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1 Introduction

The duality between M-theory and IIA string theory establishes a striking connection
between gauge theories and geometry. For instance, gauge groups and charged matter on
D6-branes in IIA find an incarnation as geometric singularities in M-theory. However, this
picture is lacking, not only fundamentally due to the absence of a microscopic formulation
of the former, but even at the level of supersymmetric vacua.

For example, a stack of parallel N D6-branes, which hosts a U(N) gauge theory, uplifts
in M-theory to an AN−1 singularity given by the hypersurface uv = det(z1N−ΦD6), where,
say ΦD6 = φ1 + iφ2 are two of the three transverse worldvolume scalars. Giving a vev to
these scalars may correspond to separating the branes of the stack, which in M-theory
corresponds to deforming the singularity, as the r.h.s. of the hypersurface equation starts
seeing non-trivial Casimirs of the ΦD6 turned on.

However, if we switch on worldvolume flux, the D-term equation F ∼ [ΦD6,Φ†D6] allows
for non-diagonalizable scalars. For instance, for a stack of two branes, we could have

ΦD6 =
(

0 1
0 0

)
. (1.1)

This clearly breaks the U(2) gauge group to the overall U(1), but leaves the singularity in
M-theory intact, since all its Casimirs vanish. Such configurations were studied originally
in [1, 2], and more recently in [3] and in [4], where they were dubbed T-branes, where
the ‘T’ highlights the upper triangular form of the vev. More generally, a T-brane can
be characterized as a non-Abelian bound state between D-branes given by condensing
stretched strings. In gauge theory, this corresponds to a nilpotent vev for the complex
adjoint scalar on a stack of D6 or D7-branes.

This clash between what we expect from gauge theory, i.e. a broken gauge group, and
what the M-theory geometry is displaying, i.e. an undeformed and unresolved singularity,
is vexing. In hindsight, though, we should not be surprised that 11d supergravity data
does not correctly capture all degrees of freedom when the spacetime curvature runs high.
T-branes remind us that geometry alone is insufficient to understand even supersymmetric
vacua. We need a definition of what a T-brane means in M-theory. Direct attempts at
defining T-brane data in M-theory have been made, see [5–7]. They all involve heavy math-
ematical machinery leaving the microscopic origin of the T-brane in M-theory obscured.1

In [15], we initiated the study of D2-branes probing T-branes. Specifically, we studied
deformations of three-dimensional N = 4 gauge theories that correspond to D2-branes
probing T-brane configurations with parallel D6-branes, and parallel D6-branes on top of
an O6-plane. From the vantage point of the D2-brane, two of the three D6 adjoint scalars
appear as complex mass parameters in the 3d theory:

∆W = 〈ΦD6
j
i 〉QjQ̃

i . (1.2)

From this perspective, a T-brane corresponds to a deformation of the 3d theory by a
nilpotent complex mass term.2

1For further recent work on T-branes and their applications see [8–14].
2This possibility has been pointed out in [16] for the case of two intersecting D6-branes.
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The 3d mirror symmetry of [17] (and further developed in [18–24]) states that these
theories are infrared dual to 3d quiver gauge theories, whose quiver graph is the affine
Dynkin diagram corresponding to the flavor group on the D2-brane, which is the gauge
group on the D6-stack for the A and D series. The mirror symmetry exchanges the Higgs
and Coulomb branches of the theories, and sends nilpotent mass terms into superpotential
terms involving monopole operators. E.g.

mQi−1Q̃
i −→ mWi,+ , (1.3)

where Wi,+ ∼ exp(σi + iγi) is roughly the exponential of the dual i-th photon γi. More
precisely, a monopole operator is a local disorder operator which can be defined directly in
the infrared CFT [25–27]. Monopole superpotentials arise also in the context of D3 branes
suspended between pq-webs in Type IIB [28].

In [15] we studied the effective theories of A and D type quiver gauge theories deformed
by such monopole operators, restricting to cases where the quiver node associated to the
deformation was Abelian. We learned a few valuable lessons:

1. The resulting effective theory is a quiver theory with one node missing, but a new
‘fundamental meson’ with a particular superpotential.

2. N = 4 is broken to N = 2, and the Coulomb branch is reduced in dimension, usually
to a complex but not quaternionic variety.

3. Strikingly, the Higgs branch remains intact as a complex manifold, still displaying
the original ADE singularity of the parent N = 4 theory.

4. The monopole deformation can be shown to correspond to an insertion of a coherent
state of membranes wrapping a vanishing CP1 of the singular geometry. This matches
IIA expectation, since a T-brane is a coherent state of strings stretched between
different D6-branes, which under mirror symmetry map to D2-branes wrapping the
spheres. This point, in our view, elucidates the physical meaning of a T-brane in
M-theory.

This treatment of T-branes as monopole deformations, and their interpretation as
coherent states of vanishing membranes gives us a definition of what a T-brane is in M-
theory that can be generalized to cases where mirror symmetry is not straightforward, such
as the exceptional singularities.

In this paper, we will actually tackle the T-brane problem for any minimal nilpotent
orbit of any simple Lie algebra. In other words, we will study monopole deformations also
on non-Abelian nodes of the D and E type quiver theories. For the latter, we will discover
that the resulting effective theory contains a non-Lagrangian block connected to the rest
of the quiver.

The purpose of this investigation is twofold:

• On the one hand, we want to deepen our understanding of M-theory, and its con-
nection to string theory. The T-brane is a perfect example of something that should
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be captured by holomorphic data, but is not naively encoded in the geometry of the
11d space.

• On the other hand, we are uncovering a new class of three-dimensional N = 2 theories
that behave partly as if they enjoyed N = 4 supersymmetry: their Coulomb branches
are complex varieties that are not hyper-Kähler, yet their Higgs3 branches are the
well-known affine surfaces with ADE singularities.

We will use a novel approach to study the effect of monopole operator deformations
on non-Abelian gauge theories. Four-dimensional SCFT’s enjoy S-dualities that reduce
straightforwardly to three-dimensional dualities.4 This will allow us to turn any non-
Abelian node with gauge group U(N) into a system with G = U(1) × SU(2) plus some
non-Lagrangian theory. The original monopole deformation will always translate into a
monopole with respect to the new U(1) factor, which we already learned to handle in our
previous work [15].

Since we will be deriving our effective theories via rather indirect means, we will sup-
plement our claims by comparing the squashed three-sphere partition functions of the
monopole deformed theories and their proposed effective theories. We will find a per-
fect match.

What is novel in our approach, is the counterintuitive move of voluntarily replacing
perfectly Lagrangian theories into something intrinsically strongly coupled in order to gain
control of the calculation. We will show that this approach lets us come to grips with
mirror symmetry and treat any node of any Dynkin quiver in the same manner, thereby
finding the effective theory for any T-brane corresponding to a minimal nilpotent orbit.

This paper is organized as follows: in section 2 we state the goal of this work and ex-
plain our strategy. In sections 3, 4, and 5, we implement our strategy on gauge nodes with
U(2),U(3) and U(N ≥ 4) gauge groups, respectively. This allows us to handle monopole
operators corresponding to nilpotent orbits in all Dynkin type quiver gauge theories. In
section 6 we propose new field theory dualities for such quiver gauge theories which reveal
the hidden but expected Weyl symmetries in the quantum enhanced ADE global symme-
tries. In section 7, we will introduce and compute the partition functions of all discussed
theories on the squashed three-sphere. In particular we will study SQED with two flavors
(aka T (SU(2))) and U(N) SQCD with 2N flavors deformed by a monopole operator and
show their equivalence with the proposed effective theories. In appendix A we review how
to derive the Higgs branches of the undeformed E and D quivers. Finally, in appendix B
we review our treatment of a monopole deformation along a U(1) node of a DN quiver.

2 Goal and general strategy

Our goal for this paper is to study what happens to a d = 3,N = 4 ADE quiver gauge
theory when we deform it by a single monopole operator that is charged with respect to

3Strictly speaking, this terminology is reserved for N = 4. We will give a more precise definition later
of what we mean by ‘Higgs branch’.

4The caveat of [29] is evaded if the UV theory is N = 2 superconformal because a dynamically generated
monopole superpotential would break extended supersymmetry.
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the topological U(1) of a single node. This is a restricted class of deformations, which
nevertheless covers all minimal nilpotent orbits of the ADE flavor group of the quiver in
question. In physical terms, we will study all deformations that correspond, on the mirror
side, to nilpotent ‘mass matrix’ deformations of vanishing degree two. By ‘mass matrix’
we mean superpotential deformations that are linear in the moment map of the theory’s
flavor symmetry. In [30], such mass deformations were studied from the point of view
of D3-branes probing F-theory. The three-dimensional point of view, however, has many
advantages: it allows us to recover the ADE singularity as a branch of the theory, and we
have mirror symmetry at our disposal.

2.1 Reducing to the Abelian problem

When the deformed node is a balanced U(1) gauge theory (i.e. has two flavors), the ef-
fective theory is known [15]. We will review the procedure to obtain such a deformation
in section 2.2. However, when the node is non-abelian, this procedure cannot be applied
directly. The point of this paper is to tackle this case. The strategy is to use dual theories
in which the relevant monopole operator will be charged under a U(1) node. The dual
theories are worked out in the following way:

• We start from N = 2 SU(N) SQCD with 2N flavors in four dimensions. As was
studied in [31] following [32] and [33], this theory has a dual description involving an
SU(2) gauge group coupled to one doublet and to a strongly-coupled SCFT (called
R0,N in [31]) which is best described as a three-punctured sphere in the language
of [33]. In this dual description the SU(2N) global symmetry is carried by the SCFT
whereas the baryon number is carried by the doublet of SU(2) and its charge is fixed
by anomaly matching, as noticed in [32].

• This duality is preserved when we compactify to three dimensions. In [29], it was
argued that, in general theories that flow to the same IR point may not longer enjoy
such a duality upon dimensional reduction, since dimensionally reducing and going
to low energies are operations that do not commute. Instead, a duality might be
salvaged at the cost of generating potentials with monopole operators. In our case,
however, this caveat does not apply since the (undeformed) dual theories are N = 2
superconformal in four dimensions and need not flow. Furthermore, a monopole
superpotential cannot be generated in the compactification simply because it is not
compatible with enhanced supersymmetry. The duality is rather obvious in the light
of [34], since these two theories have the same mirror.

• Since we are interested in U(N) SQCD in three dimensions, we should gauge the
baryon number on the Lagrangian side of the duality. This amounts on the other side
of the duality to gauging the U(1) global symmetry carried by the SU(2) doublet.
We then conclude that U(N) SQCD with 2N flavors in 3d has a dual description
involving a U(1)×SU(2) gauge theory coupled to the dimensional reduction of R0,N .

• In the case N = 2 the duality simplifies considerably since R0,2 is just a free theory
describing three hypermultiplets in the doublet of SU(2). Notice that the surviving
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U(N) 2N U(1) SU(2) R0,N

S-duality

Figure 1. S-dual theory of a single quiver node.

global symmetry is SU(4) in both cases. This duality was actually already discussed
in [35].

• On the U(N) SQCD side the topological symmetry is known to enhance to SU(2)
due to the presence of monopole operators of R-charge one. We expect the same to
happen on the dual side and indeed the U(1) node is balanced in the sense of [35],
implying the enhancement to SU(2). We then conclude that the monopoles V± of
R-charge one on the SQCD side are mapped to the monopole operators W± of the
U(1) gauge node on the dual side.

We can now use this map to construct theories that are dual to the ADE quiver gauge
theories.

. Choose a node of interest from the quiver and ungauge its neighboring nodes. This
leaves us with the d = 3,N = 4 SQCD theory with U(N) gauge group and 2N
fundamental hypers coupled to the adjoint scalar of the vector multiplet via the
superpotential

W = QaiΦa
b Q̃

i
b (2.1)

where i = 1, . . . , 2N are the flavor indices, and a = 1, . . . , N the color indices. From
this, we can form the gauge invariant mesons:

M i
j = Q̃iaQ

a
j (2.2)

which satisfy trM = 0, and M2 = 0 by the F-term constraints. These mesons
are only gauge invariant with respect to the U(N) node in question. When this
node is attached back to the quiver, the indices (i, j) become gauged, and we must
couple the moment maps M i

j to the adjoint scalar in the vector multiplet of the
neighboring nodes.

. We perform the 3d version of the S-duality map. This invariantly leads to a setup of
the form described in figure 1.

The gain is that we now have isolated a U(1) theory with two flavors.

. We now recouple the dual theory to the rest of the quiver by gauging its global
symmetry appropriately.

We obtain what we will call a ‘modified ADE quiver’.
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W+

U(1) SU(2) R0,N SU(2) R0,Nm

local mirror

Figure 2. Effective theory of a single quiver node after monopole deformation.

We are now ready to discuss monopole deformation along any node in a 3d ADE
quiver gauge theory. Let us then describe the strategy we will apply throughout this
paper. Although its implementation will vary drastically from one example to the next,
the basic idea is exactly the same.

In the original ADE theory we wish to deform the superpotential with a monopole
operator V− relative to a U(N) node, i.e.

∆W = mV− . (2.3)

This operator has charge one with respect to the topological U(1) that shifts the scalar
dual to the overall photon in U(N). It is defined as the operator that creates a pointlike
object with magnetic charges (−1, 0, . . . , 0︸ ︷︷ ︸

N−1

) with respect to the N U(1) groups. As was

shown in [35], such operators have R-charge one and hence dimension one in the IR. (By
the adjoint action of U(N) we can always move the magnetic charge to the first entry.)

Contrary to the original quiver gauge theory, in the dual theory the monopole operator
that deforms the theory is charged under the topological symmetry of a U(1) node. In fact,
by matching the two topological U(1)’s, one concludes that turning on a superpotential
term involving V− is equivalent to turning on the same type of superpotential involving the
monopole operator W+ relative to a U(1) node on the dual side (see section 7.4). Using
now the result of [15], we can equivalently describe the resulting theory as an SU(2) gauge
theory coupled to the dimensional reduction of R0,N and to a chiral multiplet in the adjoint
of SU(2) despicted in figure 2. In this way we can get a description of the theory without
monopole operators.

We can extract more information from this resulting theory. Specifically, we can study
their Higgs branches. Before moving on, let us define what we mean by ‘Higgs branch’, a
term usually reserved for N = 4 theories (in 3d): before breaking N = 4→ N = 2, we can
distinguish the Higgs and Coulomb branches thanks to the SU(2)H ×SU(2)C R-symmetry.
The fields of the gauge theory, collectively denoted Φ,W+,M

i
j for adjoint scalar, monopole

operator and meson, are charged under the Cartan of the R-symmetry and the topological
U(1)T as follows:

U(1)H U(1)C U(1)T
Φ 0 1 0
W+ 0 1 1
M i

j 1 0 0
d2θ −1 −1 0

(2.4)
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For convenience, we included the charges of the half-superspace measure. The R-symmetry
of the N = 2 subalgebra is U(1)UVR = U(1)H+C . The independent U(1)H−C and U(1)T
transformations are ordinary global symmetries from the N = 2 point of view. The defor-
mation by a monopole operator breaks the supersymmetry in half, but preserves U(1)C and
U(1)H+T , one combination of which will become the infrared R-symmetry. Henceforth, we
refer to the branch along which U(1)C is preserved, as the ‘Higgs branch’.

In this paper, we will see in all examples that, the original Higgs branch of the un-
deformed N = 4 theory, which is an algebraic surface with an ADE singularity, will be
preserved as a branch of the effective N = 2 theory. First one shows that the Higgs branch
of the ‘modified ADE quiver’ is the same as for the dual ADE quiver. Second, we will easily
see that the monopole deformation does not alter the coordinates of the Higgs branch nor
their relations.

The general argument for proving the first statement is simple, and goes as follows: in
all examples considered, the part of the ‘local’ theory that we will recouple to the quiver
will always contain an su(2N)-valued moment map X with the property that X2 = 0. This
will be true regardless of whether that theory is Lagrangian or not. We now want to show
that this property ensures that we can treat X as if it were a meson, satisfying standard
N = 4 F-term conditions for the Higgs branch.

Now let us prove that such an X can be written as a sum of N bilinears, as is the case of
the meson on the U(N) Lagrangian side. First let us show that rk(X) ≤ N . The nilpotency
of X implies that Im(X) ⊂ Ker(X). Therefore, rk(X) =dim(Im(X)) ≤dim(Ker(X)) =
2N−rk(X). This means that we can write X as follows:

X =
N∑
a=1

vaw̃a , (2.5)

where the va are N linearly independent column 2N -vectors, and the w̃a are N linearly inde-
pendent row 2N -vectors, where we have suppressed the 2N -dimensional indices. Squaring
this we obtain:

X2 =
N∑

a,b=1
(w̃a · vb)vaw̃b = 0 ⇐⇒ w̃a · vb = 0 ∀(a, b) . (2.6)

This is precisely the content of the F-term equations for a would-be U(N) hypermultiplet
(v, w̃). Hence, the relations satisfied by the meson on the SQCD side will be satisfied by
the field X on the dual (possibly non-Lagrangian) side.

