Entropy production and non-Markovian dynamical maps

S. Marcantoni ${ }^{1,2}$, S. Alipour ${ }^{3}$, F. Benatti ${ }^{1,2, *}$, R. Floreanini ${ }^{2}$, and A. T. Rezakhani ${ }^{4}$
${ }^{1}$ Department of Physics, University of Trieste, I-34151 Trieste, Italy
${ }^{2}$ National Institute for Nuclear Physics (INFN), Trieste Section, I-34151 Trieste, Italy
${ }^{3}$ School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538, Iran
${ }^{4}$ Department of Physics, Sharif University of Technology, Tehran 14588, Iran
*benatti@ts.infn.it

ABSTRACT

Here we present some further details related to Example I.

Supplementary Information: Sign of the entropy production in Example I

From Eq. (18) in the main text it seems that the sign of $\boldsymbol{\sigma}_{\tau}$ depends both on γ_{τ} and on the sign of the expression within the square brackets. In this section we prove that the latter is always positive. Let us rewrite the entropy production in a more convenient way as

$$
\boldsymbol{\sigma}_{\tau}=\gamma_{\tau} \operatorname{coth}(\beta \omega / 2) \mathrm{e}^{-2 \Gamma_{\tau}}[A+B+C],
$$

where

$$
A=\frac{x_{0}^{2}+y_{0}^{2}}{4 r_{\tau}} \log \left(\frac{1+r_{\tau}}{1-r_{\tau}}\right), \quad B=\frac{z_{0}+\left|z_{\infty}\right|}{2} \log \left(\frac{1+r_{\infty}}{1-r_{\infty}}\right), \quad C=\frac{\left(z_{0}+\left|z_{\infty}\right|\right) z_{\tau}}{2 r_{\tau}} \log \left(\frac{1+r_{\tau}}{1-r_{\tau}}\right) .
$$

Note that A is always nonnegative whereas B and C can be either positive or negative. We show in the following that $A+B+C$ is nevertheless positive, distinguishing different situations.

1. If $z_{0}+\left|z_{\infty}\right| \leqslant 0$, then $z_{\tau} \leqslant-\left|z_{\infty}\right|$, because $z_{\tau}+\left|z_{\infty}\right|=\mathrm{e}^{-2 \Gamma_{\tau}}\left(z_{0}+\left|z_{\infty}\right|\right)$ and

$$
\left|r_{\tau}\right| \geqslant\left|z_{\tau}\right| \geqslant\left|z_{\infty}\right|=r_{\infty} .
$$

Hence $B+C \geqslant 0$, because

$$
r_{\tau} \log \left(\frac{1+r_{\infty}}{1-r_{\infty}}\right)-\left|z_{\tau}\right| \log \left(\frac{1+r_{\tau}}{1-r_{\tau}}\right) \leqslant r_{\tau} \log \left(\frac{1+r_{\infty}}{1-r_{\infty}}\right)-r_{\infty} \log \left(\frac{1+r_{\tau}}{1-r_{\tau}}\right) \leqslant 0,
$$

where the last inequality holds because the function

$$
f(x)=\frac{1}{x} \log \left(\frac{1+x}{1-x}\right),
$$

is monotonically increasing for $0<x<1$. This can be seen from the first derivative,

$$
f^{\prime}(x)=\frac{1}{x^{2}}\left[\frac{2 x}{1-x^{2}}-\log \left(\frac{1+x}{1-x}\right)\right],
$$

which is is always positive because

$$
\frac{2 x}{1-x^{2}}-|\log (1+x)|-|\log (1-x)| \geqslant \frac{2 x}{1-x^{2}}-\frac{x}{2} \frac{2+x}{1+x}-\frac{x}{2} \frac{2-x}{1-x}=\frac{x^{3}}{1-x^{2}} \geqslant 0,
$$

in which the following inequalities have been used ${ }^{1}$:

$$
\frac{2 x}{2+x} \leqslant|\log (1+x)| \leqslant \frac{x}{2} \frac{2+x}{1+x}, \quad \frac{2 x}{2-x} \leqslant|\log (1-x)| \leqslant \frac{x}{2} \frac{2-x}{1-x} .
$$

2. In the case $z_{0}+\left|z_{\infty}\right| \geqslant 0$, we need to distinguish different situations.

- First, if $z_{\tau} \geqslant 0$, then B and C are both positive.
- If instead $-\left|z_{\infty}\right| \leqslant z_{\tau} \leqslant 0$ and $r_{\tau} \leqslant r_{\infty}$, then $B+C$ is positive because

$$
\log \left(\frac{1+r_{\infty}}{1-r_{\infty}}\right)-\frac{\left|z_{\tau}\right|}{r_{\tau}} \log \left(\frac{1+r_{\tau}}{1-r_{\tau}}\right) \geqslant \log \left(\frac{1+r_{\infty}}{1-r_{\infty}}\right)-\log \left(\frac{1+r_{\tau}}{1-r_{\tau}}\right) \geqslant 0
$$

- The last possibility is $-\left|z_{\infty}\right| \leqslant z_{\tau} \leqslant 0$ and $r_{\tau} \geqslant r_{\infty}$. In this case, B is positive and the following inequality holds:

$$
x_{0}^{2}+y_{0}^{2} \geqslant\left(\left|z_{\infty}\right|-z_{\tau}\right)\left(z_{0}+\left|z_{\infty}\right|\right) \geqslant 0 .
$$

As a consequence, $A+C \geqslant 0$,

$$
x_{0}^{2}+y_{0}^{2}-2\left|z_{\tau}\right|\left(z_{0}+\left|z_{\infty}\right|\right) \geqslant x_{0}^{2}+y_{0}^{2}-\left(\left|z_{\infty}\right|+\left|z_{\tau}\right|\right)\left(z_{0}+\left|z_{\infty}\right|\right) \geqslant 0
$$

Summarizing, the expression in the square brackets $[A+B+C]$ is always nonnegative and the sign of the entropy production is only determined by γ_{τ}.

References

1. Topsøe, F. Some Bounds for the Logarithmic Function. in: Cho, Y.J., Kim, J.K. \& Dragomir, S.S., Inequality Theory and Applications. Nova Science Publishers, New York, 2007.
