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Abstract
Most	of	accumulation	curves	tend	to	underestimate	species	richness,	as	they	do	not	
consider	 spatial	 heterogeneity	 in	 species	 distribution,	 or	 are	 structured	 to	 provide	
lower	bound	estimates	and	limited	extrapolations.	The	total-species	(T–S)	curve	allows	
extrapolations	over	large	areas	while	taking	into	account	spatial	heterogeneity,	making	
this	estimator	more	prone	to	attempt	upper	bound	estimates	of	regional	species	rich-
ness.	However,	the	T–S	curve	may	overestimate	species	richness	due	to	(1)	the	mis-
match	among	the	spatial	units	used	in	the	accumulation	model	and	the	actual	units	of	
variation in β-	diversity	across	the	region,	(2)	small-	scale	patchiness,	and/or	(3)	patterns	
of	 rarity	of	 species.	We	propose	a	new	 framework	allowing	 the	T–S	curve	 to	 limit	
overestimation	and	give	an	application	to	a	large	dataset	of	marine	mollusks	spanning	
over	 11	km2	 of	 subtidal	 bottom	 (W	Mediterranean).	 As	 accumulation	 patterns	 are	
closely	related	across	the	taxonomic	hierarchy	up	to	family	level,	improvements	of	the	
T–S	curve	leading	to	more	realistic	estimates	of	family	richness,	that	is,	not	exceeding	
the	maximum	number	of	known	families	potentially	present	in	the	area,	can	be	consid-
ered	as	conducive	to	more	realistic	estimates	of	species	richness.	Results	on	real	data	
showed	 that	 improvements	 of	 the	 T–S	 curve	 to	 accounts	 for	 true	 variations	 in	 
β-	diversity	within	the	sampled	areas,	small-	scale	patchiness,	and	rarity	of	families	led	
to	the	most	plausible	richness	when	all	aspects	were	considered	in	the	model.	Data	on	
simulated	communities	indicated	that	in	the	presence	of	high	heterogeneity,	and	when	
the	proportion	of	rare	species	was	not	excessive	(>2/3),	the	procedure	led	to	almost	
unbiased	estimates.	Our	findings	highlighted	the	central	role	of	variations	in	β-	diversity	
within	the	region	when	attempting	to	estimate	species	richness,	providing	a	general	
framework	exploiting	the	properties	of	the	T–S	curve	and	known	family	richness	to	
estimate	plausible	upper	bounds	in	γ-	diversity.
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1  | INTRODUCTION

Traditional	methods	to	estimate	species	richness	do	not	take	into	ac-
count	spatial	heterogeneity	in	species	distribution	within	the	area	of	
interest,	yet	 it	 is	crucial	to	model	species	accumulation	as	the	ensu-
ing	estimates	could	be,	in	turn,	strongly	influenced	(Chazdon,	Colwell,	
Denslow,	&	Guariguata,	1998;	Colwell	&	Coddington,	1994;	Colwell,	
Mao,	&	Chang,	 2004;	Gotelli	&	Colwell,	 2001).	 In	most	 cases,	 con-
ventional	accumulation	curves	overcome	this	issue	by	assuming	sub-
stantial	 homogeneity	within	 the	 investigated	 area.	 However,	 if	 this	
assumption	may	 be	 reasonably	 accepted	 for	 local-	scale	 estimations	
(Colwell	&	Coddington,	1994),	it	might	be	unrealistic	when	estimating	
species	richness	at	a	regional	scale	(i.e.,	γ-	diversity)	or	in	areas	charac-
terized	by	habitat	mixtures.	In	such	contexts,	environmental	changes	
across	the	area	are	expected	to	modify	the	distribution	and	 identity	
of	species	composing	assemblages	from	one	place	to	another	(Matias,	
Underwood,	Hochuli,	&	Coleman,	2011).	Ignoring	these	nondirectional	
variations in β-	diversity	 (sensu	Anderson	et	al.,	2011)	constrains	 the	
application	of	classic	species	accumulation	curves	to	very	 local	con-
texts	and	may	 lead	to	underestimated	species	richness	extrapolated	
over	 large	 areas	 (O’Dea,	Whittaker,	&	Ugland,	 2006;	Reichert	 et	al.,	
2010;	Ugland,	Gray,	&	Ellingsen,	2003).

Despite	nonparametric	estimators	of	species	richness	(e.g.,	Chao	
and	Jackknife	estimators;	see	Gotelli	&	Chao,	2013	for	a	review)	allow	
taking	into	account	spatial	heterogeneity,	they	are	sensitive	to	shifts	
in	 species-	abundance	 distribution	 (Gwinn,	 Allen,	 Bonvechio,	 Hoyer,	
&	Beesley,	2016)	and	mainly	structured	 to	provide	 lower	bound	es-
timates	 of	 species	 richness	 at	 local	 scale	 (Gotelli	 &	 Colwell,	 2001;	
Shen,	Chao,	&	Lin,	2003).	Same	considerations	apply	when	estimates	
are	obtained	by	fitting	asymptotic	models	(e.g.,	negative	exponential	
or	 Michaelis–Menten	 functions;	 reviewed	 by	 Tjørve,	 2003)	 to	 the	
smoothed	 sample-	based	 accumulation	 curve,	 because	 large	 areas	
likely	accumulate	species	at	a	constant	or	even	an	increasing	rate	due	
to	environmental	changes	supporting	distinctive	species	assemblages	
(Gotelli	&	Colwell,	2011).	Improvements	from	mixture	models	(Colwell	
et	al.,	2004)	solved	only	partially	the	issue,	as	they	are	generally	effec-
tive	for	extrapolations	over	a	limited	spatial	extent,	which	is	often	not	
sufficient	to	cover	the	area	of	 interest	 (Chao,	Colwell,	Lin,	&	Gotelli,	
2009).	 Nonasymptotic	 models,	 such	 as	 the	 semi-	log	 model	 or	 the	
power	law,	are	more	prone	to	extrapolations	over	a	large	number	of	
samples	and	produce	less	conservative	estimates	of	species	richness	
(Tjørve,	2003),	but	largely	disregard	spatial	heterogeneity.

