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Algorithm

objectives f,
Provide target objective value t,
Provide tolerance percentage value Af,

Provide desired number of points in the
hypervolume N,

Initialize the counter of interesting
points to ¢ = 0

At each evaluation the objective
function is modified
objectives f,
o, = g(f, - t,)
given the function modulus g(x) = [x/
o, < tAf,
Mark this solution as interesting

solution is interesting for each
objective
c =c¢c + 1

>
c z N,

Switch to Phase 2

Override g(x) = x
At each evaluation the objective
function is modified
objectives f,
o, = g(f, - t,)
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TARGET-POINT APPROACH
Aim: keep high selection pressure in a preferred objective space area without

wasting computational time when too many objectives for thorough exploration.

Interaction with the user: user is asked to provide an a priori target value for
each objective, tolerance values that define a hypervolume in the objective
space and a target number of points N, to be found inside the tolerance
hypervolume

Phase 1 (reaching specified target): objective search space is modified while
preserving its multiobjective nature and original constraints. Solutions
ordered using Pareto sorting criterion on modified objectives. Phase 1
finishes when N, is found

Phase 2 (attaining the true front): When the algorithm has met the target
criteria, it starts a classic evolution by searching for the real Pareto front
until the number of generations is completed

This approach is a kind of module that can be plugged into an existing algorithm.

Here, it is applied to NSGA-II [1] and MOGA-II [2] to prevent natural tendency
of genetic algorithms to be driven by the simplest objectives rather than
those preferred by decision makers (DM). DM could be more interested in a
specific region of the search space instead of in a free evolution: this justifies
Phase 1. If DM’s knowledge of the problem search space is incomplete, an
automatic optimization can find unexpected solutions: this justifies Phase 2.
To summarize, the target-point module can work either with Phase 1 alone
(reaching the target) or with Phase 1 followed by Phase 2 (reaching the target
and improving it further). Depending on the problem difficulty, Phase 2 can

be triggered by appropriately setting tolerance and N, (in addition to the GA
number of generations).

DATA ANALYSIS: visual comparison of solutions found with different algorithms. Known difficulty of a single performance index
to account for all quality aspects of a set of solutions of a multiobjective optimization problem. Here even worse because of the
contrasting nature of the two phases. Further investigations are required.

Test Problems

Problem n Range Objective functions f1, f2 Constraint function ¢

x; € [0, 1], f]_(x) =x
ZDTL 30 i=1,...n fa(x) = g(x)[1 — /z1/9(x)], Unconstrained
9(x) =149 p:)/(n - 1)

r1 €[0,1]  fi(x) =m1 c(x) = cos (0)[f2(x) — €] —sin (0) f1(x) >
CTP7* 4 z; €[-5,5] fa(x) = g(x)[1 — fi(x)/g(x)], a|sin {br[sin (0)(f2(x) — e) + cos (6) f1(x)| }H?,
1=2,...n g(x)=31+2?=2[$? — 10cos (2mz;)] 8= —0.057,a =40,b=5,c=1,d=6,e=0

Table 1

ZDT1: TARGET-POINT vs. RNSGA [3] prototype [4]
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Comparison between target-driven approach (target-point MOGA-II) and 1.6 o o
linear aggregation of the objective values into a weighted sum (MOGA-|| 14 '
single objective). Nii N
Both optimizations start from same initial population of 100 elements created o
with uniform latin hypercube sampling and 250 generations. 0.6 ’

04
The aimis to get equally important objective values. Weighted sum: sum of 02
the two objective values. Target-driven optimization: target valuesf, = f, = S "$00102030405 0507050910
0.5 (tolerance 1%) and N, = 100.

2.0
Target-point effects cannot be reproduced by appropriately setting the 1.8
weights in the weighted sum method. By aggregating objectives into a ij )
single-objective, objective search space is modified. Detrimental effect in the Lol
presence of constraints. Weighted sum follows a constraint in a sub-optimal N1.05,, s
region and gets stuck in local optimal solutions for the original optimization 08 ©
problem. Target-driven mechanism instead preserves multiobjective nature 0.6
of original problem while trying to push optimization in the desired direction. 22 e
Exploration is performed front-wise and eventually reaches the target. 0g
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For each algorithm, two optimizations with target values T, = (0.2, 0.6) and
T, (0.9,0.1) very close to true Pareto front. Both algorithms are run for 100
generations starting from initial population of 50 random individuals.

