. The NDSHA 

relies on the modal summation technique, which is able to involve the physical parameters of the 

soil/rock for the simulating seismic wave propagation, i.e. density, Vp, Vs, Qp, and Qs, not only in 

the laterally homogeneous medium, as discussed Panza et al. (2013) entitled: Seismic hazard and 

strong ground motion: an operational neo-deterministic approach from national to local scale. 

Providing the accurate structural models is a challenging work because there is a need to conduct a 

3D tomography in order to obtain the physical (mechanical properties) parameters needed for 

modeling the seismic wave propagation. Constructing a structural model with new data is not one of 

the scopes of this study, and we make use of the available tomography studies to get a suitable 

structural model.  

 The 26 December 2004 Mw 9.1 and the 28 March 2005 Mw 8.7 Sumatra-Andaman 

earthquakes are among the largest ever recorded in the instrumental era and provide a unique 

opportunity to investigate the subduction megathrust and seismogenic zone processes using modern 

techniques.  Several recent studies have taken advantage of the satellite-derived gravity data 

obtained by NASA’s Gravity Recovery and Climate Experiment (GRACE) to successfully measure 

the time-dependent gravity response of the 2004 earthquake. For instance, Pesicek (2009) has 

constructed a 3D density model, whose calculated gravity effects agree well with those in a recent 

model of the observed mean gravity determined from the GRACE measurements. The gravity 

model is used for the GRACE derived model GGM02c (Tapley et al., 2005). The gravity modeling 

of the region surrounding the rupture area of the 2004 Sumatra-Andaman great earthquake has been 

conducted to better constrain the regional three-dimensional (3D) density structure from Finite 

Element Modeling (FEM) of deformation due to this event. Adjustments to the original FEM design 

for these features, which include the thinned crust associated with the Andaman backarc-spreading 

center, low-density sediments of the Bengal fan, and the thickened crustal roots below Burma and 

the Malay Peninsula. Pesicek (2009) has not yet published the model; however, the gravity model is 

from the initial model (Masterlark & Hughes, 2008) in the Tomoeye package (Gorbatov et. al 

2004). The model has a resolution 0.5º, a space domain longitude from 90º to 109º, and a latitude -

5º to 21º, and the 7-layer vertical resolution (50, 100, 150, 200, 250, 300, and 350 km) as shown in 

Figure 4.3. The slab subduction is well defined by the density. For the value of the layers lower than 

350 km is taken from the reference model AK135 (Kennett, 1995). The density of the subducting 

slab is less than that of the surrounding mantle, as also observed in the other subduction zones in the 

Mediterranean (Brandmayr et al. 2011, ElGabry et al. 2013). This fact is in full agreement with the 
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concept of the polarized plate tectonics (Doglioni and Panza, 2015) and disproves one of the basic 

concepts of the standard plate tectonics: the slap pull progress. 

 

  
Figure 4.3. (left) Density model distribution at depth 50km (Persicek et al., 2009). 

(right) Vertical smoothed cross section extended with ak135 for z deeper than 350km 
 

 Pesicek et al. (2010) also takes the advantage of the increased ray coverage due to seismicity 

following the 2004 December and 2005 March great earthquakes, an improved iterative regional-

global tomographic method (travel time P-wave tomography) was applied to the Sumatra–Andaman 

and adjacent regions which the propose for better constrain the 3-D mantle velocity heterogeneity in 

the region. Velocity and hypocentral parameters were iteratively perturbed to sharpen the image of 

the subducted slab. These tests show significant increases in amplitude and decreased smearing of 

synthetic slab features. Thus, when applied to the real data, similar enhancements are inferred in the 

resulting model, which better illustrates the complex slab geometry in the upper-mantle and 

transition zone regions along the Sumatra, Andaman and Burma subduction zones.  The regional P-

wave tomography study is covering the whole Sumatra Island as shown in figure 4.4.  

 The S-wave tomography data, in Figure 4.5, is from courtesy Sriwidiyantor (2008), which is 

derived by using an updated version of the reprocessed S arrival time data of Engdahl et al. (1998). 

The information from the S-wave data helps to characterize the inferred velocity variations, but 

previous studies have not produced any good constraints on the slab structure. This is likely due to 

the relatively high noise level of the International Seismological Centre (ISC) S-wave data. 

However, the refinement of the travel time data, particularly the reprocessing of the multiple data 

sets to extract the improved S-wave information conducted by Engdahl et al. (1998) has greatly 

benefited the current study. Engdahl et al. (1998) used the S phases in the initial source location and 
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an appropriate S-wave reference velocity model (ak135; Kennett et al. 1995). Most aspects of the S-

wave tomographic imaging technique employed here are similar to those of the P-wave data, except 

that for a ray to be included in the inversion, the travel-time residual for S relative to the ak135 

reference model has to lie in the range +/-15.0 s, in contrast to the dynamic reweighting of the P-

wave residuals (Pesicek et al. 2010) and (Widiyantor 2011). 

 

 
 

Figure 4.4. (left) P-wave tomography (Pesicek, et al. 2010) within the 3th layer at z=90km. (right) 
Vertical cross section along the red line profile (left) (ref. AK135). 
 

 
 

Figure 4.5. (left) S-wave tomography for the 3th layer at z= 90km (ref. AK135). (right) Vertical 
cross section along the red line profile (left), data from (Widiyantor 2008) 
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The tomography images for P-wave (Figure 4.4-left) and S-wave (Figure 4.5-left) show the 

boundary between the two plates, the positive perturbation value related to the cool oceanic crust 

and the negative value related to the hot continental crust. Both tomography data also show the slab 

under the subduction from the Sunda Trench and the vertical sections across the convergent margin 

in the middle Sumatra from SW to NE (red line) in Figure 4.4 (right) and 4.5 (right). By summing 

up the main properties of the velocity and density tomography models, it is possible to note that in 

the study region: (a) the density of the subducting slab is less than that of the surrounding mantle 

material, (b) the Vp and Vs velocities in the subducting slab are larger than those in the surrounding 

mantle. This fact contradicts the popular beliefs that the subducting slabs are at the same time faster 

and denser than the surrounding mantle, which is in perfect agreement with the fact that both VP 

and VS are inversely proportional to the density. For a more detailed discussion see (Doglioni and 

Panza, 2015). 

 The slow (relative to models of the wave speed) progress in the development of the 

attenuation model is not surprising since the wave amplitude, which is typically used to measure 

attenuation, requires a more complex interpretation than that of the wave travel time or the phase 

delay. The three-dimensional attenuation model in this study from Dalton et al. (2008) is derived 

from the observations of the fundamental mode Rayleigh wave amplitude anomaly in the period 

range 50 – 250 s, namely the QRFSI12 model. The data are measured from the vertical-component 

seismograms derived from the earthquakes with MW>6.0 that were recorded by the global and 

regional stations, and the algorithm is described by Ekstrom et al. (1997) for making the 

measurements. The data are ratios of the observed to the synthetic wave amplitude, where the 

reference seismogram is calculated using the appropriate moment tensor and the centroid location 

from the Harvard CMT catalog (Dziewonski et al., 1981).  The QRFSI12 has a poor resolution for 

Sumatra as shown in Figure 4.6. For a future study, we have to find a more detailed and higher 

resolution attenuation model for Sumatra, but the present day knowledge is acceptable for our 

purposes.  

The attenuation information from the QRFSI12 model is only the shear-wave attenuation Qs, 

but the modal summation also needs a compressional wave attenuation Qp. There is a very well 

known relationship to get the bulk attenuation from the shear attenuation Qp=(9/4)Qs as explained 

in many text books such as (Anderson 1989) and (Stein and Wysession 2003). The attenuation 

model from the QRFSI12 is really poor in terms of the complexity of the geology of Sumatra. 

Because we have Vp and Vs (VPS) for a resolution 0.5 degree for Sumatra, we try to apply some 

weight as the weighting factor VPS data. We use the simple relation proposed by Richard and 

Stewart (2006) with the relationship Qp=1.0/(0.0241*(Vp/Vs)-0.0357). We put the weight for Qp 

from this relationship about 0.2 and 0.8 from the QRFSI12. 
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Figure 4.6. (left) shear-wave attenuation model QRFSI12 (from Dalton et al., 2008). (right) 

Vertical cross section for profile red line 
   

 The discussed models above have a good resolution in a deeper part until the depth of 1500 

km, and the other models give a high resolution until the depth of  350 km; also they have a limited 

resolution in the upper layers. The reliability of the simulation depends on how reliable the detail is 

in the structure model being used. Therefore, critically combining all available information could 

provide a high vertical resolution in the uppermost layers. The adopted structural models are 

obtained from the surface wave tomography studies, e.g. model CRUST2.0 (Bassin et al. 2000) and 

LITHO1.0 (Pasyanos et al., 2014). The global models of the Sumatra region are shown in Figure 

4.7 and 4.8, respectively.  

 

  
Figure 4.7 (left) Matching depth from Crust 2.0 (resolution 2º) with SRTM data. (right) the Vp 

model at the upper crust layer (5th layer) 
 

The global crustal model CRUST2.0 uses the keys to assign the various types of the crustal 

structure (such as Archean, early Proterozoic, rifts, etc.) in each cell. CRUST2.0 was adjusted in 

type to better reflect the edges of the shelves and the coastline. The thickness of the sediments in 

each adopted cell is about 1.0 km meanwhile the average crustal thickness about 5 km. The 2x2 
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degree model is composed of 360 1D-profiles, where one of these profiles is assigned to each 2 x 2 

degree cell. Each individual profile is a 7-layer 1D-model with i.e. 1) Ice 2) water 3) soft sediments 

4) hard sediments 5) upper crust 6) middle crust 7) lower crust. The parameters VP, VS and rho are 

given explicitly for these 7 layers as well as the mantle below the Moho (Bassin et al. 2000). The 

upper crust layer for Sumatra has been plotted in Figure 4.7.  

 

  

Figure 4.8 (left) The icosahedron tessellation distribution of point Litho1.0 (resolution 1º) and 
overlay with future alternative polygon. (right) the VP model at lower sediment layer (5th layer). 

 
 The compilation of the crustal model initially follows the philosophy of the widely used 

crustal model CRUST2.0 that assigns the elastic properties in the crystalline crust according to the 

basement age or the tectonic setting. CRUST1.0, introduced in 2013, serves as a starting model in a 

comprehensive effort to compile a global model of the Earth’s crust and lithosphere. The Moho 

depth in CRUST1.0 (Laske et al. 2013) is based on 1ºx1º, which are the averages of a recently 

updated database of the crustal thickness data from the active source seismic studies as well as from 

the receiver function studies. In each 1-degree cell, boundary depth, compressional, and shear 

velocity as well as the density is given for 8 layers: water, ice, 3 sediment layers, and upper, middle 

and lower crystalline crust. The topography, bathymetry and ice cover are taken from ETOPO1, and 

the sediment cover is based on their sediment model (Laske and Masters, 1997). For the cells with 

no local seismic or gravity constraints, the statistical averages of the crustal properties, including the 

crustal thickness, were extrapolated. However, in places with the constraints for the depth to 

basement and the mantle are given explicitly and no longer assigned by the crustal type. This allows 

for much smaller errors in both.  

 The CRUST2.0 has a complete set of data for the Sumatra region for all depth and well 

tested but low in the lateral resolution 2ºx2º. We tried to use the updated version with a higher 
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lateral resolution, CRUST1.0, but there is a missing part for the velocity Vp at layer 4. Therefore, 

we skip the CRUST1.0 and step toward using LITHO1.0; the model is then validated against the 

new global surface wave dispersion maps and adjusted in the areas of extreme misfit.  

 It appears that LITHO1.0 (Pasyanos et al., 2014) represents a reasonable starting model of 

the Earth's shallow structure (crust and uppermost mantle) for the purposes in which these models 

are used, such as the travel time tomography or in the efforts to create a 3D reference earth model. 

The model matches the surface wave dispersion over a frequency band wider than the band used in 

the inversion. There are several avenues for improving the model in the future by including the 

attenuation and anisotropy, as well as by making use of the surface waves at higher frequency. Each 

of the nodes has a unique profile where the layering is more detailed than in CRUST2.0, since the 

sedimentary layer is divided into upper, middle, and lower sediments. The lower sediment layer for 

Sumatra is presented in Figure 4.8. Other additional layers under the crust for LITHO1.0 are one 

layer for the lithospheric mantle (lid), and one for the asthenospheric mantle. The parameters of the 

layer thickness, VP, VS, rho, and Q (placeholder values) are given explicitly for all layers. The 

parameters below the asthenosphere blend into the ak135 model (Kennett et al., 1995). 

4.3 Observational Sites and Rotated Cellular Polygons  
 NDSHA produces realistic strong ground motion estimation through the incorporation of the 

detailed crustal structure and the source information. This is an advantage using the NDSHA 

method that has to be paid with a high computational cost. Therefore, the optimum spacing between 

sites where the structural models are specified is required to decrease the computational time. In this 

study, we adopted a grid space of 0.2º as shown in Figure 4.9 (right). Beside using 0.2º grid 

interval, we also put directly the observation point in the center of an Island if not filled, when 

applying 0.2 degree interval.   

 There are 954 receiver sites (locations where the synthetic seismograms are computed) as 

shown in Figure 4.9 (right). Because of the modal summation method needs to calculate the spectral 

modes for each structure, it is better to group similar structural models at the close receiver sites 

within a polygon. In this study, we rotated the cellular polygons by 54º. The rotation of the 

structural zones will contribute in the enhancement of the hazard computation as show in Figure 4.9 

(left). As the first advantage, the rotation reduces the number of the polygons because we can avoid 

producing the small polygons at Conner near the coastline. The total number of the polygons is 49, 

which 14 polygons for the small Islands and 35 polygons for the Sumatra island. The second 

advantage is that the polygons will be aligned along the orientation of the geological layer near 

west, and the polygon near east will orient in the same direction as the thick sedimentary cover 

orientation. Finally, with the 3D heterogeneous modal summation, we can construct the ray part 
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from the subduction zone perpendicular to the polygon side, and this will be a matter for a future 

study (La Mura et al., 2011, Panza et al., 2013).  

 The observation points can be defined as a regular grid for estimating the seismic-hazard 

map at different scales as shown in Figure 4.9 (left) or from the actual observation points such as 

seismometer, accelerometer, and observed intensity data. Figure 4.10 (left and right) shows the 

accelerometer, and the seismometer network run by the Indonesia Meteorological and Geophysical 

Agency (BMKG).  

 

  
Figure 4.9 (left) Rotated by 54º cellular polygons used to define the structural model in this study. 

(right) Distribution of computation points in this study inside the polygons 
 

  
Figure 4.10 (left) Distribution of BMKG accelerometers for Sumatra (right) Distribution of 

BMKG seismometers for Sumatra and associated structural polygon. 
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We make a simple program por4obs.exe to assign the observation points with the 

associated structural polygons. For example, the observation point from the accelerometer 

accsum1.obs, our structural polygon sumg.por, and the new observation file has been associated 

with the structural polygon by following the command in Figure 4.11. 

 

 

 

 

 
Figure 4.11. Diagram procedure for production the spectral 
modes and observation point by following command 
 
por4obs.exe sumg.por accsum1.obs > acc.obs 
por4obs.exe sumg.por dx 0.5 > sum2.obs 
 
The *.obs file will send to paths generator program, where as 
the spectral modes (see figure 4.13) send to modal 
summation computation for generating synthetic seismogram 

 

 

4.4 Structural Model of Sumatra  

 The structural model for each polygon is represented by the 1D structural model that defines 

the physical properties of the propagation path i.e. density, VP, VS, QP, and QS, which affects the 

resultant strong ground motion at the target site. We extracted the values by interpolation from the 

available studies, at the centroid area of each polygon, from the available 3D models, as discused in 

Section 4.2. After performing the interpolation and the compilation using several tomography 

studies, we obtained the requested 1D structural model. Listing 4.1 shows the 1D structural model 

under the Banda Aceh city related to the polygon number 3 in Figure 4.9-left. The plot of the 

structural model for the whole depth (until 1500 km) is shown in Figure 4.12 (left), and the upper 

layer resolution is shown in Figure 4.12 (right). 

 After adopting the appropriate structural models for each area, there is a need to compute the 

spectrum file for each model being used for a specific frequency (Panza et al, 1983). The 

computation of the modes for a given structural model is the prerequisite for the computation of the 

synthetic seismograms. The algorithm for the computation of the eigenvalues for Rayleigh wave for 

the solution of the elastic wave propagation in the multilayered media as the quotient of product of 

the matrices is given by Knopoff (1964) and  Panza (1985). The structure should reach at least 80 

km in depth for 10 Hz computations (100 km would be even better), and about 1100 km for 1 Hz 
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computations (the detailed description of this procedure is shown in the manual developed by 

Vaccari (2015m). Figure 4.12-left shows the Rayleigh-wave and Love-wave dispersion curves for 

the structure under the Banda Aceh city.  

 

 
%thk(km)  rho     Vp(km/s)   Vs(km/s)   Qp       Qs      depth(km)  layer, 95.5165,  5.3823 
1.1787    1.97     2.169145   0.708092  1350.13   600.00  1.17866     1          SEDS1-BOTTOM 
6.8135    2.47     5.147437   2.904619  1350.13   600.00  7.99216     2          CRUST1-BOTTOM 
8.4092    2.67     6.113295   3.495663  1350.13   600.00  16.40134    3          CRUST2-BOTTOM 
15.1265   2.85     6.686211   3.815870  1350.13   600.00  31.52783    4          CRUST3-BOTTOM 
92.8497   3.30     8.123616   4.628840  450.04    200.00  124.37752   5          LID-BOTTOM 
100.0000  3.30     7.961142   4.326709  157.52    70.00   224.37752   6          ASTHENO-BOTTOM 
55.62248  2.65     8.572799   4.639019  208.83    92.72   280.00000   7          M65 
60.0000   2.78     8.753242   4.750742  201.59    89.51   340.00000   8          M62 
70.0000   3.47     8.939481   4.861714  156.31    69.40   410.00000   9          M69 
80.0000   3.93     9.550887   5.220524  416.59    184.97  490.00000   10         M55 
80.0000   3.92     9.810226   5.370601  420.98    186.92  570.00000   11         M51 
90.0000   3.92     10.119212  5.566250  425.83    189.07  660.00000   12         M48 
90.0000   4.29     10.932946  6.094822  1315.11   583.91  750.00000   13         M44 
90.0000   4.40     11.122142  6.236225  1271.93   564.74  840.00000   14         M43 
90.0000   4.49     11.280877  6.265922  1255.96   557.65  930.00000   15         M41 
90.0000   4.57     11.451852  6.338050  1240.11   550.61  1020.00000  16         M39 
110.0000  4.63     11.602945  6.432203  1223.39   543.18  1130.00000  17         M37 
120.0000  4.69     11.771735  6.541500  1204.54   534.82  1250.00000  18         M36 
150.0000  4.76     11.950846  6.629762  1182.80   525.16  1400.00000  19         M33 

Listing 4.1. File sumh0003.stp is the structural model under Banda Aceh city 
   

 

  
Figure 4.12: Structural model under Banda Aceh city related polygon 3 (file sumh0003.stp) 
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Figure 4.13. Dispersion curve for (left) Rayleigh wave (right) Love wave for Banda Aceh 

structural model as shown in figure 4.11. Upper is phase velocity and lower is group velocity 
 

 The adopted structural model is validated by comparison with the other result (Kenneth et 

al. 2012) from the receiver function as shown in Figure 4.13 (left). The comparison is carried out 

for  ρ, VS, and VP in the structural model of the polygon 4 and 19, where the LMHI and GSI 

seismometer stations are located as shown in Figure 4.14 (right). The comparison for ρ, VS, and VP 

computed using the receiver function from LITHO1.0 and CRUST2.0 carried out by Kenneth et al. 

(2012) for both figures that show that they are relatively similar, and the LITHO1.0 model (solid 

line) more closely approaches the receiver function, and we prefer to use the LITHO1.0 for the 

upper part of the structural model. In order to improve the quality of the upper parts of the structural 

model, the surface wave tomography could be performed in a future study. Figure 4.15 shows the 

entire structural models used in this study as an overlay.  
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Figure 4.14:  The LITHO1.0 model (solid line) more closely approach the receiver function 
inversion model (thin line, Kenneth et al., 2012) compare to CRUST2.0 (dash line) especially the 
density model. (left) Station LHMI at structural polygon 4 and (right) station GSI at structural 
polygon 19. 
 

