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Abstract: The problem of deadbeat state reconstruction for non-autonomous linear systems
has been solved since several decades, but all the architectures formulated since now require
either high-gain output injection, which amplifies measurement noises (e.g., in the case of
sliding-mode observers), either state augmentation, which yields a non-minimal realization of
the deadbeat observer (e.g., in the case of integral methods and delay-based methods). In this
context, the present paper presents, for the first time, a finite-time observer for continuous-time
linear systems enjoying minimal linear-time-varying dynamics, that is, the observer has the same
order of the observed system. The key idea behind the proposed method is the introduction of
an almost-always invertible time/output-dependent state mapping which allows to recast the
dynamics of the system in a new observer canonical form whose initial conditions are known.

1. INTRODUCTION

State observers are keenly researched in the recent litera-
ture due to the fact that state variables play a significant
role in the control system theory, while in many practical
situations, they are unmeasurable.

The classical observers proposed in Kalman and Bucy
(1961) and Luenberger (1964) are the most well-known
methodologies to achieve state estimation. However, al-
though these observers can be designed to converge faster,
in the context of implementable techniques (finite gain),
they can only guarantee asymptotic convergence of the
estimation error. However non-asymptotic observers pro-
viding finite-time convergence with fast speed are un-
doubtedly desirable in most of engineering cases.

Several algorithms have been conceived after the first con-
volutional deadbeat state estimator proposed by Kalman
in the ’60s [Kalman et al. (1969)], able to reconstruct
the initial conditions and the system’s state in finite-time.
Besides, the moving-window observers presented in Fuksa
and Byrski (1984) obtain deadbeat estimates through con-
volution and optimization techniques. Instead of using the
integral operation adopted in the methodologies above, a
kind of delay-based deadbeat observer has been proposed
in Gilchrist (1966). Nonetheless, all the aforementioned
observers are suffering either from the huge memory con-
sumption or from the heavy computational burden.

In the recent two decades, several novel methods have
been developed in the deadbeat observer design. Detailed
in Fliess and Sira-Ramırez (2003) and Reger (2007), the
algebraic state reconstructors achieve the arbitrary finite-
time convergence without using the delay or buffering tech-
niques. However, as a consequence of their internal insta-
bility, the algebraic state observers need periodic resetting
otherwise the estimates will diverge. The effect of resetting
has been shown in Reger et al. (2006). Impulsive observers
proposed in Raff et al. (2006) and Raff and Allgöwer (2007)
provide non-asymptotic state estimation by updating the
state estimates on predefined time instant based on the
current measurement. Nonetheless, the impulsive observer
and the aforementioned delay-based observer as well as the
integral methods have the system dimension at least two
times larger than that of the observed system. A different
class of finite-time observers making use of sliding-mode
adaptation is designed in Haskara (1998). However it is
an inevitable problem that the finite-time convergence of
the sliding-mode methodology usually relies on (saturated)
high-gain injection, which makes the observer vulnerable
to measurement noise and limits its applicability.

A new deadbeat state observation technique without dis-
continuous high-gain injection is introduced in Pin et al.
(2013), eliminating the effect of the unknown initial con-
ditions by using Volterra integral operators with suitably
shaped kernel functions enjoying internally stable imple-
mentation. Furthermore, an alternative non-asymptotic



observer resorting to a univariate modulating function is
proposed in Pin et al. (2015). The modulating function ob-
server has been exploited for harmonics detection in Power
electronic systems (see Chen et al. (2016)). However, for
the integral modulation and the kernel-based techniques,
state augmentation is still necessary.

In this paper, a deadbeat observer based on time/output-
dependent transformations with minimal dimension is pro-
posed. More specifically, we show that after the coordinate
transformations, the system can be recast in a “deadbeat
observer canonical form” defined herein whose initial con-
ditions are known and therefore, arbitrarily short time
convergence of the error can be achieved from the mea-
surements. Notably, the proposed deadbeat observer has
the same dimension as the observed system. Moreover, the
state estimator has no high-gain injection and is natively
capable to deal with MIMO system. At the same time,
the noise immunity can be enhanced by shaping the mod-
ulating function. Moreover, the robustness of the proposed
observer is analyzed under the presence of disturbance on
both input and output. Numerical simulations are carried
out to examine the effectiveness of the proposed method-
ology.