Ugland	et	al.	(2003)	proposed	a	new	approach	for	estimating	spe-
cies	 richness	at	a	 regional	 scale	 in	which	an	overall	 semi-	log	model,	
namely	the	total–species	 (T–S)	curve,	 is	 fitted	to	the	endpoints	of	a	
set	of	species	accumulation	curves	 from	distinct	spatial	units	within	
the	total	area	of	study.	In	contrast	to	traditional	methods,	this	proce-
dure	provides	an	attempt	to	model	species	accumulation	accounting	
simultaneously	 for	variations	 in	 species	 composition	 among	 individ-
ual	samples	and	potential	heterogeneities	in	species	identities	among	
spatial	units	within	the	total	area	sampled.	Evidence	from	study	areas	
where	the	total	species	richness	was	actually	known	highlighted	that	
the	T–S	curve	provided	the	most	accurate	estimate	of	total	richness	

out	of	a	suite	of	classical	estimation	methods,	which	in	most	cases	pro-
duced	large	underestimations	(e.g.,	O’Dea	et	al.,	2006;	Reichert	et	al.,	
2010).	Yet,	doubts	still	remain	about	the	tendency	of	the	approach	to	
overestimate	 species	 richness	 (Hortal,	Borges,	&	Gaspar,	 2006),	 de-
pending	on	patterns	of	commonness	and	rarity	of	the	species	involved	
(Reichert	et	al.,	2010)	and/or	the	extent	to	which	selected	spatial	units	
used	in	the	accumulation	model	capture	true	patterns	of	variation	in	
β-	diversity	within	the	total	area	(O’Dea	et	al.,	2006).

Understanding	 whether	 accumulation	 curves	 give	 realistic	 esti-
mates	of	species	richness	is	difficult,	if	not	impossible,	in	the	absence	
of	 reliable	boundaries.	Alternative	 thresholds,	 to	 serve	as	 reference,	
can	be	nevertheless	 derived	 from	higher	 taxon	 richness.	The	 actual	
total	number	of	families	in	a	given	region,	for	instance,	can	be	readily	
available	from	baseline	checklists.	As	both	β-	diversity	and	coefficients	
of	T–S	curves	are	strongly	correlated	across	the	taxonomic	hierarchy	
up	to	family	level	(Terlizzi	et	al.	2009,	2014),	it	is	expected	that	varia-
tions in β-	diversity	within	a	given	area	will	affect	estimates	of	species	
and	family	richness	from	T–S	curves	in	the	same	way.	In	this	frame-
work,	the	performance	of	the	T–S	curve	may	be	assessed	using	fami-
lies,	and	improvements	leading	to	realistic	estimates	of	family	richness,	
that	is,	not	above	the	maximum	possible	richness,	can	be	considered	
as	conducive	also	to	improved	estimates	of	species	richness.

Here,	we	employed	simulated	communities	and	real	data	on	ma-
rine	mollusk	assemblages	from	three	different	habitats	to	show	how	
spatial	heterogeneity	and	rarity	of	species	may	affect	estimates	from	
T–S	 curves	 and,	 using	 known	 total	 family	 richness	 as	 reference,	 to	
demonstrate	that	the	progressive	inclusion	of	such	factors	in	the	un-
derlying	accumulation	model	may	 lead	to	 realistic	estimates	of	 fam-
ily	richness.	The	aim	is	to	reveal	some	properties	of	the	T–S	curve	in	
order	 to	 provide	 a	 framework	 to	 extrapolate	 species	 richness	 over	
large	areas	while	controlling	for	potential	overestimation	not	exceed-
ing	plausible	limits	and,	therefore,	producing	estimates	that	could	be	
considered	as	potential	upper	bounds.

2  | MATERIALS AND METHODS

2.1 | Study area and dataset

The	study	area	is	located	along	the	south	Adriatic	coast	of	Apulia	(SE	
Italy,	 Mediterranean	 Sea)	 with	 a	 coastline	 spanning	 approximately	
over	20	km.	Seven	subareas,	selected	as	distinct	spatial	units	based	on	
geomorphological	features,	habitat	distribution,	and	human	activities	
(Fig.	S1),	were	sampled	during	a	4-	year	monitoring	program	carried	out	
from	2010	until	2013.	Two	subareas	(S1,	S2)	had	a	surface	of	1	km2,	
whereas	 the	 four	 remaining	 subareas	 (S3–S7)	 extended	over	2	km2. 
Each	subarea	from	S1	to	S4	accounted	for	two	habitats,	namely	rocky	
reefs	 and	 Posidonia oceanica	 seagrass	 beds,	 whereas	 subareas	 5–7	
were	 characterized	 only	 by	 coralligenous	 outcrops	 (see	 Fig.	 S1,	 see	
also	Table	S1	 in	supplementary	material	 for	 further	details).	Benthic	
assemblages	from	each	habitat	within	each	subarea	were	sampled	at	
a	total	of	eight	randomly	selected	sampling	stations	(4	m2	surfaces	of	
sea	bottom)	for	larger	subareas	(two	sampled	stations	per	year,	from	
2010	to	2013),	and	at	four	stations	(one	sampled	station	per	year)	for	
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smaller	ones	(Table	S1).	In	each	time	of	sampling,	three	samples	were	
collected	 in	each	station,	for	a	total	of	216	samples.	Benthic	assem-
blages	were	sampled	within	0.25	m2	squares	collecting	sediments,	and/
or	scraped	rock,	within	1-	mm	mesh	bags	using	an	airlift.	Macrofauna	
was	then	hand-	sorted	under	magnification	and	identified	at	the	finest	
taxonomic	resolution	as	possible.	We	focused	on	mollusks,	the	most	
widespread	and	diverse	phylum	present,	for	which	all	individuals	were	
identified	down	to	the	species	level.	A	total	of	220	species,	belonging	
to	85	families,	were	recorded	(Table	S2	and	Appendix	S6).