  
Figure 4.15: The overlay all of the structural models used in the simulation  
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5.Modal Summation Technique and Validation  
 

5.1 Seismic Wavefield and Modal Summation 

 Seismic waves can be represented as elastic perturbations propagating within a medium, 

originated by a transient disequilibrium in the stress field. In the study of elastic bodies, to take into 

account macroscopic phenomena, it is assumed that the medium is a continuum, i.e., that the matter 

is distributed continuously in space. Therefore, it is possible to define the mathematical functions 

that describe the fields associated with the displacement, stress and deformation. 

    Considering the balance of the forces such as inertia, body forces, and surface forces acting on a 

cubic element within the continuum, and applying the Newton's laws of motion, we obtain the 

system of equations of motion. 
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(5.1) 

 

where a Cartesian coordinate system (x, y, z) is adopted. sij(x,t) (i=x, y, z; j=x, y, z) indicates the 

second-order stress tensor, ρ is the density of the material, and X, Y, Z are the components of body 

forces for a unit mass. 

 In general, the relation between the stress and deformation can take a very complex form 

since they have to consider the effects of the parameters like pressure, temperature, and the amount 

of the variability of the stress. Nevertheless, by assuming that the deformations and stresses in short 

duration (the conditions mostly satisfy the problems in the ground motion estimation) are small, we 

can then think of that the solid behaves linearly, and the constitutive relation linking the stresses 

and the deformation becomes the Hooke's laws of stress tensor. After applying some symmetry and 

assuming the locally isotropic stress, we get the equation  

 

!!" = !!!!!!" + 2!!!" (5.2) 

 

and the quantities λ and µ are called Lamè parameters.  
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 Using Equation 5.2, Equation 5.1 becomes a linear system of three differential equations 

with three unknowns: the three components of the displacement vectors, whose coefficients depend 

on the elastic parameters of the material. It is not possible to find the analytic solution for this 

system of equations; therefore, it is necessary to add further approximations, chosen according to 

the adopted resolving method. Two ways can be followed. In the first way, an exact definition of 

the medium is given, and a direct numerical integration technique is used to solve the set of those 

differential equations. The second way implies that the exact analytical techniques are applied to an 

approximated model of the medium that may have the elastic parameters varying along one or more 

directions of heterogeneity. In the following, we introduce the analytical solution valid for a flat 

layered halfspace that constitutes the base of knowledge for the treatment we will develop for the 

models with the lateral discontinuities. 

 Let us consider a halfspace in a system where the Cartesian coordinates are the vertical z-

axis positive downward and the free surface, where the vertical stresses are null and thus defined by 

the plane z=0 (Figure 5.1).  

 
Figure 5.1. Adopted reference system for a vertically 
heterogeneous halfspace. 

 

 Let us assume that l, m, and r are piecewise the continuous functions of z, and that the body wave 

velocities, ! = !!!!
!

 and  ! = !
!
, assuming their largest value, aH and bH, when z > H, remain 

constant for the greater depths. If the elastic parameters depend only upon the vertical coordinate, 

using Equation 5.1, Equation 5.2 becomes: 
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The boundary conditions that must be satisfied when solving Equation 5.3 are the free 

surface condition at z=0. The complete solution of Equation 5.3 can be represented in an integral 

form. At large distances from the source, compared with the wavelength, the main part of the 

solution is given by Rayleigh and Love modes (see e.g., Levshin (1973) and Aki and Richards 

(1980)). 

 By neglecting the body forces, we can consider solutions of Equation 5.3 having the form of 

the plane harmonic waves propagating along the positive x axis: 

! !, ! = ! ! !!(!"!!") (5.4) 

 The source is introduced in the medium representing the fault, which itself is supposed to be 

a planar, as a discontinuity in the displacement and shear stresses fields, with respect to the fault 

plane. On the contrary, the normal stresses are supposed to be continuous across the fault plane. 

Maruyama (1963) and Burridge and Knopoff (1964) demonstrated with the representation theorem 

the rigorous equivalence of the effects between a faulted medium with a discontinuity in the 

displacements and shear stress fields, and an unfaulted medium where the proper body forces are 

applied. 

 Following the procedure proposed by Kausel and Schwab (1973), we assume that the 

periods and wavelengths, which we are interested in, are large compared with the rise time and the 

dimensions of the source. Therefore, the source function, describing the discontinuity of the 

displacement across the fault, can be approximated by a step function in time and a point source in 

space. Furthermore, if the normal stress is continuous across the fault, then for the representation 

theorem the equivalent body force in an unfaulted medium is a double-couple with a null total 

moment. With this assumption, the eigenvalues and eigenfunctions of the problem are already 

determined; we can write the expression for the displacement with varying time, i.e., the synthetic 

seismogram, for the three components of motion. The asymptotic expression of the Fourier 

transforms of the displacement U = (Ux, Uy, Uz), at a distance r from the source, can be written as 

, where m is the mode index and: 
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(5.5) 

The suffixes R and L refer to the quantities associated with Rayleigh and Love modes, respectively. 
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In Equation 5.5, S(ω) =|S(ω)|exp[i·arg(S(ω))] is the FT of the source time function while χ(hS, 

ϕ) represents the azimuthal dependence of the excitation factor (Ben-Menhaem and Harkrider, 

1964) 
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!! ℎ!,! =                       !(!!! sin! + !!! cos!)+!!! sin 2! + !!! cos 2! 
(5.6) 

with: 

!! =
1
2! ℎ! sin ! sin 2!  

!!! = −! ℎ! sin ! cos2!  
!!! = −! ℎ! cos ! cos !  
!!! = ! ℎ! cos ! sin !  

!!! = −
1
2! ℎ! sin ! sin 2! 

  
!!! = ! ℎ! cos ! sin !  
!!! = −! ℎ! sin ! cos2!  

!!! =
1
2! ℎ! sin ! sin 2!  

!!! = ! ℎ! cos ! sin ! 

(5.7) 

 

where ϕ is the angle between the strike of the fault and the direction obtained connecting the 

epicenter with the station, measured anticlockwise; hs is the focal depth; δ is the dip angle and λ is 

the rake angle (see Figure 5.2). The functions of hs that appear in Equation 5.7 depend on the 

values assumed by the eigen functions at the hypocenter 
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(5.8) 

where the asterisk, *, indicates the imaginary part of a complex quantity, i.e., ux*, σzz*, and σzy* are 

real quantities. The details in proving the above equation was done by Panza et.al (2001). 

 The synthetic seismogram can be obtained with the three significant digits as long as the 

condition kr>10 is satisfied (Panza et. al., 1973), and a realistic kinematic model of a finite fault can 

easily be adopted (e.g., Panza and Suhadolc, 1987; Sarah et. al., 1998) in conjunction with the 

modal summation technique. The seismogram is computed by summing the time series radiated by 

the single point-sources with the appropriate time-shifts that are defined by the rupture process. The 

resultant time series show the great influence on the directivity, and the distribution of energy 

released in time may have influence on the synthesized ground motion (Panza et.al 2001). 
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 At each site, the horizontal components (P–SV radial and SH transverse) synthetic 

seismograms are first computed for a seismic moment of 10−7 N m and then scaled to the magnitude 

of the earthquake using the moment–magnitude relation from Kanamori (1977). The finiteness of 

the source is accounted by scaling the spectrum using the spectral scaling law proposed by Gusev 

(1983) as reported by Aki (1987). For the period between 1 and 2 s, the Gusev spectral fall-off 

produces higher spectral values than the ω−2 spectral fall-off, and thus guarantees a conservative 

hazard computation (Vaccari 1995). 

 For the acceleration, the deterministic modeling can be extended to frequencies greater than 

1 Hz by using the existing standard design response spectra (Panza et al., 1996). The design ground 

acceleration values are obtained by scaling the chosen normalized design response spectrum 

(normalized elastic acceleration spectra of the ground motion for 5 % critical damping) with the 

response spectrum computed at frequencies below 1 Hz. The design ground acceleration (DGA) is 

obtained through extrapolation using standard code response spectra following the procedure 

described by Panza et al. (1996).  

  

Figure 5.2. Angle conventions used for the source system. 

 

5.2 Parametric Test for Modal Summation Technique  

 There are several approximations adopted to use the modal summation to generate a 

synthetic seismogram. In order to understand the synthetic seismogram and to define the effect of 

different input parameters in the resultant ground motion, the parametric test program can be carried 

out by running eparatest.out. The input parameters are described in detail in the filename 

eparatest.par with a fixed format, (e.g. SRE, DIP), see Listing 5.1. A quick reference manual 

for this original version of 1D Modal Summation Technique parametric test is supplied by Vaccari 

(2015m). 
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Parameter file for program eparatest 
-------------------------------------------------------------------------------- 
svalp                 Test label (root for output filenames - 13 chars max) 
0                     Ref. box for values not listed below (0=no, 13 chars max) 
svalp.spl             Love spectrum file 
svalp.spr             Rayleigh spectrum file 
2                     Motion (1=displ, 2=vel, 3=acc) 
50                    Time length for plot seismograms (s) 
1  13.0 45.0 80       Source (1=point, 2=extended), lon, lat, strike (Nord)  
SRE 1   0 360 15      Strike (loop 0=no,1=yes, start, stop, step) (Degrees) 
DIP 0  30  90 10      Dip (loop 0=no,1=yes, start, stop, step) (Degrees) 
RAK 0  10  40 10      Rake (loop 0=no,1=yes, start, stop, step) (Degrees) 
SDE 0   7   9  1      Source Depth (loop 0=no/1=yes, start, stop, step) (km) 
EDI 0  15 200 15      Epic. Distance (loop 0=no/1=yes, start, stop, step) (km) 
RDE 0   0   3  1      Receiver Depth (loop 0=no/1=yes, start, stop, step) (km) 
MOD 0   0   0  1      Modes (loop 0=no/1=yes, start, stop (step must be 1) ) 
INT 0   1  30  1      Interpolation (0-9) (flag 0=no,1=yes, start, stop, step) 
MAG 0 6.5 7.0 .1      Magnitude (flag 0=no,1=yes, start, stop, step) 

Listing 5.1 Original version parametric test  (file name: eparatest.par) 
 

Parameter file for program readpar2.out  
-------------------------------------------------------------------------------- 
tak1                  Test label (root for output filenames - 13 chars max) (*) 
0                     Ref. box for values not listed below (0=no, 13 chars max) 
sumg.por              Polygon file 
2                     Motion (1=displ, 2=vel, 3=acc) (*) 
50                    Time length for plot seismograms (s)(*) 
1                     Source (1=point, 2=fix dir,   3=auto dir, 4=ext true) 
96.665 4.645         Epicentral coordinates (Lon, Lat, Degrees)(*)  
---------------------------------------------------------------------------- 
0./Gusev/             Path to scaling curves (0=call pulsyn)(*) 
gbilpx                Name of file(s) for scaling (for source type 2) 
../ita001.src         Reference .src file (0=auto) (not used for pre-computed scaling curves) 
---------------------------------------------------------------------------- 
SPX "s/shof" 
#SPX "s/shtf" 
#s/shtf0006.spx       #this for uniform structural spectral 
#2013-07-02T07:37:02.61 6.1 Mw 4.645 96.665 13.0 Northern Sumatra, Indonesia # 315 80 170 
SUT 96.665   4.645    13.0       315 80 170   6.1     Takengon 
STR 0  315 100  5      Fault strike (Degrees)(*) 
#    96.4040   4.2668  0007    0.000  MLSI 
#OBS 96.4040   4.2668  MLSI 
#EDI 50.958, SRE 100.471 MLSI 
#CEL 0.1 
#AZI 0  30 60  10 
#DIP 0  80  90 10      Dip (loop 0=no,1=yes, start, stop, step) (Degrees)(*) 
#DIP 1  30   80  50      Dip (loop 0=no,1=yes, start, stop, step) (Degrees)(*) 
RAK 0  170  40 10      Rake (loop 0=no,1=yes, start, stop, step) (Degrees)(*) 
SDE 0  13.0  15  2        Source Depth (loop 0=no/1=yes, start, stop, step) (km)(*) 
EDI 1  2 70 2      Epic. Distance (loop 0=no/1=yes, start, stop, step) (km)(*) 
#EDI 50 
SRE 0  100  110  10    Strike-Receiver (loop 0=no,1=yes, start, stop, step) (Degrees) 
#SRE 2  0  360  5    Strike-Receiver (loop 0=no,1=yes, start, stop, step) (Degrees)       
RDE 0  0  3  1        Receiver Depth (loop 0=no/1=yes, start, stop, step) (km)(*) 
MOD 0  0  9  1        Modes (loop 0=no/1=yes, start, stop (step must be 1) )(*) 
INT 0  1  10  1       Interpolation (0-9) (flag 0=no,1=yes, start, stop, step)(*) 
MAG 0  6.1 7.0 .3      Magnitude (flag 0=no,1=yes, start, stop, step)(*) 
#DIR 0 180 180 0 
#XST 0 -0.5 0.5 0.5    X-coord nucleation point (-0.5 - 0.5) (along strike) 
#YST 0 -0.5 0.5 0.5    Y-coord nucleation point (-0.5 - 0.5) (along dip) 
#XSZ 0  5 10 1          X-Size (km along strike) (flag -1=auto) 
#YSZ 0  3 10 1          Y-Size (km along dip)    (flag -1=auto) 
#MAC 0  0.7 0.9 0.1      Mach number for rupture velocity computation 
#RND 0  1  120 1        Random seed for source time function gen. (0=Fix, 1=Variate)   
#RRR 010           # if 1 set to initial and also for loop (000=Slip,Rup.Vel,Time Hist) I71,I72,I73 
frame 95 100 2 6 
COM  rad tra rzz sns sew res 
ALL d v a dga 

Listing 5.2 Updated version parametric test, rich of high flexibility features for user 
 

 We developed a new updated version of the parametric test routine which involves the new 

features and advantages e.g. the flexible configuration file and the polar plot, integrated with an 
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extended source. The new proposed routine is more flexible (user-friendly) in editing and adding 

some notes relative to a relatively rigid format now in use (see Listing 5.2). The main motivation 

for updating the existing parametric test routine is to easily handle the spectral structural 

information from the regional polygon (i.e. sumg.por). Moreover, it is capable of addressing the 

extended source, but it will not be discussed in this thesis because it needs a better understanding of 

the extended source mechanism and the related parameters, those of which could be developed in a 

future study.  

 There are two ways for executing this updated parametric test routine: without and/or with a 

passing parameter. Without a passing parameter, the test routine will read the default configuration 

file eparatest.par, and with a passing parameter, there is a possibility the test routine reads 

another filename, e.g.: 

 readpar2.exe                        
 readpar2.exe paratest2.par 

  

Executing the command will generate several configuration files needed by the modal summation 

procedure, plotting procedure, and script par2job.sh to run all the commands sequentially. 

There are possible 3 categories input styles for each line:  

(1) sequential header input style: the number or text given in order per line sequentially. 

tak1                  Test label (root for output filenames - 13 chars max) (*) 
0                     Ref. box for values not listed below (0=no, 13 chars max) 
2                     Motion (1=displ, 2=vel, 3=acc) (*) 
50                    Time length for plot seismograms (s)(*) 
1                     Source (1=point, 2=fix dir,   3=auto dir, 4=ext true) 
96.665 4.645          Epicentral coordinates (Lon, Lat, Degrees)(*)  
---------------------------------------------------------------------------- 
0./Gusev/             Path to scaling curves (0=call pulsyn)(*) 
gbilpx                Name of file(s) for scaling (for source type 2) 
../ita001.src         Reference .src file (0=auto) (not used for pre-computed scaling curves) 
 

the line ------- or beginning with #  will be ignored . 

(2) tag identification input style: in which a number or text can be used to set some variables or 

features depending on our choice. For example, to apply a loop in an epicenter distance EDI 1 2 

70 2, also it is possible to set a constant distance EDI 50. The example with the text input is ALL 

d v a dga and SPX "s/shtf". 

(3) extension filename input style: in which we need only to insert the filename, and the parameters 

will be defined by their extension (not depending on a line). The filename should follow the 

convention, for example, sumg.por. 

 The existing parametric test has maximum two loops per run to systematically change the 

variables being used. The null loop will only generate a synthetic seismogram, the single loop will 
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produce result with a single arbitrary variable, for example, that of in Figure 5.6, in which the 

looping is applied for the epicenter distance EDI. The double loop will produce the results for 2 

arbitrary variables such as those shown in Figure 5.3 EDI and STR. Additionally, the figure shows 

the advantages of the modal summation for calculating the strong ground motion, which could take 

into account the angular radiation pattern. Figure 5.5 shows the capability of using a regional 

structural polygon, which could produce PGA with a more realistic pattern based on the structural 

condition being in use. Figure 5.4 (right) and (left) show that the adoption of different cutoff 

frequencies is not affecting the radiation pattern but is affecting the maximum value of PGA.  

 

 
 

Figure 5.3 Angular radiation pattern generated with change of variable SRE and EDI with uniform 
structural model s/shtf0006.sp? 

 

  
Figure 5.4 Angular distribution pattern for PGA at 1hz cutoff reaches values above 10. cm/s2 (left) 
and at 10hz cutoff the PGA reaches values above 90. cm/ s2 (right)  
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Figure 5.5 shows the parametric test for a single loop in EDI (an epicenter distance). There 

is no difference in PGD estimated with a different cutoff frequency i.e. 1Hz and 10Hz , as it is 

natural since, as a rule, the displacement peaks at periods larger than 1s (i.e. frequency below 1hz). 

The PGV is different (about by a factor of 2) when using 1Hz and 10Hz max frequency. In contrast, 

the PGA shows a significant difference between 1Hz and 10Hz based run, about a factor of 5. As a 

consequence, there is a clear limitation in the use of modal summation technique for earthquakes 

with the epicentral distance (EDI) less than the source depth (SDE) especially for estimating the 

PGA. Therefore, for the future development, the modal summation method should be combined 

with another method, such as DWN (Discrete Wave Number) (Pavlov 2002, 2009, Magrin, 2013).  

  

  

  
Figure 5.5 Radial distributions of PGD (top), PGV (middle), PGD (bottom) with maximum 
frequencies 1Hz (left) and 10Hz (right) for several components differentiated by color line.  

PGD 1hz PGD 10hz 

PGV 1hz PGV 1hz 

PGA 1hz PGA 10hz 
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5.3 Validation to the Takengon Earthquake 2013 M6.1 
 One of the recent destructive earthquakes originated at the Sumatra fault system was on 2 

July 2013, where the earthquake was with magnitude 6.1 and geodynamical investigate by 

AGNeSS network (Ito et al. 2016). The earthquake struck near Takengon, the capital city of the 

Central Aceh Regency in North Sumatra. This event caused significant casualties and damage of 

the property. At least 42 people were killed, 2,500 injured, 6 missing, 53,339 displaced, and 20,401 

buildings destroyed in the Bener Meriah-Central Aceh area. One person was killed by a landslide in 

Bener Meriah. Several landslides damaged roads, cutting off an access to 9 villages. The earthquake 

was felt with the Intensity Modified Mercalli Intensity Scale (MMI IV) in Banda Aceh, 

Lhokseumawe, and Takengon,, with (MMI III) in Medan, with (MMI III) in Georgetown and 

Gelugor (Malaysia) including Ayer Itam, Balakong, Butterworth, Petaling Jaya, Sungai Ara, and 

Tanjong Bunga, and in Phuket (Thailand) as reported by USGS (USGS 2013). 

 
Figure 5.6 (left) Shaking map from USGS; (right) First-order interpretation of the tectonic settings 
around the epicenter of the Mw 6.1 earthquake of July 2, 2013.  
http://www.earthobservatory.sg/news/magnitude-61-earthquake-hits-northern-sumatra 
 
Table 5.1 Information from USGS about Takengon Earthquake 

 
 

 

The following earthquake parameters obtained by USGS will be used to carry out the parametric 

test   
#2013-07-02T07:37:02.61 6.1 Mw 4.645 96.665 13.0 Northern Sumatra, Indonesia 
SUT 96.665   4.645    13.0       315 80 170   6.1     Takengon 
 
The resulted map is computed using 0.1x0.1 degree grid space 
CEL 0.1   # for generate PGV and PGA map 
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  USGS provides detailed information about the Takengon of 2 July 2013 M=6.1 earthquake, 

and the shake map is available as well and can be obtained from the USGS website at    

http://earthquake.usgs.gov/earthquakes/shakemap/global/shake/b000i4re. The shake map provides 

information about the PGV and PGA (Figure 5.7-top-left) in a numeric digital format which allows 

for comparison with the obtained results from the updated version of the parametric test. 