Therefore, if we recouple such a theory to the quiver simply by substituting the original
meson in all couplings with this new adjoint-valued object X, all other equations for this
branch will remain intact. In order to rediscover the ADE algebraic variety, we note that
it must be described via gauge-invariant coordinates. These can be very complicated con-
catenations of fields connecting various nodes of the quiver. However, any gauge-invariant
cycle that passes through the node in question must be built out of X. From this, we draw
the striking conclusion that the ADE algebraic surface remains intact despite the monopole
deformation.
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U(1)` 2

q̃1, q̃2

q1, q2

Figure 3. Theory Bloc.

2.2 Monopole deformations along U(1) nodes

In the previous section, we showed how to reduce the problem of any monopole deformation
with respect to a single node to a deformation along a U(1) node with two flavors, albeit
at the cost of having a strongly coupled SCFT attached to it. We are now in a position to
use a technique we previously developed in [15], dubbed ‘local mirror symmetry’ to derive
the effective theory for such a deformation. We will review this technique in what follows.

The idea is the following: given a quiver gauge theory with a deformation by a
monopole operator ∆W = miWi,+ corresponding to the i-th photon, we focus on this
i-th node by ungauging the neighbouring nodes. In this way we end up with a U(1) theory
with two flavors. Mirror symmetry dual on the i-th node “in isolation”, is tractable and
powerful, as it maps the monopole superpotential deformation to a mass deformation. It
is then easy to integrate out the massive modes, reapply the mirror symmetry back, and
finally reinsert this resulting theory into the original quiver. The key fact is that this theory
and the original one are equivalent in the IR.

We consider a U(1) node in an N = 4 ADE quiver gauge theory and supplement
the superpotential by the term ∆W = mW`,+, where m is a parameter, and W`,+ is the
monopole operator charged under the topological U(1) of the `-th node. In other words, it
corresponds to the `-th dual photon.

Since the U(1) node is balanced, it has Nf = 2 flavors attached to it. In the quiver,
this means that either the node is connected to other two U(1) nodes or it is connected to
one U(2) node. The full superpotential will include the term

W ⊃ −φ`
2∑
i=1

qiq̃
i +

2∑
i,j=1

q̃jΨj
iqi . (2.7)

Here φ` is the complex scalar in the vector multiplet relative to the U(1) `-th node. When
the `-th node is connceted to a U(2) node, Ψ is the complex scalar in the adjoint represen-
tation of U(2) sitting in the vector multiplet of the nearby node. On the other hand, when
the `-th node is connected to two U(1) nodes, the matrix Ψ is diagonal, with the diagonal
entries being the complex scalars in the vector multiplets of the adjacent nodes.

Let us follow the procedure outlined above:

1) Ungauge the neighbouring nodes of the quiver. This results in a ‘local quiver theory’
with a single U(1) gauge node (see figure 3). Let us call this theory Bloc.

2) Apply the mirror symmetry map on this ‘local quiver theory’ Bloc, obtaining the
theory Aloc. The monopole deformation term will be mapped to an off-diagonal mass
term for the matter fields in Aloc, as the original node is balanced.

– 9 –
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Ũ(1)` 2

P̃ , Q̃

P,Q

Figure 4. Theory Aloc.

3) Integrate out the massive fields in Aloc, leading to an effective theory Ãloc. Compute
the mirror of Ãloc, which we call B̃loc.

4) Couple B̃loc back into the original quiver, by trading the `-th node for it.

Let us see the details of the steps 2) and 3). The deformed superpotential in the
theory Bloc is

WBloc = −φ`
∑
i=1,2

qiq̃
i + tr(Ψ q q̃) +mW`,+ , (2.8)

The mirror of an N = 2 U(1) theory with two flavors and no superpotential is well known:
it is again an Abelian theory with two flavors plus two neutral chiral multiplets A1, A2 and
superpotential

s1QQ̃+ s2PP̃ . (2.9)

Under the mirror map, the diagonal components of the meson matrix mα
β = qαq̃

β are
mapped to fundamental fields on the mirror side, which we call s1 and s2, whereas the
off-diagonal components are mapped to monopole operators w+ and w−. The monopole
operator W`,+ is mapped to an off-diagonal mass term. The fields φ` and Ψ are gauge
invariant fields which will be merely spectators in what follows. Now, consider our gauge
node as N = 2 SQED plus the neutral chirals φ` and Ψ with superpotential (2.8) and
exploit the mirror map dictionary: we find the mirror theory which is again SQED with
two flavors (see figure 4) and superpotential

WAloc = s1QQ̃+ s2PP̃ − φ`(s1 + s2) + tr(Ψm) +mPQ̃ , (2.10)

where now m is given by

m ≡
(
s1 w+
w− s2

)
. (2.11)

We now integrate out the massive fields P and Q̃, keeping Ψ until the end since it is coupled
to other fields in the quiver. We are left with

W eff
Aloc = −φ`trm + tr(Ψm)− s1s2

m
QP̃ . (2.12)

The theory Ãloc in the case at hand is SQED with one flavor and the above superpotential.
In order to complete our analysis, we now derive the mirror of this model and “reconnect”
the resulting theory to the quiver. Since the mirror of SQED with one flavor (and no
superpotential) is the XYZ model, we get a WZ model with superpotential

W eff
Bloc = X Y Z − φ`trm + tr(Ψm)− s1s2

m
X . (2.13)

– 10 –



J
H
E
P
1
0
(
2
0
1
7
)
1
1
3

The fields Y and Z are dual to the monopole operators w± and are hence identified with
the off-diagonal components of the field m. Then, after integrating out the massive field
φ`, the effective superpotential can be rewritten as

W eff
Bloc = tr(Ψ m̃)− X

m
detm̃ , (2.14)

where m̃ is the traceless part of m. Notice that all the above terms are U(2) invariant. If
instead of the generic U(2) matrix Ψ, we take the matrix(

φ`−1 0
0 φ`+1

)
, (2.15)

we obtain the case when the U(1) node is between other two U(1) nodes.
Note, that in [36], a technique was developed to handle a monopole deformation on a

U(N) theory with N + 1 flavors, which generalizes this result.5

In appendix B, we carry out this strategy explicitly for the Abelian nodes of the DN

series. The technique, however, can be applied for any Abelian node of the E series mutatis
mutandis.

3 U(2) nodes

Having explained our general strategy for deforming U(N) nodes, we now want to start
with the special case of a monopole deformation for one U(2) node inside a quiver. If the
node is balanced, as it is in quiver ADE theories, after ungauging the nearby nodes, one
obtains a U(2) gauge theory with four flavors. Unfortunately in this case the procedure
used for the Abelian node is not useful anymore. In fact, it would require understanding
non-Abelian N = 2 mirror symmetry, that is not only technically difficult, but also prone
to instanton corrections. Here we follow a slightly different procedure. We first replace
the U(2) local theory with a theory containing a U(1) gauge factor and then we follow the
abelian procedure of the previous section to describe the deformed theory.

3.1 U(2) vs. SU(2)×U(1) dual theories

We now present the dual 3d N = 4 theories crucial for describing monopole deformations
along a U(2) node.

Theory 1 : U(2) gauge theory with four flavors. It has SU(4) global symmetry rotating
the four flavors.

U(2) 4

Q̃i

Qi

5Using our local mirror symmetry procedure we can actually argue that the determinant superpotential
proposed in [36] is actually generated for arbitrary N : in fact, by giving diagonal vev to the meson M , the
theory with gauge group U(N) can be higgsed to U(1) with two flavors and determinant superpotential
whose coefficient is equal to that of the original superpotential times the determinant of 〈M〉. As we have
just seen the N = 1 superpotential is non-zero. Hence, also the original superpotential (for generic N) must
be non-vanishing.
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The Higgs branch is parametrized by the gauge invariant meson matrix Mi
j = Qai Q̃

j
a,

that is in the bifundamental representation of the SU(4) flavor group. The N = 4
superpotential of the theory is

W = Qai Ψ̆b
aQ̃

i
b (3.1)

(where Ψ̆ is the adjoint scalar in the U(2) vector multiplet). The corresponding
F-term equations are

Qai Ψ̆b
a = 0 , Ψ̆b

aQ̃
i
b = 0 , Qai Q̃

i
b = 0 . (3.2)

The last equations constrain the meson matrix to satisfy

trM = 0 , M2 = 0 . (3.3)

Theory 2 : U(1) × SU(2) gauge theory with three flavors in the foundamental of SU(2)
and one in the bifundamental of U(1) × SU(2). This theory has an SO(6) flavor
symmetry rotating the three fundamental fields.

U(1) SU(2) 3

v

ṽ

q̃i

qi

The superpotential is

W = qαi Φα
β q̃iβ + vαΦα

β ṽβ − φ vαṽα , (3.4)

that gives the following F-terms equations6

qαi Φβ
α = 0 , Φβ

αq̃
i
β = 0 , vα(Φβ

α − φ δβα) = 0 , (Φβ
α − φ δβα)ṽβ = 0 , (3.5)

qαi q̃
i
β + vαṽβ −

1
2(qγi q̃

i
γ + vγ ṽγ)δαβ = 0 , vαṽα = 0 . (3.6)

In particular we can rewrite the last one as εβαvαṽβ = 0 which means that the matrix
vαṽβ is symmetric (we define vα ≡ εαβvβ). The gauge invariant coordinates are now
given by the singlet

((vṽ)) ≡ vαṽα (3.7)

(where ((. . .)) means that the SU(2) indices are contracted) and the meson matrix in
the Adjoint representation of the SO(6) flavor group:

M =

 qαi q̃
j
α qαi εαβq

β
k

−q̃`αεαβ q̃
j
β −q̃`αqαk

 ≡
 Ai

j bik

−c`j −(At)`k

 , (3.8)

where A is a 3× 3 complex matrix, while b and c are antisymmetric matrices.
6Notice that Φ is a traceless 2×2 matrix. This is the reason why its F-term constrains only the traceless

part of qαi q̃iβ + vαṽβ .
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The two theories have the same Higgs and Coulomb branches [35]. In particular, the
topological current relative to the U(2) node of the first theory is mapped to the topological
symmetry relative to the U(1) gauge group factor in the second theory. Correspondingly
the monopoles operators of the two theories (with the same R-charge) that have equal
charge with respect to the topological symmetry are exchanged by the duality map.

Let us work out the duality map between the two Higgs branches: we first find the
correspondence between the invariant coordinates of the two theories and second we show
that the relations match as well. We will crucially use the fact that the two spaces have
the same flavor group. We begin by finding the isomorphism between the groups SU(4)
and SO(6) (or more precisely Spin(6)). An element g ∈ SU(4) has a canonical action on
C4. This allows to define an action on C6 = C4 ∧ C4 as well. Define the basis {ei ∧
ej}ij=12,13,14,34,42,23 of C6, by using the basis {ei}i=1,...,4 of C4. Given g ∈ SU(4), one can
define a map ρ(g) ∈ Spin(6) by

ρ(g) v = vij ρ(g) ei ∧ ej = vij(g ei) ∧ (g ej) . (3.9)

If we now pass to the corresponding Lie algebra, taken H ∈ su(4) and v ∈ C6, one defines
ρ(H) ∈ so(6) by

ρ(H) v = vij ρ(H) (ei ∧ ej) , (3.10)

where ρ(H) acts on the basis elements as

ρ(H) (ei ∧ ej) =
[
(H ei) ∧ ej + ei ∧ (H ej)

]
=
[
Hk

i ek ∧ ej +H`
j ei ∧ e`

]
=
∑
k`∈I

ek ∧ e`
(
Hk

iδj` −H`
iδjk +H`

jδik −Hk
jδi`

)
, (3.11)

where I = {12, 13, 14, 34, 42, 23}. One can then apply this map to the traceless part of the
meson matrix M , i.e. M = trM

4 14 + M̃ , with M̃ a matrix in the adjoint of SU(4). Let us
write M̃ in a block diagonal form, as a map from C⊕ C3 to itself:

M̃ =
(
−trB xt

y B

)
. (3.12)

We can work out the duality map by identifying the 6×6 matrix ρ(M̃) with the matrix (3.8):

B ↔ A− trA
2 13 , xi ↔ ui ≡ 1

2ε
ijkbjk , yi ↔ wi ≡

1
2εijkc

jk . (3.13)

The remaining invariant coordinates, i.e. trM and ((vṽ)) respectively are mapped to
each other:

trM
2 ↔ ((vṽ)) . (3.14)

We can invert this map to show that in Theory 2 we can collect the gauge invariant
coordinates into a 4× 4 meson matrix

M = X + ((vṽ))
2 14 =

( trA
2 ut

w A− trA
2 13

)
+ ((vṽ))

2

(
1

13

)
, (3.15)

where X = ρ−1(M) is a traceless 4× 4 matrix.
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We now want to show that by imposing the F-term conditions (3.6) on this 4 × 4
matrix M we get trM = 0 and M2 = 0. First we impose ((vṽ)) = 0, that immediately
gives trM = 0. Then, M2 = X2, where

X2 =


(trA

2

)2
+ ut · w ut ·A

A · w
(
A− trA

2 13
)2

+ w · ut

 . (3.16)

Imposing now (3.6) and using the fact that vaṽb is a symmetric matrix, we obtain X2 = 0
(remember that trA = qγi q̃

i
γ). In fact:

ut · w = 1
4ε

ijkqαj εαβq
β
k εimnq̃

m
γ ε

γδ q̃nδ = 1
4q

α
j εαβq

β
k q̃

m
γ ε

γδ q̃nδ (δjmδkn − δjnδkm)

= 1
2εαβε

γδ qαj q̃
j
γq
β
k q̃

k
δ = 1

2εαβε
γδ
(
vαṽγ −

trA
2 δαγ

)(
vβ ṽδ −

trA
2 δβδ

)
= 1

2εαβε
γδ vαṽγv

β ṽδ + εβαε
αδ vβ ṽδ

trA
2 − 1

2εβαε
αβ
(trA

2

)2

= −
(trA

2

)2
, (3.17)

(ut ·A)m = 1
2ε

ijkqαj εαβq
β
k q

γ
i q̃
m
γ = 1

2(εijkqαj q
β
k q

γ
i )εαβ q̃mγ = 0 , (3.18)

(A · w)m = 1
2q

γ
mq̃

i
γεijkq̃

j
αε
αβ q̃kβ = 1

2q
γ
mε

αβ(εijkq̃iγ q̃jαq̃kβ) = 0 , (3.19)

(w · ut)i
` = 1

4εijkq̃
j
γε
γδ q̃kδ ε

`mnqαmεαβq
β
n

= 1
4 q̃

j
γε
γδ q̃kδ q

α
mεαβq

β
n δ

`
i (δmj δnk − δnj δmk )

+1
2 q̃

j
γε
γδ q̃kδ q

α
mεαβq

β
n δ

n
i (δ`jδmk − δmj δ`k)

= (ut · w) δ`i − εαβεγδq
β
i q̃

`
γ ṽδv

α + εαβε
γδqβi q̃

`
γδ
α
δ

(trA
2

)
= (ut · w) δ`i + εγδqβi q̃

`
γ ṽδvβ + trA

2 qαi q̃
`
α = (3.20)

= (ut · w) δ`i + εγδqβi q̃
`
γ ṽβvδ + trA

2 qαi q̃
`
α

= −
(trA

2

)2
δ`i + (qβi ṽβ) (vγ q̃`γ) + trA

2 qαi q̃
`
α ,[(

A− trA
2 13

)2
]
i

`

=
(
qαi q̃

j
α −

trA
2 δji

)(
qβj q̃

`
β −

trA
2 δ`j

)
= qαi

(
q̃jαq

β
j −

trA
2 δβα

)
q̃`β −

trA
2

(
qαi q̃

`
α −

trA
2 δ`i

)
(3.21)

= −(qαi ṽα) (vβ q̃`β)− trA
2 qαi q̃

`
α +

(trA
2

)2
δ`i .

In the relation (3.18) and (3.19) we used the fact that α, β, γ run only from 1 to 2. Hence γ
must be equal to either α or β, say for example α = γ = 1, and then we have a contraction
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Figure 5. E7 quiver.

of an even with an odd combination (in the example εijkq1
j q

1
i = 0). In the relation (3.20)

we expressed the product of epsilon tensors in terms of delta functions

εijkε
`mn = δ`i (δmj δnk − δnj δmk )− δmi (δ`jδnk − δnj δ`k) + δni (δ`jδmk − δmj δ`k) ,

and noticed that the first term produces a term proportional to ut ·w, while the other two
terms are equal to each other.