We	 checked	 that	 spatial	 (i.e.,	 among	 subareas	 and	 habitats)	
 variations in β-	diversity	were	 not	 confounded	 by	 temporal	 changes	
in β-	diversity,	 in	order	 to	 legitimate	 the	use	of	 samples	 from	differ-
ent	years	as	a	whole	set	of	data	to	build	species-	accumulation	curves.	
Tests	 on	multivariate	 dispersion	 (PERMDISP,	Anderson,	 2006)	were	
carried	 out	 separately	 for	 each	 habitat	 in	 each	 subarea,	 to	 exclude	
substantial	effects	of	time	in	modifying	spatial	patterns	of	β-	diversity	
in	the	whole	sampled	area	(see	Table	S3).

2.2 | Maximum number of families in the area

The	 inventory	of	marine	mollusk	 families	was	mined	from	the	 litera-
ture	combining	several	checklists	at	regional	and	basin	scale.	Families	
of	marine	mollusks	virtually	absent	from	the	investigated	marine	ben-
thic	habitats	(because	peculiar	of	deep-	sea	habitats,	brackish	waters,	or	
planktonic	and	pelagic	compartments)	were	then	excluded	leading	to	a	
total	of	242	mollusk	families	potentially	present	in	the	area	(Table	S4).	
This	number	was	considered	as	the	highest	possible	number	of	families,	
and	used	as	upper	limit	to	compare	against	family	richness	estimated	
from	 (1)	 the	 T–S	 curve	 simply	 accounting	 for	 spatial	 heterogeneity	
among	subareas,	and	T–S	curves	that	overcome	progressively	also	po-
tential	overestimation	due	to	(2)	habitat	heterogeneity	within	subareas,	
(3)	small-	scale	patchiness,	and	(4)	patterns	of	commonness	and	rarity	
of	taxa.	Improvements	leading	to	estimates	of	total	family	richness	not	
exceeding	the	highest	possible	value	were	considered	as	conducive	to	
more	reliable	estimates	of	total	species	richness	(Figure	1).

2.3 | Quantifying β- diversity within the study area

As	 a	 preliminary	 step,	 PERMDISP	was	 employed	 to	 check	whether	
heterogeneity	in	composition	of	mollusk	assemblages	at	species	and	
family	 level	 actually	 varied	among	 subareas	and	habitats	within	 the	
total	 area.	 Tests	were	 based	 on	 Jaccard’s	 distance	matrices	 among	
samples,	with	999	permutations.	The	design	for	the	analyses	consisted	
of	two	crossed	factors,	namely	subareas	(seven	levels,	fixed)	and	habi-
tat	(three	levels,	fixed).	We	anticipated	that	patterns	of		β-	diversity	sig-
nificantly	differed	among	subareas	and	habitats,	consistently	between	
species	and	families	(see	Results).

2.4 | Estimating family richness based on T–S 
accumulation curve

The	T–S	accumulation	curve	 (Ugland	et	al.,	2003)	allows	accounting	
for	heterogeneity	among	spatial	units	within	the	total	area.	As	a	first	

step	 to	build	 the	T–S	 curve,	 one	 species	 accumulation	 curve	 is	 ob-
tained	by	randomizing	samples	of	all	combinations	of	1,	2,	3,…,	n	spa-
tial	units,	with	a	given	number	of	random	draws	of	samples	for	each	
combination.	Then,	the	overall	T–S	curve	is	obtained	by	fitting	a	semi-	
log	model	(i.e.,	number	of	species	vs.	the	natural	logarithm	of	the	sam-
pled	area)	to	the	endpoints	of	the	nested	species-	accumulation	curves	
(see	Ugland	et	al.,	2003	for	further	details).	Ordinary	least	square	re-
gression	gives	an	estimate	for	the	intercept,	μ̂S,	and	also	for	the	slope	
coefficient,	β̂S,	in	the	model,	and	the	estimate	of	the	total	number	of	
species	in	the	total	area	of	interest,	̂STot,	is	given	by:	

where N = A/a,	that	is,	the	number	of	samples	required	to	cover	the	
whole	area	of	interest,	given	the	area	of	the	sample	a,	and	the	total	
area A.

The	 same	 procedure,	 using	 families	 instead	 of	 species,	 can	 be	
applied	to	obtain	a	“total-	family”	(T–F)	curve,	and	an	estimate	of	the	
total	number	of	families,	 ̂FTot,	in	the	total	area	(see	Terlizzi,	Anderson,	
Bevilacqua,	&	Ugland,	2014)	as	follows:	

As	there	are	no	measures	of	dispersion	for	estimates	from	the	T-	S	
curve,	bootstrap	estimates	were	obtained	 in	order	construct	95%CI.	
Bootstrapping	 has	 been	widely	 applied	 to	 assess	 variability	 of	 esti-
mates	from	the	T–S	curve	(Reichert	et	al.,	2010)	and	other	estimators	
(e.g.,	Eren,	Chao,	Hwang,	&	Colwell,	2012).	In	this	case,	for	example,	
a	bootstrap	set	of	samples	was	obtained	by	resampling	the	data	with	
replacement	for	each	combination	of	1,	2,…,	6,	7	subareas.	This	pro-
cedure	was	repeated	100	times	to	obtain	100	estimates	on	which	the	
95%CI	was	constructed.	The	same	approach	was	applied	to	the	fol-
lowing	steps.