2. PROBLEM STATEMENT

Consider the MISO linear system 1

x(1)(t) = Ax(t) +Bu(t)
y(t) = c x(t)

(1)

with x ∈ R
n, y ∈ R, u ∈ R

m. Assume that the system
is fully controllable. Then there exists a vector l ∈ R

n

such that A− lc is a nilpotent matrix. Then, the observed
system (1) can be written in the following form:

x(1)(t) = (A− lc)x(t) + ly(t) +Bu(t). (2)

LettingG and T be respectively a Schur (upper-triangular)
and a unitary-orthogonal matrices such that A−lc=TGT⊤,
then the matrix G = T⊤(A− lc)T has null-diagonal el-
ements (g11 = 0, g22 = 0, ..., gnn = 0). By the change of

coordinates z(t) , T⊤x(t), we can recast the above system
in strict-upper-triangular form

z(1)(t) = Gz(t) + v(u(t), y(t))
y(t) = hz(t),

(3)

where v(u(t), y(t)) , T⊤ly(t) + T⊤Bu(t) and h , cT .

The nilpotency of the matrix G in the above system and
its strict-upper triangular structure are instrumental to
simplify the algebra in the forthcoming analysis.

A further change of coordinates is operated now to recast
the system in a convenient form, named the “deadbeat
observer canonical form”. The proposed observer relies
on a time/output-dependent coordinate transformation
Ψ : Rn × R× R → R

n given by:
1 The requirement for the system to be single-output is instrumental
to simplify the derivation of the deadbeat observer, but it does not
prevent the application of the developed method to MIMO systems.
Indeed, any observable MIMO system can be reduced to a MISO
one by resorting to the method described in Lemma 9.4.4 of Willems
and Polderman (1997) . Formally, the method is described to achieve
input reduction (MIMO to SIMO), but can be trivially modified for
the task of output reduction exploting the control/observer duality
in the framework of linear systems.

ξ = Ψ(z | t, y) = Y (t)z + ζ(t, y) (4)

where the separator ` | ´ is introduced with the aim of
separating the state vector z, which is the main argument
of the transformation, from the instrumental arguments
t and y. In (4) the term ζ : R × R → R

n is a specified
function of the time and of the measurable output, such
that ζ(0, y) = 0, ∀y ∈ R, while Y (t) : R → R

n is a
known time-dependent matrix, such that Y (0) = 0 and
whose inverse is well-defined (nonsingular) for any t > 0
(strictly).

Due to the structure of Y and ζ, that will be described in
the following sections for the two distinct cases n = 2 and
n = 3, the transformed coordinate ξ has a known initial
condition whatever be the value of z0 = z(0):

ξ0 = ξ(0) = Ψ(z0|0, y(0)) = Y (0)z0 + ζ (0, hz0) ≡ 0,

for all z0 ∈ R
n.

Moreover, the dynamics of ξ are fully characterized and ob-
servable, so that a conventional observer can be deployed

to obtain an estimate ξ̂.

Since the inverse of the mapping Ψ with respect to the
first argument, Ψ−1, exists for any t > 0 (strictly) for
the specific state transformation provided in the following
Sections, then it can be used to retrieve an estimate ẑ of
the state z by:

ẑ = Ψ−1(ξ̂ | t, y) = Y (t)−1
(

ξ̂ − ζ(t, y)
)

, ∀t > 0 (5)

from which, finally, an estimate for the original state-
vector x̂ can be trivially obtained by linear projection:

x̂ = T−⊤z.

3. TWO DIMENSIONAL SYSTEM

In this case, we will consider a system having dimension
n = 2. Letting ξ = [ξ1 ξ2]

⊤, the transformation Ψ(z|t, y)
takes the form

ξ1(t) = k(t)hz(t)
ξ2(t) = k(t)hGz(t)− k(1)(t)y(t)

(6)

with k(·) a user-defined function of time with scalar out-
put such that k(0) = 0, k(1)(0) = 0 and k(t) > 0, ∀t > 0.
Moreover, let Γ = [1 0]. By this choice, the output of the
ξ system can be obtained by

γ(t) = Γξ(t) = ξ1(t) = k(t)y(t).

Note that, by choosing k according to the prescriptions
above, then the initial value of ξ is known (ξ(0) = 0).

Omitting, for the sake of brevity, the explicit dependence
on time of k, k(1), ξ, u, y and z, and defining the functions

Y = Y (t) ,

[

hk
hGk

]

, ζ = ζ(t, y) ,

[

0
−k(1)y

]

, (7)

then (6) can be written in the form

ξ = Y z + ζ. (8)

Now, taking the time-derivative of ξ1 and ξ2, the dynamics
of the system in the transformed coordinates write

ξ
(1)
1 = hGkz + k(1)y + khv

ξ
(1)
2 = hG2kz − k(2)y + khGv − k(1)hv.

