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Abstract— In this paper a novel partition-based state pre-
diction method is proposed for interconnected stochastic sys-
tems using sensor networks. Each sensor locally computes a
prediction of the state of the monitored subsystem based on
the knowledge of the local model and the communication with
neighboring nodes of the sensor network. The prediction is
performed in a distributed way, not requiring a centralized
coordination or the knowledge of the global model. Weights
and parameters of the state prediction are locally optimized in
order to minimise at each time-step bias and variance of the
prediction error by means of a multi-objective Pareto optimiza-
tion framework. Individual correlations between the state, the
measurements, and the noise components are considered, thus
assuming to have in general unequal weights and parameters
for each different state component. No probability distribution
knowledge is required for the noise variables. Simulation results
show the effectiveness of the proposed method.

I. INTRODUCTION

One fundamental application of sensor networks is the

estimation and prediction of the state of Large-Scale Systems

(LSSs). This problem finds application for several activities,

e.g., target tracking, environmental monitoring, industrial

plants process control. Nevertheless, there is an increasing

demand for innovative methods for the monitoring of inter-

connected LSSs. This problem is challenging and centralized

solutions are usually not feasible due to communication

and computation constraints. The technological availability

of cheap sensors rises new challenges on how to use the

collected information. In this paper, we address the problem

of partition-based state prediction using sensor networks to

monitor interconnected systems in a distributed manner.

Partition-based state estimation is an active research area,

where each local agent estimates part of the global system’s

state vector using only local model information and commu-

nicating only with neighboring agents (see [1], [2], [3], [4],

[5], [6]). In [1] and [2], Kalman-consensus based distributed

estimators are proposed, while [6] introduces a Kalman-filter

based distributed estimator without consensus strategy for

non-overlapping interconnected subsystems. None of these

works use sensor networks for the estimation task allowing

more than one sensor to monitor the same state vector. To the

authors’ knowledge, this is the first contribution proposing
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a partition-based prediction method using sensor networks.

On the other hand, many works propose Kalman-based

and Kalman-consensus filtering approaches using sensor net-

works (see [7], [8], [9], [10], [11], [12]) to estimate the entire

state vector exploiting the knowledge of the global model.

The advantages of a partition-based approach are manifold:

each sensor needs only local model information, potentially

dealing with more scalable architectures; the computation

cost at each node is reduced; as in distributed approaches,

only communication with neighboring nodes is required.
In this paper, a multi-objective optimization problem is

locally solved to jointly minimize mean and variance of the

prediction error. With respect to our previous works ([13],

[14], [15]), it is the first time that we consider the partition-

based estimation problem using sensor networks. In [13], a

noisy signal is estimated using a sensor network, while [15]

proposes a distributed state prediction method, where each

sensor estimates the entire state vector based on the model of

the global system. Each sensor may communicate both with

other sensors monitoring the same subsystem, and with sen-

sors measuring the state of neighboring subsystems. There

are no assumptions on the communication network topology,

apart from connectedness. The time-varying weights to con-

sider the available information at each time step are designed

in a Pareto-optimal architecture. We consider correlations

between the local state and neighboring systems’states, thus

dealing with a more challenging scenario with respect to our

previous works ([13], [14], [15]). Convergence conditions of

the estimation error are provided. The on-line computation

of the time-varying weights allows to consider also the tran-

sient performance, together with the asymptotic performance,

differently from other methods [2], [6], [5], where only

asymptotic performance is investigated.
Notation. Given a stochastic variable x, Ex represents

its expected value. By 1s, 0s and Is we denote the vec-

tors (1, . . . , 1)�, (0, . . . , 0)� and the identity matrix with

appropriate size s, respectively. Given a vector v, we denote

diag(v) the diagonal matrix whose diagonal entries are the

elements of v. |·| denotes the cardinality of a set and ‖·‖ the

spectral norm of a matrix. Finally, ⊗ denotes the Kronecker

product,
⊕

the direct sum of matrices and the operator ◦
represents the component-by-component product.