2.5 | Selecting appropriate spatial units to build 
accumulation curves

The	 T–S	 curve	 accounts	 for	 spatial	 heterogeneity	 among	 spatial	
units	 within	 the	 total	 area	 of	 interest,	 which	 are	 assumed	 to	 be	
homogeneous.	 However,	 partitioning	 the	 total	 area	 into	 spatial	
units	not	aligned	with	actual	patterns	of	spatial	heterogeneity	may	
influence	the	slope	coefficient	 (β̂S)	of	the	T–S	curve	(O’Dea	et	al.,	
2006)	 and,	 as	 a	 consequence,	 the	ensuing	estimate	of	 total	 rich-
ness.	To	explore	the	effect	of	increasing	heterogeneity	within	the	
selected	spatial	units	on	estimates	 from	the	T–S	model,	12	data-
sets	of	250	species	×	1,200	samples	were	simulated	(Appendix	S1	
and	Appendix	 S5).	 Each	 dataset	 corresponded	 to	 one	 hypotheti-
cal	 region	 consisting	 of	 four	 spatial	 units,	with	 three	 subunits	 in	
each	spatial	unit.	For	each	region,	consider	that	each	subunit	had	a	
total	surface	equal	to	100	samples	of	size	1.	A	total	of	250	species	
were	 distributed	 in	 each	 region	 to	 simulate	 different	 patterns	 of	
heterogeneity	in	species	composition	and	small-	scale	heterogene-
ity	within	(among	subunits)	and	among	spatial	units,	and	different	
patterns	of	rarity.	Summarizing,	we	simulated	12	hypothetical	re-
gions	 (datasets)	 each	of	 them	with	a	 total	 area	of	1,200	 samples	

(1)̂STot=μ̂S+β̂S ( lnN)

(2)̂FTot=μ̂F+β̂F ( lnN)
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and	a	total	species	richness	of	250	species,	with	different	patterns	
of	 heterogeneity	 in	 species	 distribution	 and	 rarity	 (see	Appendix	
S1	for	further	details).	For	each	simulated	dataset,	10	samples	of	
100	were	randomly	selected	for	each	subunit,	obtaining	a	subset	
of	120	random	samples	that,	in	practice,	simulated	a	representative	
sampling	 of	 the	 hypothetical	 region.	 For	 each	 simulated	 dataset,	
the	T–S	curve	was	obtained	based	on	(a)	the	four	spatial	units	and	
(b)	 the	 12	 spatial	 units	×	subunits	 (i.e.,	 taking	 into	 account	 both	
heterogeneity	 among	 spatial	 units	 and	 subunits),	 and	 estimates	
of	 species	 richness	 from	 the	 two	 approaches	 were	 compared.	
Considering	spatial	units	as	homogeneous,	when	they	actually	are	
not,	might	 lead	 to	 estimate	 a	 higher	 number	 of	 species,	with	 re-
spect	 to	T–S	 curves	 built	 taking	 into	 account	 true	 heterogeneity	
within	spatial	units	(see	Appendix	S1).

Analogously	 to	 simulated	 data,	 in	 our	 real	 case	 study	 where	
changes	 in	 species	 composition	 and/or	 small-	scale	 heterogeneity	
(i.e.,	 variations	 in	 β-	diversity)	 among	 habitats	 within	 subareas	 and	
among	 subareas	 are	 relevant,	 each	 habitat	 in	 each	 subarea,	 rather	
than	 subareas,	 should	be	 the	correct	 spatial	 units	 to	account	 for	 in	
the	accumulation	model.	We	test	this	hypothesis	on	real	data	by	esti-
mating	family	richness	in	the	total	area	sampled	following	the	two	ap-
proaches	to	spatial	unit	selection	employed	to	analyze	simulated	data,	
and	using	 the	maximum	number	of	 families	 as	 reference.	As	 a	 first	
step	 (Figure	1),	we	built	 the	T–F	curve	using	subareas	 (as	 identified	
in	Fig.	S1,	see	also	Table	S1	for	further	details)	as	spatial	units,	com-
pletely	ignoring	variation	in	β-	diversity	within	subareas	due	to	habitat	
heterogeneity.	Nested	accumulation	 curves	were	obtained	 for	 each	
combination	of	1,	2,	…,	6,	7	subareas	and	using	100	random	draws	of	
samples	for	each	combination.	Family	richness	was	then	estimated	in	
the	total	area	sampled	following	Equation	2.	In	this	case,	the	total	area	
A	is	the	sum	of	the	bottom	surface	covered	by	each	considered	habi-
tat	in	each	subarea,	which	amounted	approximately	to	11,000,000	m2 
(Table	S1),	whereas	the	area	of	one	sample,	a,	was	equal	to	0.25	m2. 

Then,	the	accumulation	model	was	built	by	considering	each	habitat	
in	each	subarea	as	a	separated	spatial	unit	(Figure	1,	step	2),	obtaining	
a	 total	of	11	subarea	×	habitat	units	 (Table	S1).	Family	 richness	was	
estimated	following	Equation	2,	but	the	T–F	curve	was	built	based	on	
accumulation	 curves	 obtained	 using	 100	 random	draws	 of	 samples	
for	each	combination	of	1,	2,…,	10,	11	subarea	×	habitat	units	(A and 
a	as	above).

