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a b s t r a c t

Water is the most abundant, renewable source of hydrogen on our planet. Appropriate

catalytic materials are needed to minimize the energy required to electrochemically

split the water molecule, and electrode with high specific areas are sought to maximize

the electrolyte/electrode interface. We use Carbon Nanotubes (CNTs) bundles as tem-

plates for water splitting electrodes fabrication. Appropriate catalyst materials are

thermally evaporated on CNTs, to exploit both their good electrical conductivity and

large specific area, while optimizing over-potential towards Hydrogen Evolving Reaction

(HER) or Oxygen Evolving Reaction (OER) through the deposited catalysts. Electrodes

morphology and surface chemistry are characterized, before and after electrolysis, by

means of scanning electron microscopy and X-ray photoelectron spectroscopy. Our

electrodes are able to perform water oxidation and water reduction near their thermo-

dynamical limit. Performances of these electrodes, taking into account the extremely

low loading mass of catalytic material (10�2 mg cm�2) with respect to other reported

systems, are among the best HER and OER system reported so far. Finally, a working

electrolyser, capable to operate at the interesting low voltage of a single AA battery

(1.5 V) and output a stable current (>2.0 mA cm�2) for at least 20 h, is successfully

assembled and tested.

© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

A validmethod to obtain high-purity hydrogen is to split water

into hydrogen and oxygen through an electrolyser. In practice,

this process is hampered by the high amount of energy

required for the overall reaction 2H2O / 2H2 þ O2

(DG ¼ 237.21 kJ mol�1, in standard conditions), giving a mini-

mum theoretical decomposition voltage Eo ¼ 1.23 V, to be

applied to the electrolyser just to start water splitting [1e3]. As
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a matter of fact, a greater voltage is usually required, due to

the over-potentials associated to the cathode and anode re-

actions, forcing commercial water electrolysers to operate at

voltages above 1.8e2.0 V (overall over-potential > 650 mV)

[1,4e6]. To optimize electrolyser efficiencies, themain effort is

to achieve useful current densities at the lowest possible over-

potential.

Greatest known catalytic material for cathode water

reduction is Pt, that shows the lowest over-potential towards

Hydrogen Evolution Reaction (HER) [4,7], while the RuO2 and

IrO2 are the ideal choices for anodic water oxidation (Oxygen

Evolution Reaction e OER) [5,7]. The high cost and rarity of

these noble metals represent an obstacle to their large-scale

use in electrolysis devices. In recent years, efforts have been

made to use earth-abundant materials such as transition

metals and their oxide as catalysts [6]. In particular, Co oxide

nano-particles [5], Co oxide/graphite nano-composites [8]

and Ni borate films [9] have been successfully tested as

OER catalysts; Ni/NiO nano-particles as HER catalysts [10],

while mixed transition metal oxide nano-particles showed

good performance both in OER and HER [11]. Moreover, Pd

has been taken into consideration since it shows a catalytic

activity similar to Pt [12e15], while being available at a price

ranging between 40% and 60% of Pt in the last 5 years [16]. In

parallel with electrode material choice, an essential aspect

to improve electrolyser efficiency is to maximize the catalyst

surface exposed to the electrolyte and to minimize the cur-

rent density and amount of material used [17,18]. This

objective is usually achieved by fabricating high specific area

electrodes, both by dispersing catalyst materials on high

porosity conductive supports or fabricating the catalysts

themselves in the form of highly porous films [18e20]. In this

work we selected Carbon Nanotubes (CNTs) as conductive

templates for water splitting electrodes. While in general

carbon surfaces show low chemical reactivity towards HER

and OER, one big advantage of using CNTs as electro-

chemical support are their good electrical conductivity and

large specific area, which can greatly increase the contact

surface between the reactants [17,21e23]. Several ap-

proaches were tried in order to enhance CNT catalytic

properties decorating their surface with either thin layers or

nano-particles of appropriate inorganic material [17,24]. Re-

ported methods are generally divided into three categories

[22,25]: (1) filling (placing chemical species inside CNT

channels); (2) ex-situ (pre-formed inorganic particles

attached to CNTs via chemical interactions); (3) in-situ

(inorganic components are synthesized on pristine or func-

tionalized CNTs). Few works reported so far on the decora-

tion of CNTs with metals and metal oxides through atomic

layer deposition or thermal evaporation [21,26e29]. The

approach proposed in this work is to decorate the CNTs with

catalyst layers using the latter, simple physical method. In

this way, we are able to evaporate a thin layer of the

appropriate metal to exploit both the high surface area of

CNTs, increasing the catalyst surface interfaces, while opti-

mizing over-potential towards HER or OER through the cat-

alytic deposited layer. We show that, in certain cases, this

allows electrodes to perform water oxidation at over-

potential as low as 200 mV and water reduction near its

thermo-dynamical limit.