II. PROBLEM FORMULATION

The monitored system is composed of (or can be decom-

posed in) N interconnected subsystems, each modeled as

ΣI : xI(t+1) = AIIxI(t)+
∑
J∈PI

AIJxJ(t)+wI(t), (1)



with I = 1, . . . , N , where xI ∈ R
mI denotes the local state

vector, wI ∈ R
mI represents process disturbances, PI is a set

collecting parents of subsystem ΣI , that is, the subsystems

ΣJ whose state xJ influence the dynamics of ΣI . Matrix AII

describes local dynamics, while AIJ models the dynamic

coupling between ΣI and ΣJ , J ∈ PI .

The system is monitored by a sensor network S , com-

posed of n sensors. Each subsystem ΣI , I = 1, . . . , N , is

monitored by the set of sensors SI , composed of nI sensors.

Each sensor i ∈ SI measures the state xI , according to the

following measurement equation:

yiI(t) = xI(t) + viI(t), (2)

where yiI ∈ R
mI , denotes the measurements vector taken by

sensor i ∈ SI and viI ∈ R
mI is the measurement noise.

Assumption 1: We assume to know the mean w̄I and the

covariance matrix ΣwI(t) of the process noise vector wI(t);
furthermore, viI ∈ R

mI is a zero-mean noise vector, with

Σvi
I

its covariance matrix.

The sensors exchange information by means of a com-

munication network, modeled as an undirected graph G =
(S, E), where S is the set of the nodes (the sensors) and E
is the set of the edges connecting the nodes.

According to the graph G, each sensor i ∈ SI may

communicate with two different subsets of nodes (see also

the example in Fig. 1, Section V):

• some neighboring sensors in SI , which we denote

N i
I := {l ∈ SI : (l, i) ∈ E} ∪ {i}, including the set of

neighbors of node i ∈ S monitoring the same subsystem

ΣI , plus the node i itself.

• some neighbouring sensors in SJ , J ∈ PI , collected in

the sets N i
IJ := {l ∈ SJ , J ∈ PI : (l, i) ∈ E}, monitor-

ing parents of subsystem ΣI .

III. DISTRIBUTED STATE PREDICTION

In this paper each node i of the sensor network imple-

ments a two steps dynamic estimator: a filtering step and a

prediction step1. First, by communicating with neighboring

nodes in N i
I , it filters the measurement noise in a consensus-

like fashion by computing a linear combination of its own

and neighbors’ available measurements and predictions:

x̄i
I(t) =

∑
l∈N i

I

[ki,lI (t)x̂l
I(t) + hi,l

I (t)ylI(t)], (3)

where ki,lI (t) and hi,l
I (t) ∈ R

mI×mI are diagonal matrices

collecting the time-varying filter weights. The objective of

this first step, similarly as in [15], is for each node to

reduce its own measurement uncertainty, without the use of

centralized coordination.

After the consensus-filtering step, each node implements

a model-based prediction. In this second phase each node

i ∈ SI communicates with neighboring nodes N i
IJ , J ∈ PI ,

1It is worth noting that in the literature it is quite a common choice
to present prediction methods by means of a 2-steps strategy made of a
merging-update step and a prediction step (see, for instance [8], [9], [16]).

to consider also the coupling influence. The one-step-ahead

prediction is computed as

x̂i
I(t+ 1) = AII x̄

i
I(t) + w̄I(t) + λ′ i

I (t)(x̂i
I(t)− x̄i

I(t))

+
∑
J∈PI

AIJ

∑
j∈N i

IJ

ωi,j
IJ (t)x̂

j
J(t), (4)

where λ′ i
I (t) = λi

I(t)AII , being λi
I(t) ∈ R

mI×mI and

ωi,j
IJ (t) ∈ R

mJ×mJ diagonal matrices collecting the time-

varying filter parameters.

The goal is to design ki,lI (t), hi,l
I (t), λi

I(t) and ωi,j
IJ (t), for

each I = 1, . . . , N , i = 1, . . . , nI , l = 1, . . . ,mI , J ∈ PI ,

so to minimize at each time step bias and variance of the

global prediction errors.

A. Local estimation and prediction errors

Let us define the local filtering error ēiI(t) = x̄i
I(t)−xi

I(t)
and the local prediction error

Êi
I(t) = x̂i

I(t)− xi
I(t).