 

  

  
Figure 5.7. (top-left) PGA from USGA shake map  (top-right) DGA at 1hz cutoff calculation 
            (bottom-left) PGA at 1hz cutoff calculation (top-right)  PGA at 10hz cutoff calculation 
 

  
Figure 5.8. (left) Difference: DGA 1hz cutoff – USGS PGA (g);  

(right) Difference: PGA 10hz cutoff – USGS PGA (g) 
 
 The values given in the shake map from USGS have a quite uniform angular distribution, 

that cancels any source mechanism effect, whereas the modal summation has the advantage to 
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produce an angular distribution of the radiation pattern that preserves the signature of the focal 

mechanism. The DGA at 1hz and the PGA at 10hz is similar to the PGA in the shake map, and 

Figure 5.8 shows the difference. The PGA computed at 10Hz cutoff frequency reaches a value 

larger than the one from the shake map and shows a well defined radiation pattern.  

    The PGV from the USGS shake map is shown in Figure 5.9 (top-left) and also has no specific 

angular distribution regarding the focal mechanism. The PGV produced by 10Hz and 1Hz 

computations are shown in Figure 5.9 (top-right) and figure 5.9 (bottom-left). The difference 

between the PGV estimated by the modal summation technique and the PGV obtained by the USGS 

shake map is shown in Figure 5.10. The PGV at 1Hz computation is lower than the PGV from the 

shake map, whereas the estimated PGV based on 10 Hz computation shows a greater value.  

 

 
 

 

Figure 5.9 PGV for Takengon earthquake M6.1  
(top-left) PGV from USGA shake map   
(top-right) PGA at 10hz calculation 
(bottom-left) PGA at 1hz calculation 

 
 
 

  

Figure 5.10 (left) Difference: PGV 1hz – USGS PGV (cm/s)    
(right) Difference: PGV 10hz – USGS PGV 
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(a) (b)   

(c)  

Figure 5.11: Comparison of PGV  
(a) Comparison PGV for 1hz to USGS PGV 
(b) Comparison PGV 10hz to 1hz 
(c) Comparison PGV 10hz to USGS PGV 
The color bar indicates the distance from 
epicenter in km.   

 
 The difference between the PGV and PGA values estimated by the modal summation 

technique and obtained by the USGS shaking map is clearly illustrated in Figures 5.8 and 5.10. 

Figures 5.11 and 5.12 show the comparative strong ground acceleration obtained by several 

methods. Figure 5.11a shows the PGV at 1Hz generally has the value lower than the PGV from 

USGS because the 1Hz calculation might underestimate the PGV value as shown in Figure 5.11b 

compared with the PGV with 10Hz computation. The PGV computed at the cutoff frequency of 

10Hz and the PGV from USGS will have small difference with large scattering as shown in  

Figure 5.11c.  

    Figure 5.12 illustrates the difference in the PGA from USGS at the 1Hz and 10Hz computations, 

and the DGA from the 1hz computation. The PGA at 1Hz computation obviously gives lower value 

than the PGA from USGS at 10Hz computation does. The DGA compares well with that of from 

the USGS shake map (Figure 5.12c) and remains lower in value than the PGA at 10Hz 

computation. Finally, the PGA estimated at 10Hz computation is strongly influenced by the 

structural model being used, meanwhile the value is quite comparable to the PGA from the USGS 

shake map as inferred from Figure 5.12e.  
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(a)  

(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5.12: This figure shows the comparative 
strong ground acceleration from several 
methods. The color bar indicates the distance 
from epicenter in km.   
(a) PGA for 1hz maximum frequency extremely 
lower than that of USGS data 
(b) Using the DGA method to estimate the 
expected PGA 
(c) DGA getting from 1hz calculation is a better 
approach to meet the USGS PGA 
(d) PGA calculated at 10hz significantly greater 
than PGA calculated at 1hz  
(e) PGA at 10hz has the best approach to the 
USGS PGA with huge scattered relationship 
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5.4 Comparison with the Observed Intensity for the Takengon Earthquake  
 

The macroseismic intensity estimation can be done for the areas where the seismic stations are 

not available so far. The macroseismic intensity has traditionally been used worldwide as a method 

for quantifying the shaking pattern and the extent of damage for earthquakes. Before the advent of 

the modern instrumental seismometer, it nonetheless provides a useful mean of describing the 

complexity of ground motion. The importance of macroseismic intensity data has led to several 

variants of the original, XII degrees, Mercalli scale (IMCS). So far the most popular are IMSK ~ IEMS-92 

~ IMM ~ (5/6) IMCS. 

 The presence and evaluation of the intensity data represent a very significant set of data needed 

to carry out accurate seismic analysis, in the seismic sources identification and validation of the 

resultant seismic hazard maps. Seismic intensities will continue to be of value for the earthquake 

analysis (Wald, 1999). Seismic intensity can cover the area near the source of an earthquake and it 

can be compared with the peak values of the synthetic strong ground motion and the intensity taken 

from a field survey.  

In the case of the destructive Takengon earthquake on 2 July 2013, several collections of 

intensity data are available. When the earthquake happened, Prof. Takeo Tabei and I were standing 

at SGMT (Singah Mata) for a GPS observation. We felt a medium shake with the intensity IV 

MMI. The second set of intensity data is provided by the USGS website from the instrumental 

intensity BKNI, GSI, LHMI, PSI, and 3 manual observations, the data of which can cover a 

distance site. The last intensity data are obtained from Ibnu Rusdy (2016) and involve about 129 

intensity data points, concentrated at the near source sites observed by Unsyiah (University of Syiah 

Kuala), see Figure 5.13. We choose intensity scale in MMI to be consistent with all data given by 

USGS and Unsyiah team.   A selection of destructed buildings during the 2013 earthquake is shown 

in Figure 5.14, and the considered data are shown in Table 5.2.   

The survey was conducted by means of interviews with the local community, if no major 

damage can be observed. A field investigation was simultaneously performed to check the damage 

levels at the buildings around the affected area. The classification of the buildings adopted is what 

has been proposed by Richter (1958) and Musson et al. (2002). Based on the survey, it was found 

that the highest intensity reached IX MM around Ketol village while VI MM affected the buildings 

located about 7-8 km from the central destructed building (Rusydy et al., 2015). Most of the survey 

by Unsyiah team follow the main road and the only focus for the near field with a radius less than 

30km and only two the site with the distance 52km and 82km. Whereas, the nearest station from 

USGS 70km at LHMI and 682km at BKMI. The position of the SGMT team when the earthquake 

happened is about 34km from the epicenter. 
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Figure 5.13. Distribution of sites survey for intensity overlay on the road for wide area (left) and 
for focus area for near field (right) 
 

   

  
 

  

 
SD 3 Ketol, IX MMI, (4°41'5.84" N, 96°44'14.61"E), site label: 461 Unsyiah VII MMI, site label unsyia 

 

 
 

 
 

 
 

Mesjid Kute Panang, IX MMI, (4°41'20.91"N, 96°47'16.00"E),  
site label  438 

Private Home, VIII MMI,  
site label: 457 

Figure 5.14 Selected destructive building (Dirhamsyah et. al 2013, Rusydy et. al 2015) 
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Table 5.2 Selected seismic intensity sites (I in MMI ). Intensity values are expressed, coherently 
with the definition of any macroseismic scale by ordinal numbers, rounding off, when necessary, 

cardinal values not consistent with the rule. 

No Long. Lat. I 
(MMI) label dist 

(km) 
PGA (gal) PGV (cm/s) 

USGS 1Hz DGA 10Hz USGS 1Hz 10Hz collector 

1 96.7878 4.6891 IX 438 14 234.50 17.24 31.56 194.80 18.26 4.48 7.35 Unsyiah 

2 96.7754 4.6901 IX 443 13 266.33 18.36 33.51 170.20 21.01 4.67 6.01 Unsyiah 

3 96.7739 4.6935 IX 444 13 266.67 19.16 35.26 178.10 21.04 4.88 6.25 Unsyiah 

4 96.7789 4.6781 IX 446 13 248.62 15.45 26.88 137.20 18.79 3.95 5.06 Unsyiah 

5 96.7359 4.6846 IX 460 9 344.67 17.22 33.91 93.09 28.60 4.36 5.19 Unsyiah 

6 96.7374 4.6850 IX 461 9 331.78 17.42 34.01 94.96 27.26 4.37 5.17 Unsyiah 

7 96.7227 4.7231 VIII 454 11 345.76 22.46 43.55 143.30 28.73 5.64 6.07 Unsyiah 

8 96.7161 4.7252 VIII 456 11 354.38 21.75 42.83 133.70 29.64 5.50 5.78 Unsyiah 

9 96.7161 4.7193 VIII 457 10 358.53 21.18 42.72 123.90 30.11 5.29 5.85 Unsyiah 

10 96.7117 5.116 V 527 52 52.19 1.27 3.02 6.94 4.60 0.37 0.60 Unsyiah 

11 96.2438 5.2354 IV 528 80 27.63 5.39 15.42 33.91 2.57 1.44 3.61 Unsyiah 

12 96.7495 4.7616 VII unsyia 16 268.45 24.47 46.81 332.90 21.19 6.63 13.35 Unsyiah 

13 101.0396 0.3262 1.5 BKNI 682 - 0.67 2.43 0.84 - 0.25 0.28 instrument 

14 97.5755 1.3039 1.8 GSI 383 - 0.39 1.46 1.17 - 0.14 0.17 instrument 

15 96.9472 5.2288 IV LHMI 72 30.27 4.71 7.97 31.19 2.43 1.25 2.62 instrument 

16 98.9237 2.6938 1.7 PSI 331 - 1.73 5.97 4.52 - 0.59 0.89 instrument 

17 100.5 5.48 2.9 T001 435 - 0.39 2.52 0.56 - 0.15 0.15 USGS 

18 100.31 5.37 2.7 T002 412 - 0.40 2.65 0.86 - 0.14 0.16 USGS 

19 98.67 3.59 3.2 T003 251 10.14 1.32 4.36 3.95 0.85 0.48 0.64 USGS 

20 96.5136 4.3758 IV SGMT 34 54.98 13.39 24.74 151.10 4.04 3.51 5.58 author 

   

 However, most of the data distribute in the near field and only a few in the far field. We 

tried to investigate the correlation between the MM intensity with PGA from USGS shakemap and 

the intensity against PGA and DGA from 1Hz and 10Hz cutoff frequency computation, as shown in 

Figure 5.15, and the correlation between the intensity with PGV from USGS shakemap and PGA 

from 1Hz and 10Hz cutoff simulation as shown in Figure 5.16. In both pictures the PGA/PGV 

range (the pink vertical segment) is supplied for the ground motion for Modified Mercalli 

intensities given by Wald et al. (1999), see Table 5.3. There is no fundamental reason to expect a 

simple relationship between the PGA and the PGV with Intensity; however, following the 

pioneering work of Cancani (1904) a simple empirical approach with the power law representation 

is adequate for the range from V to VIII, as determined by Wald et al. (1999): 

 

                                       (5.9) 

 
with a unit for PGA(cm/s2) and PGV(cm/s). We transformed those equations to follow the plotting 

green line in Figures 5.15 and 5.16, the equations become 
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                                                       (5.10) 

Because the PGA in computation (Table 5.2) uses a unit gal (cm/s2), but we preferred to present it 

in a unit %g to be more clear, we thus need to multiply it by a factor of 1/9.81 to make it PGA 

(%g)=PGA (gal)/9.81 as shown in Figure 5.15.  

 
Table 5.3 Range for ground motion for Modified Mercalli intensities (Wald et al., 1999) 

 

 
Figure 5.15. Correlation PGA (from USGS, 1Hz, DGA, and 10Hz) with Intensity survey, PGA 

range for MM (pink lines) and relationship from (Wald et al., 1999) (green line) 
 

 
Figure 5.16. Correlation PGV (from USGS, 1Hz, and 10Hz) with Intensity survey, PGV range for 

MM (pink lines) and relationship from (Wald et al., 1999) (green line) 
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 The PGA from the USGS shakemap are relatively higher in comparison with the other 

obtained results. The simulation with 1Hz cutoff gives a lower value of PGA than it does with 10Hz 

cutoff, as we could expect. DGA matches the PGA when computed at 10Hz cutoff at the far field 

sites only. The PGA from the 10Hz cutoff and the USGS shakemap fall within the PGA range 

obtained from the MM scale for all of the intensity level (in the pink segments range) except the 

VIII and IX intensity levels. The PGA variation from the simulation at 10Hz cutoff is wider in the 

variation  than the USGS shakemap at the intensity levels VII and VIII. The PGA value from both 

(USGS and 10Hz computation) has a good agreement with the range of PGA starting from the 

intensity VI; the lower intensities (V or less) have limited data, and the PGA value from USGS is 

not always greater than the PGA value obtained from the 10Hz simulation. Although the limited 

data for intensity lower than V, the PGA value from 10Hz frequency falls within the range of PGA 

from MM. 

 As it is natural from earlier discussion, the PGV values from 1Hz and 10Hz simulations are 

not too different from those of the observed intensity compared with the PGA value from both 

simulations for all intensities. The PGV from the 10Hz simulation is lower than the PGV from the 

USGS shakemap as shown in Figure 5.16. The PGV values from the UGSS and the 10Hz 

simulation are compared with the PGV values from the MMI range. The resulted pattern from those 

PGV values is then compared with the pattern given out by the PGA values at intensity VII and IX. 

The two patterns are relatively similar. Although the PGV value from the USGS can reach the value 

in the range of the intensity VII, the PGV value from the 10Hz simulation cannot.  Some PGV 

values from the 10Hz simulation are in the PGV range of MM at the intensity VI and lower.   

 The values of PGA and of PGV generated in the simulation are rather lower than the values 

of PGA and PGV given in Table 5.3 especially for the higher intensity. There are several factors 

affecting those PGA and PGV low values in the simulation. Firstly, the modal summation technique 

is valid for the sites at a distance equal 1.5 times the event focal depth. In the case of focal depth 

13km, the synthetic PGA and PGV values will underestimate observations at distances less than 

18km, as shown in Figure 5.5 for the 10Hz cutoff computation. Most of the sites, with the intensity 

greater than VIII, have the site-source distance lower than 18km as shown in Figure 5.17. The 

second factor is the local site condition; most of the sites marked by high-intensity levels lie on the 

soft sediment of the volcanic alluvium, whereas the sites close to the epicenter are located on the 

meta-sediments bedrock. Beside these factors, the intensity values are always based on how to carry 

out the survey, this means the expert’s judgment and bias are affecting intensity estimates. Even if 

in Figure 5.17, few half-integer values are reported (all number should be ordinal and not cardinal), 

it should be kept in mind that the error affecting intensity estimates, cannot be smaller than one 

intensity unit, on account of the discrete nature of any macroseismic intensity scale, that for this 
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reason is defined in terms of ordinal numbers.  

 

 

Figure 5.17.  The intensity 
data plotted over the 
geological map of Takengon. 
Most of the I≥VIII sites have 
the distance to epicenter lower 
than 18km and at sit on soft 
sediment of Qhv and Qvns 
volcanic alluvium, whereas the 
estimated epicenter at 
AnuBatee fault which located 
Metasediments Tertiary 
bedrock Tmpu Peutu 
Formation (Cameron, et. al 
1983).  On account of the fact 
that any macroseismic scale is 
an integer scale of ordinal 
numbers, in order to improve 
the correctness of the intensity 
data it is needed to re-evaluate 
the survey documents and 
seismologist should be 
involved in a survey after the 
occurrence of the future 
earthquake. 

 

5.5 Insights on the Synthetic Seismograms for the Takengon Earthquake. 
 The seismic hazard assessment was conducted using NDSHA, which relies on the realistic 

physical simulation for the source, propagation, and site conditions that are capable of generating 

synthetics seismograms at the sites being observed. The use of the 1D modal summation technique 

does not take into account the site effect, but it can be appropriately handled using the 2D and 3D 

approaches. Figure 5.18 (right) shows the surface distribution of different geological rock units 

(sedimentary and basement rocks) in Northern Sumatra. The effect of the upper most sedimentary 

layers is discussed in Chapter 7. 

  The Indonesian governmental institution BMKG (Badan Meteorologi, Klimatologi dan 

Geofisika) deploys several broadband seismometers and accelerometers in Sumatra. In this part of 

Indonesia, the Tsunami Early Warning System was designed in 2005 after the 2004 tsunami in 

Aceh. The data were made available for our research as the courtesy of BMKG in support of 

research institutes and universities throughout Indonesia including Syiah Kuala University. Due to 

the high tectonic complexity in Aceh, we hope BMKG could deploy more seismic stations 

especially in the Takengon area. The information about the location of seismographs and the 
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seismic network is available at the following link (https://inatews.bmkg.go.id/new/meta_eq.php). 

The detailed descriptions of the seismic stations being used in this investigation are shown in Table 

5.1, the type A (Accelerometer only), S (Seismometer only), and C (Collocated both). Data from 

the LASI station (Figure 5.23) show that the east-west component of motion is missing in the seed 

data; whereas, the TPTI station data show several gaps in the recorded data. Consequently, these 

two stations cannot be used for the comparison. 

 

 
Figure 5.18: (left) Station location of 
available seismogrphs and 
accelerometers for the earthquake 
Takengon M6.1. 

 

Table 5.1 Seismic stations near Takengon Earthquake sorted by the distance between the stations 
and the earthquake epicenter.  

No Name Id Dist. (km) Lat. Long. start Type Ground 

1 Meulaboh MLSI 50.874 4.267 96.404 2008 C Thin sediment 

2 Lhokseumawe LHMI 71.745 5.229 96.947 2007 S tick sediment 

3 Langsa Aceh LASI 146.341 4.457 97.970 2009 C tick sediment 

4 Sta. Klimatologi Indrapuri Aceh CERI 157.366 5.404 95.464 2010 A bedrock 

5 Tapaktuan  TPTI 163.203 3.262 97.177 2008 S bedrock 

6 Sta. Met. Blang Bintang Aceh CEBI 169.023 5.522 95.416 2010 A Thin sediment 

7 Kutacane KCSI 174.572 3.522 97.772 2008 C bedrock 

8 Sta. Geofisika Matai Aceh CEMA 178.607 5.496 95.296 2010 A bedrock 

9 Tuntungan  TSI 245.944 3.501 98.565 2005 C volcanic 

10 Sinabang SNSI 250.106 2.409 96.327 2008 A volcanic 

11 Sta. Klim. Sampali Medan MESA 254.174 3.620 98.793 2009 A tick sediment 

12 Sta. Geofisika Parapat Medan 
MEPA 330.579 2.695 98.923 2009 A volcanic 

PSI 330.864 2.695 98.924 2009 S volcanic 
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Figure 5.19: The location of 
existing stations at different 
geological condition 
(Barber et.al 2005, page 
176).   
  

 

 

 BMKG has used the seismometers with type Trillium-120 (Nanometrics), BBVS-120 

(Geodevices), and STS2. In addition, BMKG has also deployed accelerometers TSA100 and 

BBAS. Before comparing the computed seismograms with the real recorded seismic data, it is 

important to know the correct instrumental response for applying the instrument correction and 

filtering the data at the adopted threshold of frequency used in the seismograms computation. First, 

we removed the instrument response for the broadband seismometers using the available zeros- 

poles files in the full seed file format. For the accelerograms, the data is available only in the 

miniseed format, which does not include the instrument response information. On the other hand, 

instead of removing the instrument response from the observation data, applying the instrument 

response to the synthetic data can be an alternative to being comparable. In order to get a proper 

acceleration value in cm/s/s, it is needed to multiply the accelerograms by a given constant (i.e. 

KCSI multiply by 0.00000047) as following the standard procedure by BMKG staff (Rudyanto 

2015, Happrobo 2015).   