(9)

Moreover, defining



M = M(t) ,

[

hGk
hG2k

]

(10)

and

η=η(t, u, y),

[

k(1)y + khv(u, y)
−k(2)y+k(t)hGv(u, y)−k(1)hv(u, y)

]

then in view of (8), (3) can be rewritten as follows

ξ(1) = Xξ −Xζ + η (11)

where we have posed X , MY −1. Since G is upper-
triangular and nilpotent, then in view of (9) and (10) the
matrix X becomes

X =

[

0 1
0 0

]

. (12)

By the structure of X and Γ it is readily seen that the
ξ-system is fully observable; therefore, an output-error
injection matrix K can be designed to build an observer
in the form of (13) with stable error dynamics.

Since both the initial conditions and the dynamics of the
ξ-system (11) are known and observable, then a classical
linear error-feedback observer can be arranged as follows:

ξ̂(1)(t) = Xξ̂(t)−Xζ(t, y(t)) + η(t, u(t), y(t))

+K(γ(t)− Γξ̂(t)),
(13)

initialized with the known initial conditions ξ̂(0) = 0. In
(13), K ∈ R

n is a conventional (Luenberger) observer
gain which is aimed at stabilizing the dynamics of the
observer error. Moreover, ζ and η are known functions of
the measured input u(t) and output y(t).

4. THREE DIMENSIONAL SYSTEM

Let us introduce a transformation Ψ(z|t, y). To this end,
let k(·) be a user-defined time-function such that k(0) = 0,
k(1)(0) = 0, k(2)(0) = 0 and k(t) > 0, ∀t > 0. Let us define

Y = Y (t) ,





hk
hGk

hG2k − hGk(1)



 , (14)

and

ζ = ζ(t, y) ,





0
−2k(1)y
k(2)y



 . (15)

Similarly with the two-dimensional case, the dynamics of
the system in the transformed coordinates write

ξ
(1)
1 = hGkz + k(1)y + khv

ξ
(1)
2 = hG2kz − 2k(2)y − k(1)hGz + khGv − 2k(1)hv

ξ
(1)
3 = hG3kz + k(3)y + khG2v − k(1)hGv + k(2)hv.

Moreover, defining

M = M(t) ,





hGk
hG2k − k(1)hG

hG3k



 (16)

omitting the dependence of v on u and y, introducing the
function

η = η(t, u, y) ,





k(1)y + khv
−2k(2)y + khGv − 2k(1)hv

k(3)y + khG2v − k(1)hGv + k(2)hv





and defining X , MY −1, then the dynamics of ξ can be
written as

ξ(1) = X(ξ − ζ) + η

where the matrix X takes the form

X=

[

0 1 0
0 0 1
0 0 0

]

. (17)

Notably, with Γ=[1 0 0], the system is fully observable.
The observer (13) can be deployed also in this case.

5. ROBUSTNESS ANALYSIS

Consider the circumstance that the measurements are
contaminated by bounded noise:

ud(t) = u(t) + du(t), yd(t) = y(t) + dy(t),

where du(t) ≤ d̄u ∈ R
m and dy(t) ≤ d̄y ∈ R. Correspond-

ingly, the state observer takes the form:

ξ̂
(1)
d (t) = Xξ̂d(t)−Xζd(t, yd(t)) + ηd(t, ud(t), yd(t))

+K(γd(t)− Γξ̂d(t)),

where all the variables with subscript “d” except γd(t)
denote the noisy counterparts of the variables in (13) and
can be obtained by replacing y(t) and u(t) by the noisy
measurements yd(t) and ud(t) in (15) and (4).

Defining the estimation error ξ̃d(t) = ξ̂d(t) − ξ(t) and
considering (11), the error dynamics can be obtained as:

ξ̃
(1)
d (t) = (X −KΓ)ξ̃d(t)−X(ζd − ζ) + (ηd − η)

+Kk(t)dy(t).
(18)

Remarkably, in (18), the terms ζd − ζ, ηd − η and Kkdy
are functions of the disturbance du and dy modulated
by the function k(t) and its derivatives. Therefore, the
stability of the error dynamics can be guaranteed by
choosing the observer gain K such that all the eigen-
values of the matrix X − KΓ are on the left-half plane.
Being X − KΓ Hurwitz, there exists a positive defi-
nite matrix P satisfying the algebraic Lyapunov equa-
tion: P (X −KΓ) + (X −KΓ)⊤P = −I. Let us choose the

quadratic form V (x) , ξ̃⊤d P ξ̃d as the Lyapunov candidate.
Therefore, denoting

r(t, k, du, dy) = −X(ζd − ζ) + (ηd − η) +Kk(t)dy(t),

one can obtain the derivative of V (t) along the system’s
state trajectory:

V̇ (t) =
∂V

∂ξ̃d
ξ̃
(1)
d

≤−‖ξ̃d(t)‖
2+2‖P‖‖r(t, k(t), du(t), dy(t))‖‖ξ̃d(t)‖.