We rewrite Eqs. (3) and (4) as:

x̄i
I(t) = κi

I(t)x̂
ireg
I (t) + ηiI(t)y

ireg
I (t)

x̂i
I(t+ 1) = AII x̄

i
I(t) + λi

I(t)(AII x̂
i
I(t)−AII x̄

i
I(t))

+ w̄I(t) +Ainei
I ωi

I(t)x̂
inei
I (t),

(5)

where x̂ireg
I and yiregI are two column vectors collecting the

prediction vectors and the measurements vectors (respec-

tively) available at node i related to subsystem ΣI , ordered

according to their indexes i1 < · · · < iNi
I
:

x̂ireg
I = (x̂i1�

I , . . . , x̂
i
Ni

I
�

I )� , yiregI = (yi1�I , . . . , y
i
Ni

I
�

I )�

with N i
I being the cardinality of the set N i

I . Moreover,

x̂inei
I is a column vector collecting the prediction vectors

available at node i related to subsystems ΣJ , J ∈ PI , ordered

according to their indexes. Furthermore, κi
I(t) and ηiI(t) are

the time varying row block matrices ∈ R
mI×Ni

ImI collecting

matrices ki,lI and hi,l
I respectively; Ainei

I is a row block matrix

collecting matrices AIJ , J ∈ PI . Finally, ωi
I(t) is a block

matrix collecting on the diagonal blocks matrices ωi
IJ(t),

which are row block matrices collecting ωi,j
IJ (t) according to

the order followed in x̂inei
I .

To derive the optimization problem in Section IV, the

following constraints are introduced: at each time t

(κi
I(t) + ηiI(t))1Ni

ImI
= 1mI

,

ωi
I(t)1pi

I
= 1mi

I
, (6)

being N i
IJ the cardinality of set N i

IJ and piI =∑
J∈PI

N i
IJmJ , mi

I =
∑

J∈PI
mJ .

These are needed so that the following expressions hold:

κi
I(t)x

E
I (t) + ηiI(t)x

E
I (t) = xE

I (t)

being xE
I a column vector repeating N i

I times the state vector

xI , and

ωi
IJ(t)x

iE
J (t) = xiE

J (t)



being xiE
J a column vector repeating N i

IJ times the state

vector xJ , for each J ∈ PI . We use these expressions to

derive the local filtering error and the local prediction error:

ēiI(t) = κi
I(t)ε̂

i
I(t) + ηiI(t)vεiI (t), (7)

Êi
I(t+ 1) =AII(I − λi

I(t))κ
i
I(t)ε̂

i
I(t) +AIIλ

i
I(t)Ê

i
I(t)

+AII(I − λi
I(t))η

i
I(t)vεiI (t)− wI(t)

+ w̄I +Ainei
I ωi

I(t)ε̂
inei
I (t),

(8)

where ε̂iI collects the prediction error vectors available at

node i and vεiI collects the measurement noise vectors related

to the measurements available at node i, both related to

subsystem ΣI and ordered following their indexes; ε̂ineiI

collects the prediction error vectors available at node i related

to subsystems ΣJ , J ∈ PI .

We derive the expressions of the bias and the variance for

the local filtering and prediction errors, given in (7) and (8),

respectively. The expected values can be computed as

EēiI(t) = κi
I(t)Eε̂

i
I(t),

EÊi
I(t+ 1) = AII(I − λi

I(t))κ
i
I(t)Eε̂

i
I(t)

+AIIλ
i
I(t)EÊ

i
I(t) +Ainei

I ωi
I(t)Eε̂

inei
I (t) ,

(9)

The variance can be computed as

E[(Êi
I(t+ 1)− EÊi

I(t+ 1))(Êi
I(t+ 1)− EÊi

I(t+ 1))�]

=W1i(t)Γε̂iI
(t)W1i(t)

� +W2i(t)Σv
ε̂i
I

W2i(t)
�

+W3i(t)Γε̂inei
I

(t)W3i(t)
� +ΣwI

(t)
(10)

being Cov(ε̂iI(t), vε̂iI (t)) = 0, Cov(ε̂iI(t), wI(t)) = 0,

Cov(vε̂iI (t), wI(t)) = 0 and Cov(ε̂iI(t), ε̂
inei
I (t)) = 0, where

W1i(t) = AII [(I − λi
I(t))κ

i
I(t) + λi

I(t)Z
i
I ], (11)

