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ABSTRACT

Here we present some further details related to Example I.

Supplementary Information: Sign of the entropy production in Example I
From Eq. (18) in the main text it seems that the sign of σσσ τ depends both on γτ and on the sign of the expression within the
square brackets. In this section we prove that the latter is always positive. Let us rewrite the entropy production in a more
convenient way as

σσσ τ = γτ coth(βω/2)e−2Γτ [A+B+C],
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Note that A is always nonnegative whereas B and C can be either positive or negative. We show in the following that A+B+C
is nevertheless positive, distinguishing different situations.

1. If z0 + |z∞|6 0, then zτ 6−|z∞|, because zτ + |z∞|= e−2Γτ (z0 + |z∞|) and

|rτ |> |zτ |> |z∞|= r∞.

Hence B+C > 0, because
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where the last inequality holds because the function
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is monotonically increasing for 0 < x < 1. This can be seen from the first derivative,

f ′(x) =
1
x2

[
2x

1− x2 − log
(

1+ x
1− x

)]
,

which is is always positive because
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in which the following inequalities have been used1:

2x
2+ x

6 | log(1+ x)|6 x
2

2+ x
1+ x

,
2x

2− x
6 | log(1− x)|6 x

2
2− x
1− x

.



2. In the case z0 + |z∞|> 0, we need to distinguish different situations.

• First, if zτ > 0, then B and C are both positive.

• If instead −|z∞|6 zτ 6 0 and rτ 6 r∞, then B+C is positive because
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• The last possibility is −|z∞|6 zτ 6 0 and rτ > r∞. In this case, B is positive and the following inequality holds:

x2
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0 > (|z∞|− zτ)(z0 + |z∞|)> 0.

As a consequence, A+C > 0,
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Summarizing, the expression in the square brackets [A+B+C] is always nonnegative and the sign of the entropy production is
only determined by γτ .
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