Experimental

Electrodes fabrication

Multi-walled carbon nanotubes (CNTs) were grown by chem-

ical vapour deposition on native SiO2 on Si wafers (SiO2/Si)

where a thin layer of growth catalyst (Fe, z 3 nm) was pre-

viously evaporated. Wafers were cut into 10 � 5 mm pieces

prior to CNT growth. Hydrogen and acetylene were used as

reduction and synthesis gases, respectively. Wafer surface

temperaturewas set to 670 �C for reduction (H2 pressure: 10 Pa

for 5 min) and 730 �C for CNT synthesis (C2H2 pressure:

5 � 103 Pa for 5 min); heating ramp was set to 70 K min�1.

Waferswith grownCNTs (named “pristine CNTs”) were cooled

in vacuum (10�3 Pa), then stored in standard atmosphere.

Metals (Pd 99.99%, Ni 99.98%, Co 99.95% - all purchased from

Advent Research Materials) were thermally evaporated in

vacuum (10�3 Pa) on pristine CNT samples. Evaporator shutter

opening time varied from 150 to 300 s, to obtain a metals

loading on CNTs of about 8 � 10�2 mg cm�2. Evaporation

deposition rates (5.5 � 10�4 mg s�1 cm�2 for Pd,

2.3 � 10�4 mg s�1 cm�2 for Co, 3.1 � 10�4 mg s�1 cm�2 for Ni)

were previously estimated by evaporating in the same con-

ditions Pd, Co or Ni layers on a glass slides for different times,

then measuring their thickness through Atomic Force Micro-

scopy (AFM). Deposited masses were obtained after multi-

plying the volume (measured thickness x sample surface) by

the density of Pd, Co or Ni. Evaporation rates were then line-

arly extrapolated from these data. Estimated sample loading

was consistent with average volume increase of CNTs after

metal evaporation (considering cylindrical nanotubes with an

average length of 10 mm and a density of 5 � 108 nanotubes

cm�2). The volume increase was estimated from average

thickness comparison of Scanning Electron Microscopy (SEM)

images of CNTs before and after metal evaporation. Samples

were cooled in vacuum and then stored in standard atmo-

sphere conditions. Samples were named as “CNTs/metal”,
where “metal” is the evaporated element (Co, Ni or Pd). Before

electrochemical measurements, one edge of the sample was

covered with conductive silver paste; half of the electrode was

masked using an electrically insulating polymer to expose

5 � 5 mm of geometric electrode area. This exposed a geo-

metric area that was used for subsequent current density

normalizations. Analogous samples using graphite instead of

CNTs were also fabricated. Graphite conductive paint (Graphit

33, Kontact Chemie) was applied on 10� 5mmSi wafers (SiO2/

Si), then Pd, Ni or Co were evaporated in the same condition of

CNT samples. Before electrochemical measurements, one

edge of the sample was covered with conductive silver paste;

half of the electrode was masked using an electrically insu-

lating polymer to expose 5 � 5 mm of geometric electrode

area.

Scanning electron microscopy and atomic force microscopy

Scanning Electron Microscopy (SEM) image of electrodes were

acquired using a Zeiss Supra40, at 20 kV accelerating voltage.

Atomic Force Microscopy (AFM) was a XE-100 (Park-Systems),

used in contact mode with Silicon tips (CSC 36/no Al,
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MikroMasch, USA); a typical force constant of 0.6 N m�1 was

employed.

X-ray photoelectron spectroscopy

XPS was carried out on a modified ultra-high-vacuum VG

Escalab II spectrometer. Non-monochromatized Al Ka exciting

X-ray radiation (1486.6 eV, 225 W) was used. Possible binding

energy correction due to sample charging was applied by

assuming the C1s core level line at 284.5 eV. The background

of the spectra was subtracted using a Shirley integrating al-

gorithm. The core level peaks were fitted using Voigt

functions.