As regards the Coulomb branches of the two theories: in each case there is one topolog-
ical U(1)J symmetry with R-charge one monopole operators charged under it, enhancing
the symmetry to SU(2). These monopole operators are mapped to each other.

3.2 The external U(2) node of the E7 quiver

One external node in the E7 quiver is a U(2) node attached to the U(4) node (see figure 5).
By ungauging the U(4) node we obtain the Theory 1 above. We can then apply the

duality map and obtain the Theory 2 with U(1)× SU(2) gauge group, one bifundamental
hypermultiplet (v, ṽ) and three hypermultiplets in the fundamental representation of SU(2).

By gauging the SU(4) flavor symmetry one can attach this theory back to the quiver.
The fields qi, q̃i are uncharged with respect to the diagonal U(1)d of U(4). The field v, ṽ

may be charged with respect to this U(1)d (in fact we will see that this indeed is the case),
but this charge is irrelevant. In fact, one can redefine its generator by adding the generator
of the isolated U(1) and making v, ṽ neutral with respect to the new U(1)d.7 We can then
write the new quiver as in figure 6, where now the fields q, q̃ couple only to the SU(4)
subgroup of U(4), while `, ˜̀ and r, r̃ still couple also to the U(1)d factor of U(4).

Now we are able to prove that the new theory reproduces the E7 singularity in its Higgs
branch. The Higgs branch is described by all the gauge invariants modulo relations. The
gauge invariants depends on Q, Q̃ only via the meson combinations Mi

j = Qai Q̃
j
a. These

combinations satisfy the conditions M2 = 0 and trM=0 and are coupled to the adjoint
field Ψ relative to the U(4) node through the superpotential

W ⊃ Q̃jaΨj
iQai = tr ΨM . (3.22)

7As we will see shortly, the fields v, ṽ are coupled to U(1)d. This is encoded in the superpotential
coupling ψ((vṽ)), where ψ is the complex scalar in the U(1)d vector multiplet. On the other hand, the local
U(1)× SU(2) theory has already an analogous coupling, i.e. −φ((vṽ)). One can then define φ′ = φ− ψ as
the only fields coupled to ((vṽ)). This is equivalent to the redefinition of the U(1)d generator.
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Figure 6. Modified E7 quiver (with φ′ = φ+ ψ the only U(1) scalar coupled to v, ṽ).

All the relations important for defining the E7 singularities and involving Mi
j come from

differentiating the superpotential with respect to Ψ. One can also write the superpotential
by separating the traceless part of the 4 × 4 matrices, i.e. taking M = M̃ + trM

4 14 and
Ψ = ψ

2 14 + Ψ̃:
W ⊃ Q̃jaΨj

iQai = tr Ψ̃M̃ + 1
2ψtrM . (3.23)

We now consider the ‘modified E7 quiver’. We apply the explicit map between the
variables Mi

j andM,((vṽ)) to the superpotential (3.22). Hence in the ‘modified E7 theory’
we will have the superpotential

W ⊃ tr ΨM = tr Ψ̃X + ψ((vṽ)) . (3.24)

From this we immediately see that (v, ṽ) couples to the diagonal U(1) factor of U(4). This
superpotential manifestly generates the same relation for M as the M had in the dual
E7 theory.

We now show that (3.24) is the superpotential that one would canonically write for
the 3d N = 4 dual theory. We need to concentrate on the first term, as the second one is
already in the canonical form. In particular we will see that trΨ̃X in (3.24) can be written
in terms of the fundamental fields q, q̃. Let us consider Ψ = ψ

2 14 + Ψ̃: the traceless part
is sent by the ρ map to a 6 × 6 antisymmetric matrix, while ψ is a singlet of the SO(6)
flavor group:

Ψ̃ =
( trϕ

2 utϕ
wϕ ϕ− 13

trϕ
2

)
→ Υ ≡ ρ(Ψ̃) =

ϕ r

` −ϕt

 , (3.25)

with viϕ = 1
2ε
ijkrjk and wϕi = 1

2εijk`
jk. One can show that

tr Ψ̃X = vtϕ · w + vt · wϕ + trϕA = 1
2(trrc+ tr`b) + trϕA = 1

2tr [ΥM] . (3.26)

The fields q, q̃ can be arranged into a 6 representation of SU(4) ∼= SO(6)

qαi , q̃
i
β i = 1, . . . , 3 → ψαm m = 1, . . . , 6 with ψαi = qαi , ψ

α
i+3 = εαβ q̃iβ .

(3.27)
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Figure 7. U(2) nodes in the DN quiver.

In terms of ψm, the meson matrix is written asMmn = ψαmεαβψ
β
n . Hence the superpotential

is now
W ⊃ 1

2tr [ΥM] = 1
2Υmnψαmεαβψ

β
n . (3.28)

This is consistent with the standard coupling of the SO(6) gauge field with a field in the 6
representation.

As already anticipated, the Higgs branch of the dual theory is the same as the E7
quiver gauge theory: the superpotential for the latter is

WE7 = −Qai Ψ̆b
aQ̃

i
b + tr ΨM + . . . (3.29)

where the “. . .” means terms that do not involve fields belonging to the U(2) and the
U(4) nodes. On the other hand, we have just shown that the total superpotential of the
‘modified E7’ quiver gauge theory can be written as

Wmodif E7 = qαi Φβ
αq̃

i
β + vαΦβ

αṽ
β − φvαṽα + tr ΨM + . . . (3.30)

with “. . .” the same terms as before. As explained in section 2.1, the fact that M and
M (both traceless and squaring to zero) couple in the same way to the rest of the quiver
implies that the two Higgs branches are the same.

3.3 An internal U(2) node of the DN quiver

We now consider a segment of the internal chain of U(2) nodes in the DN quiver (see
figure 7). We want to replace the U(2)i node by the SU(2) × U(1) dual theory. We then
ungauge the nearby U(2) node, replace the U(2) gauge theory with four flavors with the
dual theory and then gauge the SU(2)×SU(2)×U(1)r ∼= SO(4)×SO(2) subgroup of SO(6),
where the U(1)r factor is the relative U(1) gauge symmetry of the two nearby nodes. We
need also to gauge the diagonal U(1)d of the two nodes.

We obtain the same result if we gauge the full U(4) group, analogously to the E7
case, and then Higgs to the U(2)×U(2) subgroup. We would then obtain the superpoten-
tial (3.24) with now some components of Ψ set to zero, i.e.

W ⊃ tr ΨM , (3.31)

with

Ψ = ψ

2 14 +


trϕ

2 u1
ϕ

wϕ1 ϕ1
1 − trϕ

2
ϕ2

2 − trϕ
2 ϕ2

3

ϕ3
2 ϕ3

3 − trϕ
2

 (3.32)

= ψ

2

(
12

12

)
+ ϕ1

1

2

(
12
−12

)
+
(

Ψ̃i−1

Ψ̃i+1

)
(3.33)
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where we identify ψ = ϕi−1 + ϕi+1 and ϕ1
1 = ϕi−1 − ϕi+1 with the diagonal and relative

combination of the U(1)i−1 and U(1)i+1 vector multiplet scalars, and

Ψ̃i−1 =
(

ϕ22+ϕ33

2 u1
ϕ

wϕ1 −ϕ22+ϕ33

2

)
and Ψ̃i+1 =

(
ϕ22−ϕ33

2 ϕ2
3

ϕ3
2 ϕ33−ϕ22

2

)

with trasless matrix scalars in the vector multiplet of SU(2)i−1 and SU(2)i+1 respectively.
We apply the map ρ on the traceless part of Ψ and we obtain the field Υ ≡ ρ(Ψ̃) in the form

Υ =



ϕ1
1

ϕ2
2 ϕ2

3 0 r23
ϕ3

2 ϕ3
3 −r23 0
−ϕ1

1

0 `23 −ϕ2
2 −ϕ3

2

−`23 0 −ϕ2
3 −ϕ3

3


, (3.34)

where it is manifest the SO(4)×SO(2) structure (we call the two pieces ΥSO(4) and ΥSO(2)).
The three flavors qi, q̃i (i = 1, 2, 3) splits into two flavors qi, q̃i (i = 2, 3) and one flavor
(q1, q̃

1). As we did in (3.27), one can substitute the flavor fields qi, q̃i (i = 2, 3) with

ψαm m = 1, . . . , 4 , where ψαi−1 = qαi , ψαi+1 = εαβ q̃iβ i = 2, 3 . (3.35)

Inserting (3.34) into (3.28) the superpotential becomes

1
2trΥM = 1

2tr



ϕ1
1

ϕ2
2 ϕ2

3 0 r23
ϕ3

2 ϕ3
3 −r23 0
−ϕ1

1

0 `23 −ϕ2
2 −ϕ3

2

−`23 0 −ϕ2
3 −ϕ3

3





A1
1

A2
2 A2

3 0 b23
A3

2 A3
3 −b23 0
−A1

1

0 c23 −A2
2 −A3

2

−c23 0 −A2
3 −A3

3


= ϕ1

1qα1 q̃α + 1
2Υmn

SO(4)ψ
α
mεαβψ

β
n . (3.36)

We immediately read that q1, q̃
1 couples to the relative U(1)r ∼= SO(2) of the two nearby

nodes, while the ψm couple to the SU(2)×SU(2) ∼= SO(4) gauge fields. Moreover, from the
E7 case we know that none of them couples to the diagonal U(1)d group. Only the flavors
(v, ṽ) couples to U(1)d analogously to the E7 case, but its generator can be redefined to
cancel this coupling (equivalently we defined φ = φ′ − ϕ1

1).
We can also write the vector representation of SO(4) as a bifundamental representation

of SU(2)× SU(2):

ψαm m = 1, . . . , 4 → Qα`r a, `, r = 1, 2 with Qα`r = ψαm(σm)`r , (3.37)

where σm = (σi,12) (the three Pauli matrices and the identity matrix). The triple of
indices (abc) is relative to the three SU(2) group that the fields couple. Then the total
superpotential including the nearby nodes can be written as

W = φ vαṽα + ϕi−1(vαṽα + qα1 q̃α −Ai−2Bi−2) + ϕi+1(vαṽα +Ai+1Bi+1 − qα1 q̃α)
+Qα`rΦα

α′Qα′`r +Qα`rΨ̃i−1 `′
` Qα`′r +Qα`rΨ̃i+1 r′

r Qα`r′ (3.38)
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Figure 8. Modified DN quiver (with φ′ = φ + ϕi−1 + ϕi+1 the scalar coupled to v, ṽ). In the
diagram it is meant that Q is not charged under U(1)i±1, while q1, q̃

1 are singlets under SU(2)i±1.

where we used that ϕ1
1 = ϕi−1−ϕi+1 and ψ = ϕi−1+ϕi+1 This is the N = 4 superpotential

one would write once the matter fields are given. As we have just seen, this superpotential
can be arranged into the form

W ⊃ trΨM . (3.39)

with Ψ in the block diagonal form. This coupling appears also in the DN superpotential as

W ⊃ trΨM . (3.40)

again with Ψ in the block diagonal form. Again this implies that the Higgs branch is not
modified by replacing the U(2) node with the SU(2) ×U(1) quiver.

We can also redefine the scalar field φ in the vector multiplet of the U(1) as φ = φ′ −
ϕi−1−ϕi+1. This corresponds to a redefinition of the U(1)i−1 and U(1)i+1 generators such
that v, ṽ are not charged under the new generators. After this change, we can represent the
‘modified DN chain’ as in figure 8, where it is meant that the fields q1, q̃

1 are charged only
under the relative U(1) symmetry of the two nodes (and in the fundamental representation
of the SU(2)i), while the fields Q couple only to SU(2)i±1.8

3.4 The U(2) node of D4

It is instructive to consider one further simple case, i.e. the D4 quiver gauge theory. We
apply the duality map to the U(2) central node. To connect the dual theory to the four
U(1) nodes, we write the superpotential term

W ⊃ tr ΨM , (3.41)

where now

Ψ =


φu

φp
φs

φt

 , (3.42)

8Equivalently, the diagonal U(1) generators ti−1 and ti+1 have ben replaced by t′i−1 = ti−1 − tφ and
t′i+1 = ti+1 − tφ, where tφ is the generator relative to the U(1) node.
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U(1)p

U(2)

U(1)t

U(1)s
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p t̃
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Figure 9. D4 quiver.

U(1)v

U(1)1

U(2)′

U(1)3

U(1)2
ṽ

v

q̃1

q1 q̃3

q3

q̃2

q2

Figure 10. Dual D4 quiver.

with φu, φp, φs, φt the four complex scalars in the vector multiplets of the external U(1)
nodes. Plugging the expression of M into (3.41), and adding also the term −φ((vṽ)) to
complete the superpotential, we obtain

W = ((vṽ))
(
−φ+ φu + φp + φs + φt

2

)
+ q1q̃

1
(
φu + φp − φs − φt

2

)
+q2q̃

2
(
φu − φp + φs − φt

2

)
+ q3q̃

3
(
φu − φp − φs + φt

2

)
. (3.43)

With a proper redefinition of the scalar fields (that corresponds to a redefinition of the
U(1) generators), we can write the superpotential as

W = ((vṽ))
(
φU(2)′ − φ

)
+ q1q̃

1
(
φU(2)′ − φ1

)
+ q2q̃

2
(
φU(2)′ − φ2

)
+ q3q̃

3
(
φU(2)′ − φ3

)
,

(3.44)
hence recovering the DN quiver (see figure 10). Hence the DN theory is self-dual under the
replacement of the central nodes. Notice however that the diagonal U(1) of the original
U(2) has been mapped to the U(1) relative to the external U(1)v node. In this example
the fact that the Higgs branch remains the same is manifest.
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3.5 Monopole deformation along the U(2) node

We now want to deform the superpotential of an ADE quiver gauge theory by switching
on a monopole deformation

∆W = mV− ,

where V− corresponds to the simple root of a U(2) node; in other words, V− is the R-
charge one monopole operator charged under the topological U(1)J corresponding to the
U(2) node. As said before, it is not easy to study this deformation in the original theory.
Our strategy is first to replace the U(2) node by the dual SU(2) × U(1) dual theory. We
then map the R-charge one monopole operators of one theory to the one in the other theory.
In particular, the monopole operator V− we are interested in is mapped to the R-charge
one monopole operator relative to the U(1) node, say W+ (see section 7.3 for a proof of
this). Hence the deformed superpotential is

W = qαi Φβ
αq̃

i
β + vαΦβ

αṽβ − φvαṽα +mW+ . (3.45)

The effect of such a deformation has been studied in [15] and it is summarized in section 2.2:
it removes the U(1) node, keeps the SU(2) meson mα

β ↔ ṽαv
β as a fundamental field. The

effective superpotential is

W eff = tr
[(
m̃− µsu(2)

)
Φ
]
− X
m

det m̃ , (3.46)

where m̃ is traceless part of m and (µsu(2))βα ≡ −q̃iβqαi denotes the SU(2) moment map.
Notice that we did not touch the fields charged under the SU(4) symmetry in the ‘modified
ADE quiver’. As an example, we can apply this procedure to the external U(2) node of the
E7 quiver. We can write the relevant terms for the E7 effective superpotential as9

W eff
E7 quiv ⊃ tr

[(
m̃− µsu(2)

)
Φ
]
− X
m

det m̃ + trXΨ̃ . (3.47)

This superpotential gives the same Higgs branch as the undeformed theory. In fact, the
gauge invariant generators and the relations among them remain unaltered. In particular,
the first term in (3.47) still implies X2 = 0 (remember that X is written in terms of qαi , q̃

j
β

hidden in µsu(2)), while the last term is responsible for the relations leading to the E7
singularity.

4 U(3) nodes and E6 Minahan-Nemeschansky theory

Having studied monopole deformations on U(1) nodes in our previous work, and on U(2)
nodes in the previous section, we now move on to the case of U(3). These show up in
the exceptional Dynkin quivers, and we will see that their dual descriptions involve non-
Lagrangian theories.

The basic move is to ungauge the nearby nodes, which yields a U(3) gauge theory
with six flavors. Through an Argyres Seiberg duality, we will replace this theory with a
dual theory with a U(1) factor, where the abelian procedure can be applied to describe the
deformed theory.

9Notice that the tracelessness of m̃ set to zero the coupling with the field ψ ∼ tr Ψ.
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4.1 Argyres Seiberg duality with gauged U(1)

We now find the dual theory that should replace the U(3) node. We start by describing
the parent Argyres Seiberg (AS) duality [32] and then modify this by simply gauging one
U(1) factor of the global symmetry. Let us briefly review the AS duality.