2.6 | Reducing sampling- biased small- 
scale patchiness

Heterogeneity	 in	 species	 composition	 among	 samples	 could	 be	
strongly	 affected	 by	 sample	 grain,	 especially	 when	 individuals	 or	
species	 are	 spatially	 aggregated	 or	 segregated	 (due	 for	 instance	 to	
small-	scale	 environmental	 variations	 or	 biological	 interactions),	 and	
in	 relation	 to	 the	 extent	 to	 which	 samples	 are	 representative	 of	
local	species	assemblages.	This,	in	turn,	may	influence	the	estimates	
of	 species	 richness	 from	accumulation	 curves	 because	of	 its	 effect	
on	 patchiness	 (Chazdon	 et	al.,	 1998).	We	 used	 a	 procedure	 based	
on	 random	 aggregations	 to	 identify	 the	 number	 of	 original	 smaller	
scale	 samples	 that	 should	 be	 pooled	 together	 in	 order	 to	 quantify	
adequately	species	composition	of	local	assemblages	(see	Anderson	
&	Santana-	Garcon,	2015	and	Appendix	S2	for	further	details).	A	rea-
sonable	measure	of	local	species	diversity	is	achieved	when	pooling	
at least n = 3	 original	 replicate	 samples	 (Appendix	 S2).	 Therefore,	
the	 three	 replicates	 in	each	 station	were	 summed	obtaining	a	 total	
of	72	aggregated	samples,	and	used	to	build	the	T–F	curve,	in	order	
to	 check	whether	 sample	pooling	would	have	 reduced	overestima-
tion	of	 the	 total	 family	 richness	by	overcoming	potential	effects	of	
small-	scale	aggregation	of	species	(Gotelli	&	Colwell,	2011).	The	T–F	
curve	was	built	 as	 above,	with	accumulation	curves	obtained	using	
100	random	draws	of	the	72	aggregated	samples	for	each	combina-
tion	of	1,	2,…,	10,	11	subarea	×	habitat	units	(Figure	1,	step	3).	Note	

F IGURE  1 Logical	sequence	of	the	
stepwise	procedure	described	in	the	
Methods	section,	which	progressively	
integrate	the	T–F	curve	to	account	for	
spatial	heterogeneity	among	subareas,	
among	habitats	within	subareas,	small-	scale	
patchiness,	and	rarity	(Steps	1–4).	The	last	
step	(5)	refers	to	the	application	of	the	
fully	improved	model	to	species	richness	
estimates
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here	that	the	cumulative	list	of	families	from	the	three	samples	was	
assumed	as	representative	of	the	family	pool	in	each	station,	and	the	
area	of	one	sample	a	was	considered	equal	to	4	m2	(i.e.,	the	surface	of	
one	sampling	station).

2.7 | Adjusting the model for rare, intermediate, and 
common families

Once	habitat	heterogeneity	within	subareas	was	incorporated	in	the	
accumulation	model,	and	the	potential	effect	of	small-	scale	patchiness	
fixed,	 the	next	 step	 to	 further	 improve	estimates	of	 family	 richness	
focused	on	adjusting	estimates	according	to	rarity	of	species	(Figure	1,	
step	4).	The	85	mollusk	families	found	in	the	sampled	area	were	clas-
sified	as	common,	intermediate,	and	rare	if	observed,	respectively,	in	
<5%,	>5%	and	<10%,	and	>10%	of	the	aggregated	samples	 (Gauch,	
1982;	Reichert	et	al.,	2010;	Ugland	&	Gray,	1982).

As	the	model	in	Equation	1,	and	analogously	in	Equation	2,	is	ap-
proximately	additive,	the	estimated	total	number	of	families	̂FTot in the 
total	area	of	interest	can	be	considered	as	the	sum	of	the	estimated	
total	number	of	common	̂FCom

Tot
,	intermediate	̂FInterm

Tot
,	and	rare	̂FRare

Tot
	fam-

ilies	in	the	area	obtained	following	Equation	2:

It	is	worth	noting	here	that	the	linear	extrapolation	of	the	number	
of	families	over	the	whole	area	of	 interest	based	on	the	T–F	curve	
implies	that	richness	increases	continuously	at	increasing	number	of	
samples.	However,	 if	 this	might	be	 true	 for	 rare	 families,	 the	 same	
could	not	occur	for	common	and	 intermediate	ones,	and	the	 linear	
extrapolation	 could	 overestimate	 total	 family	 richness	 because	 it	
would	 tend	 to	 overestimate	 the	 number	 of	 common	 and	 interme-
diate	families.	It	is	reasonable	to	assume	that	most,	if	not	all,	of	the	
intermediate	and	common	families	in	the	total	area	of	interest	would	
be	detected	after	a	relatively	minor	proportion	of	the	area	has	been	
sampled	(see	Appendix	S3)	and,	therefore,	that	their	respective	ac-
cumulation	curves	would	achieve	 saturation	 in	 routine	biodiversity	
surveys,	as	the	present	study	(see	Results).	In	this	view,	three	accu-
mulation	curves	can	be	obtained	by	considering	common,	 interme-
diate	and	 rare	 families	 separately,	 and	estimates	of	 common	 (̂FCom

Tot
)	

and	 intermediate	 (̂FInterm
Tot

)	 families	 in	 Equation	3	 can	 be	 substituted	
with	their	observed	number	in	the	area	of	 interest,	FCom

Obs
 and FInterm

Obs
,	

respectively,	obtaining:	

Analysis	 of	 simulated	 data	 demonstrated	 that	 the	 additive	
model	 in	Equation	4	led	to	improve	estimates	from	the	T–S	curve	

under	 different	 scenarios	 of	 spatial	 heterogeneity	 (see	Appendix	
S4).	The	additive	model	(Equation	4)	was	then	applied	to	real	data	
to	obtain	estimates	of	family	richness.	 In	this	case,	the	T–F	curve	
for	rare	families	was	built	following	the	Equation	2,	with	accumula-
tion	curves	obtained	using	100	random	draws	of	the	72	aggregated	
samples	 for	each	combination	of	1,	2,…,	10,	11	subarea	×	habitat	
units.

2.8 | Applying the new model for estimating 
species richness

The	whole	stepwise	procedure	described	previously	was	naturally	ex-
tended	to	species-	level	data	in	order	to	obtain	species	richness	esti-
mates	in	the	study	area	(Figure	1,	step	5).

Three	accumulation	curves	were	built	considering	common,	inter-
mediate,	and	rare	species	separately.	Then,	analogously	to	Equation	4,	
the	total	number	of	species	in	the	total	area,	̂STot,	is	obtained	as	follows:	

where SCom
Obs

 and SInterm
Obs

	are,	respectively,	the	observed	number	of	com-
mon	and	 intermediate	 species	 in	 the	area	of	 interest,	whereas	 ̂SRare

Tot
 

is	 the	 estimates	 of	 rare	 species	 from	 the	 T–S	 curve	 built	 following	
the	Equation	1,	with	accumulation	curves	obtained	using	100	random	
draws	of	samples	(72	stations)	for	each	combination	of	1,	2,…,	10,	11	
subarea	×	habitat	units.