The recorded seismograms or accelerograms are plotted with a gray color line while the 

synthetic seismograms computed at 10Hz and 1Hz cutoff frequency are plotted with green and red 

lines, respectively. 
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Figure 5.20: Accelerogram (left) and Seismogram (right) for KCSI station at dist=174 km, 
Kutacane, Aceh. east-west (top), south-north (middle), vertical (bottom)  

 

 

 The KCSI station is located over a thin basin (near the pre-tertiary basement). Most of the 

plots we used in this discussion are limited to a time window of 100s, and we focused on the 

surface wave part of the waveform, the damaging ones. The waveforms from the accelerogram and 

seismograms are more dispersed than the synthetic seismograms because the synthetic seismograms 

are computed on a 1D rock structure without considering scattering, site effect, and other factors. 
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Figure 5.21:  MLSI Accelerometer (left) and Seismometer (right) (near Meulaboh) located at 
dist=50.87km: east-west (top), south-north (middle), vertical (bottom)  

 

The coda duration (wave following the main wave from) is due to the site effect where the 

seismogram is recorded. The stations located on thick (deep) sediment will have a long coda such 

as LHMI as shown in Figure 5.21 (left). The seismographs installed on bedrock do not show a long 

coda and fits well with the theoretically computed seismograms as shown in Figure 5.21 (right). 

Another site located on the thick sediments is the LASI station (Figure 5.23), which shows a long 

coda wave. Even if this is a far site and because this site is on the thick sediments, the effect of 

polarization and amplification remains strong. On the other hand, the TSI station, installed on the 

volcanic sediments, shows a short coda in comparison with both that of the LASI and of the LHMI.  
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Figure 5.22: Seismometer for LHMI station, located on thick sediments at dist=71.74 (left) and 
KCSI as station located on bedrock at dist=174 km (right) 
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Data from observation for BHE component  
not available 

  

  
Figure 5.23: Accelerometer (left) and Seismometer (right) of LASI station (in Langsa City), with 

distance=146.3 km from source and located at tick sediment.  
  

  

  

  
Figure 5.24.  Accelerometer (left) and Seismometer (right) TSI (in Tuntungan town), with 

distance=146.3 km from source and located at tick sediment.  
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CERI 

 
CEBI 

 
CEMA 

Figure 5.25 The accelerometer clustering near Banda Aceh, CERI (Indrapuri), CEBI (Blang 
bintang), and CEMA (MataIe), which distance from source 157km, 169km, 178km respectively. 

 
 
 Around the Banda Aceh city, BMKG deployed 3 accelerometers at a distance between 15 

and 20km as shown in Figure 5.18. The horizontal components of the CEMA accelerogram, 

installed on the limestone, is very similar to those of the synthetic seismogram computed using the 

modal summation technique, but the vertical acceleration is not. A little difference, recognized 

between the recorded and computed vertical component, may occur due to the fact that the strike-

slip fault with rake 170 gives less contribution to the vertical velocity. The CEBI is installed in the 

International airport Sultan Iskandar Muda on a sedimentary layer; thus, this site shows a strong site 

effect. The CERI station shows an intermediate “amplification” effect relative to both that of  the 

CEMA and of the CEBI stations. 

The MEPA/PSI station is located at 330km distance from the earthquake source, as shown 

in Figure 5.18. Figure 5.26 shows that the observed seismogram and accelerogram are relatively 

small compared with the theoretical waveform. One possible reason of the mismatch is that the 

recorded site is located over the Lake Toba volcanic area, which contains the material that has a 

strongly damping effect caused by the seismic wave energy. 

. 
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Figure 5.26  Accelerogram MEPA  (left) and Seismometer PSI (right) which located at Toba Lake 

which in the center of volcanic area and  the most distance source 330km 
.  
 

  

  

  
Figure 5.27 The accelerogram from SNSI (left) in Simeulue Island acceleorgram from MESA in 

Medan city with distance almost same 250km and 254km respectively. 
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Figure 5.27 shows the comparison between two site stations (i.e. SNSI and MESA) at 

relatively the same distance from the earthquake (i.e. 250km and 254km, respectively) with two 

different ray path structures: with and without the oceanic path. The accelerogram from the SNSI 

(Figure 5.27-left), located on Simeulue Island, shows a very strong dispersion effect compared with 

that of the accelerogram from MESA (figure 5.27-right), located on the sedimentary basin of the 

Medan city. This is an interesting topic for the future to verify the strong dispersion from Simeulue 

Island to investigate the oceanic-continental coupling structural interface (Panza et al., 2010, 

Bisignano, 2003, Yanovskaya, 2000). From Figure 5.27-right, it is possible to see a shift in the 

arrival time and large dispersion in the accelerogram from the MESA station; the long coda is due 

to the scatter of the sedimentary layer. 

The computed synthetic seismograms are significantly dependent on the accuracy and 

amount of details in the structural model being used particularly for the high frequency simulation, 

and it is difficult to get a good consistency between the observed and computed seismograms 

because a lot of factors may affect the seismic waves during their propagation. Therefore, 

comparing the observed and theoretical waveforms at a low frequency might produce a more 

agreement in the patterns of the waveforms. We performed low pass filtering for the observed 

waveforms and the synthetic seismograms by using the SAC routine. Figures 5.28, 5.29, and 5.30 

show the expected good consistency between the synthetic and observed seismograms.   

 

  

  

  
Figure 5.28 Low pass filter accelerogram and seismogram from station KCSI 
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Figure 5.29  Low pass filter accelerogram and seismogram from station TSI 

 
 
 
 

  

  

  
Figure 5.30 Low pass filter accelerogram station CERI (left) and CEMA (right) 
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5.6 Analysis of response spectra for the Takengon Earthquake 
 In section 5.5 we presented insights on the comparison between the synthetic signals and 

observed seismograms and accelerograms of the Takengon Earthquake in the time domain. In this 

section, we investigate the response spectra of the observed and computed signals. The Response 

Spectral of Acceleration (RSA) and Response Spectral of Velocity (RSV) analysis is very useful for 

practical engineering purposes. 

 The use, in the synthetic computations, of the point source approximation give us with a 

minimal number of free parameters by properly weighting the point source spectrum using the 

scaling laws of Gusev (1983), as reported in Aki (1987), shown in Figure 5.26. We have chosen 

these curves for several reasons: as compared to ω−2 spectra (e.g., Joyner, 1984; Houston and 

Kanamori, 1986) Gusev curves, that are based on a solid statistical analysis, in the range from 2s to 

0.1s are more conservative for the worst possible scenario; they give often the correct corner 

frequency in order to fit with the synthetic seismograms the observed amplitudes (e.g. Vaccari, 

1995). Less stringent scaling laws can obviously be easily adopted. This is a rough approximation 

of the physical source process when a large earthquake is considered in the calculation of synthetic 

seismograms at distances of the same order of the fault dimensions. The synthetic time series are 

presented only in order to show the spatial variability in the Green’s functions scenario when the 

azimuthal dependence and the effect of the lateral variations are taken into account (Romanelli and 

Vaccari, 1999).  

 

 

Figure 5.31. Source spectra suggested by 
Gusev (1983), as reported in Aki (1987), for 
earthquakes with the range of seismic moment, 
M0, from 1015 to 1023 Nm..  

 



92 
 

  

  

  
Figure 5.32: Response Spectra for Acceleration (RSA) (left) and Response Spectra for Velocity 
(RSV) (right) for KCSI station at dist=174 km. Components: east-west (top), south-north (middle), 
vertical (bottom) 
 

 The figures 5.32 to 5.36 show the response spectra as a relation between PSA in logarithmic 

scale and frequency in linear domain. Each figure contains the response spectra for 1Hz and 10Hz 

cutoff frequency simulations in red and magenta colored lines, respectively, and overlaid with the 

spectra from observed data in gray line color. For the analysis of the signals we used SAC software 

(Goldstein 2005) as shown in listing 5.3.  

 The figure 5.32 shows the response spectra of horizontal component of 2013 earthquake 

recorded in KCSI station, which reveal a good consistence with the response from the synthetic 

seismogram at the same site of the station for both RSA and RSV. The correlation between the 

response spectra from the vertical component reveals that, the observed seismogram has a higher 

response spectrum than the vertical of the synthetic seismogram.  
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plt2sac.sh thts610008f1.sew.KCSI.plt 
0.29297E-01 
thts610008f1.sew.KCSI.plt.sac 
SAC> r thts610008f1.sew.KCSI.plt.sac 
SAC> p 
 

SAC>  r thts610008f1.sew.KCSI.plt.sac 
SAC> fft 
 DC level after DFT is 5.7314e-06 
SAC> keepam 
SAC> xlim 0 10 
SAC> p 

Listing 5.3 SAC command to process the synthetics seismogram to spectrum in frequencies 
domain; the same procedure apply to observation seismogram or accelerogram after removing 
instrument response. 
 

  

  

  
Figure 5.33: Response Spectral Acceleration (RSA) (left) and Response Spectral Velocity (RSV) 

(right) for MLSI station at dist=50 km. Components: east-west (top), south-north (middle),  
vertical (bottom)  
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Figure 5.34: Response Spectral Acceleration (RSA) (left) and Response Spectral Velocity (RSV) 

(right) for TSI station at dist=146 km. Components: east-west (top), south-north (middle),  
vertical (bottom) 

 
The near receiver, MLSI, as shown in figure 5.33, has relatively flat observational response 

spectra compared with other stations and the synthetic seismogram response spectra nearly follow 

the observation response spectra. Response spectra for far field TSI as shown in figure 5.34 has 

fairly similar pattern with respond spectral for KCSI sites. Figure 5.35 shows the response of RSA 

station near Banda Aceh which is almost at the same distance from the source and shows similar 

patterns. Figure 5.36 shown the SNSI site, over oceanic layer, has relatively bigger different 

between observational and synthetic spectral respond at the high frequency higher compare with 

site MESA. Generally, the response spectral from synthetic signals is in good agreement with the 

response spectra from available observations. 
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CERI 

 
CEBI 

 
CEMA 

Figure 5.35 Respose Spectra Accelerogram (RSA) near Banda Aceh, CERI (Indrapuri), CEBI 
(Blang bintang), and CEMA (MataIe), dist=157km, 169km, 178km,  respectively. 

 

  

  

  
Figure 5.36 RSA for  SNSI (left) in Simeulue Island  and MESA in Medan city at similar 

epicentral distance, 250km and 254km, respectively. 
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6. Regional Scale NDSHA for Sumatra 
 

6.1. The Neo-Deterministic seismic Hazard Assessment at Regional scale 

 The NDSHA is based on the modeling techniques developed from the knowledge of the 

seismic source process and from the propagation of the seismic waves, which can realistically 

simulate the ground motion due to an earthquake by means of the synthetic seismograms (Panza et 

al., 2001). At the regional scale, a set of sources is defined in the tectonically active areas of the 

considered region (the tectonic setting and seismotectonic sources for the Sumatra region are 

discussed in details in Chapter 2 and 3).  Once the physical properties of the average structural 

models have been defined (the structural models given for the Sumatra region are discussed in 

Chapter 4). The synthetic signals are computed for the upper frequency content of 1 Hz, and the 

scaled point-source approximation (Gusev, 1983) is still acceptable. The wave propagation is 

efficiently modeled with the modal summation technique (Florsch et al., 1991; Panza, 1985) and the 

broadband synthetic seismograms are generated at the free surface on a predefined grid of the points 

covering the study region (Panza et al., 2012).  

 In the case where a source–site path crosses one or more boundaries between the structural 

models, the site structural model is used along the entire path since the station records are usually 

more sensitive to the local structural conditions as shown by Panza et al. (2001) for the P–SV 

waves. The horizontal components at each site are first rotated into a reference system common to 

the whole territory (N–S and E–W directions) and then the vector sum is calculated. The largest 

amplitude resulting signal, due to any of the surrounding sources, is selected and associated with 

that particular site. Among the representative parameters of the strong ground motion, we focus on 

the maximum ground acceleration, velocity, and displacement (PGA, PGV, and PGD) (Parvez et al. 

2003).  In addition, with respect to Panza et al. (2001), the vertical component of motion has been 

generated as well, and the vertical peak values are mapped separately from the peak values of the 

horizontal component as shown in Figure 6.1.1, defined by the vector sum of the radial and 

transverse components obtained at each site (Panza et al. 2012).  

 At each site, the horizontal components (P–SV radial and SH transverse) synthetic 

seismograms are first computed for a seismic moment of 10−7 N m and then scaled to the magnitude 

of the earthquake using the moment–magnitude relation of Kanamori (1977). The finiteness of the 

source is accounted by scaling the spectrum using the spectral scaling law proposed by Gusev 

(1983) as reported by Aki (1987). For the period between 1 and 2 s, the Gusev spectral fall-off 

produces higher spectral values than those in the ω−2 spectral fall-off, and thus guarantees a 
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conservative hazard computation (Vaccari, 1995). 

 For acceleration, the deterministic modeling can be extended to the frequencies greater than 

1 Hz by using the existing standard design response spectra (Panza et al., 1996). The design ground 

acceleration values are obtained by scaling the chosen normalized design response spectrum (the 

normalized elastic acceleration spectra of the ground motion for 5 percent critical damping) with 

the response spectrum computed at the frequencies below 1 Hz. The design ground acceleration 

(DGA) is obtained through extrapolation using the standard code response spectra following the 

procedure described by Panza et al. (1996) 

 
Figure 6.1.1 Flow chart of the standard NDSHA procedure for regional scale with original version 

source definition (OS) in red box and original paths generator (OP) in blue box 
 

 Finally, in the computation of the DGA map, at each site the synthetic response spectrum 

has been generated for the signals coming from all the sources located within the imposed distance 

threshold, and the maximum DGA value is mapped, rather than using the shortcut adopted in Panza 

et al. (2001), where the DGA at each site was computed only for the synthetic accelerogram with 

the largest amplitude. The modeling has been made with the program package (as original version). 

The speed optimization 1 has made possible to extend to 150 km for all the events the maximum 

length considered for the site-source paths (Panza et al., 2012).  
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 The site-source paths and the other input parameter for modeling the time history data are 

shown in side red box Figure 6.1. The path generator terminology will be used intensively and will 

be discussed in this chapter. Due to the limitation in the paths generator being used, we suggest 

several improvements and updates that might be used in the updated new version of the paths 

generators. The main aim of the update is to optimize the computational time and to apply the 

flexibility configuration files.  The main suggested modification in NDSHA (two paths source 

definition) is suitable for the Sumatra region due to the structural and tectonic complexities as 

shown in Figure 6.1.2.  

 

 

Figure 6.1.2 The flow chart shows the suggested improvements and the comparison to test their 
performance with NDSHA for Sumatra. 

 

 First, we will discuss the procedure that is in use in the standard NDSHA procedure package 

i.e. the standard source definition and the paths generator (OS-OP, Original Source definition and 

Original Paths generator), see the brown line flow in Figure 6.2. The enhanced source definition 

procedure, see Chapter 3, will apply to the original path generator ES-OP (Enhanced Source 

Definition and Original Path generators), see Figure 6.2. The suggested modifications are not only 

in the source definition but also in the path generator; and the final result of the enhanced 

procedures (ES-UP Enhanced Source Definition and Updated Paths generators) is shown in Figure 

6.2. In order to test the validation of the updated paths generators (UP), it is better to make a 

comparison between (OP) and (OS-UP), see Figure 6.2.  

6.2. The Performance of Standard Version of NDSHA in Sumatra (OS-OP) 

 The standard version of the NDSHA approach at a regional scale (Figure 6.1) is illustrated 

in details by Panza et al. (2001) and in the internal manual in GNDT Deterministic Seismic Zoning 

Reference Guide (Magrin and Vaccari, 2014).  By applying the NDSHA at a regional scale, we 

have to carry out what is called "a default run". The default parameters are adopted according to the 
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experience accumulated in running the job for Italy and several other countries (Albania, Algeria, 

Bulgaria, Croatia, Cuba, Ethiopia, Hungary, Romania, Slovenia). In order to have the homogeneity 

in the hazard maps for the neighboring Italian countries, they use the default runs. In a default run, 

the parameter file (.par) needed by each program is prepared by some other program done 

earlier in the sequence.  

 In the standard package, the preparation of the input data is relatively an easy task, we only 

have to prepare the parameter files mentioned in the first input file named cells.par.  The parameter 

files for a default run have the name of the program that read them with an extension .par instead of 

.out (efft.out looks for the file fft.par, esne.out for sne.par and so on). In the standard 

version, it is preferred to use the default parameters rather than the modified one. Using the default 

parameter will be good for the same treatment of the hazard result. However, in some complex 

cases like Sumatra, there is a need to control these parameters by using the hazard analysis user to 

handle and accommodate the existing complexity.  

 To perform the parametric study where the user cannot use the default parameters, the user 

can run the programs with the non-default parameters. There are two ways suggested to preform the 

non-default run.  We can run a program one at a time, edit the default parameter file generated for 

the next program, and finally run the next program after editing. Or you may wish to prepare a set 

of parameter files in advance, one for each program, and modify the hazard job so the default 

parameter files generated automatically are immediately overwritten by the user-prepared files: 

 

ecells.out 
mv -f nondefaultsmooth.par smooth.par 
smooth.out 
mv -f nondefaultinscat.par inscat.par 
einscat.out 

Listing 6.1 The way of user control for each step in standard packaged.  
 

The program ecells.out will generate a default parameter file for the program called smooth, but that 

file will be immediately overwritten by the user-prepared file. The same will happen between 

esmooth and einscat, and the same method we can apply for the others stages (Magrin and Vaccari 

2014).  

 Performing the standard NDSHA for Sumatra requires the preparation of input data, i.e. the 

selected earthquake events, seismogenic zones, and structural models then adopting some 

parameters in the parameters file named makehaz.par. To perform the NDSHA using the 

improvements, the same starting point will be used as show in Figure 6.2. We start to use the same 

selected earthquake catalog procedure as that of the eqc4seleted.exe package and the same 
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seismogenic zones (*.pos and *.fps) as discussed in Chapter 2. All of the enhanced procedure in the 

flowchart will use the same structural model (*.stp and *.por) as discussed in Chapter 4. In the 

makehaz.par, we used the default given value as an example.  

 The entire procedure from the smoothing source definition, paths generators, synthetic 

seismogram, and extraction of the significant parameters using the original version of NDSHA for 

the regional scale are used. Also, we will compute the hazard at the two maximum frequencies 

cutoff, 1Hz and 10Hz. Firstly, we run the standard NDSHA at 1Hz for Sumatra. Secondly, we plot 

the peak ground displacement (PGD) and peak ground velocity (PGV) as shown in Figures 6.2.1, 

6.2.2, 6.2.3, 6.2.4, 6.2.5. 

 

 
PGD: OS OP 1Hz 

 
PGV: OS OP 1Hz 

Figure 6.2.1 PGD (left) and PGV (right) produced by standard hazard procedure OS-OP 
 
 Computing the synthetic seismograms at 1 Hz as the maximum frequencies will give the 

results that are relatively little dependent on the structural models but may severely underestimate 

PGA, see Figure 6.2.2 (left). Therefore, we should estimate the appropriate DGA spectral value 

from the synthetic seismograms based on the acceleration response spectra and using the procedure 

developed by Panza, et. al (1999) as shown in Figure 6.2.2 (right).  In order to get the realistic PGA, 

we make a run at the frequencies cutoff 10Hz, see Figure 6.2.3 (left) and the comparison with DGA 

1Hz in Figure 6.2.3 (right). For the PGD and PGV results, we could expect from the theoretical 

considerations and from the results reported by Panza el al. (2012), there is no big difference 

between adopting 10Hz and 1 Hz as the maximum frequency. The DGA value for the near source 

zone will give the value lower than that of in PGA, and the reversed condition will happen at the far 

source zone. The spectral curve used for the DGA calculation is from Eurocode, and in future, we 

need to apply a more appropriate spectral curve to calculate the DGA for Sumatra.  
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PGA: OS OP 1Hz 

 
DGA: OS OP 1Hz 

Figure 6.2.2 PGA at 1Hz (left) and DGA (right)  produced by standard hazard procedure OS OP 
 

 

 
PGA: OS OP 10Hz 

 
Δ (PGA10Hz – DGA1Hz): OS OP  

Figure 6.2.3 PGA at 10Hz (left) and its different with respect to DGA obtained from computations 
at 1Hz cutoff(right).   