It is obvious that V̇ (t) ≤ 0 as long as the following
condition is verified

‖ξ̃d(t)‖ ≥ 2‖P‖‖r(t, k(t), du(t), dy(t))‖.

We can conclude that function r(t, k(t), du(t), dy(t)) should
be designed as small as possible by tuning the function k(t)
and the observer gain K.

A further source of errors is represented by the output-

dependent inverse mapping used to retrieve x̂ from ξ̂.
Indeed the additive noise perturbation affects the estimate
through the noisy term ζd(t, yd):

x̂d(t) = T−⊤Y (t)−1(ξ̂d(t)− ζd(t, yd)). (19)



In turn, the estimation error in the noisy scenario is

x̃d(t) = T−⊤Y −1(t)(ξ̃d(t)− ζ̃d(t, dy))

⇒ ‖x̃d(t)‖ ≤ ‖T−⊤‖‖Y −1(t)‖(‖ξ̃d(t)‖ + ‖ζ̃d(t, dy)‖)

where ζ̃(t, dy) , ζd(t, yd) − ζ(t, y) is a function of the
disturbance dy and the derivatives of the function k(t).

The results above indicate that by suitably choosing the
observer gain K and the modulating function k(t), the
proposed deadbeat observer is ISS with respect to the
bounded measurement noise du and dy. Moreover, the
time-behavior of the state estimation error is related to
k(t) as well as the values of the disturbances. In the next
few lines, we are going to calculate an upper bound of the
estimation error.

According to the error dynamics (18), the estimation error
has the expression:

ξ̃d(t) =

∫ t

0

e(X−KΓ)(t−τ)r
(

τ, k(τ), dy(τ), du(τ)
)

dτ. (20)

Define a vector ρ , ζ/y ∈ R
3, one can immediately obtain

ζd − ζ = ρdy(t) and η = ρ(1)y + φy + (Y + ρh)v, where

φ ,
[

k(1) 0 . . . 0
]⊤

∈ R
n. Therefore, one can obtain

ηd − η =
(

ρ(1)+φ+(Y +ρh)T⊤l
)

dy+(Y +ρh)T⊤Bdu.

All in all,

r(t, k, du, dy)=
(

−Xρ+ρ(1)+φ+(Y +ρh)T⊤l+Kk
)

dy

+ (Y + ρh)T⊤Bdu.

Hence, the estimation error ξ̃d(t) verifies the following
bound:

‖ξ̃d(t)‖ ≤ ‖r1(t)‖|d̄y|+ ‖r2(t)‖‖d̄u‖ ,
¯̃ξd (21)

where

r1(t) =

∫ t

0

e(X−KΓ)(t−τ)
[

−Xρ(τ) + ρ(1)(τ) + φ(τ)
]

dτ

+

∫ t

0

e(X−KΓ)(t−τ)
[

(Y (τ) + ρ(τ)h)T⊤l+Kk(τ)
]

dτ,

r2(t) =

∫ t

0

e(X−KΓ)(t−τ)(Y (τ) + ρ(τ)h)T⊤Bdτ.

Furthermore,

‖x̃d(t)‖ ≤ ‖T−⊤‖‖Y −1‖
( ¯̃
ξd + ‖ρ(t)‖|dy|

)

= ‖T−⊤‖‖Y −1‖
[(

‖r1(t)‖+‖ρ(t)‖
)

|d̄y|+‖r2(t)‖‖d̄u‖
]

.

6. NUMERICAL EXAMPLES

The behavior of the proposed method is compared with a
recent delay-based finite-time observer proposed in Engel
and Kreisselmeier (2002). The simulations are carried out
on the Matlab/Simulation environment, with ode4 (Runge
Kutta) solver and sampling time Ts = 10−3s.