Lagrangian side: on the Lagrangian side we have an N = 2, d = 4 SU(3) gauge theory
with Nf = 6. The vector multiplet contains an adjoint scalar Ψ̃b

a. The hypers are (Qai , Q̃ia),
with a = 1, . . . , 3 the color indices, and i = 1, . . . , 6 the flavor indices. The flavor symmetry
is Gf = U(6). We can construct a meson, a baryon and an anti-baryon:

Mi
j = Qai Q̃

j
a , B̃ijk = εabc Q̃iaQ̃

j
bQ̃

k
c , Bijk = εabcQ

a
iQ

b
jQ

c
k (4.1)

The N = 2 superpotential reads

WSU(3) = Qai Ψ̃b
a Q̃

i
b (4.2)

It will be useful to decompose the meson in trace plus traceless part, so let us define

M̃ ≡M − 1
6(trM)16 . (4.3)

If we promote the gauge group to U(3), which is our case of interest, then the scalar in the
vector multiplet, which we call Ψ̆, gains a traceful part. Now the superpotential becomes

WU(3) = Qai Ψ̆b
a Q̃

i
b , (4.4)

and the F-term for trΨ̆ tells us that tr(M) = 0.

Non-Lagrangian side: argyres and Seiberg found the S-dual to the theory described
above. It is an SU(2) gauge theory coupled weakly to the E6 Minahan-Nemeschansky
(MN) theory [37], plus a hyper in the fundamental (v, ṽ) of SU(2).

The Higgs branch of the E6 theory is generated by moment map operators transforming
in the 78 of the E6 flavor symmetry. In order to construct the S-dual to the previous theory,
we observe that E6 ⊃ SU(6) × SU(2), and couple the SU(2) global current to the SU(2)
gauge symmetry. This leaves as a flavor group SU(6), plus a U(1) that acts on the doublet
as (v, ṽ) 7→ (e−3iθv, e3iθṽ), thereby matching the expected U(6) global symmetry.

Let us write out explicitly the matter content of this theory. Aside from the (v, ṽ), we
have an adjoint SU(2) scalar Φ, to which it couples via

W = vα Φα
β ṽβ . (4.5)

The 78 decomposes under SU(6)× SU(2) as

78→ (35, 1)⊕ (20, 2)⊕ (1, 3) . (4.6)

Let us use the conventions of Gaiotto, Tachikawa and Neitzke [38], and write these fields as:

Xi
j , Y [ijk]

α , Zαβ (4.7)
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where i = 1, . . . , 6, and α = 1, 2. Z satisfies the following relation

Zαβ + v(αṽβ) = 0 , (4.8)

which means it can always be eliminated. As we will show in a moment, the following are
all gauge invariant operators that can be generated:

((vṽ)) , X i
j , ((Y ijkṽ)) , ((Yijkv)) , (4.9)

where ((. . .)) means that the SU(2) indices are contracted and the flavor indices are raised
and lowered with an epsilon tensor.

The identification of gauge invariant operators across the duality is as follows:

trM ↔ ((vṽ))
3 , M̃ i

j ↔ Xi
j , B̃ijk ↔ ((Y ijkṽ)) , Bijk ↔ ((Yijkv)) (4.10)

where we previously defined M̃ as the traceless part of M . Here we see that v and ṽ

carry the baryonic U(1) charge. The relations for the Higgs branch derived in [38] are the
following:

0 = Xi
jZαβ + 1

4Y
ikl

(α Y|jkl|β) (4.11)

0 = X l
{iY[jk]}lα (4.12)

0 = X{ilY
[jk]}l
α (4.13)

0 = Y ijk
α Zβγε

αβ +X [i
lY

jk]l
γ (4.14)

0 = (Y ijm
α Yklmβε

αβ − 4X [i
[kX

j]
l])|(0,1,0,1,0) (4.15)

0 = Xi
kX

k
j −

1
6δ

i
jX

k
lX

l
k (4.16)

0 = Y ijk
α Yijkβε

αβ + 24ZαβZγδεαγεβγ (4.17)

0 = Xi
jX

j
i + 3ZαβZγδεαγεβδ (4.18)

Where the (0, 1, 0, 1, 0) subscript in (4.14) indicates the weights of the highest weight under
SU(6). The third relation (4.13) represents the following projection:

Xi
lY

[jk]l = j
k
⊗ i |(1,1,0,0,0) = j i

k
= Xi

lY
[jk]l −X [i

lY
jk]l . (4.19)

Here, we are using conventions whereby we symmetrize all indices in the same row of a
Young tableau first, and then anti-symmetrize along columns. The second relation (4.12)
represents a dual projection:

X l
{iY[jk]} = ⊗

∣∣∣∣∣∣∣∣∣∣
(0,1,0,1,0)

= = X l
iY[jk] −X l

[iYjk] . (4.20)
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Finally, for the fifth relation (4.15), we first raise all SU(6) indices with the epsilon tensor,
and then impose the following projector:

⊗

∣∣∣∣∣∣∣∣
(0,1,0,1,0)

= . (4.21)

The list of possible SU(2) basic gauge invariant operators is the following:

((vṽ)) , X i
j , ((Y ijkṽ)) , ((Yijkv)) , ((Y ijkY lmn)) . (4.22)

The last class of invariants can be eliminated in favor of the others, as was shown in [38].
We will prove this here again. But first, let us decompose the general YαYβ tensor in
irreducible representations of SU(6) in order to figure out its symmetry properties with
respect to α and β:

Y ijk
α Y lmn

β = i
j
k
l
m
n

⊕ i l
j m
k n

⊕ i l
j m
k
n

⊕ i l
j
k
m
n

= (0, 0, 0, 0, 0)⊕ (0, 0, 2, 0, 0)⊕ (0, 1, 0, 1, 0)⊕ (1, 0, 0, 0, 1) .

(4.23)

1. The first term (the singlet) is the (16) partition, i.e. the completely antisymmetric
6-tensor. It is clearly anti-symmetric with respect to the exchange α↔ β, since this
amounts to exchanging three anti-symmetrized SU(6) indices.

2. The second term is symmetric with respect to the simultaneous exchange (i, j, k)↔
(l,m, n), which implies it is symmetric with respect to (α, β).

3. The third term has the form
i l
j m
k
n

∝ Y [ijk
[α Y

n]lm
β] + Y

m[ki
[α Y

jn]l
β] . (4.24)

4. The fourth term is explicitly the following:

i l
j
k
m
n

∝ Y [ijk
α Y

mn]l
β + Y l[jk

α Y
imn]
β = 2Y [ijk

(α Y
mn]l
β) . (4.25)

To summarize, we have the following decomposition:

Y ijk
α Y lmn

β = (0, 0, 0, 0, 0)[αβ]⊕ (0, 0, 2, 0, 0)(αβ)⊕ (0, 1, 0, 1, 0)[αβ]⊕ (1, 0, 0, 0, 1)(αβ) . (4.26)

This decomposition will be useful in several calculations to come.
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Let us first begin by proving that ((Y ijkY lmn)) can be eliminated in favor of the
fields X, v and ṽ. The first thing to notice from (4.26) is that only the SU(6) singlet and
(0, 1, 0, 1, 0) representations contribute due to the contraction with εαβ . The singlet part
can be eliminated in favor of Z, and hence v, ṽ, via (4.17), and the second part in terms of
X via (4.15)

In conclusion, the gauge invariant (Y Y ) can be eliminated, leaving us with the following
list of SU(3) gauge invariants to parametrize the Higgs branch:

((vṽ)) , X i
j , ((Y ijkṽ)) , ((Yijkv)) . (4.27)

Gauging a baryonic U(1). Now we would like to promote the SU(3) gauge group to
U(3) on the Lagrangian side. This will reduce the U(6) flavor symmetry to SU(6). On the
non-Lagrangian side, this requires us to gauge the U(1), whose moment map is given by
−((vṽ)). This entails introducing a U(1) vector multiplet with scalar φ and coupling it to
this moment map via the term

W = φ((vṽ)) . (4.28)

Now our list of gauge-invariants (4.27) needs to be modified. On the Lagrangian side, our
baryon and anti-baryon B and B̃ transform non-trivially under the U(1) of U(3). Hence,
the only gauge-invariant we can make out of them is B̃ijkBlmn. However, this can be
written in terms of the meson as

B̃ijkBlmn = 6M [i
l M

j
mM

k]
n . (4.29)

On the non-Lagrangian side, we need to form invariants under the newly gauged U(1). Out
of the list (4.27), the only trouble makers are ((Y v)) and ((Y ṽ)), which have non-zero U(1)
charge. The only gauge invariant we can make is ((Y ijkv))((Y lmnṽ)). We will now check
that this can be eliminated in terms of (X, v, ṽ).

First, we notice that the extra term (4.28) in the superpotential implies ((vṽ)) = 0.
Hence, v[αṽβ] ∼ ((vṽ))εαβ = 0, which implies, vαṽβ = v(αṽβ) = −Zαβ (see (4.8)).

Let us use this last observation to rewrite ((Y ijkṽ))((Y lmnv)) as follows:

Y ijk
α ṽβε

αβ Y lmn
δ vγε

δγ = −
(
Y ijk
α Zβγε

αβ)Y lmn
δ εδγ = X

[i
l Y

jk]l
γ Y lmn

δ εδγ (4.30)

= −X [i
l ((Y jk]lY lmn)) , (4.31)

whereby we used (4.14) in the second step to replace the Y Z term in parenthesis. As seen
in the previous section, ((Y Y )) can be eliminated in terms of X, v, ṽ. After gauging the
flavor U(1), we can eliminate all dependence on ((vṽ)). Hence, we are done. The conclusion
is that the Higgs branch can be parametrized purely in terms of Xi

j , which matches the
expectation from the Lagrangian side, where the Higgs branch is parametrized by the
meson matrix M̃ i

j .
As we have seen in section 2, another crucial ingredient we need to prove is the nilpo-

tency of the X-operator: If we show that X is traceless and nilpotent, we can rewrite it
as a would-be meson matrix, and all algebraic relations for the Higgs branch will follow
automatically.
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Figure 11. E8 quiver. We show the double arrows between the nodes only when relevant for our
discussion.
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SU(2)

U(1)

L

L

R

R

ṽ v

Figure 12. Modified E8 quiver.

First of all, X is traceless by definition, since X is in the adjoint of SU(6). Second, it
is nilpotent as we now prove. Notice the following:

ZαβZγδε
αγεβδ = vαṽβvγ ṽδε

αγεβδ = 0 (4.32)

By (4.18) this implies that trX2 = 0. In turn, this implies by (4.16) that Xi
kX

k
j = 0

as expected. Hence, we deduce that all possible relations satisfied by the meson on the
Lagrangian side will be satisfied by the field X on the non-Lagrangian side.

4.2 Coupling S-dual theories into the E quiver

In this section, we briefly look at two examples of E-type quivers where we extract an U(3)
node, S-dualize it, and couple it back into the quiver.

E8 quiver. In the setting of D2-branes probing ADE singularities, an external U(3)
gauge node shows up in the E8 quiver.

Focusing on the U(3) and U(6) nodes, the following superpotential is present:

W = Q̃ai Ψ̆b
aQ

i
b + Ψj

i(LiλL̃λj +RiρR̃
ρ
j ) + Ψj

iM
i
j , (4.33)

where Ψ̆ is the scalar relative to the U(3) node, while Ψ to the U(6) node.
We now decouple the U(3) node, perform a gauged AS duality on it, and recouple it

to the quiver in the analogous way as we did for the U(2) node of E7 and DN . The new
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Figure 13. E6 quiver.

theory has the following superpotential:

W = −φ ((vṽ)) + vαΦα
β ṽβ + Ψj

i(LiλL̃λj +RiρR̃
ρ
j ) + Ψ̃j

iX
i
j + ψ ((vṽ)) , (4.34)

where Ψ = Ψ̃ + ψ
2 16 with Ψ̃ traceless. We can reabsorb the last term by redefining

φ = φ′ + ψ. The ‘modified quiver’ is depicted in figure 12. Note, that we could try
to couple further moment maps with Ψj

i. However, these would necessarily have the
form Y ikl

α Yjklβ ∼ Xi
jvαṽβ , which would give zero upon contracting the SU(2) indices

with anything.
As for the U(2) cases, it is now easy to see that the Higgs branch of the ‘modified quiver’

gauge theory is the same as the standard one: all gauge invariants are now constructed out
of X instead of M . Since X is traceless and nilpotent and couples to the rest of the quiver
as M did, the Higgs branch generators and relations are the same in the dual theories.

E6 quiver. A different example is that of the central node of the E6 quiver (see figure 13).
In this case, the U(3) node couples to three U(2) nodes. However, the general procedure
outlined before is the same. The only difference is that now, the SU(6) flavor is broken
to S(U(2) × U(2) × U(2)). This breaking is inflicted by the couplings to the neighboring
vector multiplets, which are not organized into a U(6) vector multiplet.

The superpotential is

W =
∑

k=a,b,c

[
φkDkD̃k + trΨk(D̃kDk + Q̃kQk) + trΨ̆QkQ̃k

]
. (4.35)

Here, DD̃ = DαD̃α, D̃D = D̃αD
β and so on.

The first step we need to take is to ungauge the three U(2) nodes. We then substitute
the U(3) gauge theory with six flavors with the dual non-Lagrangian theory. Finally we
recouple it to the three U(2) vector multiplets. Practically this is done (like in the DN

case) by considering again the coupling

W ⊃ Ψj
i

(
Xi

j + ((vṽ))
3 δij

)
.
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However, now the 6 × 6 matrix Ψ is taken to be block diagonal, with three 2 × 2 block
corresponding to the three scalars Ψk relative to the adjacent U(2) nodes. In particular,
we need to decompose Xi

j into S(U(2)×U(2)×U(2)) representations. As before, the fact
that the traceless matrix field X square to zero (X2 = 0) implies that the F-term relations
coming from differentiating with respect to Ψk do not change the Higgs branch relations
that lead to the E6 singularity.

4.3 Deforming by a monopole operator

We are now in a position to ask what happens when we deform the G = U(3), NF = 6
theory by a monopole operator. On the non-Lagrangian side, this will amount to deforming
the U(1) node by a monopole operator. This node is connected to an SU(2) node that is
connected to the non-Lagrangian block. Hence the monopole deformation works analogous
to the U(2) case described in section 3.5.

More precisely, on the Lagrangian side, we are interested in deforming the superpo-
tential by a monopole operator:

∆LagW = mV− (4.36)

with V− the R-charge one monopole operator charged under the topological U(1)J sym-
metry associated with the U(3) node. Since global symmetries must match across the
S-duality, the only candidate for this U(1)J on the non-Lagrangian side is the shift sym-
metry of the dual photon of the U(1) under which the doublet (vα, ṽβ) is charged.

On the non-Lagrangian side, we must deform our superpotential by a monopole oper-
ator on the U(1) node.

∆non−Lag = mW+ . (4.37)

As in section 3.5, the U(1) node is connected to an SU(2) node and we can proceed
by the same steps we did there. As a result, the U(1) node disappears from the deformed
theory and the SU(2) meson mα

β ↔ ṽαv
β becomes a fundamental field. The local effective

theory is coupled to the rest of the quiver by the superpotential

W eff = tr [(m̃− µsu(2))Φ]− X
m

det m̃ + trΨ̃X + . . . , (4.38)

where we have integrated the field φ′ = φ+ψ out, m̃ is the traceless part of m, (µsu(2))αβ =
Zαβ is the SU(2) moment map and “. . .” means the rest of the ‘modified EN quiver’.

Again the question is, how is the Higgs branch modified after this whole operation? The
new matrix m̃ has no non-zero gauge invariants, so it does not contribute as a coordinate for
the Higgs branch. The only way in which it affects things, is via its coupling to the SU(2)
gauge theory, which is in turn coupled to the Minahan Nemeschansky theory. Concretely,
it means that we have to replace all instances of ṽαvβ by m̃β

α in the relations (4.8) and (4.11)
through (4.18). Since we’ve already showed that the Higgs branch of the undeformed theory
was entirely parametrized by Xi

j (i.e. had no (v, ṽ) dependence), the conclusion is that it
does not change after this deformation.
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5 U(N) nodes and class S trinions

In this section we generalize the discussion of the previous sections to U(N) SQCD with
N > 3. The dual frame we find involves the class S three-punctured sphere R0,N so we
need to introduce some machinery to understand the chiral ring of these models. We will
start by reviewing the chiral ring of TN theory and then discuss the operation usually called
in the literature “closure of puncture”, which allows us to flow from TN theory to R0,N .

5.1 Chiral ring relations for TN theory and its descendants

We are interested in studying the Higgs branch of (the dimensional reduction of) R0,N
theory. Since the Higgs branch does not change under dimensional reduction, we can work
directly in four dimensions; the conclusions will apply to the three-dimensional theory as
well. Our starting point is the set of chiral ring relations for TN theory discussed in [39, 40].
R0,N is then obtained from TN by partially closing one of the punctures, i.e. giving nilpotent
vev to the corresponding SU(N) moment map, so we need to understand how the vev for
the moment map affects the chiral ring relations.