 

 

 Figure 6.2.4 Difference between 1Hz and 10Hz computation. The picture shows the 

different degree of sensitivity to the structural models of 10Hz computation (quite sensitive) and 

1Hz (little sensitive).  
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Δ PGD: OS OP (10Hz – 1Hz) 

 
Δ PGV: OS OP (10Hz – 1Hz) 

Figure 6.2.4 Different value between runs with maximum frequency 10Hz and 1Hz for PGD  (left) 
and PDV  (right) 

 

 
PGVVERT: OS OP 10Hz 

 
PGAVERT: OS OP 10Hz 

Figure 6.2.5 Vertical component produced by standard NDSHA approach 10Hz for PGD  (left) 
and PDV  (right) 

 

 The dominant periods maps show that, the dominant period in PGD (Figure 6.2.6) is mainly 

uniform with a high value meaning that the far field sources is the main contributor to hazard 

expressed in the PGD. The map of the dominant period in PGV shows that it varies in a wide range 

at different sites; this could be the effect of both the far field and near field sources to hazard as well 

as that of the structural models beneath the sites. The PGA (Figure 6.2.7-left) peaks at short 

periods; this fact is more evident if we plot the frequencies as done in Figure 6.2.7 (right) 
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T of PGD: OS OP 10Hz 

 
T of PGV: OS OP 10Hz 

Figure 6.2.6 dominant period for displacement (left) PGD (left) and PDV (right). 
 

 
T of PGA: OS OP 10Hz 

 
f of PGA: OS OP 10Hz  

Figure 6.2.7 Dominant frequency (right) and dominant period (left) in PGA. 
 
 Figure 6.2.7 shows the dominant frequency in PGA at 10 Hz: the dominant frequency is 

relatively higher at the eastern part of the Sumatra region due to the proximity of a large magnitude 

earthquake from the subduction sources, while at the western part the frequency is relatively lower 

than in the eastern part due to the relatively large distance from the large magnitude earthquake.  

 Figure 6.2.8 and 6.2.9 show the seismic sources that contribute to the maximum ground 

motion parameters at different sites and different components. The PGD and PGA values of the 

horizontal component in Figure 6.2.8 show that the main contributor of the hazard is the lateral 

Sumatra strike slip. Most of the source contributing to PGA is the near field source compared to 
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those to PGD. This picture well shows the effect of the attenuation of acceleration at a high 

frequency.  The main source of hazard that contributes to the maximum PGD at vertical component 

all over the sites is shown in Figure 6.2.9 (left), which  is in the  subduction zone, meanwhile, the 

dominant source for the estimated  PGV at a vertical component is the near seismic zones as shown 

in Figure 6.2.9 (right).  

 

 
Source of PGD: OS-OP 10Hz 

 
Source of PGA: OS-OP 10Hz 

Figure 6.2.8 Plot of sources controlling PGD (left) and PGA (right) for the horizontal component 
of earthquake ground motion. 

 

 
Source of PGDVERT: OS OP 10Hz 

 
Source of PGDVERT: OS OP 10Hz 

Figure 6.2.9 Plot of sources controlling PGD (left) and PGA (right) for vertical component of 
earthquake ground motion. 
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6.3. Enhanced Source Definition and Standard Paths Generator (ES-OP)  

 The detailed explanation and the reason we introduce the enhanced source definition (ES) 

procedure are discussed in Chapter 3. In the standard NDSHA procedure, it is preferred the use of 

the default run, and it depends on the analyst to choose the source definition for the computed 

hazard. This feature will be discussed in this section by setting the standard NDSHA not to start 

from the earthquake catalogs but from the enhanced source definition file (*.sut).  The figures from 

6.3.2 to 6.3.15 show the same runs previously described with the default NDSHA run to provide a 

proper way for the comparison between the original and enhanced source definition procedures.  

 

 
 
 
 
 
 
Figure 6.3.1 (left) The algorithm for the 
combination of enhanced source definition with 
standard NDSHA for path generator, (right) the 
flow information for the ESOP procedure. 
 

 

 
PGD: ES OP 1Hz 

 
PGV: ES OP 1Hz 

Figure 6.3.2 PGD (left) and PGV (right) produced by standard hazard procedure ES-OP 
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PGA: ES OP 1Hz 

 
DGA: ES OP 1Hz 

Figure 6.3.3 PGA at 1Hz (left) and DGA (right)  produced by standard hazard procedure ES-OP 
 

 

 

 
PGA: ES OP 10Hz 

 
Δ (PGA10Hz – DGA1Hz) : ES OP 

Figure 6.3.4 PGA at 10Hz (left) and its difference with respect to  
DGA from run at 1Hz cutoff (right)   
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PGDVERT: ES OP 10Hz PGVVERT: ES OP 10Hz 

Figure 6.3.5 Estimated PGD (left) and PGV (right) using the  
possible enhanced version of  NDSHA. 

 

 

 
PGAVERT: ES OP 10Hz 

 
DGAVERT: ES OP 1Hz 

Figure 6.3.6 Comparison between the PGA of vertical component (left) computed at 10Hz and 
DGA computed from 1 Hz cutoff signals scaled to 10 Hz using building code spectral shape 

(Eurocode)  (right). 
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T of PGD: ES OP 10Hz 

 
T of PGV: ES OP 10Hz 

 
Figure 6.3.7 Dominant period of PGD (left) and PGV (right). 

 

 

f of PGA: ES OP 10Hz  
 

f of PGAVERT : ES OP 10Hz  
 

Figure 6.3.8 Dominant frequency for PGA computed at 10 Hz for horizontal (right)  
and vertical components (left) 
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Source of PGD: ES OP 1Hz 

 
Source of PGA: ES OP 1Hz 

 
Figure 6.3.9 The sources that control the maximum PGD (left) and PGA (right) computed at 1 Hz 

cutoff for the horizontal component with the enhanced version of NDSHA. 
 

 

 

 
Source of PGD: ES OP 10Hz 

 
Source of PGA: ES OP 10Hz 

 
Figure 6.3.10 The sources that contribute the maximum PGD (left) and PGA (right) computed at 

10 Hz cutoff for the horizontal component with the enhanced version of NDSHA. 
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Source of PGDVERT: ES OP 1Hz Source of PGAVERT: ES OP 1Hz 

 
Figure 6.3.11 The sources that control the maximum PGD (left) and PGA (right) computed at 1 Hz 

cutoff for the vertical component with the enhanced version of NDSHA 
 

 

 

 
Source of PGDVERT: ES OP 10Hz 

 
Source of PGAVERT: ES OP 10Hz 

 

Figure 6.3.12 shows the sources that contribute the maximum PGD (left) and PGA (right) 
computed at 10 Hz for vertical component using the enhanced version of NDSHA 
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ΔPGD: ES-OP (10Hz – 1Hz) 

 
ΔPGV: ES OP (10Hz – 1Hz) 

 
Figure 6.3.13 The difference between horizontal component PGD maps (left) computed at 10 Hz 

and 1 Hz cutoff frequency and the difference between PGV maps  (right) computed at 10 Hz and 1 
Hz cutoff using the enhanced version of NDSHA 

 

 

 

 
ΔPGA: ES OP (10Hz – 1Hz) 

 
ΔDGA: ES OP (10Hz – 1Hz) 

 
Figure 6.3.14 The difference between horizontal component PGA maps (left) computed at 10 and 

1 Hz cutoff frequency and the difference between DGA maps  (right) computed at 10 and 1 Hz 
cutoff using the enhanced version of NDSHA 
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ΔPGD: (ES – OS) OP 1Hz 

 
ΔPGV: (ES – OS) OP 1Hz 

 
Figure 6.3.15 The difference between horizontal component PGD maps (left) and PGV maps 

(right) computed with enhanced (ES) and original source (OS) definition at 1 Hz cutoff frequency. 
 

 

 

 
ΔPGA: (ES – OS) OP 1Hz 

 
ΔDGA: (ES – OS) OP 1Hz 

 
Figure 6.3.16 The difference between horizontal component PGA maps (left) and DGA maps 

(right) computed with enhanced (ES) and original source (OS) definition at 1 Hz cutoff frequency. 
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ΔPGD: (ES – OS) OP 10Hz  

 
ΔPGV: (ES – OS) OP 10Hz 

 
Figure 6.3.17 The difference between horizontal component PGD maps (left) and PGV maps 

(right) computed with enhanced (ES) and original source (OS) definition at 10 Hz cutoff 
frequency. 

 

 

 
ΔPGA: (ES – OS) OP 10Hz 

 
ΔDGA: (ES – OS) OP 10Hz 

 
Figure 6.3.18 The difference between horizontal component PGA maps (left) and DGA maps 
(right) computed with enhanced (ES) and original source (OS) definition at 10 HzHz cutoff 

frequency. 
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ΔPGDVERT: (ES – OS) OP 1Hz 

 
ΔPGAVERT: (ES – OS) OP 1Hz 

 
Figure 6.3.19 The difference between Vertical component PGD maps (left) and PGA maps (right) 

computed with enhanced (ES) and original source (OS) definition at 1 HzHz cutoff frequency. 
 

 

 
ΔPGDVERT: (ES – OS) OP 1Hz 

 
ΔPGAVERT: (ES – OS) OP 10Hz 

 
Figure 6.3.20 The difference between Vertical component PGD maps (left) and PGA maps (right) 
computed with enhanced (ES) and original source (OS) definition at 10 HzHz cutoff frequency. 

 

 
 

Figures 6.3.3, 6.3.4, 6.3.5, 6.3.6 show that using the enhance source definition produces a 

PGD, PGV, and PGA very similar to those produced with the standard NDSHA package. 
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Apparently PGV at 1Hz cutoff based on the ES-OP at the far field source (e.g. Bangka Island) 

shows a lower value (6.3.2-left) than that of using the standard package OS-OP (6.2.1-left). The 

PGA produced by ES-OP (Figure 6.3.4) shows a relatively significant decrease at the near and far 

sites in the Sumatran fault system (e.g. Bangka Island) in comparison with the PGA produced using 

the standard package OS-OP (Figure 6.2.3). This could be because in the enhanced source 

definition procedure, we can control the minRun (minimum magnitude run for each site) for each 

seismogenic zone. We adopted minRun=0 for the seismogenic zones no 13 and 14 and minRun=5.5 

for seismogenic zone no 1, 2, and 3. However, in the standard package of NDSHA, a single value 

of minRun is usually adopted for all of the seismogenic zones. If we set minRun=0, it may cause 

underestimation for the zones no 1, 2, and 3, but if we set minRun=5, it will lead to overestimation 

for the zones no 13 and 14. 

The computed PGD and PGA by the enhanced procedure ES-OP are more realistic if  

compared with the standard procedure OS-OP. Figure 6.3.10 (left) shows the estimated PGD  using 

ES-OP at sites far from the sources containing the effects of the distant subduction source, while 

using OS-OP leads to that of the far sources does not contribute to the computation of  PGD at the 

distant sites (PGD displacement for subduction cannot reach the Bangka Island) and the OS-OP 

only can get PGD from the near source as shown in Figure 6.2.8 (left). However, the estimated 

PGA based on ES-OP (Figure 6.3.10-right) and OS-OP (Figure 6.2.8-right) show almost the same 

result as that of the small source-receiver distance. This is more reasonable because the subduction 

source can generate a larger magnitude than that of the strike-slip fault (a bigger magnitude even 

though far can reach a distant field); thus, it can affect Bangka Island with significant impacts while 

the strike-slip sources cannot. 

The enhance source definition produces the different strong motion value when adopting 

1Hz and 10 Hz cut off frequency computation (Figures 6.3.13 and 6.3.14 ) and shows a different 

behavior similar to that of by the standard source definition procedure OS-OP (Figures 6.2.3-left 

and 6.2.4-right). The Figures 6.3.15 to 6.3.20 show that the PGD, PGV, and PGA computed using 

ES-OP are lower in value than those at the same ground motion parameters computed using the 

standard version. The enhanced ES-OP may produce a greater DGA than the standard procedure 

OS-EP along northern part of Sumatra. The dominant period in the computed PGV by the ES-OP 

(Figure 6.3.7-left) is relatively more scattered if compared to the period of PGV produced by OS-

OP (Figure 6.2.6-left). One possible reason is that the ES-OP has no fixed source depth (magnitude 

dependent source depth) if compared to the standard OS-OP. The enhance source definition ES-OP 

is obviously using the estimated focal depth from the revised earthquake catalogs (as shown by the 

color of beach balls in Figure 6.3.9-12) while the standard OS-OP using three different magnitude-

focal depth  threshold values (10km, 15km, 20km) based on Equation (3.1).  
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6.4. Enhanced Source Definition and Updated Paths Generator (ES-UP) 

 The NDSHA method is still evolving, and the computer code is being constantly improved 

since the original implementation, to better fit the need of producing realistic ground shaking maps 

and ground shaking scenarios, at different scale levels, by incorporating all relevant progresses in 

the knowledge of geological processes and their numerical modeling (the reduction of the epistemic 

uncertainty). A complete description of the methodology can be found in Panza et al. (2001). Here 

we will describe in some detail just the parts of the methodology that has improved over time. 

Among the most relevant changes recently implemented to the algorithm, as Panza et al. (2012) 

mentioned, as follows:  

• code optimization, which leads to a speedup in the computation by a factor of about 6; 

• the possibility to consider the very realistic source models that account for the rupture 

characteristics at the fault, directivity included; 

• the option to consider the sources distributed not only within the seismogenic zones 

(Meletti, Patacca and Scandone, 2000; Meletti and Valensise, 2004), but also in the nodes 

identified by the morphostructural zonation (Gorshkov et al., 2002, 2004, 2009); 

• the option to compute the synthetic seismograms with a maximum frequency content of 10 

Hz; 

• the option to compute the ground shaking maps also for the vertical component; 

• the option to compute the ground shaking maps associated with the areas alerted by the CN 

and M8 algorithms (Peresan et al., 2005). 

 

 The application of NDSHA for Sumatra, which is characterized by the complex seismogenic 

zoning, needs some modification to the algorithm being used about the source definition, as 

discussed before. The proposed updates for NDSHA include the enhanced source definition 

procedure as discussed in Chapter 3. The new source definition, proposed and tested against the 

original path definition, successfully produced a hazard map as it was expected. The enhanced 

source definition is a user-friendly configuration file and gives a lot of flexibility for the user. But 

when we apply the enhanced source definition, we have to call some *.par files and the standard 

package with a rigid configuration file. Therefore, we want to update the path generator to adopt the 

user friendly configuration file. The main goal of making an update for the existing path generator 

used by the NDSHA approach not only to make it more user friendly but also to handle the problem 

of the sources unreached in the far receiver in Bangka Island using the medium range (R2) 

threshold as described before.. The updated path generator (UP) will maintain the efficiency of the 

computation process to select the significant sources of hazard from the far field zones. Figure 6.4.1 
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shows the location of the updated path generator (in blue box) and the receiver enhances source 

definition form (red box). 

 

 
Figure 6.4.1 Flow chart of the standard enhanced NDSHA procedure for a regional scale with the 

enhanced source definition (OS) in red box and the updated paths generator (OP) in blue box 
 

this file for sut4pat.par 
------------------------ 
shoa9n                        # project name 
../base/suman.sut 
fmax 1 
SPX "s/shof" 
sum2.obs 
../base/hazdistance.min 
../base/hazdistance1.max 
INT -5                       # give auto interpolation   
MIS 100                      # minimal source per receiver  
BIN 1 
MOT 2 
FUL 1 
CLN s f 
itacode.cod 
SCL 1 90 guphas 
 

Listing 6.2. The configuration file for updated path generator 
 

 The configuration file starts from the freely typed header in the first line and the second line, 

and we kept the one traditionally used in the configuration file as line -------------, which will be 
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ignored by the program if the line starts with the three characters of a strip. The first line following 

the word will be defined as a project name, in Listing 6.2 project name shoa9n. This configuration 

file enables the user to set the different parameters. For example,../base/suman.sut is very 

useful when we want to make an experiment with the different source definition because we can 

control and know very well what file we use. In the standard version, the name should be changed 

to a project name and be put in the same directory, i.e. sha9n.sut; in our experience, it is easy to 

make mistakes here because some files are subjecting to the updates and reformatting from time to 

time, so it is better to fix one source directory for all of the independent files (e.g. the Gusev 

spectral curves). As an additional example, we perform an experiment using the file 

name../base/hazdistance.max,which is always being used with the same name. The option 

SPX "s/shof" is very helpful to reduce the number of the files in the folder, and subsequently 

to reduce the used memory in the hard disk space, by referring to the directory of the master 

spectral files without the need to copy it in the working directory; these features are very useful 

when we deal with several scenarios.  

 The main advantage of the updated path generator UP is the transparency of the input file in 

the computation process. The important motivation for this updated path generator is that not all of 

the sources have an effect on the site being studied, so it is more useful to define the minimum 

magnitude at different distances that can affect the site of interest: if we set MIS 100 that means that 

only 100 path will be used for each receiver. The details about the usefulness of this suggested 

procedure will be given in the next chapter for increasing the efficiency of the computational 

process. In the standard package, the interpolation is given by a positive integer number, e.g. 5, and 

it will set the same interpolation value for all of the computed synthetic seismograms. In the 

updated version, we give the possibility to change the interpolation value depending on the distance 

between the source and the receiver with a certain maximum value, e.g. INT -5 will let the 

interpolation value to vary from 0, 1 until 5. The application of this method is not an easy task 

because we also need to define the interpolation parameter based on the source depth in order to 

reduce the calculation of the eigenfunctions. This feature is a challenging feature to increase the 

synthetic seismograms efficiently and needs a further investigation in the future.  

 There are two ways to execute this program: without or with the arguments (i.e. 

sut4path.exe and sut4path.exe alternative.par, respectively). Without the 

passing parameter, the default configuration file sut4path.par is read, and with the passing 

parameter, there is the possibility to read another file name, e.g.: 

 sut4path.exe                        

 sut4path.exe alternative.par  
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After the execution, the program will generate several files needed for the computation of the 

synthetic seismograms. For example, the following file with the project name xxx. The 

Configuration files are: makehaz.par, sne.par, sgv.par, sgrz.par, sgr.par, 

sgl.par, gconv.par 

The input files for generating the synthetic seismograms are : xxx0001.isg, xxx0002.isg, 

… number of the polygons. 

For the information files : xxx.pat,, rns.lst, pat.lst, isg.lst, xxx.srp, and 

the script r file contains : 

 

#!/bin/bash 
nameroot=xxx 
fclean.sh s f                            
START=$(date +%s) 
echo estimate    7.8660 hours to run  283177 paths 
[[ ! -e accg.cpt ]] && hazcpt.out 
esgl0050.out 
esgrz0050.out 
esne.out 
for file0 in $(cat rns.lst);do 
find . -maxdepth 1 -name "${file0}.rzz" ! -name "*f[012]".rzz  >> fft.par 
done 
efft.out 
esre.out 
find . -maxdepth 1 -name "${nameroot}*f0.rzz" >> cou.par 
find . -maxdepth 1 -name "${nameroot}*f1.rzz" >> cou.par 
find . -maxdepth 1 -name "${nameroot}*f2.rzz" >> cou.par 
ecou.out 
efinmax.out 
eexmaxsig.out 
efinmaxdgav.out 
eexmaxsigdga.out 
egconv.out 
hazgmt.sh xxxf2max.dga 
hazgmt.sh xxxf0res.amx 
hazgmt.sh  -4 xxxf0res.amx 
hazgmt.sh xxxf1res.amx 
hazgmt.sh  -4 xxxf1res.amx 
hazgmt.sh xxxf2res.amx 
hazgmt.sh  -4 xxxf2res.amx 
fclean.sh s f 
pwd 
END=$(date +%s) 
DTS=$(echo $END - $START | bc) 
DTH=$(echo $DTS | awk '{ print $1/3600}') 
echo $DTS | awk '{ print $1/  283177 " second/path"}' 
echo estimate    7.8660 hours to run  283177 paths 
echo "finish for " $DTH "hours"                            
 

Listing 6.3. Script r which is generated by sut4path.exe program 
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 Figure 6.4.2 and 6.4.3 show the horizontal PGD and PGV maps computed at 1 hz and 10 hz 

frequency cutoff using the updated path generator. The source definition is applied using the 

enhanced source definition, which is used in Section 6.3 as the ES-OP procedure. Therefore, these 

maps show a slight difference with respect to the picture in Figure 6.3.3. 

 

 
PGD: ES UP 10Hz 

 
PGV: ES UP 10Hz 

Figure 6.4.2  Horizontal PGD (left) and PGV (right) computed with 10 hz cutoff,  
using the ES-UP procedure 

 

 
PGA: ES UP 10Hz 

 
PGAVERT: ES UP 10Hz 

 
Figure 6.4.3 Horizontal PGA (left) and vertical PGA (right) computed with 10 hz frequency cutoff 

based upon the ES-UP procedure 
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f of PGA: ES UP 10hz  

 
f of PGAVERT: ES UP 10hz  

Figure 6.4.4 The dominant frequency of PGA for horizontal (left) and vertical (right) component 
computed based on the ES-UP procedure. 