W2i(t) = AII(I − λi
I(t))η

i
I(t), (12)

W3i(t) = Ainei
I ωi

I(t), (13)

Γε̂iI
(t) = E[(ε̂iI(t)− Eε̂iI(t))(ε̂

i
I(t)− Eε̂iI(t))

�], (14)

Γε̂inei
I

(t) = E[(ε̂ineiI (t)− Eε̂ineiI (t))(ε̂ineiI (t)− Eε̂ineiI (t))�]
(15)

Zi
I is a mI ×mIN

i
I block vector, where the block located at

the position corresponding to the i-th index in the set N i
I , is

the identity matrix ImI
; all the other blocks are equal to 0 .

Σv
ε̂i
I

is the measurement noise covariance matrix, including

correlations between neighboring sensors.

B. Estimation error stability

Some local conditions on the time-varying weights are

introduced to guarantee that the expected value of the global

prediction error can converge to zero. For the sake of

simplicity, we omit the dependence on t of the matrices.

Assumption 2: We assume that matrix A, describing the

dynamics of the global system, satisfies ‖A‖∞ < 1.

Proposition 3.1: Under Assumption 2, the following local

conditions are sufficient to guarantee the asymptotic stability

of the expected value of the local prediction error (9) at each

node i. For each r-th row of κi
I and of λi

I , and each r′-th row

of ωi
I,J , with I = 1, . . . , N , i = 1, . . . , nI , r = 1, . . . ,mI

and r′ = 1, . . . ,mJ :

nI∑
l=1

∣∣∣ki,lrI

∣∣∣ < 1

‖AEg
I ‖∞

− 1

‖AEg
I ‖∞

+
∑nI

l=1

∣∣∣ki,lrI

∣∣∣
1 +

∑nI

l=1

∣∣∣ki,lrI

∣∣∣
< λir

I <

1

‖AEg
I ‖∞

+
∑nI

l=1

∣∣∣ki,lrI

∣∣∣
1 +

∑nI

l=1

∣∣∣ki,lrI

∣∣∣
nJ∑
l=1

∣∣∣∣ωi,lr
′

I,J

∣∣∣∣ <
1

‖AEg
I ‖∞

, J ∈ PI ,

(16)

where AEg
I collects the rows of matrix A related to ΣI .

The proof is omitted due to length constraints.

Remark. Assumption 2 is used in the proof to simplify

some inequality relations. Similar convergence sufficient

conditions can be derived for different matrix A cases. We

omit the analysis due to space constraints.

IV. THE OPTIMIZATION PROBLEM

The goal of the proposed distributed method is to predict

the local state minimizing the bias and variance of the

prediction error at each sensor at each time step. To do

that, we propose that each sensor at each step computes the

optimal time-varying weights by solving a multi objective

optimization problem, where the first objective is the squared

bias and the second objective is the variance of the prediction

error. We define the following Pareto optimization problem:

min
κi
I(t),η

i
I(t),λ

i
I(t),ω

i
I(t)

tr [ρiI(B
i
I)

2 + (1− ρiI)V
i
I ] (17a)

s.t. (κi
I(t) + ηiI(t))1Ni

ImI
= 1mI

(17b)

ωi
I(t)1pi

I
= 1mi

I
(17c)

convergence conditions Eq.(16) (17d)

where 0 ≤ ρiI ≤ 1 is the Pareto parameter, Bi
I = EÊi

I(t+1)
is the prediction error bias given in Eq. (9), V i

I = E[(Êi
I(t+

1)−EÊi
I(t+1))(Êi

I(t+1)−EÊi
I(t+1))�] is the variance

of the prediction error given in Eq. (10).