TN theory has a global symmetry SU(N)A×SU(N)B×SU(N)C . Its chiral ring includes
operators of dimension two µA,B,C in the adjoint representation of the three SU(N) factors
and operators Q(k) transforming in the Λk (rank-k antisymmetric) representation of each
SU(N) symmetry, with dimension k(N − k) for k = 1, . . . , N − 1. The most important
ones for us will be the operators labelled by k = 1 and k = N − 1, which correspond to
chirals Qijk, Q̃ijk in the trifundamental and antitrifundamental of SU(N)3 respectively.
They satisfy the following chiral ring relations:

trµkA = trµkB = trµkC , (5.1)

(µA)i′i Qi′jk = (µB)j
′

j Qij′k = (µC)k′k Qijk′ , (5.2)

QijkQ̃
lmk =

∑
s

νs

N−s−1∑
n=0

(µN−s−1−n
A )li(µnB)mj . (5.3)

In the last equation νs denote the coefficients of the characteristic polynomial of µ: det(x−
µ) =

∑
s νsx

N−s. Because of (5.1), the polynomial does not depend on which µ operator
we use. Notice that ν0 = 1 and ν1 = 0.

5.2 Nilpotent vev and R0,N theory

To derive the theory R0,N from TN we should give a nilpotent vev to one µ operator (say
µC) of the form

〈µC〉 =
(
JN−2

)
(5.4)

where JN−2 is a Jordan block of size N − 2. The corresponding nilpotent orbit can be
labelled by an embedding ρ : SU(2) → SU(N). This vev breaks the SU(N)C global
symmetry to SU(2) × U(1) and as a result most of the components of µC become the
lowest components of Goldstone multiplets and decouple. Indeed the vev also breaks the
original SU(2) R-symmetry of the theory, which mixes with the SU(2) subgroup defined by
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ρ to give the new R-symmetry group in the infrared. For example, the Cartan generator
I3 is redefined as follows:

I3 → I3 − ρ(σ3), (5.5)

where ρ(σ3) can be taken of the form

ρ(σ3) = Diag
(
N − 3

2 ,
N − 5

2 , . . . ,
3−N

2 , 0, 0
)
.

In order to analyze the resulting theory in the IR, we can expand around the vev keeping
only the components which remain coupled to the theory. The resulting µC can be written
in the form (see [41] for details)

µC =



α 1 0 . . . 0 0
M1 α 1 . . . 0

M2 M1
. . . . . . 0

...
... . . . . . . α 1 0

MN−3 . . . M2 M1 α β γ

δ

ε
0 . . . 0 µsu(2) + α̃12


. (5.6)

The traceless condition implies α̃ = −(N − 2)α/2 and µsu(2) denotes the SU(2) moment
map. The trifundamental Qijk decomposes under SU(2) as one doublet (k = N − 1, N)
and N − 2 singlets (k = 1, . . . , N − 2). We will now argue that the N − 2 SU(2) singlets
are not independent in the chiral ring. The argument is essentially the same as in [39]: the
chiral ring relations valid for TN hold for R0,N as well, provided we replace all occurrences
of µC with (5.6). From (5.2) we find

(µnB)j
′

j Qij′1 = (µnC)k1Qijk ∀n.

Using (5.6), we see that the above equation (setting n = 1) implies that Qij2 can be written
in terms of Qij1, α and µB (or µA), so is not a generator of the chiral ring. Analogously,
for n < N − 2 we deduce that Qijn+1 can be written in terms of Qijk with k ≤ n and the
other fields, leading to the conclusion that the only generator in the chiral ring is Qij1. An
analogous argument allows to express Q̃ijk with k < N − 2 in terms of Q̃i,j,N−2.

A key property of R0,N theory is that the manifest SU(2) × U(1) × SU(N)2 global
symmetry actually enhances to SU(2) × SU(2N) and our next task is to construct the
moment map of SU(2N) explicitly. We will state the result first and then provide evidence
for our claim. Our proposal is as follows:

X =
(
µA − α̃1N Qij1
−Q̃i,j,N−2 α̃1N − µtB

)
(5.7)

where we called the moment map of SU(2N) X instead of µSU(2N) (as it will play the same
role of the field X in sections 3 and 4). First of all, notice that all the fields appearing in the
matrix X have charge one under the redefined Cartan of SU(2)R (5.5). A more stringent
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check can be obtain as follows: indeed, the duality with SQCD discussed previously implies
that the SU(2N) moment map of R0,N should be identified with the traceless part of the
meson in the gauge theory, whose square is proportional to the identity as dictated by
F-term equations. If our claim is correct, the same should be true for X as defined above
and we will now see that this is precisely implied by equations (5.1)–(5.3).

Let’s start by squaring (5.7); it is easy to see that the off-diagonal blocks are identically
zero thanks to (5.2), so we are left with

X2 =
(
µ2
A − 2α̃µA + α̃2

1N −Qil1Q̃j,l,N−2 0
0 −Q̃l,i,N−2Qlj1 + α̃2

1N − 2α̃µtB + (µtB)2

)
.

(5.8)
Let us now discuss the term Qil1Q̃

j,l,N−2. Using (5.3) we can rewrite it as

Qil1Q̃
j,l,N−2 =

∑
s

νs

N−s−1∑
n=0

(µN−s−1−n
C )N−2

1 (µnA)ji . (5.9)

Now, given the form (5.6) of µC , we can observe that (µkC)N−2
1 is nonzero only for k ≥ N−3,

consequently in the above formula we find nontrivial contributions only for s = 0, 2 (ν1 is
zero). We can then rewrite the r.h.s. of (5.9) as

Qil1Q̃
j,l,N−2 = (µN−3

C )N−2
1 (ν2δ

j
i + (µ2

A)ji ) + (µN−2
C )N−2

1 (µA)ji + (µN−1
C )N−2

1 δji . (5.10)

A detailed calculation using (5.6) leads to the following identities:

ν2 = − trµ2
C

2 = −1
2

(
trµ2

su(2) + (2N − 6)M1 + N2 − 2N
2 α2

)
,

(µN−1
C )N−2

1 = (N − 3)M1 + (N − 2)(N − 1)
2 α2 ,

(µN−2
C )N−2

1 = (N − 2)α and (µN−3
C )N−2

1 = 1 .

Plugging these equations into (5.8), one can easily see that the upper left block reduces to
trµ2

su(2)
2 times the identity. This argument applies also to the second diagonal block in (5.8)

(one simply needs to replace µA with µB and take the transpose) with identical conclusion.
As a result, we find the equation

X2 =
trµ2

su(2)
2 12N , (5.11)

which matches precisely the gauge theory expectation.
If we now gauge the baryon number getting U(N) SQCD, the chiral ring relation on

the meson M becomes M2 = 0 and this should indeed occur in the dual frame involving
R0,N as well. Since from the discussion of the previous section we know that gauging the
baryon number amounts to gauging the U(1) symmetry carried by the SU(2) doublet, we
have to check that X2 is set to zero when we perform the U(1) gauging. After the gauging
the superpotential becomes

W = vαΦα
β ṽβ − tr (Φµsu(2))− φ vαṽα,
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U(k) U(2k) U(3k) U(nk) U(nk + k)
Q̃1

Q1

Q̃2

Q2

Q̃n

Qn

Figure 14. Linear tail of length n+ 1. The rectangle denotes a global symmetry which is gauged
in the E-type quiver (central node).

U(2k) U(3k) U(4k) U(5k) U(2k) R0,3k

SU(2)

U(1)

U(4k) U(5k)
Q̃2

Q2

Q̃3

Q3

Q̃4

Q4

v, ṽ

Q̃4

Q4

Figure 15. We replace the U(3k) gauge node with non-Lagrangian dual theory in the quiver tail.

where v, ṽ and Φ are the SU(2) doublets and adjoint chiral respectively and φ is the chiral
in the abelian 4d N = 2 vector multiplet. Of course the last term is present only if the
U(1) symmetry is gauged. The F-term for Φ tells us that the traceless part of ṽαvβ is equal
to (µsu(2))βα, and the F-term for φ says instead that ṽαvβ squares to zero. Overall, this
implies that µsu(2) squares to zero and using (5.11) we reach the desired conclusion

X2 = 0. (5.12)

As shown in section 2, the fact that the SU(2N) moment map squares to zero implies that
we do not modify the Higgs branch of the E-type quiver by replacing a U(N) gauge node
with our dual description involving R0,N .

5.3 Modified E type quivers

In order to discuss exceptional quivers, it is convenient to consider separately two cases:
in the first case we replace only gauge nodes in the tails; in the second case we modify the
trivalent node.

Changing the tails. Let us concentrate on a single linear tail of the form represented
in figure 14. All tails in the E-type quiver have this form. Let us now replace say the node
U(3k) as in figure 15 with the non-Lagrangiam theory.

The meson of SU(6k) can be written as follows

XSU(6k) =
(
M2k A

B M4k

)
, (5.13)

where M2k and M4k transform in the adjoint of the SU(2k) and SU(4k) subgroups which
are gauged in the linear tail theory, whereas A and B are bifundamentals. The 3d N = 4
theory couples to the rest of the quiver by the superpotential term

W ⊃ tr ΨXSU(6k) = tr Ψ2kM2k + tr Ψ4kM4k , (5.14)
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U(n1) U(N)

U(n2)

U(n3)

U(n1) R0,N

SU(2)

U(1)

U(n3)

U(n2)

Q̃1

Q1

Q̃2 Q2
Q̃3

Q3

v, ṽ

Figure 16. We replace the U(N) central node with the non-Lagrangian dual theory in the quiver.

where Ψ takes a block diagonal form, with the two adjoint fields Ψ2k and Ψ4k of the
adjacent nodes in the diagonal. Again, this coupling implies, together with X2

SU(6k) = 0,
that the Higgs branch is unchanged after replacing the U(3k) node.

Changing the trivalent node. The trivalent node is a U(N) gauge theory with SU(2N)
global symmetry, of which a SU(n1) × SU(n2) × SU(n3) subgroup (n1 + n2 + n3 = 2N)
is gauged.

In this case it is convenient to write the SU(2N) meson of R0,N as a block matrix of
the form

XSU(2N) =

M11 M12 M13
M21 M22 M23
M31 M32 M33

 . (5.15)

The blocks Mii transform in the adjoint of SU(ni) and the off-diagonal blocks are bifunda-
mentals.

Again we couple the dual node to the quiver by the superpotential term

W ⊃ tr ΨXSU(N) , (5.16)

where now Ψ has three non-zero block along the diagonal, i.e. the adjoint scalars Ψn1 , Ψn2

and Ψn3 of the adjacent nodes. This replacement does not change the Higgs branch.

5.4 Deforming by a monopole operator

So far we have only discussed the N = 4 theory, without introducing the monopole defor-
mation. As already seen, this can be easily handled using our duality. Since the analysis is
basically identical to that of the previous sections, we will be brief. Once we replace a U(N)
gauge node with the R0,N theory coupled to the U(1)× SU(2) quiver, the monopole defor-
mation should be turned on at the U(1) node so, using the results discussed in section 2.2,
we conclude that the net effect of the extra superpotential term is to replace the abelian
tail with a chiral multiplet m in the adjoint of the SU(2) gauge group. Its interactions with
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the other fields are described by the superpotential

W = φ trm + X detm + tr ((m− µsu(2))Φ). (5.17)

Here φ and Φ are the chirals in the N = 4 U(1) and SU(2) vector multiplets respectively.
The above interactions imply that the matrix m is traceless and singular, so it squares to
zero. The F-term for Φ in turn imply that the SU(2) moment map of R0,N satisfies the
same constraint and consequently the same is still true for the SU(2N) moment map.

5.5 Baryonic operators in R0,N theory

Even though in this paper we are mostly interested in U(N) SQCD, where baryons are not
gauge invariant, let us see how we can get (the dual of) baryonic operators in R0,N theory.

We start by noticing that from Qijk we get an operator transforming in the (2,N,N) of
SU(2)×SU(N)2 with charge (N−1)/2 under I3 (defined as in (5.5)). More in general, from
every operator Q(k) we get an operator with charge (N − 1)/2 under I3 which transforms
as a doublet of SU(2) and in the (Λk,Λk) of SU(N)2. In order to see this, let us write the
indices of Q(k) explicitly:

Q(k) = Q[a1,...,ak],[b1,...,bk],[c1,...,ck].

If we now set [c1, . . . , ck] = [1, 2, . . . , k − 1, i] (i = N − 1, N) we see that the resulting
operator transforms as stated above under the global symmetry of the theory and its
charge under (5.5) is

1
2

(
k(N − k)−

k−1∑
i=1

(N − 1− 2i)
)

= N − 1
2 .

Furthermore, from (5.6) we see that the components β, γ, δ, ε of µC fit into two doublets of
SU(2), always with I3 charge (N − 1)/2.

The above analysis suggests that all these operators fit into a single irrep of SU(2N)
of dimension

(2N
N

)
, which is the dimension of the rank-N antisymmetric representation of

SU(2N). Notice that under SU(N)2 it decomposes as

ΛN =
⊕
i

(Λi,ΛN−i),

exactly reproducing the set of N+1 operators found above. We conclude that R0,N includes
a chiral operator of dimension N −1 transforming in the (2,ΛN ) of SU(2)×SU(2N) which
we call Y α

[a1,...,aN ]. This operator is known to exist in the case N = 3 and was discussed in
the previous section. In order to get SU(2) invariants, we have to contract the SU(2) index
with the doublet v, ṽ. In this way we get two gauge invariant operators (((Y v)) and ((Y ṽ)))
of I3 charge N/2. These have the same R-charge and transform in the same representation
under SU(2N) as the baryons B and B̃ in SU(N) SQCD.

Since in SQCD mesons and baryons generate the whole Higgs branch, we do not
expect other Higgs branch operators in R0,N . In order to prove this, perhaps along the
lines of the argument for XSU(2N) given in the previous section, we would need chiral ring
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relations involving Q(k) operators, which are currently not known. A chiral ring relation
generalizing (5.2), consistent with those given in [40], which would be helpful in the proof is

µk−1
A Q(k) = µk−1

B Q(k) = µk−1
C Q(k),

where the indices of µi are contracted with those of the Q(k) operator. We will not attempt
to prove them in this paper.

6 New three-dimensional dualities

All the models discussed in this paper are quiver theories which display (before the super-
potential deformation) an ADE global symmetry which is not manifest from the Lagrangian
representation of the theory, rather it arises quantum mechanically due to the presence of
monopole operators of R-charge one. When we turn on a monopole deformation at two
different nodes in the quiver, the resulting theories naively seem different. However from
the perspective of the mirror theory, in which the ADE symmetry is manifest, this just
corresponds to turning on a mass deformation along two different simple roots of the Lie
algebra and these are indeed related by a Weyl transformation.

From this discussion we learn that the two resulting theories are dual to each other,
although the Lagrangian presentation of theory obscures this fact. The purpose of this
section is to prove this duality field theoretically: we will see that the theory we get by
deforming the N = 4 theory with a monopole superpotential does not depend on the
particular gauge node we choose.

Actually, we expect the duality to be even more general: a well known fact is that
for all simply laced Lie algebras we can obtain any root starting from a given one by
acting with the Weyl group. The conclusion is that the duality still holds if we turn on
the deformation along a generic root, not necessarily a simple one. This corresponds to
turning on a superpotential term proportional to a monopole charged under the topological
U(1) symmetry of multiple gauge nodes. At present we do not know how to handle such
superpotentials. However, using the machinery developed in this paper, we will show this
duality for the subsector of monopole operators magnetically charged under a single quiver
node, which in turn correspond to the simple roots of the ADE algebras.

6.1 D-type quivers

Consider the DN quiver gauge theory (see figure 24). As said above, from mirror symmetry
considerations one expects the following: deforming the DN gauge theory superpotential
by switching on a monopole operator charged under one node should produce the same
effective theory as deforming the DN gauge theory superpotential by a monopole operator
charged under a different node.

This statement is far from being obvious in the underlying quiver field theory. In this
section we will prove it, by showing the equivalence of one U(1) node with the adjacent
U(2) node and the equivalence of two adjacent U(2) nodes.
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The external U(1) node is equivalent to adjacent U(2) node. Let us consider
Theory 1 and Theory 2 of section 3.1. The two theories have the same Higgs and Coulomb
branches. In particular, the topological symmetry relative to the diagonal U(2) node of
Theory 1 is mapped to the topological symmetry relative to the U(1) gauge group factor
in Theory 2. Correspondingly the monopole operators of the two theories that have equal
charge with respect to the topological symmetry (and the same R-charge) are exchanged.

We now modify both theories by gauging a U(1) subgroup of the SU(4) ∼= SO(6) global
symmetry, such that the surviving global symmetry is SU(3). Correspondingly we need to
add the proper term to the superpotential necessary to preserve 3d N = 4 supersymmetry.