All	 analyses	 reported	here	 and	 in	 the	 previous	 paragraphs	were	
carried	out	using	R	(R	Development	Core	Team,	2016).

3  | RESULTS

β-	diversity	of	mollusk	assemblages	significantly	differed	among	sub-
areas	 and	habitats	 (Table	1),	 indicating	 that	 neither	 the	whole	 sam-
pled	 area	 nor	 the	 subareas	 are	 homogeneous,	 but	 rather	 that	 each	
habitat	 in	each	subarea	represented	a	separate	spatial	unit	 in	terms	
of	heterogeneity	in	species	composition.	Such	patterns	of	variation	in	
β-	diversity	were	consistent	at	family	level	(Table	1).

The	estimated	parameters	of	the	T–F	curve	(Equation	2)	for	real	
data	 based	on	 subareas	 (Figure	2a)	 led	 to	 estimate	 a	 total	 number	
of	 302	 families	 (̂FTot;	 Table	2),	 which	 largely	 overestimated	 (~25%)	
the	maximum	possible	number	of	242	 families	 (Figure	3).	The	esti-
mate	 from	 the	T–F	 curve	 based	 on	 the	 11	 subarea	×	habitat	 units	
(Figure	2b)	 was	 lower	 (̂FTot	=	288),	 but	 still	 exceeded	 (~19%)	 this	
threshold	 (Table	2,	 Figure	3).	 Overestimation	 still	 persisted,	 al-
though	 further	 reduced	 (~14%),	 when	 the	 T–F	 curve	 was	 based	

(3)̂FTot≈
̂F
Com

Tot
+ ̂F

Interm

Tot
+ ̂F

Rare

Tot

(4)̂FTot≈F
Com

Obs
+F

Interm

Obs
+ ̂F

Rare

Tot

(5)̂STot≈S
Com

Obs
+S

Interm

Obs
+ ̂S

Rare

Tot

Source of variation dfn dfd

Species Families

F p (perm) F p (perm)

Subarea 6 209 5.588 .001 2.810 .030

Habitat 2 213 13.407 .001 25.414 .001

Subarea	×	Habitat 10 205 2.849 .017 4.348 .001

TABLE  1 Summary	of	tests	for	
multivariate	dispersion	(PERMDISP)	carried	
out	to	check	for	difference	in	β-	diversity	
among	groups	of	replicate	samples	from	
different	habitats	and	subareas.	
dfn	=	degrees	of	freedom	of	the	
numerator;	dfd	=	degrees	of	freedom	of	
the	denominator
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on	 aggregated	 samples	 (Figure	2c),	which	 led	 to	 a	 total	 number	 of	
276	 families	 (Table	2,	 Figure	3).	 Randomized	 accumulation	 curves	
showed	 that	 the	 number	 of	 common	 and	 intermediate	 families	 in	
the	 area	 achieved	 saturation	 after	 30	 and	 48	 aggregated	 samples,	
respectively	(Figure	4a),	indicating	that	sample	size	(n = 72)	was	suffi-
cient	to	detect	all	common	(FCom

Obs
	=	40)	and	intermediate	(FInterm

Obs
	=	14)	

families.	As	expected,	the	number	of	rare	families	increased	contin-
uously	 as	 the	number	of	 considered	 samples	 increased	 (Figure	4a).	
The	estimated	parameters	of	 the	T–F	curve	for	 rare	 families	based	
on	subarea	×	habitat	units	and	aggregated	samples	were	provided	in	
Table	2.	The	calculation	of	 ̂FTot	following	Equation	4	led	to	estimate	
a	total	number	of	183	families	(Table	2),	which	was	fairly	below	the	
maximum	number.

The	estimated	slope	coefficient	of	the	T–S	curve	on	real	data	was	
β̂S	=	58.79	and	the	intercept	μ̂S	=	−89.91	(R

2	=	0.991),	in	the	absence	
of	any	adjustment.	 In	 this	case,	 the	estimated	total	number	of	spe-
cies	in	the	total	area	(Equation	1)	was	 ̂STot	=	945	(95%CI:	968–845).	
Using	 subarea	×	habitat	 units	 to	 build	 the	T–S	 curve	 led	 to	 reduce	
this	estimate	of	~11%,	whereas	using	aggregated	samples	led	to	fur-
ther	reduce	the	estimated	species	richness	of	18%.	Randomized	ac-
cumulation	curves	saturated	after	considering	35	and	55	aggregated	
samples	for	common	and	intermediate	species,	respectively,	indicat-
ing	 that	 all	 common	 (SCom

Obs
	=	67)	 and	 intermediate	 (SInterm

Obs
	=	45),	 but	

not	 rare,	 species	were	 sampled	 (Figure	4b).	The	estimated	parame-
ters	of	 the	T–S	curve	 for	 rare	species	adjusted	to	account	 for	hab-
itat	 heterogeneity	within	 subareas	 and	 small-	scale	patchiness	were	
β̂Rare
S
	=	32.97	 and	 μ̂Rare

S
	=	−39.28	 (R2	=	0.982),	 and	 the	 fully	 adjusted	

model	 (Equation	5)	 led	 to	 estimate	 a	 total	 number	 of	 562	 (95%CI:	
570–438)	species	(̂STot).