 

 
source of PGA: ES UP 10hz  

 
source of PGAVERT: ES UP 10hz  

Figure 6.4.5 The sources that contribute the maximum horizontal PGA (left) and vertical PGA 
(right) computed at 10 Hz cutoff for the horizontal component for the ES-UP version of NDSHA. 

 

 The figures from 6.4.2 to 6.4.5 show the capability to produce the hazard maps by using the 

updated path generator algorithm. The updated software has the capability to produce the results 

also taken from the standard version. It means that the UP procedure can be embedded in the 

standard package by replacing OP as shown in Figure 6.4.6 (right). We can verify this fact by using 
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the same input for the original and the updated version. The original source (OS) definition is used 

with the updated paths generator: the OS-UP testing path generator. Figure 6.4.7 shows a very small 

difference between the maps computed using the updated version and the original version of the 

path definition.  

 

 

 
 
 
Figure 6.4.6 (right) Standard source definition 
(OS) send to updated paths generator as result 
OS-UP with standard setting will be comparable 
with standard NDSHA OS-OP.  
(left) The position of updated path generator UP 
inside whole standard NDSHA procedure.  
 
 
 

 

 
Δ PGD:  OS (UP-OP) 10hz 

 
Δ PGA:  OS (UP-OP) 10hz 

Figure 6.4.7 This picture (left) shows the difference between the computed horizontal PGD using 
updated and original path generator at 10 hz cutoff; (right) the difference between the computed 
horizontal PGA using updated and original path generator at 10 hz cutoff. The differences between 
original and updated versions of travel paths are small and scattered. 
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6.5. An Efficient Path Generator for reducing Computational Time 

 The development of the NDSHA software package started from the precise production of 

the synthetic seismogram by the modal summation (Panza, 1985; Florsch et al.,1991). When 

applying the modal summation for the calculation of the strong ground motion, they tried to find an 

efficient way. By definition, the peak ground acceleration (PGA) is equal to the maximum ground 

acceleration that occurred during the earthquakes shaking at a location. It means that a very 

conservative approach for the estimate of the most strong ground motion, such as PGA, PGV, and 

PGA, is obtained by calculating all of the synthetic seismograms from all of the available sources, 

for both a historical and potential earthquake. In order to build the seismic hazard map, several sites 

will be investigated, and the total possible paths are given by:  

 

                        (6.1) 
 

 Taking the sources directly from the earthquake catalogs to calculate the synthetic 

seismograms will produce a huge number of the paths, and it is therefore not implemented. Based 

on Equation (6.1), there are three possibilities to reduce the number of the paths: The first one is to 

reduce the number of the sources,the second one is to reduce the number of the receivers, and the 

third one is to reduce the number of the paths that could be used in the computation of the hazard 

map.  

 The first application of the NDSHA (Costa et al., 1993; Panza et al., 1996, 2000, 2001) has 

managed to reduce the number of the sources by grouping them into the homogenous seismogenic 

areas, and for each group, the representative focal mechanism can be kept constant. The scalar 

seismic moment associated with each source is determined from the analysis of the maximum 

magnitude observed in the epicenter area; we call this “source definition”. The original version of 

the source definition algorithm is explained by Panza et al. (1996) as a standard smoothing 

procedure (OS) and has reduced the number of the sources significantly. Recently, as we discussed 

in Chapter 3, for the case of Sumatra, the enhanced source definition procedure (ES) takes care of 

the efficiency of the computation by sorting (divsel) the near source zones from the far source 

zones. The reduction of the  number of the receivers also has been applied in the first application 

placing the sites at the nodes of a grid with an optimum resolution 0.2°x0.2° that covers the national 

or regional territory (Panza et al,. 2001). In contrast, the PSHA based on the attenuation equation 

and the cheap computational cost for each site can be performed at a higher resolution grid (in the 

case of Indonesia PSHA 0.1°x0.1°) with an apparent relatively high precision, not supported by the 

quality and quantity of the available data.  
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 In case of Sumatra the number of defined sources are N(ES)=1776 and receiver sites 

N(sites)=953, this leads to a total of 1776*953= 1692528 paths. In the standard hazard procedures 

(NDSHA) the choice of source-receiver distances being used is based upon the magnitude of the 

earthquake source. The maximum source-receiver distance has been set equal to 25, 50, and 90 km, 

respectively, for M < 6, 6 ≤ M < 7 and M ≥ 7 (Panza, et al., 2001).  

 In this section, we investigate the effect of using different source-receiver distances (the 

original file named hazdistance.max is then renamed to hazdistance1.max in this section) on the 

resultant ground motion distribution over Sumatra. As show in Listing 6.4 in column 1, the 

maximum source-receiver distance for M<6 is 250 and 600km for M8, the threshold used to 

produce the maps in Sections 6.2, 6.3, and 6.4. The second modification threshold R2 with the file 

name hazdistance2.max reduces the distance for the magnitude 8 to 400 km. The last modification 

is the threshold R3 with the file name hazdistance3.max, which gives a maximum distance of 200 

km for magnitude 8. The updated path generator can be performed by changing the setting 

parameter in sut4path.par with following line. 
 
 #../base/hazdistance1.max 

 ../base/hazdistance2.max  
 

Threshold R1 :  
file: hazdistance1.max 

Threshold R2:  
file: hazdistance2.max 

Threshold R3 :  
hazdistance3.max 

magnitude   distance  1 
0    250 
6    300 
7    500 
8    600 

magnitude   distance 2 
0    150 
6    200 
7    300 
8    400 

magnitude   distance 3 
0    75 
6    100 
7    150 
8    200 

Listing 6.4 The different distance-magnitude scenario thresholds discussed in this section 
 

 Figure 6.5.1 (left) shows the original path procedure using the distance-magnitude threshold 

R2 (filename hazdistance2.max). This choice makes Bangka Island a far field source in which there 

are no defined paths for the computation of the strong ground motion. Figure 6.5.1 (right) shows the 

effect on the ground motion of choosing the proper source-receiver distance, and the difference is 

large at the eastern part of the region.   

 The simple way to solve this problem is to return back to using the default threshold 

parameter file. For this case, the problem can be solved but in the future with a large covered area 

that contains many receivers far from the seismic zone, this method cannot be used anymore. The 

problem can be handled by increasing the distance-magnitude threshold for the whole area of the 

Sumatra region in order to place the receivers at a far distance from the sources in Bangka Island. 

Instead of applying the increasing distance-magnitude threshold for all of the area, we only focus on 
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the far field seismic sources using other strategies. In the updated path generator, we can control the 

minimum number of the paths for each receiver from the most significant source that could 

contribute hazard for the site, namely MIS in the sut4path.par configuration file.  

 

 
PGA: OS OP 10hz R2 

 
Δ PGA: OS OP 10hz (R1-R2) 

Figure 6.5.1 Horizontal PGA map computed at 10 Hz cutoff based on OSOP procedure with R2 
threshold (left)  and the difference between R1 and R2 (right) 

 

PGA: OS OP 10hz R3 
 

Δ PGA: OS OP 10hz (R1-R3) 
Figure 6.5.2 Horizontal PGA map computed at 10 hz cutoff based on OSOP procedure with R3 

threshold (left)  and the difference between R1 and R3 thresholds (right) 
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 The determination of the significant seismic sources also brings some problem: we have to 

calculate the strong ground motion from each source. Using the modal summation method for 

searching the most significant source is a precise way, but does not meet the solution for reducing 

the computational time. If no alternative solution is available, we can use the rough approach to 

search among several significant earthquakes for the site of interest. The rough approach is based 

on the use of the most popular attenuation laws of the ground motion parameters, like PGA and 

PGV: 

                                     (6.2) 

where y is the ground motion parameter, a, b, c, d, e coefficients empirically determined, rf and Df 

are the different measures of the distance from the source, and S is a binary variable (0, 1), which 

depends on the soil type (Panza et al., 2009). Because the equation does not come from a realistic 

physical simulation, there are a lot of attenuation equations. Douglas (2001) has 212 published 

attenuation relations for the peak ground acceleration for determining the parameter in Equation 

6.2. For example, we choose one of them (Sigbjornsson and Baldvinsson, 1992). By borrowing the 

parameters from the attenuation formula and by ignoring the soil type, we can rewrite Equation 6.2 

in anoother form: 

                                      (6.3) 

 Because our interest is only to compute the possible hazard from the sources that could generate a 
large ground motion (effective acceleration) at the sites of interest and to reduce the computational 
time, we proposed to use the GMPE to get an idea about the value of an effective ground motion, 
and its relation to the weighting value (W), we then select the first 100 of the significant sources to 
be computed by the NDSHA approach. Therefore, we can eliminate the parameter α, and the 
equation will only depend on two parameters, and the weight equation for each path source-receiver 
becomes:  

                                                 (6.4) 

This will be cheap, faster, and easy to implement in FORTRAN as shown in Listing 6.5.  

        beta=0.365; bbb=-0.0039.  
        R=sqrt(dist2*dist2+depth*depth) 
        fac_dist=(10**(bbb*R))/R 
        fac_mag=10**(beta*xmag) 
        weightrs(iobs,isut)=fac_mag*fac_dist 

Listing 6.5. The Fortran code describes the weight for each connection path between  
observation point (iobs) and the source definition (isut) 
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 In this chapter, we apply the MIS parameter with the 100 sources as shown in Listing 6.2, 

this means that, the far receiver sites, e.g. Bangka Island, will have the paths from the 100 

significant seismic sources only based on Formula 6.4. We do not trust the attenuation equation for 

the calculating of the strong ground motion parameters; therefore, after selecting the 100 real 

significant sources, we computed the strong ground motion based on the modal summation method, 

which relies on the realistic physical simulation.  

 The MIS feature in the updated path generator allows for reducing the computational time 

significantly as described in Table 6.1. For the scenario distance-magnitude threshold R1, the OP 

(original path generator) has 517437 paths less than those produced by the UP (updated path 

generator) 655490 paths. This is so because even if the site already gets the paths from the threshold 

process, the UP will force the additional paths until 100 paths are reached. We need about 0.1s 

computation time per path on the DSTX machine. The real computational time of course also 

depends on how many programs are running simultaneously on the server. For the distance-

magnitude threshold R2, the OP produces fewer paths than the UP does, but the produced map 

based on the OP does not cover the far sites in Bangka Island. For the distance-magnitude threshold 

R3, the OP cannot be used anymore (see Figure 6.5.2) even if it produces half of the number of the 

paths compared with the UP does.  The comparison of the computation time based on the UP with 

the threshold R3 with that of the OP computation time shows a significant decrease of 

computational time by a factor 4.5768=14.373/3.1404 with no loss in the accuracy of producing a 

precise strong ground motion map.  

Table 6.1. List of number of paths, computational time and hard disk space required for several 
threshold scenario.  
No Scenario #paths Time estimate 

(hour) 
Time reality 

(hour) 
Hardisk 
space 

Condition 

1 OS OP R1 10hz  517437 14.373 13.2567 213G Standard 
2 OS OP R2 10hz 240407 6.6780 5.39  113G No cover Bangka 
3 OS OP R3 10hz 62933 1.7481 1.52417 33G No cover eastern path  
4 OS UP R1 10hz  655490 18.208 19.1103  169G Similar  
5 OS UP R2 10hz 322898 8.9694 8.18167 95G Similar  
6 OS UP R1 10hz 113054 3.1404  3.15278  36G Similar  
 

  This MIS feature in the UP algorithm with a short distance-magnitude threshold 

successfully produces a similar hazard map with a very small difference with respect to the standard 

version of the OP with a long distance-magnitude threshold R1. There are negligible differences 

when using a different path generator. Surprisingly, the difference in PGA computed using OP, UP-
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R2 and UP-R3 is almost identical (Figure 6.5.3-right is almost identical to Figure 6.5.4-right). 

Probably, this effect is related to the weight in Equation 6.4 for the PGA purpose. 

 

 
Δ PGD: OS (UP.R2 – OP.R1) 10hz 

 
Δ PGA: OS (UP.R2 – OP.R1) 10hz 

Figure 6.5.3 The updated path generator with threshold R2 has relatively small difference with 
respect to standard path generator for PGD (left) and PGA (right) 

 

 

 

 
Δ PGD: OS (UP.R3 – OP.R1) 10hz 

 
Δ PGD: OS (UP.R3 – OP.R1) 10hz 

Figure 6.5.4 The difference in PGD (left) and PGA (right) computed using updated path generator 
at R3 threshold and from the standard path generator at R1 threshold shows relatively a small 
difference between adopting different magnitude-distance threshold in the resultant ground motion 
parameters. 
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6.6. Comparison with Current Official PSHA 

 The typical seismic hazard problem lies in the determination of the ground motion 

characteristics associated with future earthquakes, at both the regional and the local scale. The 

seismic hazard assessment can be performed in various ways, e.g. with a description of the ground 

shaking severity due to an earthquake of a given distance and magnitude (‘‘ground shaking 

scenario’’), or with the probabilistic maps of the relevant parameters describing the ground motion. 

The first scientific and technical methods developed for a seismic hazard assessment were 

deterministic and based on the observation that the damage distribution is often correlated with the 

spatial distribution and the physical properties of the underlying soil. The 1970s saw the beginning 

of the development of probabilistic seismic hazard maps on a national, regional and urban 

(microzoning) scale. In the 1990s, these instruments for the mitigation of seismic hazard came to 

prevail over a deterministic cartography (Zuccolo et al., 2011).  

 The probabilistic seismic hazard analysis determines the probability rate of an exceedence, 

over a specified period of time, therefore it is not scientific (Castanos H. e Lomnitz C., (2002), 

PSHA: is it Science?, Eng. Geo., 66, 315-317.). PSHA cannot be falsified (parascience): if, in a 

given location, PSHA declares that in the next 50 years, the probability of an earthquake with a 

given shaking (hazard) X is 10%, an event with much greater shaking Y≫X does not falsify the 

prediction. In fact, by definition, PSHA allows for a probabilty of 10% that the earthquake with 

shaking Y occurs. On the other side, if the earthquake with shaking Y≫X does not occur, PSHA is 

even so “correct”. In spite of this various levels of the ground motion are given as in the discussion 

by Irsyam et al. (2010) and by the digital data from the courtesy of Usamah (2013). The current 

official PSHA map is available in a PDF map, and there is no official link providing the digital data. 

Therefore, before we make any comparison analysis with our result, we have to check the data we 

get from Fauzi (2013) similar to the official PDF version map from Irsyam et al. (2010). The 

colored map that wet get from the PDF map determines the RGB value in the GIMP Image Editor 

software, and we use the colored map to make this comparison. Figure 6.5.1 shows the similarity 

between the PDF version and that of re-plotting from the digital data, thus this data is a 

representative of the current official PSHA for Sumatra and is reliable for a comparison study. We 

hope in the future most of the official map produced by the government not only available in a 

picture map image but also possibly available in a digital format for any potential scientific study. 	  

 The digital data resolution for PSHA is 0.1 degree but most of PHSA maps are plotted using 

a continuous map representation, artificially obtained by interpolation. In PSHA, it is easy to 

artificially increase the resolution without increasing the computational time because of the use of 

attenuation equation. On the other side, NDSHA is based on a realistic physical modeling, which 
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has a cost, in terms of the computational time, for each observation point. Therefore, NDSHA is 

based on a number observation points with the ideal resolution 0.2 degree for the default value for 

plotting NDSHA in a regional scale. In some cases, the gridding with 0.2 degrees will miss the 

small size islands, but we can put an additional point in the center of an island, if the adopted 

resolution is 0.2 grids as discussed in Chapter 4. By borrowing the observation point coordinates 

from NDSHA, we interpolated the PGA from a PSHA map in the digital format. Figure 6.5.2 shows 

the apparent PSHA with the NDSHA based on an observation point.  

 

 

 

 

 

Figure 6.6.1 The official PSHA map for PGA at bedrock with 10% probability of exceedance in 50 
years (left). The official map has visual similarity with re-plotted digital data (right) which we will 
use in this comparison study.  
 

 The hazard at a site is given in terms of probability of the exceeding different levels of the 

ground motion during a specified period of time. This is achieved through the calculation of the 

frequency of earthquakes with some severity, and the calculation of the conditional probability of 

exceedance of a given ground motion level for each of these contributing earthquakes (summed 

over all of the potentially contributing sources). Historically, the most-used parameter in the 

engineering analysis for the characterization of the seismic hazard is the peak ground acceleration 

(PGA), which is a single-value indicator commonly used in a seismic hazard assessment (Zuccolo 

et al., 2011).  To check the performance of the PSHA maps against the NDSHA maps, we evaluate 

all of the available PGA maps based on PSHA estimated at 10% and 2% probability of exceedance 

in 50 years, which are available in the form of the digital data from Fauzi (2013).  
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Figure 6.6.2  PSHA data for 10% probability of exceedance during 50 years  for observation point 
from NDSHA study (sum2.obs) is plotting with difference color map: digitization colormap from 
official map (left) and standard colormap which used for acceleration in NDSHA package (right) 
 
 

  
Figure 6.6.3 Similar plotting process with figure 6.6.2 for different 2% probability 

of exceedance in 50 years. 
 

  The hazard map PSHA as shown in Figures 6.6.2 and 6.6.3 is the revision of the seismic 

hazard map in the Indonesian Seismic Code SNI 03-1726-2002. Some improvements in the seismic 

hazard analysis were implemented in the analysis by considering the recent seismic activities 

around Java and Sumatra. The seismic hazard analysis was carried out using 3-dimension (3-D) 

seismic source models (the fault source model) using the latest research regarding the tectonic 
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settings of Sumatra and Java. Two hazard levels were analyzed for representing 10% (Figure 6.6.2) 

and 2% (Figure 6.6.3) probability of exceedance (PE) in 50 years ground motions for Sumatra 

(Irsyam et al., 2008; Irsyam et. al., 2010). The PGA given by PSHA 2% probability of exceedance 

(PE) in 50 years (Figure 6.6.3) obviously has a greater value compared to PGA of PSHA 10% 

probability of exceedance (PE) in 50 years (Figure 6.6.2).   

 

 
Δ (DGA OSOP 1hz – PGA PSHA 10%50yr) 

 
Δ (DGA OSOP 1hz – PGA PSHA 2%50yr) 

Figure 6.6.4 Difference between DGA (1Hz cutoff) from standard NDSHA and PGA  
of PSHA 10% (left) and  5% (right) probability of exceedance (PE) in 50 years. 

 

 
ΔPGA:  (OSOP 10hz – PSHA 10%50yr)  

 
ΔPGA:  (OSOP 10hz – PSHA 2%50yr) 

Figure 6.6.5 Difference between PGA (10Hz cutoff) from standard NDSHA and PGA  
of PSHA 10% (left) and 5% (right) probability of exceedance (PE) in 50 years. 
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 Figure 6.6.4 shows the difference between DGA (NDSHA) and PGA (PSHA) value: the 

value of DGA is lower than PGA at both probabilities of exceedance (PE) 10% and 2% in 50 years. 

However, the PGA estimated by the standard NDSHA with 10 hz cutoff is higher than the 

computed PGA from PSHA at PE 10%. For comparison with PE 2%, the near field NDSHA gives 

the PGA value greater than that of the PSHA; and for the far field sources, it is the opposite (Figure 

6.6.5). This means the NDSHA calculation for Sumatra gives reasonable results based on the 

adopted magnitude distance threshold. This is due to the fact that the standard NDSHA is based 

upon the realistic physical simulation of the seismic wave propagation. The comparison between 

the PGA computed based upon the proposed enhanced version of NDSHA and PSHA shows that 

the updated version gives the same values at the near sites and lower values at the far sites; 

whereas, the standard one gives a higher value in NDSHA, which in turn gives a higher PGA value 

for the near and far field sources. 

 

 

 
ΔPGA:  (ESUP 10hz – PSHA 10%50yr) 

 
ΔPGA:  (ESUP 10hz – PSHA 2%50yr) 

Figure 6.6.6 Difference in PGA (10Hz cutoff) from enhanced NDSHA and PGA  
of PSHA 10% (left) and  5% (right) probability of exceedance (PE) in 50 years. 
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7. Local Scale NDSHA (Microzonation) for Banda Aceh City 

 
 
 

7.1 NDSHA for Local Scale method with Hybrid Method  
 The issues pertaining to the urban risks are a pressing concern for people involved in the 

disaster mitigation. With the progressing urban sprawl and the emergence of many cities around the 

world, disasters of all kinds become an inevitable consequence of uncontrolled urbanization. 