Theory 1 ’: consider the subgroup SU(3) × U(1)ϕ ⊂ SU(4), where the U(1)ϕ is rotating
one of the four flavors. Gauging the U(1)ϕ factor corresponds then to pick up one of
the four flavors, say (Q̃1, Q1), and add the superpotential term

W ⊃ ϕQ1Q̃
1 , (6.1)

where the gauging introduces the scalar ϕ that completes the 3d N = 4 vector
multiplet. The corresponding theory is represented in the following quiver:

U(1)ϕ U(2) 3

Q4

Q̃4

Q̃i

Qi

where now i = 2, . . . , 4.

Theory 2 ’: applying the duality map between Theory 1 and Theory 2, we see that now
U(1)ϕ rotates all the fundamental fields qi with the same phase (and q̃i with the op-
posite phase). Gauging the U(1)ϕ factor corresponds then to add the superpotential
term

W ⊃ ϕ
3∑
i=1

qiq̃
i . (6.2)

with ϕ again the scalar in the N = 4 vector multiplet. The corresponding quiver is:

U(1) U(2)ϕ 3

ṽ

v

q̃i

qi

where now the gauged U(1)ϕ is the diagonal abelian factor of U(2), that for this
reason we call U(2)ϕ.

We see that now the two theories are identical. In particular, the global symmetry of
the Coulomb branch is now SU(3) (as the nodes are balanced) and the (previous) duality
exchanges the two topological U(1) generators corresponding to the two nodes. As a
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consequence, the monopole operators of R-charge r corresponding to the U(2) factor in
one theory are mapped to the monopole operators of R-charge r corresponding to the U(1)
factor in the other theory.

This result allows us the show the equivalence of one U(1) node of the DN quiver with
the adjacent U(2) node: deforming the DN superpotential by an R-charge one monopole
operator relative to the external U(1) node of the DN quiver gauge theory is equivalent to
deforming it by an R-charge one monopole operator charged under the topological U(1) of
the adjacent U(2) node.

Internal adjacent U(2) nodes are equivalent. To prove the equivalences of the other
nodes, we need to introduce another duality. Consider two SU(2) gauge groups with
bifundamentals. A hypermultiplet (q, q̃) in the bifundamental representations of two SU(2)
gauge groups enjoys an SU(2) flavor symmetry that rotates the two half-hypermultiplets.
We will represent this as

SU(2) SU(2)

SU(2)

q, q̃

Let us now consider the following theory with SU(2) gauge group and four fundamental
fields with the structure:

SU(2)1 SU(2) SU(2)3

SU(2)2 SU(2)4

This is dual to the theory with the same gauge group but represented by a different ‘quiver’
(see [33])

SU(2)1

SU(2)

SU(2)3

SU(2)2 SU(2)4

We now apply the duality just described to construct three dual theories:

Theory 1 : we start with a three dimensional N = 4 theory with gauge group SU(2)2,
with bifundamental and fundamental fields as represented in the following quiver

SU(2)1 SU(2)2 SU(2)3 SU(2)4

SU(2)12 SU(2)23 SU(2)34

x, x̃ y, ỹ z, z̃
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Applying the duality one obtains:

SU(2)23

SU(2)1 SU(2)3 SU(2)4

SU(2)12

SU(2)2 SU(2)34

Theory 2 : we now apply the duality further, obtaining:

SU(2)23

SU(2)1 SU(2)4

SU(2)3

SU(2)12

SU(2)2

SU(2)34

q1, q̃
1; q2, q̃

2

u, ũ

Q, Q̃

Theory 3 : finally applying further the duality, we obtain the same theory but with the
SU(2) flavor groups arranged in a different way:

SU(2)23

SU(2)1 SU(2)4

SU(2)3

SU(2)34

SU(2)2

SU(2)12

p1, p̃
1; p2, p̃

2

u, ũ

P, P̃

We are now ready to approach the DN series. Take Theory 1 and gauge U(1) symme-
tries such that the gauge groups SU(2)2 and SU(2)3 are promoted to U(2) groups. This will
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break a number of flavor symmetries. Of course we want to preserve SU(2)1 and SU(2)4
that will be gauged once we attach the resulting theory to the DN quiver.

We start with SU(2)2. Promoting this to U(2)2 breaks the flavor symmetries SU(2)12
and SU(2)23, while preserving SU(2)1. Analogously, gauging SU(2)3 to U(2)3 breaks the
flavor symmetries SU(2)23 and SU(2)34, while preserving SU(2)4. This reflects into the
new superpotential couplings that should be introduce to preserve N = 4 supersymmetry:

W ⊃ ϕ2(xx̃− yỹ) + ϕ3(yỹ − zz̃) . (6.3)

One can check that they break the flavor symmetries as required. The final theory can be
represented as

SU(2)1 U(2)2 U(2)3 SU(2)4
x, x̃ y, ỹ z, z̃

that is a segment of the U(2) chain in the DN quiver.
Following the duality described above, we see what this gauging produces in Theory

2. Here we must gauge the U(1)s that reproduce the same effect on the flavor symmetry
(i.e. the flavor symmetry of the resulting theories must be the same). The superpotential
that encodes this is

W ⊃ ϕ2q1q̃
1 + ϕ3(q1q̃

1 + q2q̃
2 +QQ̃) . (6.4)

The first coupling breaks the symmetries SU(2)12 and SU(2)23 keeping SU(2)34, while the
second coupling breaks the symmetries SU(2)23 and SU(2)34 keeping SU(2)12. In particular,
from the second coupling we can read that the SU(2)2 gauge group is enhanced to U(2).
This theory is represented in the following figure

1

SU(2)1 SU(2)4

SU(2)3

U(1)ϕ2

U(2)ϕ3

q2, q̃
2

q1, q̃
1

u, ũ

Q, Q̃

In Theory 3 we should repeat the same procedure, but now we should take into account
that the flavor symmetries are in different positions. The superpotential that reproduces
this is

W ⊃ ϕ2(p1p̃
1 + p2p̃

2 + PP̃ ) + ϕ3p1p̃
1 . (6.5)

– 39 –



J
H
E
P
1
0
(
2
0
1
7
)
1
1
3

Again, the first coupling breaks the symmetries SU(2)12 and SU(2)23 keeping SU(2)34,
while the second coupling breaks the symmetries SU(2)23 and SU(2)34 keeping SU(2)12. In
particular, now it is the first coupling that shows the enhancement from SU(2)2 to U(2)2.
This theory is represented in the following figure

1

SU(2)1 SU(2)4

SU(2)3

U(1)ϕ3

U(2)ϕ2

p2, p̃
2

p1, p̃
1

u, ũ

P, P̃

Analogously with the previous section, Theory 2 and Theory 3 are the same theory. In
Theory 2 the topological symmetry corresponding to the U(1)ϕ2 node is mapped to the
topological symmetry of the U(2)2 node of Theory 1, while in Theory 3 the topological
symmetry corresponding to the U(1)ϕ3 node is mapped to the topological symmetry of the
U(2)3 node of Theory 1.

Hence deforming the Theory 2=3 by switching on the monopole operator relative to
the U(1) node is equivalent to switching on the monopole relative to either U(2)2 or U(2)3
in Theory 1 : hence the two are equivalent.

6.2 E-type quivers

As in the DN case, the Coulomb branch global symmetry of the E-type quiver implies that
by turning on the monopole deformation at two different gauge nodes we get equivalent
theories, although from the quiver description of the theory this fact is not obvious.10 The
purpose of the present section is to shed light on this duality.

Our strategy is the following: we restrict to a linear tail with only balanced (in the
sense of [35]) unitary gauge groups and argue that turning on the monopole deformation at
neighboring gauge groups leads to equivalent theories. By repeatedly applying this duality,
we get to the desired conclusion. Without loss of generality, we can focus on a subquiver
with two gauge nodes. This is always of the form

N − 2k −U(N − k)−U(N)− N + k

The mirror theory can be easily read out from the Hanany-Witten brane setup [18] and is
the linear quiver in figure 17,

10The statement refers to the minimal nilpotent orbit only. Equivalently, we turn on the monopole
superpotential deformation at a single gauge node.
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1 2 J J + 2 N − 2 N

3

N − 1 1

Figure 17. The mirror dual to N − 2k −U(N − k)−U(N)− N + k .

1 2 J J + 2 N − 2 N

1

N − 1 1

1 1

Figure 18. The mirror dual of N − 2k − SU(N − k)− SU(N)− N + k .

N − 2k U(N -k) SU(N) N + k N − 2k SU(N -k) U(N) N + k

Figure 19. The two linear quivers with a single balanced gauge node.

where J = N−2k. The topological abelian symmetry enhances to SU(N+k)×SU(N−2k)×
U(1) (the U(1) factor is the topological symmetry of the U(J) node, which is not balanced).
The three fundamentals of the central node give an extra SU(3) global symmetry, matching
the Coulomb branch symmetry of the original theory.

If we instead consider the model

N − 2k − SU(N − k)− SU(N)− N + k

the gauge nodes are not balanced anymore and there is no enhancement of the global
symmetry due to monopole operators. The mirror is known to be the star-shaped quiver [34]
in figure 18.

The difference with respect to the linear quiver discussed above is that the Cartan
subgroup of SU(3) is now gauged. We can ungauge one of the abelian factors simply by
gauging the corresponding topological U(1) symmetry, which amounts on the mirror side
to gauging one of the two independent “baryonic” U(1) symmetries acting on the matter
fields. Depending on which U(1) subgroup we gauge, we end up with one of the two models
in figure 19.

These two linear quivers have a single monopole operator of R-charge one and are
actually equivalent theories (so in particular the R-charge one monopole operators are
mapped to each other under this “duality”). The easiest way to see the equivalence is
perhaps to notice that they are both mirror dual to the theory in figure 20.
This fact can be argued as follows: let us consider the star-shaped quiver in figure 21.
According to [34], this is the mirror dual of the (dimensional reduction of) AN−1 class S
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1 2 J J + 2 N − 2 N

2

N − 1 1

1

Figure 20. The common mirror of the quivers in figure 19.

1 2 J J + 2 N − 2 N

1

N − 1 1

1

Figure 21. The mirror of SU(N − k) Nf = 2N − 2k SQCD plus a decoupled SU(N) × SU(k)
bifundamental.

1 2 J J + 2 N − 2 N

2

N − 1 1

Figure 22. The mirror of U(N − k) Nf = 2N − 2k SQCD plus a decoupled SU(N) × SU(k)
bifundamental.

theory labelled by a sphere with one full puncture, two minimal and one with partition
(2k, 1N−2k). This theory is known to be SU(N − k) SQCD with 2N − 2k flavors plus a
decoupled free sector describing a hypermultiplet in the bifundamental of SU(N)× SU(k).
This decoupled sector can be recovered directly in the star-shaped quiver by applying the
analysis of [35]: the central node is unbalanced (U(N) with 2N−1 flavors), it has a sequence
of k− 1 balanced nodes on its left and a sequence of N − 1 balanced nodes on its right. In
such a situation we get Nk monopole operators with R-charge 1/2.

If we wish to gauge the baryon number and study U(N − k) instead of SU(N − k)
SQCD, on the mirror side we simply have to ungauge the U(1) node connected to the
central node, ending up with the linear quiver in figure 22.
In this way we get two flavors in the fundamental of the central U(N) node, which is
consistent with the enhancement of the topological symmetry of U(N−k) SQCD to SU(2).

We now recover the theory

N − 2k − SU(N − k)− SU(N)− N + k
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from SU(N − k) Nf = 2N − 2k SQCD plus a decoupled SU(N) × SU(k) bifundamental
by gauging the SU(N) global symmetry and adding N flavors of SU(N). At the level of
the mirror star-shaped quiver (in figure 21), this operation is easy to describe since we
just need to introduce a U(1) node connected to the central node. This in fact leads to
the quiver In figure 18. Again, if we want instead to perform a U(N) gauging as opposed
to SU(N), we should add in the star-shaped quiver 21 a flavor in the fundamental of the
central U(N) node. As a consistency check for this claim, notice in fact that, starting from
the mirror dual of U(N − k) SQCD (see figure 22) and adding a flavor to the central node,
we get precisely the mirror dual of the U(N − k)×U(N) gauge theory (figure 17).

By applying the above rules, we can check that the two theories in figure 19 have the
same mirror: this follows simply by performing an SU(N) gauging of the U(N − k) theory
(figure 22) or a U(N) gauging of the SU(N − k) theory (figure 21). For N = 2 and k = 1
this duality reduces to that we exploited in the study of monopole deformations of U(2)
SQCD with four flavors.

Once we have established this fact, the desired result follows easily: an off-diagonal
mass term for the two U(N) fundamentals in the star-shaped quiver 20 is mapped on
the mirror side (both models in figure 19) to a superpotential deformation involving the
monopole operator of R-charge one. If we now gauge the leftover “baryonic” U(1) symmetry
group in the theory in figure 19, we obtain precisely the duality we were looking for.

7 S3
b partition function and monopole operators

In the previous sections we exploited the 3d duality “induced” by S-duality in four dimen-
sions to understand the effect of a monopole superpotential at a non-abelian node in the
quiver. Here we want to check the duality at the level of the partition function on the
three-sphere.

7.1 Basic N = 4 mirror symmetry and the pentagon identity

In this subsection, we review the building block of N = 4 mirror symmetry in the context
of the partition function on the squashed sphere. At the level of the latter, it will reduce
to what is known as the pentagon identity. This has been discussed in various works in
the literature, but it is useful to repeat it here for convenience, and in order to setup
our notation.

The basic duality of interest is the following:

SQED +Nf = 1, WN=4 = φqq̃ ←→ (X ,Y,Z,S), WXY Z′ = XYZ + SX

On the l.h.s. , in theory A, we have a charged hyper and its cubic coupling to the complex
scalar in the vector multiplet.

On the r.h.s. , theory B, we have four neutral chirals, such that only the hyper (Y,Z)
survives in the IR. It might seem like overkill to keep all four chirals in this theory, given
that two are massive. However, the real case of interest, to be discussed in section 7.3,
will be a theory with exactly the same field content, but a modified superpotential. It is
therefore instructive to keep this information here.
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U(1)G U(1)H+C U(1)H−C U(1)T

φ 0 1 −1 0

q 1 1/2 1/2 0

q̃ −1 1/2 1/2 0

W± 0 1/2 −1/2 ±1

WN=4 0 2 0 0

Table 1. Gauge and global symmetry charges for N = 4 SQED with one flavor.

U(1)Ĥ+Ĉ U(1)Ĥ−Ĉ U(1)F

X 1 −1 0

Y 1/2 1/2 1

Z 1/2 1/2 −1

S 1 1 0

WXY Z′ 2 0 0

Table 2. Global symmetry charges for the N = 4 SQED version of the XYZ-model.

Let us examine the symmetries of the problem.
Theory A has a U(1)G gauge symmetry, and a U(1)H × U(1)C ⊂ SU(2)H × SU(2)C

symmetry, such that U(1)H+C is an R-symmetry, and U(1)H−C is an axial symmetry.
Finally, there is a topological U(1)T symmetry that shifts the dual photon, and therefore
acts as a phase on the monopole operators W±. Table 1 summarizes the charges.

Theory B similarly has a U(1)Ĥ ×U(1)Ĉ ⊂ SU(2)Ĥ ×SU(2)Ĉ . Instead of a topological
symmetry, however, it has a U(1)F flavor symmetry acting on the pair (Y,Z). The charges
are summarized in table 2. From this table, we see that, under the mirror map

W+ ↔ Y ,W− ↔ Z , qq̃ ↔ X ,Φ↔ S (7.1)

the global symmetries are identified as follows:

U(1)H ↔ U(1)Ĉ ,U(1)C ↔ U(1)Ĥ ,U(1)T ↔ U(1)F (7.2)

Let us now see how this correspondence works at the level of the partition func-
tion on the squashed sphere. We define the squashed sphere of radius 1 as the following
hypersurface:

b2|z1|2 + b−2|z2|2 = 1 ⊂ C2 , (7.3)

where b is a real number such that for b = 1 we have the round three-sphere. A useful
quantity to define is Q = b+1/b. In order to compute it, we need to define the putative R-
charge for the IR theory. In N = 2 language, the R-charge is in general a linear combination
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of U(1) symmetries RIR =
∑
i=0 c

iRi, with c0 = 1, and R0 = H + C, the Cartan of the
original N = 4 SU(2)H × SU(2)C R-symmetry.

A twisted real mass is a vev for the scalar component of a background vector multiplet
associated to a global U(1) symmetry. Given a chiral multiplet χ with charge qi under the
i-th U(1) symmetry Ri, its real twisted mass will be qim

i, where mi is the background
scalar vev. This U(1) will contribute qic

i to the R-charge of χ.
Then, the contribution to the partition function of a chiral multiplet with charges {qi}

under the various U(1)′s will be the following

Zχ = sb

(
i
Q

2 − m̃χ

)
, (7.4)

where we defined the total complex twisted mass of χ as follows

m̃χ =
∑
i

qi(mi + i
Q

2 c
i) , (7.5)

with m0 = 0, and sb is the double sine function

sb(x) =
∏

m,n∈Z≥0

mb+ nb−1 + Q
2 − ix

mb+ nb−1 + Q
2 + ix

. (7.6)

This prompts us to define the individual complex parameters

m̃i ≡ mi + i
Q

2 c
i . (7.7)

The reason these are useful is the discovery by Jafferis [52], that the partition function
Z(mi, ci) depends only on the holomorphic combinations Z(m̃i).