Electrochemical measurements

Linear sweep voltammograms (LSV) were performed on a

Autolab 302 N electrochemical workstation (Metrohm, The

Netherlands) at room temperature, using a conventional

three-electrode system composed of a platinum wire as an

auxiliary electrode and a Ag/AgCl (3 M NaCl) (CH Instrument,

CH 111) as a reference electrode. Potassium phosphate buffer

solution (PBS; pH 7; 0.1 M) was use as supporting electrolyte

and the scan rate was 0.02 V s�1. All reported potentials were

converted to reversible hydrogen electrode according to:

ERHE ¼ EAg/AgCl þ 0.197 þ 0.059 pH. Overall water-splitting

measurements were carried out in a custom two-electrode

system. 0.1 M PBS (pH 7) was used as supporting electrolyte.

For benchmark reference, a Ni foil was used as anode (posi-

tive electrode for OER) and a Pt foil as cathode (negative

electrode for HER). Then, pristine CNTs, CNTs/Co and CNTs/

Ni were tested as anodes (cathode: Pt foil). Pristine CNTs and

CNTs/Pd where tested as cathodes (anode: Ni foil). Finally,

also the CNTs/Co as anode and CNTs/Pd as cathode were

used. A Keithley 2400 multimeter controlled by a National

Instruments Labview VI was used as power supply and data

log. All of the above water splitting configurations were

tested by (a) registering the current as a function of applied

potential (linear sweep voltammetry, from 0.00 to 2.50 V, scan

rate 0.05 V s�1) and (b) registering the current as a function of

time (0e120 s) in controlled potential electrolysis method (at

1.00 V, 1.25 V, 1.50 V, 1.75 V and 2.00 V). The best performing

configuration, the CNTs/Co as anode and the CNTs/Pd as

cathode, was also tested at 1.50 and 2.00 V for longer times

(20 h).

Results and discussion

CNTs/metal electrodes fabrication

Electrodes (schematized in Fig. 1, left) were successfully

assembled as explained in Section Electrodes fabrication. A

picture of a typical electrode is shown in Fig. 1, right.

Fig. 1 e (left) schematic illustration of CNT/metal electrode; (right) photo of a final electrode. Ruler scalebar is in mm.

Fig. 2 e SEM images of Pristine CNTs at (a) 200 K, (b) 50 K, (c) 15 K magnification.
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Morphology of CNTs/metal nanostructures

Average diameter of pristine CNTs (determined from SEM

images e Fig. 2 aec) is 23 ± 3 nm. After evaporation, SEM

images (Fig. 3 aec; Fig. 4 aec; Fig. 5 aec) show a uniform

coating of the nanotubes. CNTs/Co, CNTs/Ni and CNTs/Pd

diameters increased by a factor 1.5e1.7. This value agreeswith

the expected deposition trend (the higher the amount of

deposited metal, the higher the diameter of the samples).

Deposition times, estimated catalyst loading and diameters

are reported in Table 1.

Chemical nature of CNTs/metal nanostructures

XPS positively identified Pd, Ni and Co core lines on CNTs/Pd,

CNTs/Ni and CNTs/Co, respectively. Fig. 6a shows the XPS

spectra of the CNTs/Pd, where two well define peaks at

335.0 eV and 340.5 eV are observed, corresponding the

Fig. 3 e SEM images of: CNT/Co at (a) 200 K, (b) 50 K, (c) 15 K magnification.

Fig. 4 e SEM images of: CNT/Ni at (a) 200 K, (b) 50 K, (c) 15 K magnification.

Fig. 5 e SEM images of: CNT/Pd at (a) 200 K, (b) 50 K, (c) 15 K magnification.
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characteristic metallic Pd features [30e32]. XPS spectra of

CNTs/Co (Fig. 6b, red curve) show two peaks in the Co2p3/2

region (778.0 eV and 780.5 eV) and a satellite feature (785.0 eV).

First peak was identified as signature of metallic Co [33,34].

The second peak (780.5 eV), due to the presence of the satellite

where is distinctive feature of Co(II) [33,34], was assigned to

Co(II) oxide. Similarly, CNTs/Ni XPS spectrum (Fig. 6c) shows

two peaks (852.4 eV and 855.0 eV) plus a satellite structure

(860.5 eV), in the Ni2p3/2 region. Peaks were identified as

signature of metallic Ni and Ni(II) oxide respectively [33,35]. In

the case of evaporation of Co and Ni on CNTs, an oxidation of

the metallic coating in atmosphere seems to take place.