A. The approximated problem

We briefly analyze the convergence conditions (16). Since

the absolute value would make the problem more difficult to

solve, we use the more restrictive conditions⎧⎪⎨
⎪⎩

κi�
I (t)1mI

≥ 0Ni
ImI

κi
I(t)1Ni

ImI
<

1

‖AEg
I ‖∞

1mI
,

(18)

⎧⎪⎨
⎪⎩

ωi�
I (t)1mi

I
≥ 0pi

I

ωi
I(t)1pi

I
<

1

‖AEg
I ‖∞

1mi
I
,

(19)

0 ≤ λi
I(t) ≤ ImI

, (20)



implying conditions (16), by noting that

− 1

‖AEg
I ‖∞

+
∑nI

l=1

∣∣∣ki,lrI

∣∣∣
1 +

∑nI

l=1

∣∣∣ki,lrI

∣∣∣
< 0,

1

‖AEg
I ‖∞

+
∑nI

l=1

∣∣∣ki,lrI

∣∣∣
1 +

∑nI

l=1

∣∣∣ki,lrI

∣∣∣
> 1.

Based on (9) and (10), we rewrite the Pareto optimization

problem (17) by introducing the following terms which are

data of the problem or can be computed on-line empirically:

M i
I(ρ

i
I) = (1− ρiI)Γε̂iI

,

M inei
I (ρiI) = (1− ρiI)Γε̂inei

I
,

Ri
I(ρ

i
I) = ρiI(Υ

i
I1Eε̂

i
I +Υi

I2Eε̂
inei
I )(Υi

I1Eε̂
i
I +Υi

I2Eε̂
inei
I )�,

Si
I(ρ

i
I) = (1− ρiI)Σv

ε̂i
I

,

with Υi
I1 and Υi

I2 are both column block matrices, denoted

by Υi
I1 = col(ImINi

I
,0pi

I
⊗ 1�

mINi
I
) and Υi

I2 = col(0�
pi
I
⊗

1mINi
I
, Ipi

I
), respectively. The dependence on the time is

removed for simplicity. We obtain

min
κi
I ,η

i
I ,λ

i
I ,ω

i
I

tr[Ainei
I ωi

IM
inei
I (ρiI)ω

i�
I Ainei�

I + (1− ρi)Σw

+AII [(I−λi
I)κ

i
I +λi

IZ
i
I ]M

i
I(ρ

i
I)[(I−λi

I)κ
i
I +λi

IZ
i
I ]

�A�
II

+ (AII [(I − λi
I)κ

i
I + λi

IZ
i
I ]Υ

i�
I1 +Ainei

I ωi
IΥ

i�
I2 )R

i
I(ρ

i
I)

× (AII [(I − λi
I)κ

i
I + λi

IZ
i
I ]Υ

i�
I1 +Ainei

I ωi
IΥ

i�
I2 )

�

+AII(I − λi
I)η

i
IS

i
I(ρ

i
I)η

i�
I (I − λi

I)
�A�

II ] (21a)

s. t. (κi
I + ηiI)1Ni

ImI
= 1mI

(21b)

ωi
I1pi

I
= 1mi

I
(21c)

κi�
I 1mI

≥ 0Ni
ImI

(21d)

κi
I1Ni

ImI
<

1

‖AEg
I ‖∞

1mI
(21e)

ωi�
I 1mi

I
≥ 0pi

I
(21f)

ωi
I1pi

I
<

1

‖AEg
I ‖∞

1mi
I

(21g)

λi
I1mI

≤ 1mI
(21h)

λi
I1mI

≥ 0mI
(21i)

Note that problems (17) and (21) have the same objective

function, but (21) is constrained by more restrictive condi-

tions. This gives an optimization problem which is convex

since the objective function has a quadratic form and M i
I ,

M inei
I , Ri

I and Si
I are positive definite matrices. Coherently,

we can use Lagrangian duality to solve the problem.

B. The optimal weights

By means of the Karush Kuhn Tucker (KKT) conditions

(see Appendix), which are both sufficient and necessary con-

ditions for optimality, it is possible to derive the optimal val-

ues for the decisional variables κi
I(t), η

i
I(t), λ

i
I(t) and ωi

I(t)
of Problem (21). Define the mIN

i
I × 1 vector κivec

I (t) =
κi�
I (t)1mI

, collecting all the diagonals of each block in

κi
I(t) on a column vector. Similarly, we denote ηivecI (t) =

ηi�I (t)1mI
, the piI × 1 vector ωivec

I (t) = ωi�
I (t)1mi

I
and the

mI × 1 vector λivec
I (t) = λi�

I (t)1mI
. Let introduce the dual

variables ξiI1(t), ξ
i
I2(t), ξ

i
I4(t) and νiI1(t), which are mI ×1

vectors, the mIN
i
I×1 vector ξiI3(t) , the piI×1 vector ξiI5(t) ,

and the mi
I × 1 vectors ξiI6(t) and νiI2(t). For the sake of

notation simplicity, in the following we omit the dependence

on t and on ρiI .