4  | DISCUSSION

Three	major	sources	of	heterogeneity	may	drive	patterns	of	species	
occurrence	 in	 samples	 from	 natural	 communities,	 thus	 potentially	
affecting	estimates	of	regional	species	richness	based	on	accumula-
tion	 curves.	The	 first,	 and	perhaps	more	 intuitive,	 source	 relates	 to	
spatial	variations	in	environmental	features	(e.g.,	geographic	factors,	
habitat	changes),	which	may	lead	composition	of	species	assembly	to	
vary	across	the	investigated	area	(Gotelli	&	Colwell,	2011).	The	other	
two	main	drivers	of	spatial	heterogeneity	are	“patchiness,”	which	en-
compasses	small-	scale	aggregation	and	segregation	of	 individuals	or	
species,	and	variations	in	frequency	of	occurrence	among	species	due	
their	overall	commonness	or	rarity	(Colwell	et	al.,	2004).	The	stepwise	
adaptation	of	the	T–S	curve	to	account	for	these	aspects	produced	a	
progressive	alignment	of	estimated	number	of	families	to	their	maxi-
mum	possible	richness,	 leading	to	realistic	estimates	 (i.e.,	below	this	
maximum	 limit)	 when	 all	 the	 three	 sources	 of	 heterogeneity	 were	
considered	 in	 the	 accumulation	model.	 Analyses	 of	 simulated	 com-
munities	confirmed	our	findings	on	real	data,	highlighting	that	almost	
unbiased	estimates	were	achieved	when	spatial	heterogeneity	ranged	
from	medium-	high	to	very	high	levels	and	species	with	low	(5%–10%)	
to	very	low	(<5%)	occurrence	in	samples	did	not	represent	an	exces-
sive	proportion	(>2/3)	of	all	species.

F IGURE  2 T–F	curves	accounting	progressively	for	spatial	heterogeneity	due	to	(a)	subareas	only;	subareas	and	habitats	(b);	subareas,	
habitats	and	patchiness	(c).	The	T–F	curves	(dotted	black	lines)	through	the	terminal	points	(red	circles)	of	nested	accumulation	curves	are	
showed.	Nested	accumulation	curves	were	obtained	for	each	combination	of	1,	2,…,	6,	7	subareas	(a)	and	of	1,	2,…,	10,	11	subareas	×	habitat	
units	(b,	c)	within	the	total	area.	Replicate	samples	(0.25	m2)	were	used	to	build	accumulation	curves	in	(a)	and	(b)	(n = 216),	whereas	in	(c),	
samples	(n = 72)	were	the	sum	of	three	replicates	in	each	station	(4	m2)
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A	finer	partition	of	spatial	units	to	be	used	in	accumulation	curves,	
taking	 into	 account	 significant	 levels	 of	 heterogeneity	 among	 habi-
tats	within	subareas,	reduced	of	about	5%	the	overestimation	of	the	
maximum	 number	 of	 families.	 It	 is	 worth	 noting	 that	 accumulation	
curves	at	higher	taxonomic	levels	naturally	lie	below	the	correspond-
ing	species-	level	curves	(Gotelli	&	Colwell,	2001)	showing	less	steep	
patterns	 of	 accumulation	 (Terlizzi	 et	al.,	 2014).	 Therefore,	 relatively	
small	 refinements	 to	 the	 estimated	 family	 richness	 turn	 into	 more	
remarkable	ones	when	the	finer	partition	is	applied	to	species	accu-
mulation,	which	in	our	case	led	to	estimate	about	11%	less	species	if	
compared	to	the	classic	model	(845	vs.	945,	respectively).	In	addition,	
the	outcomes	of	including	habitat	heterogeneity	in	the	accumulation	
model	strongly	depend	on	the	magnitude	of	underlying	variations	in	
β-	diversity,	which	in	our	case	were	likely	low	although	statistically	sig-
nificant.	 In	 fact,	when	 spatial	 units	 used	 to	build	 the	T–S	 curve	 are	
homogeneous,	splitting	them	into	subunits	according	to	putative	envi-
ronmental	or	habitat	features	has	no	substantial	effects	on	the	ensuing	
estimates	 (O’Dea	et	al.,	2006),	whereas	the	potential	overestimation	
may	 largely	 increase	 at	 increasing	 heterogeneity	within	 such	 spatial	
units,	up	to	>80%	more	species,	as	our	simulated	data	has	confirmed.

Despite	 the	 concept	 of	 β-	diversity	 encompasses	 also	 nondirec-
tional	changes	in	species	composition	among	samples	within	a	given	
spatial	extent	(Anderson	et	al.,	2011;	Chao	&	Chiu,	2016),	which	are	
strongly	correlated	to	patterns	of	species	accumulation	(Terlizzi	et	al.,	
2014),	 attempts	 to	 estimate	 regional	 diversity	 are	 rarely	 associated	
with	explicit	assessments	of	β-	diversity	patterns.	Our	findings	stressed	
the	need	to	quantifying	variations	in	β-	diversity	within	the	area	of	in-
terest	in	order	to	guide	the	choice	of	the	approach	to	species	richness	
estimation,	understanding	whether	the	assumptions	underlying	accu-
mulation	models	are	respected	and,	if	applying	the	T–S	model,	to	iden-
tify	the	correct	spatial	units	to	obtain	the	nested	accumulation	curves.

The	mechanism	generating	overestimation	in	the	T–S	curve	relies	
on	its	ability	to	account	for	spatial	heterogeneity	by	stratifying	species	
accumulation	among	spatial	units	within	the	total	area	of	interest.	This	
peculiarity	of	 the	T–S	model	 represents	 the	strength	and	 the	weak-
ness	of	the	approach	depending	on	the	extent	to	which	the	selected	
spatial	units	 identify	actual	discontinuities	 in	patterns	of	 	β-	diversity.	
When	the	area	is	not	homogeneous,	the	nested	structure	of	the	T–S	
model	 reflects	 more	 closely	 the	 true	 rate	 of	 species	 accumulation	
within	the	area,	unlike	traditional	curves	that	completely	ignore	spa-
tial	 heterogeneity	 and	 generally	 lead	 to	 underestimate	 extrapolated	
species	 richness	 (Reichert	 et	al.,	 2010).	 This	 occurs	 because	 tradi-
tional	accumulation	curves,	by	combining	samples	from	different	spa-
tially	heterogeneous	portions	of	the	sampled	area,	will	necessarily	lie	
above	a	curve	that	combine	progressively	an	equal	number	of	samples	
from	one,	two,	three,…,	n	portions	of	the	area,	as	the	T–S	curve	does	
(Ugland	et	al.,	2003).	On	the	other	hand,	the	model	will	tend	to	over-
estimate	species	richness	if	spatial	units	defined	to	build	the	T–S	curve	
are	still	spatially	heterogeneous	entities	that	can	be	further	partitioned	
in	order	to	match	the	true	discontinuities	 in	β-	diversity.	 In	this	case,	
the	T–S	curve	will	lie	below	the	curve	based	on	the	true	basic	spatial	
units	of	variations,	leading	to	overestimated	species	richness.