Effect of CNTs, CNTs/Co and CNTs/Ni as OER catalysts

The oxidation voltammograms between 0.80 V and 1.80 V of

CNTs, CNTs/Co, CNTs/Ni and their corresponding analogous

using graphite as support is shown in Fig. 7. No significant

response is observed in the case of graphite supports. For the

CNTs samples, the performance of the materials was

analyzed comparing the current densities at a fixed over

potential (h¼ 0.50 V). The obtained values were 2.00mA cm�2

and 0.30 mA/cm�2 for CNTs/Co and CNTs/Ni, respectively,

indicating that higher activity in the case of Co-decorated

samples. Current registered below h ¼ 0.50 in CNT/Co is

most probably related to the catalyst oxidation. Pristine CNTs

do not show any appreciable current output at the same over-

Table 1 e Measured average diameters of CNTs and
CNTs/metal nanostructures; evaporation time and
estimated catalyst loading.

Sample Avg. diameter
[nm]

Evaporation
time [s]

Estimated
catalyst
loading

[mg cm�2]

Pristine

CNTs

23 ± 3 e e

CNTs/Co 60 ± 9 300 (7.0 ± 1.0) �10�2

CNTs/Ni 64 ± 6 300 (9.0 ± 1.0) �10�2

CNTs/Pd 77 ± 5 150 (8.0 ± 1.0) �10�2

Fig. 6 e XPS spectra (dotted) and fitting peaks (continuous lines) of: (a) 3d region of CNT/Pd; (b) 2p region of CNT/Co; (c) 2p

region of CNT/Ni; before (red) and after (blue) electrochemical measurements. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)
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potential. Further analysis were performed comparing the

over potential (determined form the onset potential) for each

sample. In case of CNTs/Co the over potential is around

0.20e0.30 V, while for CNTs/Ni is 0.50 V. These data show

promising catalytic activities of Co oxide on CNTs towards

OER.

Effect of CNTs, CNTs/Pd, CNTs/Co and CNTs/Ni as HER
catalysts

Reduction voltammogram (between 0.50 V and �1.00 V) of

CNTs, CNTs/Pd, CNTs/Co and CNTs/Ni and their corresponding

analogous using graphite as support is shown in Fig. 8. Also in

this case, no significant response is observed for of graphite

supports. For the CNTs/metal samples, the performance of the

materials was analyzed comparing the current densities at a

fixed over potential (h ¼ 0.35 V). The obtained values were

3.0mAcm�2, 1.5mAcm�2 and 1.0mAcm�2 for CNTs/Pd, CNTs/

Co and CNTs/Ni, respectively, indicating that higher activity in

the case of Pd-decorated samples. Pristine CNTs do not show

any appreciable current output at the same over-potential,

while Pd on graphite outputs only 0.5 mA cm�2. Further anal-

ysis were performed comparing the over potential (determined

from the onset potential) for each sample. In case of CNTs/Co

Fig. 7 e (left) Voltammograms (in oxidation) of CNT/Ni (continuous curve, green) and CNT/Co (red) compared to pristine CNT

(in blue), graphite (dotted blue), Ni on graphite (dotted green) and Co on graphite (dotted red) are shown. (right)

Voltammograms of graphite and catalyst on graphite, compared to pristine CNT, are shownmore in details with rescaled y-

axis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

Fig. 8 e (left) Voltammograms (in reduction) of CNT/Ni (continuous curve, yellow), CNT/Co (green), CNT/Pd (red) compared to

pristine CNT (blue), graphite (dotted blue) and Pd on graphite (dotted red) are shown. (right) Voltammograms of graphite, Pd

on graphite and pristine CNT, are shown more in details with rescaled y-axis. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)
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and CNTs/Ni the over potential is around 0.25 V, while for

CNTs/Pd it seems near to zero. In this particular case, current

registered below h¼ 0 ismost likely related toH2 adsorption on

Pd and PdHX formations [36,37]. Hydrogen evolution can be

noticed by direct observation (bubbles) starting around

h ¼ 0.15e0.20 V. These data suggest very interesting catalytic

activities of Pd deposited on CNTs towards HER; also Ni oxide

and Co oxide show promising properties.