Proposition 4.1: The solution for problem (21), for each

node i in subsystem I , is given by ξiI1 = 0, ξiI2 = 0, ξiI3 = 0,

ξiI4 = 0, ξiI5 = 0 and ξiI6 = 0,

κivec
I =−P−1

7 (P2P
−1
4 IωP

−1
5 1mi

I
+Iκν

i
I1+P2P6Z

2
λ+Z1

λ) ,

(22a)

ηivecI =− P−1
3 Iκν

i
I1 , (22b)

ωivec
I =P6P

�
2 κivec

I + P6Z
2
λ + P−1

4 IωP
−1
5 1mi

I
, (22c)

λivec
I =((A�

IIAII)
�◦ (ηiISi

Iη
i�
I +(Zi

I−κi
I)F

i
I (Z

i
I−κi

I)
�))−1

× diag−1([(κi
I − Zi

I)F
i
Iκ

i�
I + ηiIS

i
Iη

i�
I ]A�

IIAII

+ (κi
I − Zi

I)Q
i
Iω

i�
I Ainei�

I AII) , (22d)

with

Z1
λ =([N i

IZ
i�
I λi�

I A�
IIAII(I − λi

I)] ◦ Iκ)1mI
,

Z2
λ =([Qi�

I Zi�
I λi�

I A�
IIA

inei
I ] ◦ Iω)1mi

I
,

νiI1 =− P−1
8 (1mI

+ I�κ P−1
7 [P2P

−1
4 IωP

−1
5 1mi

I
+ P2P6Z

2
λ

+Z1
λ]) , P1 = 2D�

I ◦ F i
I , P2 = 2D�

IJ ◦Qi
I ,

P3 =2D�
I ◦ Si

I , P4 = 2D�
J ◦ F inei

I , P5 = I�ω P−1
4 Iω ,

P6 =P−1
4 IωP

−1
5 I�ω P−1

4 − P−1
4 , P7 = P1 + P2P6P

�
2 ,

P8 =I�κ P−1
7 Iκ + I�κ P−1

3 Iκ ,

where Iκ = 1Ni
I
⊗ ImI

, Iλ = ImI
, Iω =

⊕
J∈PI

(1Ni
IJ

⊗
ImJ

), DI = (I − λi
I)

�A�
IIAII(I − λi

I), DIJ =
Ainei�

I AII(I−λi
I), DJ = Ainei�

I Ainei
I , DI = 1Ni

I
1�
Ni

I
⊗DI ,

DIJ = 1�
Ni

I
⊗ (IωDIJ), DJ = IωDJI

�
ω , F i

I (ρ
i
I) =

M i
I(ρ

i
I) + Υi�

I1R
i
I(ρ

i
I)Υ

i
I1, F inei

I (ρiI) = M inei
I (ρiI) +

Υi�
I2R

i
I(ρ

i
I)Υ

i
I2, and Qi

I(ρ
i
I) = Υi�

I1R
i
I(ρ

i
I)Υ

i
I2.

The proof is omitted due to space constraints.

In order to use the result in Prop. 4.1, each node im-

plements Algorithm 1 to find optimal values κi∗
I , ηi∗I , ωi∗

I

and λi∗
I . At each step, we verify that the obtained values

satisfy conditions (16). Define a small positive constant εiI ,

the computation is stopped until difference between current

value of λi
I and the updated one is smaller than εiI .

Remark. Algorithm 1 has complexity O(NIter1(2(mI ×∣∣N i
I

∣∣)3+2(mI)
3+(piI)

3+(mi
I)

3)), given by the computation

of matrices inverse, where NIter1 is the number of iterations.