Target-point approach: tolerances = 2% and N, = 50.

RNSGA prototype: extent control parameter =0.001 and default weight
vector values (equal weights).

T, :bothalgorithms achieve desired target. Target-point approach also
enters Phase 2, while RNSGA stays close around reference point.

T, : RNSGA does not reach reference value within number of generations.
Target-point approach reaches target and begins exploring further, although
a number of spurious non-dominated solutions remain for small values of f,
(some from initial population).
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We present a simple strategy for multiobjective target-driven optimization and apply it to the sizing optimization of a steel

girder bridge. Users or decision makers are asked to express their preferences (based on their previous experience) in

terms of desired target objective values to drive the optimization towards the preferred regions of the Pareto front.

This can lead to a more efficient exploration of specific regions of the objective space and reduce the computational

cost of finding desirable solutions. This strategy combines a-priori approaches with interactive preference-handling

approaches. These methods have recently received more attention in the evolutionary multiobjective optimization

community. The proposed algorithm is described in detail and compared with existing methods. Benchmarks on standard

mathematical test functions as well as on a realistic structural engineering sizing optimization problem are provided.

Input variables: Table 2

Application Case

MULTIOBJECTIVE SIZING OPTIMIZATION OF A STEEL GIRDER BRIDGE UNDER PERMANENT, VARIABLE AND SEISMIC LOADS:
discrete input variables, discretized objective space, several constraints to comply with specific performance and safety levels
required by national and international laws and standards.
Bridge consists of four steel H-girders with flanges welded to the web. Girders support a reinforced concrete slab, an asphalt layer and

two sidewalks. Bridge modeled with finite-element structural analysis software SAP2000. Resistance checks: vertical loads in ultimate

limit state. Deformation checks: serviceability limit state. Seismic analysis: linear dynamic with response spectrum. Life-safety seismic \
project response spectra for the location site of Reggio Calabria (ltaly). ‘

Input constraints: Two constraints on web and flange values to exclude too Input variables Range (m) Step (m) # of values
slender sections of class 4 Girder section height  [0.3 — 1.5] 0.01 121
Output constraints: Web thickness [0.02 — 0.04] 0.001 21
Flexural verification: girder bending moment smaller than resistance moment Flange thickness [0.02 —0.04]  0.001 21
Shear verification: shear stress smaller than shear resistance Flange width (0.2 —0.5] 0.005 61
Shear instability of the girder sections Distance from edge  [0.35—1.5]  0.15 9
Serviceability Limit State compliance checks on vertical displacement of
Table 2

most deformed girder
Obijectives (to minimize):

Girders total weight (weight difference of 50 KN means 12000 € cost difference)

Horizontal seismic shifts across the bridge (impact on maintenance cost)
Vertical seismic shifts (impact on maintenance cost)

Target 1:
Goal: fill the gap in horizontal shift values found with reference optimization - W o
Target parameters: horizontal shift = 0.18 m (tolerance 1%), weight = 402 KN (tolerance 1%), A
vertical shift = 0.038 m (tolerance 5%), N, = 100
60 generations, initial population of 100 designs selected from reference simulation optimal
solutions (94 randomly chosen + 6 selected close to target region) ty
Result: several optimal solutions found in target objective-space region = H
Target 2:
Goal: find compromise solutions quickly
Target parameters: horizontal shift = 0.08 m (tolerance 1%), weight = 402 KN (tolerance 1%), i v

vertical shift = 0.038 m (tolerance 5%), N, = 100
60 generations, same initial population as for reference optimization
Result: target-point approach successfully reaches target region and begins exploring neighboring regions (Phase 2)

Bridge Target 1: reference MOGA-II vs. target-point MOGA-II
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SIMULATION AND RESULTS

Reference optimization with MOGA-II:

Initial population of 100 random designs, 120 generations,

default optimization parameters

Result: compromise solutions between small seismic
horizontal displacements and small weight values (i.e.
between small initial and maintenance costs). Region of
small horizontal shifts seems easier to explore. A gap can be
noticed around horizontal shift =0.18 m

Bridge Target 2: reference MOGA-II vs. target-point MOGA-II
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