Growing environmental and social (purely scientific, practical disaster mitigation, and 

preparedness) concerns, both on the part of decision-makers and public opinion, have brought a 

new perspective to the perception of hazard assessment as a valid alternative in the long-term (e.g. 

urban planning and structural design, retrofitting), and an effective complement in short and 

medium terms, to traditional design procedure for a resistant and safe environment (Panza et al. 

2011).   

 In the first approximation, which does not account for the local site conditions, the synthetic 

seismograms are calculated at a regional scale by the modal summation technique (Panza et al., 

2001) for the estimation of the strong ground motion at the bedrock, as shown in Chapter 6, with 

the input based on the enhanced source definition discussed in Chapter 3 and a 1D structural model 

for each receiver site as discussed in Chapter 4. Most of the urban areas in Sumatra are located in 

the flat sedimentary basin, for example, the Banda Aceh city. Therefore, for the detailed urban 

planning of the Banda Aceh city, the regional seismic zoning cannot be used without taking into 

account the local site condition, which has a great effect on the seismic wave propagation beneath 

the urban areas, so we have to investigate the detailed structural model for the sedimentary layer in 

Banda Aceh. Thus, the seismic microzonation is defined as the process of subdividing a potential 

seismic or earthquake prone area into zones with respect to some geological and geophysical 

characteristics of the sites and in this chapter, we will use the regional scale seismic input from the 

modal summation with 2D ground shacking at a local scale to define the site characteristics in the 

Banda Aceh city.  

 The proposed methodology for seismic microzoning has been successfully applied to 

several urban areas worldwide in the framework of the UNESCO/IUGS/IGCP projects “Realistic 

Modeling of Seismic Input for Megacities and Large Urban Areas” (e.g. Panza et al. , 2001, 2001b, 

2002) and “Seismic Hazard in Asia”. The methodology has been applied to assessing the 
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importance of non-synchronous seismic excitation of long structures as well (Panza, et al. 2013).  

This method has been successfully applied, for the purpose of seismic microzoning, in several 

urban areas like Mexico City, Rome (Fäh and Panza, 1994), Benevento (Fäh and Suhadolc, 1995; 

Marrara and Suhadolc, 1998), Naples (Nunziata et al., 1995) and Catania (Romanelli et al., 1998) in 

the framework of the IUGS-UNESCO-IGCP project (Panza et al., 1999b). 

The seismic microzoning computation based on the hybrid method gets advantages by 

combining the analytical and numerical approaches. Typically, the analytical solution is applied to 

the regional model by characterizing the path from the source to the local area of interest, and the 

numerical solution is applied to model the local site conditions. Fäh et al. (1993) developed a hybrid 

method that combines the modal summation technique, valid for laterally homogeneous anelastic 

media with the finite difference, and optimized the advantages of both methods. It can take into 

account the source, path, and local soil effects to calculate the local wave field due to a seismic 

event. A laterally homogeneous anelastic structural model is adopted, representing the average 

crustal properties of the region. The generated wavefield is then introduced in the grid that defines 

the heterogeneous area, and it is propagated according to the finite-differences scheme (Figure 7.1). 

 

 

 

Figure 7.1. Schematic representation 
of the hybrid technique (Panza, 
2009).  
Wave propagation is treated by 
means of the modal summation 
technique from the source to the 
vicinity of the local. 
Finite different method uses wave 
propagation in heterogeneous 
anelastic structure that we may want 
to model in detail. 

 

 

 

 Propagation of the waves from the source to the sedimentary basin is computed by the 

modal summation method for P-SV and SH waves. The detailed description of the hybrid procedure 

is given by Panza e al. (2001). The explicit finite difference schemes are then used to simulate the 

propagation of seismic waves in the sedimentary basin. These schemes are based on the formulation 

of Korn and Stöckl (1982) for SH waves, and on the velocity-stress, finite difference method for P-
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SV waves (Virieux, 1986). The schemes are stable for the materials with normal values of Poisson's 

ratio. The intrinsic attenuation in soft sediments is an important process and is taken into account in 

the computations to prevent serious errors in the estimation of seismic hazards (Fäh 1992). 

 In this study the hybrid method will be applied to the investigation of the site-specific 

microzonation of Banda Aceh, the capital city of Aceh, after applying an improvement in the 

definition of the structural model. The motivation for choosing the Banda Aceh city as one of the 

urban areas in Sumatra is because the city is located on a sedimentary layer between two bedrocks, 

and it is ideal for applying the hybrid model as shown in Figure 7.1. Another reason to choose 

Banda Aceh for the local scale NDSHA study is the fact that the city is densely populated and is the 

capital city of Aceh. The method is adopted in order to effectively mitigate (prevention) the 

earthquake consequences from future strong earthquakes.  

 

7.2 Location and Geology of Banda Aceh City 
 Banda Aceh is the capital city of Aceh, Indonesia. The city is located in the northern most 

part of Sumatra Island as shown in Figure 7.2 (left). In addition, the city is the most westerly and 

early developed city in Indonesia, and on 22 April 2015 it celebrates the 810th anniversary of its 

existence. The city rose to international prominence in the aftermath of the Indian Ocean earthquake 

in 2004, which struck off the western coast of Sumatra. Banda Aceh was the closest major city to 

the 2004 earthquake epicenter and suffered great damage in the earthquake following the 

devastating damage from tsunami.  

 Banda Aceh Municipality is a regional autonomy with area 61x36 km2. The center of Banda 

Aceh city is well known by its famous historical buildings such as Baiturrahman Grand Mosque at 

5°33′13″N 95°19′1.9″E. The population in the administrative Banda Aceh area reaches 249,282 

people according to the 2013 census (Illiza and Buchari, 2014). Other administrative areas belong 

to Aceh Besar district, which is the district capital located at Jantho, see Figure 7.2 (right) location. 

Syiah Kuala University is the state university of Aceh, located in Banda Aceh and near to the 

profile of the investigation as shown in Figure 7.2 (right).  
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Figure 7.2 (left) The Google Map view of Sumatra and location of Banda Aceh city in the most 
northwest path of the island.  (right) Satellite view of Google Earth: the pink line shows the 
position of the section considered for the hybrid modeling of earthquake ground motion, and the 
red line delineates the border of Banda Aceh city in Banda Aceh Basin. 
 

 

 

 

Figure 7.3. Structural map of the North 
Sumatra Basin and the distribution of 
tertiary and quaternary sediments in 
northern Sumatra. (Barber et al., 2005). 
Banda Aceh city is located in the 
Northwest Aceh Basin. This map covers 
Aceh province which is characterized by 
a complex branching fault system.  

  

 



 
 

138 

 
Figure 7.4 Geological Map of Banda Aceh city is cropped from map scale 1:250,000 (Bennett et 
al., 1981). The pink line is the location of the 2D profile used for the hybrid modeling of 
earthquake ground motion and the blue line is the administrative border of Banda Aceh that sits on 
quaternary alluvial deposits (Qh).  
 
 

 The North Sumatra Tertiary sedimentary basin and its westward extension in NW Aceh 

occupy the northeastern part of Sumatra between Banda Aceh and Medan, extending northwards 

into the Andaman Sea as shown in Figure 7.3. The earliest sediments in NW Aceh and extending 

westwards across the Barisan Mountains into the West Aceh Basin, are conglomerates, sandstones, 

siltstones and shales with interbedded limestones (Meucampli and Agam formations) of Eocene to 

Early Oligocene age (Bennett et al., 1981; Barber et al., 2005). 

 The Banda Aceh Basin occupies the northern part of Sumatra Basin which is separated by 

Quarternary Volcanoes of Seulawah Agam from the North Sumatra Basin. The early published 

work about the geology of Banda Aceh Basin (Culshaw et al., 1979) shows that the city stands 

astride the Krueng (River) Aceh which flows in a broad valley between low tertiary and quaternary 

volcanic hills to the northeast and steeper, cretaceous limestone hills to the southwest. The side B of 

the profile is terminated by the limestone hills, and the side A of the profile is terminated by the 
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volcanic hills, as shown in Figure 7.3. The valley itself is filled in with relatively recent alluvial and 

marine sediments to the depths in excess of 179 meters (Van Es, 1930). These were deposited in a 

graben structure formed between the main Semangko fault system which marks the northeasterly 

limit of the Cretaceous limestone and an easterly splay. There is little relief in the lower part of the 

valley, much of the land being less than 5 meters above sea level. The oldest rocks in the Banda 

Aceh area are limestones, slates, and phyllites that outcrop at the west side of the Krueng Aceh 

valley. 

 The oldest rocks in the Banda Aceh area are the limestones, slates, and phyllites that outcrop 

on the west side of the Krueng Aceh valley (Bridge, 1976). These outcrops in wedges between the 

limestones and the quaternary deposits of the valley are thought to be of Paleogene age. However, 

their relationship to other rocks is confused by their occurrence along the line of the Semangko fault 

system. The deposits of fossiliferous tuffaceous sandstone from Pliocene or early Pleistocene age 

are found in the upper valley area near Jantho town. These were probably laid down in a shallow 

water marine environment that has risen to their present elevation of up to 90 meters above sea 

level by tectonic uplift. The east side of the valley is flanked by extensive deposits of andesitic tufts 

and subsidiary flows, some probable water. These deposits and their parent volcano, Seulawah 

Agam, lie on the line on the east Semangko fault, a splay off the main fault system. The Krueng 

Aceh valley forms a graben-type structure between these faults. Outcrops of uplifted Pliocene and 

Pleistocene reef limestones have also been identified along the east coast (Culshaw et al., 1979). 

 Tertiary sedimentation in the present quadrangle was controlled by the existence of proto 

Barisan Mountain range, which began to rise from Oligocene. This produced separate basins on its 

Lamno basin in the west and the Banda Aceh basin in the northeast. The absolute position of the 

Banda Aceh Basin was originally SE of its present position, later tertiary movements having 

brought it to present place, but it was always on the west side of the mountain range (Bennett et al., 

1981).   

 We can simplify the geological map and show that Banda Aceh is located on alluvial 

deposition (Qh) and is not yet consolidated since the Holocene age. Banda Aceh is surrounded by 

rocks of the Tertiary age-Holocene. Southwest of Banda Aceh is dominated by carbonate rocks and 

east Banda Aceh is dominated by volcanic rocks. Both rocks are the bedrocks from Banda Aceh 

alluvial deposition covering Banda Aceh. In the west, Aceh also experiences the Eurasian Plate and 

the subduction zones of the Indo-Australian Plate. The Great Sumatran Fault runs constantly and 

causes the movement of the geological structures that affect the Banda Aceh basin, but can be 

muted with lithological conditions in the form of unconsolidated sediments (Rusdi et al., 2015).  
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7.3 Basin Structure of Banda Aceh 
 The construction of the 1D structural model for NDSHA at a regional scale can be built 

from the global and regional tomography data. Whereas, constructing the 2D structural model for 

NDSHA at a local scale requires more detailed information about the area being studied. There is 

no literature about the structure of the basin of Banda Aceh. The earliest geological study was done 

by Culshaw et al. (1979) until the depth of 30 m. Following earthquake and tsunami, BGR 

developed the Information System Engineering Geology (ISEG) based on GIS compiling several 

top soil condition for the reconstruction and rehabilitation of the extended urban area of Banda 

Aceh that was severely destroyed by the catastrophic 2004 earthquake/tsunami event (Günther, 

2007). BGR also made a  shallow shear-wave reflection seismic survey for several sites (Polom et 

al., 2008).  

 The available information from direct measurement in Banda Aceh is not sufficient 

information to construct the 2D profile necessary for the hybrid simulation. In order to construct the 

2D structure to make the local scale study, we tried to find the other available data near Banda Aceh 

and make a projection. Fortunately, Project Sumenta-II has sufficient data taken from the seismic 

expeditions using single channel seismic reflection data acquired in 1991–1992 data along the 

western margin of Sumatra (Malod and Kamal, 1996). These data were recorded on paper strips, 

which were scanned, digitized and converted into the SEGY format. In the absence of any velocity 

information, these data were migrated using a water velocity of 1.5 km/s in order to remove the 

effect of seafloor scattering. The seismic profile near Banda Aceh basin has become available after 

that study by Ghosal et al. (2012) later assigned Profile 33. 

 Profile 33 lies between Weh Island and mainland Sumatra and covers a part of the Breueh 

Basin and Mergui Basin (Figures 7.6 ). It is 47 km long and the water depth varies from 375 m in 

the Breueh Basin to 1275 m in the Mergui Basin. There is a veneer of thin sediments (150 m) over 

what looks like old deformed sediments in the Breueh Basin. There are no volcanic features 

observed near the seafloor northeast of this basin, but a small bathymetric depression is observed 

that might be a near surface expression of the Seulimeum Fault (Figure 7.6-left) (Ghosal et al., 

2012).  
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Figure 7.5 (left) Location of the profiles P-33 and P-36 and the valley of Banda Aceh region. The 
Aceh fault and the Seulimeum fault are marked by the dashed line (Ghosal et al., 2012). (right) 
Topography map showing the parallel valley for profile P-33 and Banda Aceh basin.  
 

 
 

Figure 7.6 (left) Interpreted single channels seismic reflection profiles from the Sumenta-II (Malod 
and Kamal, 1992) Profile-33 (P-33). (right) Sedimentary layer interpretation based on seismic 
profiling as the red box of profile P-33 which is near the Banda Aceh Basin using QGIS. 
 

 Based on the single channel seismic reflection profile P-33, we interpreted the sedimentary 

layer which is near the Banda Aceh basin inside the red box Figure 7.6 (left). We use QGIS 

software (QGIS 2011) to draw the polygon following the pattern of seismic reflection as shown in 

Figure 7.5 (right). The polygon is saved in .shp format (common standard ESRI format for QGIS). 

We make a package script, shp2pof.sh, to convert from (*.shp) to a file in a polygon format, which 

is accepted by hybrid software package (*.pof). The conversion process also reads the table of 

physical properties of the sedimentary layer as shown in Figure 7.1 in the format Comma Separated 
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Values (*.csv). The file format is often used to exchange the data between differently similar 

applications by LibreOffice Calc, Microsoft Excel, or manual text editing.  

     Because of the coordinate system in QGIS and the size of the picture from a seismic profile 

in a pixel size, scaling to an appropriate length and depth can be adjusted in the script and plotted as 

shown in Figure 7.7 (left).  The standard procedure to prepare the polygon is using XdigiMac 

Screen Digitizer (Vacarri 2014d). The polygon produced by QGIS is converted into the 2D hybrid 

input format and is readable by XdigiMac software package for checking and visualizing the 2D 

profile before using in the hybrid computation. People familiar with QGIS or other GIS software, 

e.g. ArcGIS, MapInfo, or other software can produce the *.shp file easily working with their 

favorite GIS software and has the capability to overlay another data which is difficult if not 

impossible to apply in XdigiMac.  

 Table 7.1 is based on the compilation of information from several available studies, such as, 

ISEG (Günther, 2007) and shallow shear-wave reflection seismic tomography (Polom et al., 2008), 

and considering geological similarity with previous study using the method (Vaccari et al., 2011; 

Nunziata et al., 2011; Paskaleva et al., 2007; Mohanty et al., 2009; Alvarez et al., 2005). 

 

  

Figure 7.7 The dimension of polygon size after conversion by shp2pof.sh (left) and the program 
XdigiMac successfully read the bna3.pof produced by the script (right) 

 

 

Table 7.1 Physical parameters for each layer in spreadsheet (LibreOffice/MSexcel) 
Name rho Vp vs qp qs h epoch Formation material 

Qh1 1.8 0.6 0.3 60 25 0.25 holocen Alluvium gravels,sands,muds 

Qh2 1.9 1 0.5 200 100 1 Pleistocene Alluvium2 Alluvium2 

Qh3 2 2 1 300 200 2 meosen Alluvium3 Alluvium3 

Qh4 2.1 2.5 1.4 400 230 2 meosen Alluvium3 Alluvium3 

Bed 2.47 3.5 2.0 1350 600 5.2 egosen bed hard 
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thk(km)   rho   Vp(km/s)  Vs(km/s)    Qp      Qs    depth(km) layer name 
  1.1787  1.97  3.500000  2.000000  1350.13  600.00  1.17866  1    SEDS1-BOTTOM 
  6.8135  2.47  5.147437  2.904619  1350.13  600.00  7.99216  2    CRUST1-BOTTOM 
  8.4092  2.67  6.113295  3.495663  1350.13  600.00  16.4013  3    CRUST2-BOTTOM 
 15.1265  2.85  6.686211  3.815870  1350.13  600.00  31.5278  4    CRUST3-BOTTOM 
 92.8497  3.30  8.123616  4.628840   450.04  200.00  124.377  5    LID-BOTTOM 
100.0000  3.30  7.961142  4.326709   157.52   70.00  224.377  6    ASTHENO-BOTTOM 
 55.6224  2.65  8.572799  4.639019   208.83   92.72  280.000  7    M65 
 60.0000  2.78  8.753242  4.750742   201.59   89.51  340.000  8    M62 
 70.0000  3.47  8.939481  4.861714   156.31   69.40  410.000  9    M69 
 80.0000  3.93  9.550887  5.220524   416.59  184.97  490.000  10   M55 
 80.0000  3.92  9.810226  5.370601   420.98  186.92  570.000  11   M51 
 90.0000  3.92  10.11921  5.566250   425.83  189.07  660.000  12   M48 
 90.0000  4.29  10.93294  6.094822  1315.11  583.91  750.000  13   M44 
 90.0000  4.40  11.12214  6.236225  1271.93  564.74  840.000  14   M43 
 90.0000  4.49  11.28087  6.265922  1255.96  557.65  930.000  15   M41 
 90.0000  4.57  11.45185  6.338050  1240.11  550.61  1020.00  16   M39 
110.0000  4.63  11.60294  6.432203  1223.39  543.18  1130.00  17   M37 
120.0000  4.69  11.77173  6.541500  1204.54  534.82  1250.00  18   M36 
150.0000  4.76  11.95084  6.629762  1182.80  525.16  1400.00  19   M33 
 
 
 

Listing 7.1 1D structural model for 1D hybrid method with 
the top layer from LITHO1.0 model adjusted to the local 
conditions expressed in the 2D structural model. 
 
Figure 7.8 (right) Plotting of the 1D structural model from 
listing 7.1.   

 
 

7.4 Source Definition for Local Scale NDSHA 
 The regional scale NDSHA will compute the synthetic seismogram for many significant 

sources defined for each area, following source definition as discussed in Chapter 3. For the local 

scale NDSHA, the computational cost is more expensive because of using the hybrid method to 

produce synthetic seismogram. Therefore, the only selected scenario sources will be used for the 

calculation of the most significant contribution to strong ground motion PGD, PGV and PGA. The 

result, from ES UP 10Hz Figure 6.4.5, shows that the source of PGD and PGV is in the subduction 

zone and for PGA in the strike-slip fault.  

 In order to investigate the most significant source of hazard to the Banda Aceh city, we 

plotted the source related to the most significant ground motion parameter to the sites of interest. 

Figure 7.9 and 7.10 show the sources for PDG (left) and PGA (right) for the horizontal component 

(Figure 7.9) and the vertical component (Figure 7.10) at the maximum cutoff frequency of 10Hz 

and using the enhanced source definition procedure with the updated path generator (ES-UP 10Hz).  

The picture shows that the PGD in the city is controlled by the big earthquake in the subduction 

zone as shown in Figure 7.9 (left), and PGA is related to near source as shown in Figure 7.9 (right).  

However, for the vertical component, almost all vertical PGD is contributed by the subduction zone 

of the vertical movement from the Sunda megathrust mechanic, see Figure 7.10 (left). The PGA for 

the vertical component remains controlled by the near field sources from the strike slip seismogenic 

zones in the land of Sumatra.  
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PGD: ES UP 10Hz 
 

PGA: ES UP 10Hz 
 

Figure 7.9 Sources that contribute the maximum horizontal component of PGD (left) and PGA 
(right) computed at 10 Hz cutoff for horizontal component for the ES-UP version of NDSHA. 