Electrolysis

Overall, the water splitting experiments comply with linear

sweep voltammetry data trends. Reference cell (anode: Ni foil;

cathode: Pt foil) requires a minimum applied voltage of about

1.70 V to start electrolysis process (Fig. 9 aeb, black dotted

curve); at 2.00 V and 2.50 V it outputs about 1.00 mA cm�2 and

5.00 mA cm�2, respectively. Pristine CNTs seem to behave

similarly with respect to the reference at any applied potential

if used as anode (Fig. 9 a-blue dotted curve), worst if used as

cathode (Fig. 9 b - blue dotted curve). Testing CNTs/Co as

anode (Fig. 9 a, green curve) allows to starting electrolysis at

lower potential (1.50 V) and increases greatly the current

density at 1.75 V (3.00 mA cm�2 vs 0.50 mA cm�2) with respect

to the reference cell. CNTs/Ni samples (Fig. 9 a e red curve)

show a similar behaviour (electrolysis starts at 1.60 V;

2.00 mA cm�2 at 1.75 V). In fixed potential experiments

(continuous electrolysis for 2 min e see Fig. 10), no difference

can be appreciated with respect to the reference cell (Fig. 10 a),

if a 2.00 V potential is applied. Nevertheless, the final, stabi-

lized current density output is doubled at 1.50 V (0.25mA cm�2

vs 0.12 mA cm�2) and nearly tripled at 1.75 V (0.50 mA cm�2 vs

0.18 mA cm�2) for both CNTs/Co and CNTs/Ni anodes (Fig. 10

dee). If CNTs/Pd are tested as cathode (Fig. 9c), electrolysis

starts at very low potential (bubbles can be seen just above the

minimum required potential of 1.23 V; current flow registered

below 1.23 V can be attributed to hydrogen adsorption/

desorption into Pd [36,37], and a huge difference is noticed in

respect to the benchmark Pt/Ni cell at every applied potential

in sweep voltammetry (current density: 2.5 mA cm�2 at 1.50 V,

6.0 mA cm�2 at 2.00 V and nearly 10 mA cm�2 at 2.50 V). The

difference is relevant also at fixed potentials: current density,

after 2 min electrolysis, reaches stable values of 5.0 mA cm�2,

3.0 mA cm�2 and 1.5 mA cm�2 at 2.00 V, 1.75 V and 1.50 V,

respectively (Fig. 10f). In the final water splitting configuration

(CNTs/Pd as cathode and CNTs/Co as anode e Fig. 10g) the

behavior is similar to that reported for the previous system,

but current density is even higher at low voltage (2.0 mA cm�2

after 2 min at 1.50 V). Moreover, a current of about

1.0 mA cm�2 can be registered after applying 1.25 V for 2 min.

Current densities appear to stabilize between 60 and 75% of

their original values after 20 h continuous electrolysis: regis-

tered output after these lengthier experiments are still as high

as 2.2 mA cm�2 and 4.0 mA cm�2 (applying 1.50 V and 2.00 V)

as shown in Fig. 11. This shows the time stability of these

electrodes; remarkably, a stable output >2.0 mA cm�2 can be

obtained at 1.50 V (i.e. the nominal voltage supplied by a single

AA battery). Figs. 11 and 12.

Electrode characterization after electrochemical
measurements

SEM images (Figs. 12e14) suggest a good conservation of

catalyst layer after continuous electrolysis (20 h) at 2.00 V;

average diameters (reported in Table 2) of CNTs/Pd and CNTs/

Ni appear similar to those before the experiment; on the other

hand, CNTs/Co increase their diameter. This increase (corre-

sponding to an increment in volume between 2 and 3 times)

can be due to a phase transformation from the initial Co/Co(II)

Fig. 9 e (a) Voltammetry of water electrolysis process using a standard cathode (Pt foil), while testing different anodes at low

catalyst loading: pristine CNT (dotted blue curve), CNT/Ni (red), CNT/Co (green). Reference cell electrolysis, with benchmark

anode (Ni foil) and cathode (Pt foil) is reported for comparison (dotted black); (b) voltammetry of water electrolysis process

using a standard anode (Ni foil), while testing different cathodes: pristine CNT (dotted blue curve) and CNT/Pd (red) at low

catalyst loading. Reference cell electrolysis (Ni foil/Pt foil) is reported for comparison (dotted black). (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10 e Fixed potential electrolysis for different cell configurations (A ¼ Anode; C ¼ Cathode) and voltages: (a) A: Ni; C: Pt

(reference cell); (b) A: CNT; C: Pt; (c) A: Ni; C: CNT; (d) A: CNT/Co; C: Pt; (e) A: CNT/Ni; C: Pt; (f) A: Ni; C: CNT/Pd; (g) A: CNT/Co; C:

CNT/Pd.
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oxide into Co(III) oxide or Co(II)/Co(III) hydroxide, as pointed

out by XPS data reported in Table 3 and in Fig. 6. CNTs/Pd XPS

peaks morphology/position after short and long electrolysis

trials do not show any noticeable difference in respect to the

spectra acquired before electrolysis (see Fig. 6a: blue curve vs

red curve, and Table 3). Co and Ni signals are also found on

respective samples after longer electrolysis. On CNTs/Co

(Fig. 6b: blue curve vs red curve), the peak at 778.0 eV (previ-

ously identified as metallic Co) disappeared, prompting to a

complete oxidation of remaining metallic Co; the second peak

(780.5 eV), that can be related either to Co(II) or Co(III) oxide, is

still noticeable; moreover, due to the attenuation of the sat-

ellite typical of Co(II) [33,34], that was clearly seen in XPS

spectra before the electrolysis, a partial transformation of

Co(II) oxide into Co(III) oxide during electrolysis can be

conceived (ratio between oxide to satellite signal was 1.2

before electrolysis, 1.6 after). On CNTs/Ni (Fig. 6c: blue curve vs

Fig. 11 e Long time (20 h) fixed potential electrolysis of best

performing cell configuration (Anode: CNT/Co; Cathode:

CNT/Pd).

Fig. 12 e SEM images of CNT/Co after electrolysis at (a) 200 K, (b) 50 K, (c) 15 K magnification.

Fig. 13 e SEM images of CNT/Ni after electrolysis at (a) 200 K, (b) 50 K, (c) 15 K magnification.

Fig. 14 e SEM images of CNT/Pd after electrolysis at (a) 200 K, (b) 50 K, (c) 15 K magnification.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 2 ( 2 0 1 7 ) 1 8 7 6 3e1 8 7 7 3 18771
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red curve), the previously observed peak related to Ni(II) oxide

(855.6 eV) and the satellite structure (860.0 eV) can still be

identified. Peak related to metallic Ni (852.4 eV) is greatly

reduced. This suggests a nearly complete oxidation ofmetallic

Ni, without any change in the oxidation state of Ni(II) oxide

(ratio between oxide to satellite signal is the same before and

after electrolysis).

Conclusions

The good performances of our nanostructured electrodes can

be attributed to a synergistic effect of the high surface area,

thanks to the growth template conductive with CNTs, and the

deposited catalytic material layer: output currents of catalytic

materials alone, deposited on flat graphite, are one order of

magnitude lower than catalytic layers deposited on nano-

tubes. Nevertheless, CNTs alone, with the high surface area

but low catalytic properties, show very low output currents.

Results show good performances of Co deposited on CNTs as

electrodes for oxygen evolution. The catalytic activities of

transition metal oxides is well known [6,38e41], and even if

our deposition approach initially grows a metallic coating on

nanotubes, the subsequent exposition to the atmosphere and

oxidation cycle in electrochemical experiments quickly

transform the metals into an appropriate oxide layer, as

shown by XPS data. The onset over-potential required to start

the reaction by electrodes described in this work

(honse < 200mV) lies in the same range, of other state of the art

solutions [5,8,38]. On the other hand, registered current den-

sity values seem lower, but we have to take into account the

different experimental conditions (lower catalyst loading,

electrolyte pH and concentration), it can be noticed that our

values are comparable with other solutions operating in

neutral electrolyte [40e42]. As a secondary result, also our

CNTs/Co and CNTs/Ni can be seen as promising HER catalyst.

Even if the cathode performances are worst than CNTs/Pd and

other reported systems, they show a low HER onset (250 mV)

and decent current densities. The undeniable advantage of

using the same material (Co) as a bi-functional (HER and OER)

catalyst is boosted by its low market price (Co price: about 2

orders of magnitude lower than Pd) [16]. Using the best per-

forming HER and OER fabricated in this work, we successfully

tested a working electrolyser, capable to output 4.5 mA cm�2

at a voltage of 1.50 V. This electrolyser is capable to output a

stable, high current density for at least 20 h. As far as we

know, few systems are capable to split water at this voltage

[10,43]. Again, it is worth noticing that our system operates

with a less concentrated electrolyte, and with a catalyst

loading 1 to 2 orders of magnitude lower in respect to the

solutions cited above. Summarizing, we successfully demon-

strated that thermal evaporation of thin metal layers on CNTs

bundles is a promising technique to fabricate efficient elec-

trodes for water splitting. Moreover, we were able to assemble

and test successfully a working electrolyser, capable to output

high and stable current at the interesting low voltage of a

single AA battery (1.50 V).
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