Let us begin with theory A, and assume that the IR R-symmetry is

Rα ≡ H + C + α(H − C) . (7.8)

So we only allow mixing with the axial symmetry. In that case, we will have the following
complex twisted masses:

m̃0 = i
Q

2 , m̃A = mA + i
Q

2 , m̃T = −ξ , (7.9)

whereby A ≡ H −C. Here, we have introduce a Fayet-Iliopoulos constant ξ, which can be
regarded as a twisted mass for the topological U(1)T , as explained in [24]. The m̃0 is real
because we are not switching on a twisted mass for the R-symmetry. Our fields now have
the following R-charges:

q q̃ φ

Rα
1+α

2
1+α

2 1− α
Let us write down the contributions from the various fields to the partition function:

m̃ sb
(
iQ2 − m̃

)
q iQ4 + 1

2m̃A sb
(
iQ4 − u−

1
2m̃A

)
q̃ iQ4 + 1

2m̃A sb
(
iQ4 + u− 1

2m̃A

)
φ iQ2 − m̃A sb(m̃A)
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Here, u corresponds to a vev for the scalar in the gauge multiplet. Now we can write down
the partition function for N = 4 SQED with one flavor:

ZSQED1N=4(m̃A, ξ) = sb(m̃A)
∫ ∞
−∞

e−2πiξsb

(
i
Q

4 − u−
1
2m̃A

)
sb

(
i
Q

4 + u− 1
2m̃A

)
(7.10)

This partition function depends on the parameter α, which defines the mixing of the UV
R-symmetry with the axial symmetry through the relation m̃A = mA + iαQ2 .

We now analyze theory B, the N = 4 version of the XYZ-model. In that case, under
the mirror map, the putative IR R-symmetry is given by

Rα = Ĥ + Ĉ − α(Ĥ − Ĉ) (7.11)

The twisted complex masses are the following:

m̃0 = i
Q

2 , m̃Â = mÂ − iα
Q

2 , m̃F = mF . (7.12)

Here, we assume that the U(1)F will not mix with the IR R-symmetry, hence m̃F is real.
Our fields now have the following R-charges:

X Y Z S

Rα 1 + α 1−α
2

1−α
2 1− α

the partition function is the following:

ZXY Z′(mÂ,mF ) = sb(m̃A)sb
(
i
Q

4 −
1
2m̃Â − m̃F

)
sb

(
i
Q

4 −
1
2m̃Â + m̃F

)
sb(−m̃A)

= sb

(
i
Q

4 −
1
2m̃Â − m̃F

)
sb

(
i
Q

4 −
1
2m̃Â + m̃F

)
. (7.13)

The last equality follows from the fact that sb(−x) = 1/sb(x) as can be seen from the
definition of the double-sine function. This makes sense, it corresponds to the two massive
chirals dropping out of the theory in the IR.

We now want to confront these two partition functions. Under the mirror map, we
expect m̃A ↔ −m̃A, and ξ ↔ mF . So we should have the following equality:

ZSQED1,N=4(m̃A, ξ) = ZXY Z′(−m̃A, ξ) (7.14)

In other words, we expect the following to hold:

sb(m̃A)
∫ ∞
−∞

e−2πiξsb

(
i
Q

4 − u−
1
2m̃A

)
sb

(
i
Q

4 + u− 1
2m̃A

)
= sb

(
i
Q

4 + 1
2m̃A − ξ

)
sb

(
i
Q

4 + 1
2m̃A + ξ

)
(7.15)

It so happens that this identity is known to hold for the double-sine function, and goes by
the name of pentagon identity [28, 50, 51]. We will record it here in generic notation for
future convenience:

sb(y + z)sb(y − z) = sb

(
2y − iQ2

)∫
dxe−2πizxsb

(
i
Q

2 + x− y
)
sb

(
i
Q

2 − x− y
)
. (7.16)
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7.2 N = 4 self-mirror symmetry of T (SU(2))

In this section, we will study N = 4 SQED with two flavors, also known as T (SU(2))
(see also section 2.2). The theory is known to be self-mirror. We will show this at the
level of the partition function. This, of course, has been done before in the literature (see
e.g. [28, 50, 51]), but with the assumption that the IR R-symmetry is fixed by the N = 4
supersymmetry. We will rederive this mirror symmetry, but with unknown IR R-symmetry.
Once this is done, we will be able to easily add our monopole deformation.

Let us first define the theory: it has one N = 4 vector multiplet with complex scalar
φ, and two hypers (qi, q̃i), with i = 1, 2, and superpotential WN=4 = φ

∑
i qiq̃

i.
The global symmetry is SU(2)H × SU(2)C × SU(2)F ×U(1)T . In N = 2 language, the

R-symmetry is given by

Rα,βT = (H + C) + α(H − C) + βTT . (7.17)

Here, we have assumed again that the U(1)F ⊂ SU(2)F will not mix with the R-symmetry.
However, we will allow for the topological symmetry to mix via the parameter βT . Let us
record the charges of all fields under the Cartan subalgebras:

U(1)H+C U(1)H−C U(1)F U(1)T Rα,βT

Φ 1 −1 0 0 1− αA

qi 1/2 1/2 ±1/2 0 (1 + α)/2

q̃i 1/2 1/2 ∓1/2 0 (1 + α)/2

W± 1 −1 0 ±1 1− α± βT

WN=4 2 0 0 0 2

Note, that U(1)F acts on q2 with an opposite phase to q1, which explains the ± symbol,
and similarly with q̃i.

From this we can define the following twisted complex masses:

m̃0 = i
Q

2 , m̃A = mA + iα
Q

2 , m̃F = mF , m̃T = ξ + iβT
Q

2 . (7.18)

Recall that a FI parameter can be regarded as a twisted mass for U(1)T . Let us write down
the contributions of the various fields to the partition function:

m̃ sb
(
iQ2 − m̃

)
qi iQ4 + 1

2(m̃A ± m̃F ) sb
(
iQ4 − u−

1
2(m̃A ± m̃F )

)
q̃i iQ4 + 1

2(m̃A ∓ m̃F ) sb
(
iQ4 + u− 1

2(m̃A ∓ m̃F )
)

Φ iQ2 − m̃A sb(m̃A)
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Let us now write down the partition function of N = 4, d = 3 SQED with Nf = 2:

ZTSU(2)(m̃A,mF , m̃T ) = sb(m̃A)
∫ ∞
−∞

du e−2πium̃T (7.19)

×sb
(
i
Q

4 − u−
1
2(m̃F + m̃A)

)
sb

(
i
Q

4 − u−
1
2(−m̃F + m̃A)

)
×sb

(
i
Q

4 + u− 1
2(−m̃F + m̃A)

)
sb

(
i
Q

4 + u− 1
2(m̃F + m̃A)

)
.

We begin by demonstrating the self mirror-duality of T (SU(2)). For this, we must
choose βT = 0, which implies m̃T = ξ. In order to demonstrate that this theory is self-
mirror, we will make repeated use of the pentagon identity (7.16). The idea here is to make
two pairs out of the four chiral contributions, and apply the identity on them. Notice that
we have three ways of pairing them. Let us use the natural hyper pairings (qi, q̃i). This
yields the following:

ZTSU(2)(m̃A,mF , ξ) = sb(m̃A)s2
b(−m̃A)

∫
du1, dx1dx2 e

−2πiu(ξ+x1+x2)−πim̃F (x1−x2)

×sb
(
i
Q

4 + 1
2m̃A + x1

)
sb

(
i
Q

4 + 1
2m̃A − x1

)
×sb

(
i
Q

4 + 1
2m̃A + x2

)
sb

(
i
Q

4 + 1
2m̃A − x2

)
.

The double sine funciton satisfies sb(x)sb(−x) = 1 by definition. So we can simplify the
factors outside the integral. The integral in σ acts as a delta function δ(x1 +x2 + ξ). After
integrating over x2 and redefining the remaining variable x ≡ x1 + ξ/2, we arrive at the
following expression

ZTSU(2)(m̃A,mF , ξ) = sb(−m̃A)
∫
dx e−2πimF xsb

(
i
Q

4 + x+ 1
2(m̃A − ξ)

)
(7.20)

×sb
(
i
Q

4 − x+ 1
2(m̃A + ξ)

)
sb

(
i
Q

4 − x+ 1
2(m̃A − ξ)

)
×sb

(
i
Q

4 + x+ 1
2(m̃A + ξ)

)
.

From this, we read off the following identity

ZTSU(2)(m̃A,mF , ξ) = ZT (SU(2))(−m̃A, ξ,mF ) (7.21)

This is consistent with mirror symmetry, which exchanges U(1)H ↔ U(1)C , and therefore
U(1)A ↔ U(1)−A, and exchanges the real mass parameter mF with the FI term. Note,
that we have proven this identity without assuming any value for α.

7.3 T (SU(2)) deformed by a monopole operator

Let us now deform the N = 4 superpotential with a monopole operator ∆W = W+. How
should we implement this at the level of the partition function? We find two consequences
to this deformation:
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1. Now we need to change the R-charge assignments in order to make the superpotential
still have charge 2. Given that W+ has R-charge 1 − α + βT , this fixes the choice
βT = 1 + αA. In other words, our putative R-symmetry now has only one free
parameter:

Rα = (H + C) + α(H − C) + (1 + α)T (7.22)

Jafferis conjectured that the partition function should be holomorphic in all twisted
masses, including those concerning topological symmetries [52]. This is why we de-
fined the complex twisted mass m̃T = ξ + iαT

Q
2 . So, allowing the topological sym-

metry to mix with the R-symmetry manifests itself as a complexified FI parameter
in the partition function.

2. The first point is necessary in order to allow for the superpotential deformation, but
one could in principle have these R-charge assignments without it. If the deformation
is turned on, however, one explicitly breaks the U(1)T symmetry. This means that
we can no longer simply switch on a twisted mass for it. Only the diagonal subgroup
of U(1)H−C ×U(1)T survives. Concretely, this means we must set mA = ξ.

Implementing these two points, the partition function now reads:

Z
W+
TSU(2)

(
m̃A = ξ + i

Q

2 α,mF , ξ

)
= sb(m̃A)

∫ ∞
−∞

dσe−2πiξ+πQ(1+α) (7.23)

×sb
(
i
Q

4 − σ −
1
2(m̃F + m̃A)

)
sb

(
i
Q

4 − σ −
1
2(−m̃F + m̃A)

)
×sb

(
i
Q

4 + σ − 1
2(−m̃F + m̃A)

)
sb

(
i
Q

4 + σ − 1
2(m̃F + m̃A)

)
.

This can be regarded as an analytic continuation of the partition function, where we let
ξ → ξ+ iQ2 (1+α). In other words, the partition function of the monopole deformed theory
can be written as the partition function of the undeformed theory with the complexified
FI parameter:

Z
W+
TSU(2)(m̃A,mF , ξ) = ZTSU(2)

(
m̃A,mF , ξ + i

Q

2 (1 + α)
)
. (7.24)

If this analytic continuation makes sense, then we expect the mirror relation (7.21) to
also hold:

ZTSU(2)

(
m̃A,mF , ξ + i

Q

2 (1 + α)
)

= ZTSU(2)

(
−m̃A, ξ + i

Q

2 (1 + α),mF

)
. (7.25)

Let us now compute this explicitly, imposing the condition m̃A = ξ + iαQ2 . After the dust
settles, we find the following expression:

ZTSU(2)

(
−ξ − iαQ2 , ξ + i

Q

2 (1 + α), mF

)
= sb

(
−ξ − iαQ2

)∫
due−2πimFusb (−u) sb (u)

×sb
(
i
Q

2 (1 + α) + u+ ξ

)
sb

(
i
Q

2 (1 + α)− u+ ξ)
)

(7.26)

= sb

(
−ξ − iαQ2

)∫
due−2πimFusb

(
i
Q

2 (1 + α) + u+ ξ

)
sb

(
i
Q

2 (1 + α)− u+ ξ)
)
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Let us pause to interpret what just happened in terms of our method from section 2.2. The
first mirror symmetry we applied in (7.25) turned the monopole operator deformation into
an off-diagonal mass deformation, as we have studied earlier in this paper (see section 2.2).
We can readily see this in the contribution s(u)s(−u), which corresponds to two oppositely
charged chirals (P, Q̃), each of R-charge 1. This is consistent with a superpotential term
of the form ∆W = PQ̃. The fact that both can be integrated out is implemented by the
cancellation of their contributions to Z.

Having performed this elimination, we do another mirror symmetry to get the effective
theory we sought after. This is implemented by another use of the pentagon identity, which
eliminates the integral and leaves us with the following expression:

ZTSU(2)

(
−ξ − iQ2 α, ξ + i

Q

2 (1 + α), mF

)
= sb

(
−iQ2 α− ξ

)
sb

(
i
Q

2 (1 + 2α)− 2ξ
)

×sb
(
−iQ2 α−mF−ξ

)
sb

(
−iQ2 α+mF−ξ

)
(7.27)

This corresponds to three chirals of dimension: (1+α) and one chiral of dimension −2α.
Let X ,Y,Z,S have dimensions (−2α, 1 + α, 1 + α, 1 + α), respectively. Then this is

consistent with the superpotential of the modified XYZ-model

W = XYZ + S2X . (7.28)

This completes the verification of our claim in section 2.2, i.e. that N = 4 3d SQED with
two flavors deformed by a monopole superpotential is dual to the modified XYZ model
with superpotential (7.28). In fact, after integrating out the massive fields,11 this is the
theory with superpotential (2.14) of section 2.2 where m̃ =

(
S Y
Z −S

)
and in which we set

m = 1 and neglect the term including Ψ (in this section we have not gauged the SU(2)
flavor symmetry).

7.4 Monopole deformed U(2) with four flavors

Let us consider the theory of section 3.1, i.e. 3d N = 4 U(2) SQCD with four flavors QiQ̃j

deformed by a monopole superpotential. We want now to prove that its partition function
is equal to the partition function of the effective theory we discussed in section 3.5: the
S-dual theory with gauge group U(1)×SU(2) (see section 3.1) with the U(1) node replaced
by the modified XYZ model.

In section 7.2 we matched the partition functions of dual theories by analysing the
self-mirror property of N = 4 SQED with two flavors, which is also called T (SU(2)) in the
literature. Analogously, in the present section we obtain the desired result by considering
mirror symmetry for T (SU(3)), which is the 3d N = 4 theory in figure 23. The basic
result we need is that it is self-mirror. The partition function will be a function of the FI

11In section 2.2, the description of the mirror theory was a bit different. However, from equation (2.10)
one sees that s1, s2, φ` can be integrated out (in particular s1 = −s2 ≡ S), leaving a superpotential that is
the sum of the N = 4 SQED superpotential, plus the mass deformation for P and Q̃.
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Figure 23. Quiver of T (SU(3)) theory. ξi is the FI parameter relative to the i-node.

parameters ξ1, ξ2, associated with the U(1) and U(2) gauge groups respectively, and the real
masses for the SU(3)F symmetry m1,m2,m3 (subject to constraint m1 + m2 + m3 = 0).
The sphere partition function was computed in [50] and is manifestly invariant under
permutations of mi. Since the theory is self-mirror, we expect a similar relation also for
the FI parameters and indeed one can show that the partition function is also invariant
under the transformation ξ1 ↔ −ξ2, ξ2 ↔ −ξ1. Said differently, we have the identity

ZTSU(3)(ξ1, ξ2) = ZTSU(3)(−ξ2,−ξ1) . (7.29)

As in the previous section, we can promote the FI parameters to complex variables and the
partition function is a holomorphic function of zi ≡ ξi + i

2βT,iQ, where βT,i is the mixing
parameter between the R-charge and the topological U(1)T relative to the node i. The
relation (7.29) then implies

ZTSU(3)(z1, z2) = ZTSU(3)(−z2,−z1) . (7.30)

Now, remember that the monopole operators with R-charge H + C = 1 have trial R-
charge 1 − α (where we mixed the N = 4 R-charge with the axial generator H − C as in
section (7.2)). In order to proceed we choose

z1 = i
Q

2 (1− α) and z2 = ξ (7.31)

Plugging this into (7.30), we have

ZTSU(3)

(
i
Q

2 (1− α), ξ
)

= ZTSU(3)

(
−ξ,−iQ2 (1− α)

)
. (7.32)

The l.h.s. is the partition function of T (SU(3)) with an FI-term for the U(2) node and
a superpotential deformation ∆W = W+, with W+ a monopole operator (with N = 4
R-charge equal to one) relative to the U(1) node (the mixing parameter βT,1 = 1 + α is
the one we need to have W+ with R-charge equal to 2). The r.h.s. instead is the partition
function of T (SU(3)) with an FI-term for the U(1) node and a superpotential deformation
∆W = V−, with V− a monopole operator (with N = 4 R-charge equal to one) relative to
the U(1) node.