In the simulation, NIter1 at each time step is lower than

10. Furthermore, the computation of a covariance matrix is

required to compute the estimates of Γε̂iI
, Γε̂inei

I
, Eε̂iI , and

Eε̂ineiI : the complexity is O(Tablesize log(Tablesize)), where

the Tablesize is the size of a look-up table used to speed up



the computation of a quadratically constrained least-square

problem [17]. We set Tablesize = 100.

Algorithm 1 Optimal weights computation

Set λi+
I = ImI /2, εiI

repeat
λi
I = λi+

I

Calculate Z1
λ , Z2

λ ,DI ,DIJ ,DJ .

Calculate P1 , P2 , . . . , P8 .

νiI1 = −P−1
8 (1mI + I�κ P−1

7 [P2P
−1
4 IωP

−1
5 1mi

I
+ P2P6Z2

λ +

Z1
λ])

κivec
I =−P−1

7 (P2P
−1
4 IωP

−1
5 1mi

I
+IκνiI1+P2P6Z2

λ+Z1
λ)

ηivecI = −P−1
3 IκνiI1

ωivec
I = P6P�

2 κivec
I + P6Z2

λ + P−1
4 IωP

−1
5 1mi

I

λivec
I = ((A�

IIAII)
� ◦ (ηiIS

i
Iη

i�
I + (Zi

I − κi
I)F

i
I (Z

i
I −

κi
I)

�))−1 × diag−1([(κi
I −Zi

I)F
i
Iκ

i�
I + ηiIS

i
Iη

i�
I ]A�

IIAII +(κi
I −

Zi
I)Q

i
Iω

i�
I Ainei�

I AII)

λi+
I = diag(λivec

I )

until |λi
I − λi+

I | ≤ εiI
return κi

I = I�κ ◦ (1mI ⊗ κivec�
I ), ηiI = I�κ ◦ (1mI ⊗ ηivec�I ),

ωi
I = I�ω ◦ (1mi

I
⊗ ωivec�

I ) and λi
I = λi+

I

Tank 3

Tank 4

Tank 1

Tank 2

Pump 2

Pump 1

v1

v2

Fig. 1. The 4-tanks system monitored by a sensor network example.
Each tank is monitored by a set of sensors (having the same colour as
the corresponding tank level). The communication network is represented
by dotted arrows (black arrows for local communication, yellow arrows for
communication with sensors monitoring neighboring subsystems.)

V. SIMULATION RESULTS

We consider the four-tanks system introduced in [18] (see

Fig. 1 for an example), we linearize and discretize it with

a sampling time Ts = 1s so to obtain the linear system

described by the matrix:

A =

⎡
⎢⎢⎣

0.9430 −0.0031 0.0262 −0.0118
−0.0036 0.9579 0.0121 0.0213
−0.0025 −0.0233 0.9500 −0.0084
−0.0153 −0.0010 −0.0053 0.9629

⎤
⎥⎥⎦ .

The system can be decomposed in 4 interconnected sub-

systems and dynamics of each subsystem ΣI is denoted by

AII = A(I, I) , AIJ = A(I, J) with I, J = 1, 2, 3, 4 . We

assume the modeling uncertainty ωI has zero mean value

and the system is initialized at [4.81; 4.70; 1.0; 1.0]� . We

compare the following prediction methods:

ECKF: Centralized Kalman one-step ahead predictor.

EDKF: Partition-based method in [6], modified averag-

ing the measurements from different sensors in each

subsystem.

Ep1: The proposed Pareto-optimal predictor .

The centralized Kalman filter is considered as a benchmark.

A sensor network is considered, composed of 40 sensors

randomly distributed over a square area with size 40. Each

subsystem ΣI is monitored by 10 sensors. The graph G
is acquired under the rule that two nodes are connected if

their relative distance is less than 1.7
√
17. We compare the

performance of the considered methods in different scenarios

with different disturbance and measurement noises. For each

noise scenario, we run the experiment 80 times with a ran-

dom network topology. The evaluated performance metric,

denoted as MSE, is the averaged mean square prediction

error value over Nexp = 80 experiments over N = 40 nodes,

with Tmax = 200s:

MSE :=

∑Nexp

exp=1

∑N
i=1

∑Tmax

t=1 MSEi(t, exp)

Nexp ·N · Tmax
.