 

 

 

 
PGDVERT: ES UP 10Hz 

 
PGAVERT: ES UP 10Hz 

 
Figure 7.10 Sources that contribute the maximum vertical component of PGD (left) and PGA 
(right) computed at 10 Hz cutoff for horizontal component for the ES-UP version of NDSHA. 
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Figure 7.11 The source location which 
contributes to significant strong ground 
motion PGD, PGV and PGA at cutoff 
frequency 10Hz. The PGD and PGV for 
the vertical and horizontal component are 
from different earthquake sources. Only 
PGA for the horizontal and vertical 
component have the same source. 

 
comp   slon   slat     dist    az      hs     strike   dip    rake   strrec  mag    amaxa                              
PGDres 95.3750 3.6250  218.410   0.727 31.306  325.000  7.000 100.000 324.273 8.83 0.4555E+02 
PGVres 95.9000 5.1000   78.283 314.956 20.000  313.000 72.000 168.000 358.044 7.41 0.3883E+02 
PGAres 95.7000 5.5000   35.031 288.415 20.000  313.000 72.000 168.000  24.585 6.50 0.3081E+03 
PGDrzz 95.1250 3.8750  193.173   9.076 28.121  325.000  7.000 100.000 315.924 8.73 0.3833E+02 
PGVrzz 93.6250 3.1250  337.214  35.687  5.291  325.000  7.000 100.000 289.313 8.31 0.2186E+02 
PGArzz 95.7000 5.5000   35.031 288.415 20.000  313.000 72.000 168.000  24.585 6.50 0.1208E+03 
 

Listing 7.2 shows the important parameters selected from a receiver near the Banda Aceh basin, 
longitude=95.4°, latitude=5.6°. 

 

 We chose 2 scenarios for which the source contributes to horizontal PGA and PGD. For 

subduction, we selected the source, which contributes to significant PGD horizontal with a strike-

receiver=325°, dip=7°, rake=100°, magnitude M8.8, and focal depth 31.5 km. The distance from 

the source to the receiver is in Listing 7.2. For the strike-slip, we inverted the direction of the 2D 

profile, and the use of strike-receiver=24.585°+180°=204.585°. 

 
 

31.306    Source depth (km) 
324.273   Strike-receiver angle (SH modelling) 
7.000     Fault dip             (SH modelling) 
100.000   Fault rake            (SH modelling) 
324.273   Strike-receiver angle (P-SV modelling) 
7.000     Fault dip             (P-SV modelling) 
100.000   Fault rake            (P-SV modelling) 
208.410   Source-2D model origin distance (km) 
8.83      Magnitude 
1         Source (1=point, 2=extended) 

20.000    Source depth (km) 
204.585   Strike-receiver angle (SH modelling) 
72.000    Fault dip             (SH modelling) 
168.000   Fault rake            (SH modelling) 
204.585   Strike-receiver angle (P-SV modelling) 
72.000    Fault dip             (P-SV modelling) 
168.000   Fault rake            (P-SV modelling) 
35.031    Source-2D model origin distance (km) 
6.5       Magnitude 5.3 
1         Source (1=point, 2=extended) 

Listing 7.3 Part of pfdg13.par configuration file of hybrid 2D for source parameter for subduction 
zone scenario (left) and for strike slip (right) 
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7.5 Simulation for Subduction Source   
The technical procedure for the computation of the seismic microzonation is explained in 

the Quick Reference Manuals, Ground shaking scenarios along 2D profiles used with the hybrid 

technique with the point-source approximation (Vaccari, 2015). The computation has two stages: 

first, it generates a synthetic seismogram with a 1D modal summation. Second, it generates the 

synthetic seismograms by 2D finite differences. Therefore, we can compare both results in order to 

get the response spectra ratios.  

The complete synthetic seismograms, including all of the main phase reflections, 

refractions, conversions, and surface waves, have been generated for the profiles of the Banda Aceh 

city. The seismograms are computed with the cutoff frequency of 1 Hz, as shown in Figure 7.12 

(left). The source is taken southeast of the basin at a distance of 208.4 km away from the nearest 

seismogram computation site. The source represents the subduction zone earthquake with an 

oblique-slip focal mechanism (stirke=325º, dip=7º, rake=100º, magnitude M8.8, and focal depth 

31.5 km. The vertical component reaches the largest peak value as it is a characteristic of the 

sources for a subduction zone.  

  
Figure 7.12 (left) The three components accelerograms along  the profile. (right) The response 

spectra ratio (RSR) versus frequency and epicentral distance along the profile. 
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 The local response at a given site is estimated by evaluating the response spectra ratio 

(RSR). The RSR is expressed as RSR = RS(2D)/RS(1D) where, RS (2D) is the response spectrum 

(at 5% damping) of the signals in the laterally varying local structure, and RS (1D) is the response 

spectrum (at 5% damping) of the signals calculated for the bedrock regional reference model. 

Figure 7.12 (right) shows the RSR for the profile along the Banda Aceh basin with 1 Hz cutoff. The 

computation is adequate because the high frequencies are not relevant in the far source field at the 

epicentral distances larger than 200 km.   

 

7.6 Simulation for Strike Slip Source  
 The strike-slip fault is the controlling earthquake source for PGA on Sumatra. The sources 

of the dominant PGA for the horizontal and vertical components are from the strike-slip fault in the 

source as shown in Figure 7.9. The source is taken south of the basin at a distance of 35 km away 

from the nearest seismogram. Therefore, we need to inverse the geometry of structural sediment 

geometry as shown in Figure 7.13.  

 

 
 

Figure 7.13 (left) The three components accelerograms along the profile (right). The response 
spectra ratio (RSR) versus frequency and epicentral distance along the profile 
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For the near-field source, the source represents the Sumatra strike-slip fault (strike=313º, dip=72º, 

rake=168º), magnitude M=6.5, and focal depth = 20.0 km. Because of the short epicental distance, 

the high frequencies are significant and the simulation of the synthetic seismogram is made with a 

cutoff frequency of 10Hz. Because of the limitation in the knowledge of the source and the 

structural models, we trust the result until 5Hz as shown in Figure 7.14. Because the simulation is 

running with the inverted basin geometry, the resultant response spectra ratio plot is inverted again 

to its original position, see Figure 7.14 (left). The result shows that the values of RSR depend on the 

site where the seismic energy enters the basin. This effect is related to the strong amplification 

(polarization) of the waveform and the strong damping effect of most energy by the sedimentary 

layer. 

  

  
Figure 7.14 (left) shows the response spectra ratio (RSR) versus epicentral distance along the 
inverted profile; (right) shows the inverted plot of RSR versus epicenteral distance along the 
inverted profile and it became  easy to compare with figure 7.12 (right) because using same 
geometry of basin.  
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The RSR are summarized in Figure 7 14. For the vertical component, the largest values (a 

factor of 14) occur at frequency less than 1 Hz. In some areas, e.g., at the edges of the local model, 

the frequency of the largest values is higher than 1 Hz. The pattern of the RSR is quite different in 

the case of radial, but it is similar to transverse component. In the transverse component, the 

amplification is stronger and occurs within the frequencies between 0.5 and 4 Hz. For the radial 

component, the largest value (a factor of 5) occurs along a wide range of frequencies relative to the 

two other components.  

The loose soft alluvial sediments underneath the Banda Aceh city are the main factor behind 

this potential damage because they may not only affect the vertical component but may greatly 

polarize in the horizontal plane (amplify) the ground motion, as demonstrated by the strong ground 

motion model. The largest amplification is generally concentrated along the edges of the graben and 

occurs at frequencies between 0.5 Hz and 2 Hz.  
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8. Conclusions and Suggestions 
 
 

8.1 Conclusions 
 Although widely used, the PSHA method gives a less accurate picture of the physical 

processes behind an earthquake. The official seismic hazard map for Indonesia (including Sumatra) 

is produced with the PSHA method by taking into account the updated seismotectonic data, the new 

fault models, the implemented new GMPE as NGA, and the divided seismic sources based on fault, 

subduction, and background zones. Due to the absence of GMPE developed using the data observed 

directly Indonesia as well as the disruption of the tensor nature of earthquake ground motion, 

predicted by continuum mechanics, in the computed strong motion, caused by the adoption of these 

relationships, there is a need for a reliable and rigorous definition and characterization of seismic 

hazard parameters.  

    A more adequate definition of the seismic ground motion can be given by the NDSHA method, 

which is based on the possibility of efficiently computing realistic synthetic seismograms by the 

modal summation technique. NDSHA has been applied in many countries (Panza et al., 2013) for 

some 20 years and has not yet been contradicted by any observation. NDSHA has been developed 

to naturally supply realistic time series of ground shaking, including reliable estimates of ground 

displacement readily applicable to seismic isolation techniques. The NDSHA procedure, which 

represents a drastic enhancement of DSHA, permits the timely incorporation, as they become 

available, of new geophysical and geological data, as well as the information from the different 

Morphostructural Zonation (MZ) developed for the space identification of potential strong 

earthquake sites in historically seismically quiescent areas. All this leads to the natural definition of 

a set of scenarios of expected ground shaking at the bedrock. At the local scale, further 

investigations can be performed taking into account the local soil conditions, in order to compute 

the seismic input (realistic synthetic seismograms) for engineering analysis of relevant structures, 

such as historical and strategic buildings (Panza et al., 2013).  

    Sumatra is among the most active regions in terms of earthquakes, owing to the confluence of 

multiple plates moving at very high relative speeds. The earthquake activity around Sumatra has 

multiple sources: thrust earthquakes on the subduction fault, strike-slip earthquakes on the 

Sumatran fault, deeper earthquakes within the subducting lithosphere, and volcanic earthquakes. 

The first step of any seismic hazard assessment is the identification of seismic sources that can 

affect the area of study. This step needs an accurate earthquake catalog as complete as possible. 
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One of the important advantages of NDSHA is that it is not necessary to involve the earthquake 

recurrences nor the “return period”, which, due to the sporadic occurrence of large earthquakes, are 

subject to large uncertainties, the former, and is physically rootless, the latter. 

     The USGS catalog, in this study, is combined with the catalogs from Engdahl et al. (1998), 

ISC, BMKG and Pesicek et al. (2010). In order to improve the poor earthquake catalog for the 

Sumatra fault, the earthquake information from geological investigations (Natawidjaja and Triyoso, 

2007) is used. In order to combine several earthquake catalogs compiled by different authors with 

different details and completeness, we developed an updated selection procedure routine, namely 

eqc4select.exe. This selection procedure is very useful to deal with huge data sets with different 

formats, and it is useful to remove any error from the data if they are not in the proper range. The 

selection procedure reduced significantly (about 50%) the number of events from 25910 records to 

13317 records.  

     Sumatra is surrounded by several kinds of faults: subduction, strike-slip, spreading, inter-

plate from the Ninety East Ridge and the Investigator Ridge. Based on the tectonic setting, 

seismicity, and the similarity in the spatial distribution of focal mechanisms, we defined 15 

seismogenic zones for Sumatra: each zone has a different level of complexity. The zones that 

contribute high hazard are Aceh, Semangko, Krakatau, Meulaboh, Padang, Nias, Mentawai. The 

zones that contribute moderate hazard are Lokop, Inter-plate, Medan, and Palembang. Finally, the 

zones that contribute low hazard are Java Sea, NSR, Sunda Trench, and Jakarta.  

    NDSHA can provide strong ground motion synthetic seismograms based on a realistic physical 

simulation for each source-receiver path. In order to reduce the number of computation and 

uncertainties of the earthquake catalogs, a smoothing procedure is needed (Panza et al., 1990). By 

applying the standard smoothing procedure (OS) to the selected earthquakes (13317) reduces the 

required source definitions to 2612.  

    Due to the complexity and variety of the seismogenic zones in Sumatra, the options and 

features provided by OS are not sufficient to handle the complexity of Sumatra seismogenic zones. 

Therefore, we developed an enhanced source definition procedure (ES) by using a flexible user-

friendly configuration file, the setting parameters per polygon, a smoothing radius unit in degree or 

cell, the partitioning or transparent effect by grouping zones, the geometrical magnitude smoothing, 

the magnitude range limitation, and the ellipsoid geometrical smoothing algorithm. Besides the 

smoothing of the earthquake magnitude, we also enhanced the procedure to determine the focal 

depth from the depth distribution file or from the depth of the maximum magnitude in the cell. 

Having the new features and the more control on the individual seismotectonic zone gives us the 

details needed for controlling the smoothing process. The challenge to use the enhanced source 

definition procedure (ES) does not only come from the increase of the number of parameters for 
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each zone but also from the very large number of parameters in the case where many zones are 

used. After exploring the hypocenter distribution and slab distribution, finally, we defined 15 

seismotectonic zones needed for the next step in the hazard computation, which is handled in our 

study using the ES procedure. The ES algorithm can reduce the number of the source from the 

standard smoothing of 2612 records to only 1776 records.  

     The realistic estimation of seismic hazard needs earthquake source model and medium 

structural model accuracy as much as possible. NDSHA can provide the strong ground motion 

parameters based on the realistic physical simulation of the seismic wave propagation within the 

structural model i.e. density, VP, VS, QP, and Qs.  The information of P-wave and S-wave is taken 

from Pesicek et al. (2010) and Widiyantor (2008), respectively. And for the upper part of the 

structural model, we take the information from LITHO1.0. In order to have an optimum number of 

structural models, we rotated the cellular grid by 54º with respect to the north; thus, the number of 

the polygons is 49: 14 polygons for the small islands and 35 polygons for Sumatra.  

     The NDSHA computation is run using synthetic seismograms, and a new version of the 

parametric testing program was developed with several features with a user-friendly configuration 

file and with a support for handling an extended source parameter. The program succeeded to 

provide an input for the modal summation computation and to produce the strong ground motion by 

taking into account the angular radiation pattern.  

We validated the results against the shaking map and the observed time series taken from 

the Takengon earthquake (occurred on 2 July 2013)  with a magnitude of 6.1. The comparison 

showed a satisfactory agreement with the estimated value from NDSHA, the shaking map from 

USGS, and the observed intensity. The waveforms from the observed accelerograms and 

seismograms are more dispersed than those from the synthetic seismograms. Such disperse 

difference took place because the synthetic seismograms were computed on a 1-dimensional rock 

structure without taking into account the factors in scattering and site effect. The length of the coda 

duration was controlled by the site effect at a location station. The station located on a bedrock is in 

good agreement with the theoretical synthetic seismogram.  

     The enhanced source definition (ES) was applied with the original version of the standard 

path generator (OP). The use of the enhanced source definition produces PGD, PGV and PGA is 

very similar to what is produced by the standard NDSHA package. The PGA produced by ES-OP 

shows a relatively significant decrease at near and far sites within the Sumatran fault system (e.g. 

Bangka Island) in comparison with the PGA produced using the standard package OS-OP. This 

could be because in the enhanced source definition procedure we controlled the minRun (a 

minimum magnitude run for each site) for each seismogenic zone individually.  
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 The PGD and PGA computed by the enhanced procedure ES-OP are more realistic if 

compared with the values obtained with the standard procedure OS-OP. The result shows that the 

estimated PGD using the ES-OP at far sites, relative to the earthquake sources, is dominated by the 

distant subduction source, while using the OS-OP leads to that, the far seismic sources-receivers are 

not considered in the computed PGD at distant sites (PGD from near sources is only registered). 

This is due to the magnitude distance threshold being used by the original version of NDSHA. 

However, the estimated PGA based on ES-OP and OS-OP shows almost the same result in a small 

source-receiver distance. This result is more reasonable because the subduction source can generate 

a larger magnitude than the strike-slip fault; thus, it can affect Bangka Island with significant 

impacts, whereas the strike-slip sources cannot. 

 The dominant period in the computed PGV by the ES-OP is relatively more scattered if 

compared with the dominant period of PGV produced by OS-OP. One possible reason is that the 

ES-OP has no fixed source of depth (the magnitude depth-dependent source) if compared to the 

standard OS-OP. The enhanced source definition ES-OP obviously uses the estimated focal depth 

from the enhanced smoothing procedure while the standard OS-OP uses three different magnitude-

focal depth with varied threshold values (10km, 15km, 20km).  

 We succeeded in updating the path generator (UP) to adopt the user-friendly configuration 

file and to handle the problem where the sources are not registered in the far receivers in Bangka 

Island when using the medium range of the magnitude distance threshold R2 (M7.0 and M8.0 have 

a range of 300km and of 400km, respectively). We can verify this fact by using the same input for 

the original and the updated version. The result shows a very small difference between the map 

computed using the updated version of OS-UP and the original version of OS-OP with a path 

definition. The MIS feature in the updated path generator allows the reduction of the computational 

time significantly. For the distance-magnitude threshold R3, the result from OP cannot be used 

anymore even if it produces the number of paths half compared to the number of the paths the UP 

produces.  The comparison of the computation time for UP with threshold R3 and the OP with the 

standard threshold shows a significant decrease of the computational time (by a factor 4.5) with no 

loss in the accuracy of the produced PGA.  

     The PGA estimated by the standard NDSHA with 10 Hz cutoff is higher than the PGA 

computed from PSHA at PE 10%. The comparison between the PSHA map computed at 2% 

probability of exceedance and the NDSHA map shows that the PGA computed by NDSHA is 

greater in value than the PGA estimated by PSHA at the nearest sites, whereas the opposite is true 

in the case of the distant sites, relative to the epicentral distance. Accordingly, the NDSHA 

calculation for Sumatra gives a reasonable result in respect to the adopted magnitude distance 

threshold. The result is reasonable because the standard NDSHA is produced by using a realistic 
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physical simulation of the seismic wave propagation. 

 In this study, we applied the hybrid method to investigate the site-specific microzonation of 

Banda Aceh, the capital city of Aceh Province, after we improved the definition of the structural 

model. Additionally, we defined the mechanical properties of the sedimentary layer of the Banda 

Aceh basin in reference to the nearest available seismic profile. We performed two earthquake 

scenarios, which are significant to PGD and PGA with the city of Banda Aceh. In some areas, e.g., 

at the edges of the local model, the frequency of the largest values is higher than 1 Hz. The loose 

soft alluvial sediments underneath the city of Banda Aceh are the main factor behind this potential 

damage because the sediment may not only affect the vertical component but also greatly polarize 

the horizontal plane, which in turn amplifies the ground motion, as demonstrated by a strong 

ground motion model. The largest amplification is generally concentrated along the edges of the 

graben and occurs at frequencies between 0.5 Hz and 2 Hz.  

 The entire research process of this study can be summarized as shown in Figure 8.1 as the 

NDSHA method was done in two different scales. The regional scale, covering Sumatra, uses the 

seismogenic zones taken from the earthquake catalogs and the smoothing source definition 

enhanced procedure, the regional data structural models in 1D. Then we tested and verified the 

modal summation method using a single source, which was run with an updated path definition 

based on many sources. The result was the NDSHA map of Sumatra. On the other hand, the local 

scale, covering Banda Aceh city, uses a specific site taken from one of the many sources that was 

done the updated path definition of the regional scale. Additionally, we also used the local data 

structural models in 2D by running the local scale hybrid 2D method across several selected 

sources. The result of the local scale computation is the microzonation map of Banda Aceh City. 

 

8.2 Suggestions 
 The NDSHA method is still evolving, and the computer code is being improved constantly 

since its conception, to accommodate the demand for the realistic ground shaking maps and the 

ground shaking scenarios, at different scales, by incorporating all relevant progresses in the 

knowledge of geological processes and their numerical modeling  (Panza et al., 2012). 

 Adding the feature of the updated path generator makes it possible to combine 10Hz and 

1Hz computation in a single program run by adopting different cutoffs: 10Hz for a near source and 

1Hz for a distant source. Moreover, the standard process for calculating the synthetic seismogram in 

hazard computation can take a lot of space in data storage (hard disk) and consume a considerable 

amount of time for an I/O process. If the server is using an I/O network, it will take more time for 

sending the data via the network. The updated procedure for hazard computation should be 
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modified by completing the process of modal summation, rotation, and scaling and by selecting a 

significant seismogram in a single process per receiver. Such an improvement will reduce the use of 

data storage and computational time significantly. 

    Future studies could be devoted to better characterize the structural models, e.g. by 

modeling the regional surface wave tomography in Sumatra to improve the computed synthetic 

seismograms by including the oceanic-continent paths and implementing more realistic extended 

source models to deal with mega earthquakes. 

 

 

  

 
Figure 8.1 Summary diagram work flow for NDSHA: regional scale for Sumatra Island  

and local Scale for Banda Aceh City 
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