6.1 Two dimensional system

Consider a two dimensional system:
{

ẋ(t) = Ax(t) +Bu(t),
y(t) = cx(t), t ∈ R≥0

(22)
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Fig. 1. Time behavior of the second order observer in noise-
free scenario.

where

A =

[

0 1
−1 −2

]

, B =

[

0 1
1 2

]

, c = [ 1 2 ] ,

with x(t) ∈ R
2 and initial condition x0 = [3 − 5]⊤. The

system is driven by the input u(t) = [sin(t) 0.5 sin(2t)]⊤.
According to (22) we can find l = [0 −1]⊤ such that A− lc
is nilpotent and can be decomposed asA−lc = TGT⊤ with

G =

[

0 1
0 0

]

.

The gain vector of the observer (13) is chosen as K =
[3 2]⊤ placing the poles of the observer at −1 and −2.
The function k(t) is designed as (1− e−t)3 to ensure that
ξ(0) = 0. The algorithm is activated at ta = 0.5s.

The parameters of the delay-based observer are chosen
as L1 = [−1 1]⊤ and L2 = [−17 11]⊤, with pole vectors
p1 = [−1 − 2] and p2 = [−3 − 4] and delay D = 0.5s.

In the ideal case, the time behaviors of the two deadbeat
observers are shown in Fig. 1. From the simulation results,
one can conclude that both methods performs exactly the
same providing deadbeat state estimation within finite
time.

In order to examine their immunity against perturbation,
we simulate the disturbances adding on the output y(t)
and the input u(t) uniformly distributed random sequences
ranging within the interval [−0.5, 0.5] (shown in Fig. 2 and
Fig. 3). With the same parameter settings, we obtain the
state estimates in Fig. 4, where the estimation error bound
calculated in Section 5 is also plotted.

It is shown that under the perturbation of measurement
noise, both algorithms are stable and able to converge
in a neighborhood of the true states. Although there are
oscillations under the error bound in the initial phase (in
the first 3s), as the derivatives of the function k(t) decays
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Fig. 2. Noisy measurement and the pure signal of u(t).
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Fig. 3. Noisy measurement and the pure signal of y(t).
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Fig. 4. Time behavior of the second order observer in noisy
scenario.

to zero, the proposed observer gives the state estimates
with higher accuracy.

6.2 Three dimensional system

Consider the following three dimensional system:
{

ẋ(t) = Ax(t) +Bu(t),
y(t) = cx(t), t ∈ R≥0

(23)

where

A =

[

0 1 0
0 0 1
−1 −2 −3

]

, B =

[

0 1
0 2
1 0

]

, c = [ 1 2 1 ] ,

with x(t) ∈ R
3 and initial condition x0 = [3 − 5 −

7]⊤.The input is chosen as u(t) = [sin(t) 0.5]⊤. We can
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Fig. 5. Time behavior of the third order observer in noise-
free scenario.

find l = [−2 4 −9]⊤ making A− lc a nilpotent matrix and

G =

[

0 9.3917 19.7131
0 0 1.0911
0 0 0

]

.

Parameters of observer (16) are designed asK=[6 11 6]⊤,
therefore the roots of the observer’s characteristic polyno-
mial are −1, −2 and −3. The function k(t) is still designed
as k(t) = (1− e−t)3 guaranteeing that ξ(0) = 0. We set the
activation time of the observer ta = 0.8s.

The delay-based method is parameterized by L1 =
[−2 3 −1]⊤, L2 = [−107 48 23]⊤ with poles at p1 = [−1 −
2 − 3] and p2 = [−4 − 5 − 6]. The length of the delay
D = 0.8s. The results of the two observers in absence of
noise are shown as Fig. 5.

Let us consider also the noisy scenario by adding the
distributed random sequences ranging within [−0.5, 0.5]
on the output y(t) and u(t) (see Fig. 6 and Fig. 7). With
all the parameters unchanged, the time behavior of the
two observers with the noisy measurements are depicted
in the Fig. 8, in which the estimation error of the proposed
method is compared with the error bound.

Similarly with the two dimensional examples, both ob-
servers converge in finite-time in the noise-free scenario.
With noisy measurements, according to the results, the
proposed observer gives the state estimates entering a
smaller neighborhood of the true states in the steady state,
albeit there are some oscillations in the beginning.
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Fig. 6. Noisy measurement and the pure signal of u(t).
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Fig. 7. Noisy measurement and the pure signal of y(t).

7. CONCLUDING REMARKS

In this work, a new finite-time observer with minimal order
realization is proposed for continuous-time LTI systems
having order two and three. The algorithm consists in
recasting the original system in a novel deadbeat observer
canonical form through a linear-time-varying mapping
which eliminates the effect of the initial conditions. Future
efforts will be devoted to extend the present formulation
for systems of higher dimensions.
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Fig. 8. Time behavior of the third order observer in noisy
scenario.
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