Fig. 2 and 3 show MSE values for all methods with different

measurement noise standard deviation. The proposed method

always has better performance than the other partition-

based estimation approach. Moreover, the performance of the

proposed method is closer to that of the centralized Kalman

predictor when the disturbance standard deviation is low.
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Fig. 2. MSE of 3 prediction methods with different measurement noise
standard deviation. Disturbance standard deviation is 0.05

VI. CONCLUDING REMARKS

In this paper, a novel distributed partition-based prediction

method using sensor networks is proposed for the monitoring
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Fig. 3. MSE of 3 prediction methods with different measurement noise
standard deviation. Disturbance standard deviation is 0.09

of interconnected stochastic systems. The prediction weights

are optimized by each sensor to minimize the bias and the

variance of the prediction error at each time step.
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VII. APPENDIX

KKT conditions

(κi
I + ηiI)1Ni

ImI
− 1mI

= 0mI
, (23)

ωi
I1pi

I
− 1mi

I
= 0mi

I
, (24)

λi
I1mI

− 1mI
≤ 0mI

(25)

−λi
I1mI

≤ 0mI
, (26)

ξi�I1 (λ
i
I1mI

− 1mI
) = 0 ξiI1 ≥ 0, (27)

ξi�I2 (−λi
I1mI

) = 0 ξiI2 ≥ 0, (28)

−κi�
I 1mI

≤ 0Ni
Im

i
I
, (29)

κi
I1Ni

ImI
− 1

‖AEg
I ‖∞

1mI
+ εiI1 ≤ 0mI

, (30)

ξi�I3 (−κi�
I 1mI

) = 0 ξiI3 ≥ 0, (31)

ξi�I4 (κ
i
I1Ni

ImI
− 1

‖AEg
I ‖∞

1mI
+εiI1) = 0 ξiI4 ≥ 0, (32)

−ωi�
I 1mi

I
≤ 0pi

I
(33)

ωi
I1pi

I
− 1

‖AEg
I ‖∞

1mi
I
+ εiI2 ≤ 0mi

I
(34)

ξi�I5 (−ωi�
I 1mi

I
) = 0 ξiI5 ≥ 0, (35)

ξi�I6 (ω
i
I1pi

I
− 1

‖AEg
I ‖∞

1mi
I
+ εiI2) = 0 ξiI6 ≥ 0, (36)

2[F i
I (ρ

i
I)((I − λi

I)κ
i
I + λi

IZ
i
I)

�A�
IIAII(I − λi

I)

+Qi
I(ρ

i
I)ω

i�
I Ainei�

I AII(I − λi
I)] ◦ Iκ

+ [1Ni
ImI

νi�I1 + 1Ni
ImI

ξi�I4 − ξiI31
�
mI

] ◦ Iκ = 0,

(37)

2[Si
I(ρ

i
I)η

i�
I (I − λi

I)
�A�

IIAII(I − λi
I)] ◦ Iκ

+ [1Ni
ImI

νi�I1 ] ◦ Iκ = 0,
(38)

2[[ηiIS
i
I(ρ

i
I)η

i�
I + (Zi

I − κi
I)F

i
I (ρ

i
I)(Z

i
I − κi

I)
�]λi

I

×A�
IIAII + [(Zi

I − κi
I)F

i
I (ρ

i
I)κ

i�
I − ηiIS

i
I(ρ

i
I)η

i
I ]

×A�
IIAII + (Zi

I − κi
I)Q

i
I(ρ

i
I)ω

i�
I Ainei�

I AII ] ◦ Iλ
+ [1mI

ξi�I1 − 1mI
ξi�I2 ] ◦ Iλ = 0,

(39)

2[Qi�
I (ρiI)((I − λi

I)κ
i
I + λi

IZ
i
I)

�A�
IIA

inei
I

+ F inei
I (ρiI)ω

i�
I Ainei�

I Ainei
I ] ◦ Iω

+ [1pi
I
νi�I2 + 1pi

I
ξi�I6 − ξiI51

�
mi

I
] ◦ Iω = 0

(40)

where εiI1 and εiI2 are small positive constants.