We now integrate (7.32) over ξ:∫ +∞

−∞
dξ ZTSU(3)

(
i
Q

2 (1− α), ξ
)

=
∫ +∞

−∞
dξ ZTSU(3)

(
−ξ,−iQ2 (1− α)

)
. (7.33)

At the level of the partition function, gauging a global U(1) means introducing a real
mass for it (i.e. a background gauge field is introduced for the global U(1)) and integrating
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over it (i.e. the U(1) is now a gauge symmetry). Hence, the l.h.s. of (7.33) is the partition
function of the (monopole deformed) T (SU(3)) theory where we gauged the topological
U(1)T relative to the U(2) node (an FI parameter is a real mass for the topological symme-
try). Since gauging a topological U(1) is equivalent to ungauging the central U(1) factor,12

the l.h.s. of (7.33) reduces to the partition function of the SU(2) × U(1) theory discussed
in section 3.1, with the superpotential deformation ∆W = W+ at the abelian node. On
the other hand, on the r.h.s. we are integrating over the FI parameter of the U(1) node
and the net effect is to ungauge it. Consequently, the r.h.s. becomes the partition function
of the U(2) theory with four flavors deformed by ∆W = V−, i.e.

Z
V−
U(2)(α) = Z

W+
U(1)×SU(2)(α) . (7.34)

This, in particular, prove that the monopole operators V∓ are mapped to W±, as claimed
in section 3.5.

Let us write down the r.h.s. of (7.34)explicitly:

Z
W+
U(1)×SU(2)(α) =

∫
du2 sinh(2bπu2) sinh(2b−1πu2) (7.35)

×

qi,q̃
i︷ ︸︸ ︷

sb
6
(
i
Q

4 (1− α) + u2

)
sb

6
(
i
Q

4 (1− α)− u2

)

×

Φ︷ ︸︸ ︷
sb

(
i
Q

2 α
)
sb

(
i
Q

2 α+ 2u2

)
sb

(
i
Q

2 α− 2u2

)
× sb

(
i
Q

2 α
)

︸ ︷︷ ︸
φ

∫
du1 e

πQ(1+α)u1︸ ︷︷ ︸
∆W=W+

∏
ε1=±

∏
ε2=±

sb

(
i
Q

4 (1− α) + ε1u1 + ε2u2

)
︸ ︷︷ ︸

v,ṽ

We now notice that the second line is exactly ZW+
TSU(2)(

i
2αQ, 2u2, 0), that we have computed

in (7.23). Hence, using (7.34) we reach the desired conclusion:

Z
V−
U(2)(α) =

∫
du2 sinh(2bπu2) sinh(2b−1πu2) (7.36)

×

qi,q̃
i︷ ︸︸ ︷

sb
6
(
i
Q

4 (1− α) + u2

)
sb

6
(
i
Q

4 (1− α)− u2

)

×

Φ︷ ︸︸ ︷
sb

(
i
Q

2 α
)
sb

(
i
Q

2 α+ 2u2

)
sb

(
i
Q

2 α− 2u2

)

× sb
(
−iQ2 α

)
sb

(
i
Q

2 (1 + 2α)
)
sb

(
−iQ2 α− 2u2

)
sb

(
−iQ2 α+ 2u2

)
︸ ︷︷ ︸

X ,m̃

12At the level of the sphere partition function for a U(N) gauge theory turning on a FI term means
multiplying the integrand by Exp(−2πiξ

∑
i
ui), where ξ is the FI parameter and ui represent the U(N)

Cartan coordinates over which we integrate. The integral over ξ produces a delta function δ(
∑

i
ui) thus

reducing the partition function to that of a SU(N) gauge theory
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The r.h.s. of the above equation is the partition function of the effective theory discussed
in section 3.5.

7.5 Monopole deformations of N = 4 U(N) SQCD with 2N flavors

Let us comment briefly on higher rank theories. In this case one duality frame involves
a nonlagrangian theory, so we cannot directly compare the sphere partition functions.
Nevertheless, since the S3 partition function can be extracted from the superconformal
index of the four dimensional theory, we conclude that the partition functions of SU(N)
SQCD with 2N flavors and the S-dual theory necessarily match: the index of class S
theories is known to depend only on the data of the UV curve [55] and S-dual theories are
described by the same UV curve. Since the baryon number of SQCD is identified with the
U(1) symmetry acting on the SU(2) doublet in the S-dual theory, the corresponding real
mass parameters in three dimensions are identified. The equality of the partition functions
for the dual pair we discussed in the previous sections then follow just by integrating over
the real mass (i.e. gauging the U(1) symmetry) and by turning on an “imaginary” FI
parameter to introduce the mixing of the R-symmetry with the topological symmetry.

8 Concluding remarks

In this paper we studied ADE quiver gauge theories in three dimensions with monopole
superpotential terms, which describe the worldvolume theory of D2 branes probing T-brane
backgrounds. These superpotential terms affect the moduli space of the theory in a subtle
way and as we have seen it is often possible to identify a dual description of the theory
which makes their effect manifest. We always find that the geometric branch (i.e. the
ADE singularity) stays undeformed but the resolution of the singularity is obstructed, in
agreement with the analysis of [5].

The main tool we exploited in our analysis is (the 3d version of) Argyres-Seiberg
duality. This is essential to reduce the problem to analyzing a U(1) theory, which in turn
can be handled using N = 2 abelian mirror symmetry as we did in [15]. In this way we
find a large new class of N = 2 theories whose Higgs branch coincides with that of the
parent theory with eight supercharges. The key step is to turn our attention to a dual non-
Lagrangian description of the theory: we lose in part the simplicity of the “conventional”
description but we gain a simpler representation of the deformation we need to understand.
This is a perfect example of the power of dualities: in every duality frame some observables
are easy to compute and in order to achieve a complete understanding of a theory it is
often necessary to consider simultaneously several dual descriptions.

As we have already discussed, T-branes can also be understood as nilpotent mass
terms in the mirror of the ADE quiver theories. Our method can be straightforwardly
applied to study all T-branes for DN or EN singularities corresponding to mass matrices
which square to zero. More general cases require a generalization of our method: when we
apply our duality to handle the monopole superpotential at one node, we affect nontrivially
neighboring nodes as well, since they are now coupled to non-Lagrangian matter. Hence,
when we turn on a monopole superpotential at all the gauge nodes in a subquiver, it is
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Figure 24. DN quiver.

convenient to look for a suitable dual description of the subquiver as a whole. When
the problem can be reduced to discussing linear subquivers we expect class S dualities to
provide the right duality frame. In the general case (such as a mass matrix in the principal
nilpotent orbit) we probably need analogs of the Argyres-Seiberg duality for quivers of D
or E type, which are not known at present. Similar considerations apply also to the duality
studied in section 6: we can understand the equivalence of the new quivers for a subclass
of monopole superpotentials. The general case necessarily requires exploiting dualities for
more complicated subquivers.

We believe our method can be generalized further and represents an essential starting
point both for the study of monopole operators in supersymmetric theories and for a more
thorough study of T-brane backgrounds from the perspective of the probe brane.

It would finally be interesting to provide a proper description of how the Coulomb
branch is modified by the monopole deformation. From the mirror side, we know that
some directions of the moduli space should be lifted. Perhaps there might be a way to
use for this purpose the Hilbert series constructions of [42–47] that proved so successful in
constructing moduli spaces.
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A The Higgs branch of ADE quivers

A.1 D-type quivers

The worldvolume theory of a D-brane probing an DN singularity is a quiver gauge theory in
the shape of the affine DN Dynkin diagram (see figure 24). The Higgs branch chiral opera-
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Figure 25. From left to right the quivers of E6, E7 and E8 type.

tors (that are traces of products of bifundamental fields) can be expressed in terms of three
generators constrained by one relation, that is the same as the algebraic equation defining
the D-type singularity (see [48] for the explicit derivation). The relations that express all
the chiral operators in terms of the three generators and that constrain the three generators
come from the F-term equations derived from differentiating the superpotential (B.1) with
respect to the vector multiplet scalars Ψi, φq, φp, φtφs.

Let us sketch the derivation of the Higgs branch. When N is even, the three invariants
that generate the chiral ring are

Z ≡ −q̃pp̃q ,
Y ≡ 2p̃A1 · · ·AN−4ss̃BN−4 · · ·B1p+ (−z)N/2−1 , (A.1)
X ≡ 2q̃A1 · · ·AN−4ss̃BN−4 · · ·B1pp̃q .

They are subject to the relation

X2 + ZY 2 = ZN−1 . (A.2)

All the other possible gauge invariants either vanish or can be written in terms of the
generators by using the F-terms of Ψi, φq, φp, φtφs. For instace:

s̃tt̃s = tr(tt̃+ ss̃)2

= tr(AN−4BN−4)2 = tr(A1B1)2 = q̃pp̃q = −Z
p̃A1 · · ·AkBk · · ·B1p = p̃(A1B1)kp

= p̃(pp̃+ qq̃)kp = δk1Z
2 k ≤ N − 4

s̃BN−4 · · ·BN−4−hAN−4−h · · ·AN−4s = s̃(BN−4AN−4)ks
= s̃(ss̃+ tt̃)ks = δh1Z

2 h ≤ N − 4 (A.3)

For N odd, analogous computations can be done (see [48] for detail).

A.2 E-type quivers

The worldvolume theory of a D-brane probing an EN singularity is a quiver gauge theory
in the shape of the affine EN Dynkin diagram. These theories have a central gauge node
coupled to three linear tails of unitary groups, as displayed in figure 25. All the Higgs branch
chiral operators of these models (i.e. traces of products of bifundamental multiplets) can be
expressed in terms of three fundamental generators satisfying a chiral ring relation, which
is the same as the defining equation of the corresponding E-type singularity. This was
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shown explicitly in [48] and is essentially a consequence of F-term equations derived from
the superpotential of the theory. We will now sketch the derivation, referring to [48] for
details. A first important observation is the following: we can construct three mesons (let
us call them M1,2,3) quadratic in the bifundamental fields, which transform in the adjoint
representation of the central U(n) gauge node (and neutral under the other gauge groups)
and they satisfy the chiral ring relations:

M li
i = 0; M1 +M2 +M3 = 0, (A.4)

where l1,2,3 denote the length of the linear tails (including the central node) and the last
equation is simply a consequence of the F-term equation for the central gauge node.

It is possible to show that all nonvanishing Higgs branch chirals can be written in terms
of M1,2,3. Using this description and (A.4), one can identify the three basic generators of
the Higgs branch. For example in the E6 case (the quiver has three identical legs of length
three) the three generators are (in the notation of [48])

U = tr (M2
1M

2
2M

2
3 ); W = tr (M2

1M2); V = tr (M2
1M

2
2 ). (A.5)

All other gauge invariants are polynomials in U , V and W . The task now is to extract the
E6 singularity from these three objects and the key tool for this is the Schouten identity
discussed in [48]. In the E6 case one only needs the identity for one-by-one matrices, which
simply states that such matrices commute. This fact is helpful because the invariants U
and V defined above can also be written as products of U(1)×U(1) bifundamentals (these
arise by multiplying together bifundamental fields, starting and ending at U(1) nodes).
These are one-by-one matrices and hence can be freely commuted. Using this fact one can
find suitable combinations X, Y and Z of the three generators which satisfy the relation
X2 + Y 3 = Z4, which is the desired result.

The logic for the other two cases is similar; the only difference is that we need the
two-dimensional Schouten identity which reads:

tr ({A,B}C) = tr (AB)(trC) + tr (AC)(trB) + tr (BC)(trA)− (trA)(trB)(trC)

for any 2×2 matrices A, B and C. This identity can be applied to extract the desired chiral
ring relation if we can rewrite the basic generators as the trace of products of two-by-two
matrices. In [48] this is done by introducing certain “chains” of the bifundamental chirals
in the quiver which transform in the adjoint representation of one U(2) node in the quiver,
and showing that the Higgs branch generators can be written in terms of them.

In the E7 quiver, which has two tails of length four and one of length two, the three
generators are (we call M3 the meson of the tail of length two)

X = tr (M2
1M

3
2M

3
1M3); Y = −tr (M3

1M
3
2 ); Z = tr (M3

1M3). (A.6)

Using the Schouten identity at the U(2) node of one of the long tails, one can prove that
X2 + Y 3 + Y Z3 = 0.

Finally, in the E8 case the three generators are

X = tr (M5
1M

2
2M1M

2
2M

3
1M

2
2 ); Y = tr (M5

1M
2
2M1M

2
2 ); Z = tr (M5

1M2), (A.7)
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where M1 is associated to the tail of length six and M2 to the tail of length three. In order
to prove that X2 + Y 3 +Z5 = 0, we need to use the Schouten identity at the U(2) node of
the length-three tail.

In summary, in order to extract the EN singularities, we need to check that all the
Higgs branch operators can be written in terms of three matrices satisfying (A.4) and that
they can be written in terms of U(2) adjoints as in [48]. The last step is needed in order
to use the Schouten identity.

B Monopole deformation along a U(1) node of DN

Consider a DN quiver gauge theory (see figure 24). The arrows of the quiver represent
bifundamental chirals, as the diagram shows.13 The four external are associated with
Abelian vector multiplets, which have each a complex scalar fields. Starting from the
upper left in clockwise orientation, these are φq, φs, φt, φp. Similarly, each non-Abelian
node in the middle horizontal line has an adjoint complex scalar field Ψ1 , . . .ΨN−3.

The N = 4 theory has the following superpotential

W = tr
[

(Ψ1 − 1φq) qq̃ + (ΨN−3 − 1φs) ss̃+ (ΨN−3 − 1φt) tt̃+ (Ψ1 − 1φp) pp̃

+
N−4∑
i=1

(BiΨiAi −AiΨi+1Bi)
]

(B.1)

The Higgs branch (HB) is described by gauge invariant combinations of the quark
fields subject to relations coming from the F-terms for the fields Ψi and φp,q,s,t [48, 49] (see
appendix A.1). All the gauge invariants can be written in terms of three generators x, y
and z satisfying the equation defining the DN singularity (see appendix A.1):

x2 + zy2 = zN−1 . (B.2)

We now want to deform the superpotential (B.1) by adding the coupling (that is our
definition of a T-brane along the corresponding Jordan block)

∆W = mWq,+ , (B.3)

where Wq,+ is the monopole operator relative to the U(1)q node, i.e. the one that has R-
charge equal to one and sits in the same N = 4 supermultiplet as the conserved topological
current relative to the given photon. We then proceed as outlined above. We ungauged
the nearby U(2) node, obtaining a U(1) gauge theory with two flavors and coupled to the
complex scalar field Ψ1 like in (2.8) (where now φ` → φq and Ψ→ Ψ1). As seen above, the
monopole deformation produces a local theory with no gauge fields and with superpotential

W eff
loc = tr(Ψ1 m)− X

m
detm , (B.4)

13We use the convention where the arrows that go from a non-Abelian node to an Abelian one represent
column vectors.

– 57 –



J
H
E
P
1
0
(
2
0
1
7
)
1
1
3

φp

Ψ1 Ψ2 ΨN+1

φy

φx

p̃

p

A1

B1

t̃

t

s̃

sM

Figure 26. Effective quiver for deformed DN+4.

with m a 2 × 2 traceless complex matrix. We finally have to glue again our theory to the
U(2) gauge node. Since the gauge group has now disappeared, our quiver has lost one
Abelian tail and has now the shape of a DN (not affine) Dynkin diagram. The previously
trivalent vertex now has two adjoint chiral multiplets and two neutral chirals (φ and X )
coupled to them. The rest of the quiver and superpotential terms are unaltered.

The Higgs branch is not modified by the monopole deformation (B.3). The Higgs
branch of the N = 4 theory is the singularity of type DN : one constructs suitable gauge
invariant operators out of the bifundamentals (for N even, they are given by (A.1)) and
using the F-term constraints one proves that they satisfy the desired relation [48]. All the
gauge invariants considered in extracting the singularity are constructed using the meson
matrix built out of these bifundamentals. The theory we obtain after the deformation differs
from the original more supersymmetric model only in one aspect: the bifundamentals fields
between one U(1) node and its adjacent U(2) node are replaced by the meson matrix m.
The F-terms of the deformed theory says that m is traceless and square to zero. We can
hence apply the results at the end of section 2 and conclude that m satisfies all possible
relation satisfied by the meson matrix in the original theory.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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