Analogous	mechanisms	underlie	the	effect	of	patchiness	in	mod-
ifying	the	slope	of	accumulation	curves	and	the	ensuing	estimates	of	
species	richness.	If	species	are	randomly	distributed	across	samples,	
the	initial	rate	of	accumulation	will	be	higher	with	respect	to	patchy	
distributions,	leading	extrapolations	from	accumulation	curves	to	es-
timate	more	species	 in	the	 latter	case	 (Chazdon	et	al.,	1998;	Gotelli	
&	Colwell,	2011).	When	individuals	are	spatially	aggregated,	or	spe-
cies	distribution	at	 local	scale	is	nonrandom,	sample	grain	could	de-
termine	 an	 increase	 in	 patchiness,	 especially	when	 samples	 have	 a	
limited	surface	if	compared	to	the	size	of	the	underlying	assemblage	

TABLE  2 Estimated	parameters	of	semi-	log	models	for	the	T–F	curve	accounting	for	spatial	heterogeneity	(1)	among	subareas	only,	(2)	
subareas	and	habitats,	(3)	subareas	and	habitats	but	using	aggregated	samples,	(4)	subareas	and	habitats	using	aggregated	samples	and	the	
additive	model	for	common,	intermediate,	and	rare	families	(see	Figure	1).	Estimates	of	the	total	number	of	families	in	the	sampled	area	were	
provided	along	with	upper	and	lower	95%	confidence	limits	from	bootstrap	(in	brackets).	NA	=	not	applicable

T–F curve model
(1) Heterogeneity 
among subareas

(2) Heterogeneity among 
subareas and habitats

(3) Heterogeneity among 
subareas and habitats, and 
small- scale patchiness

(4) Heterogeneity among 
subareas and habitats, 
small- scale patchiness, and 
rarity

Spatial	units 7	subareas 11	subarea	×	habitat	units 11	subarea	×	habitat	units 11	subarea	×	habitat	units

Number	of	samples 216 216 72 72

Slope	coefficient	(β̂F) 17.62 16.45 18.03 9.47

Intercept	(μ̂F) −8.25 −2.48 8.32 −11.38

R2 0.995 0.991 0.998 0.981

Estimated	number	of	rare	
families	(̂FRare

Tot
)

NA NA NA 129	(139,	92)

Number	of	common	families	
(FCom
Obs
)

NA NA NA 40

Number	of	intermediate	
families	(FInterm

obs
)

NA NA NA 14

Estimated	total	family	richness	
(̂FTot)

302	(329,	270) 288	(322,	266) 276	(299,	257) 183	(193,	146)
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(Gotelli	 &	 Colwell,	 2011).	 In	 these	 contexts,	 and	 especially	 if	 fine	
sample	 grains	 (such	 as	 a	 1-	m2	 plots	 or	 smaller)	 are	 used,	 a	 portion	
of	α-	diversity	could	be	erroneously	ascribed	to	the	β	component	of	
diversity	(Crist	&	Veech,	2006),	with	a	consequent	overestimation	of	
total	species	richness.	Hortal	et	al.	 (2006)	found,	 indeed,	a	 low	sen-
sitivity	of	species	richness	estimators	to	sample	grain,	although	this	
property	mostly	concerned	nonparametric	estimators	and,	in	the	end,	
could	be	explained	by	the	fact	that	the	particular	community	under	
study	 (epigean	 arthropods)	 was	 sampled	 equally	 well	 irrespective	
of	 sample	 grains.	 Unfortunately,	 attempts	 to	 quantify	 the	 effect	 of	
sample	 grain	 on	 extrapolations	 from	 accumulation	 curves	 at	 vary-
ing	habitat	and	type	of	assemblage	are	still	 largely	 lacking	 (Drakare,	
Lennon,	&	Hillebrand,	2006),	and	empirical	assessments	of	this	effect	

are	difficult	without	reliable	reference	thresholds	of	total	species	rich-
ness.	In	this	respect,	our	approach	could	help	discerning	undesirable	
influences	of	sample	grain,	guiding	the	decision	to	aggregate	smaller	
scale	samples	into	larger	ones	if	conducive	to	reduce	overestimation	
(Anderson	&	Santana-	Garcon,	2015).

Amendments	to	the	T–S	model	to	account	for	habitat	heteroge-
neity	and	patchiness	were	not	sufficient	to	prevent	the	overestima-
tion	of	family	richness	beyond	the	maximum	possible	number	of	242	
families.	The	 estimated	 number	 of	 families	 in	 the	 investigated	 area	
fell	definitely	below	this	threshold	only	after	the	inclusion	of	rarity	in	
the	model,	which	 led	to	estimate	a	total	of	183	families.	This	 is	not	
surprising,	as	the	proportion	of	common	and	rare	taxa	may	strongly	
affect	accumulation	curves	and	the	ensuing	estimated	richness,	espe-
cially	for	highly	diverse	groups	of	organisms	(Longino,	Coddington,	&	
Colwell,	2002).	As	many	other	accumulation	curves,	with	the	excep-
tion	of	some	nonparametric	estimators	 (e.g.,	ACE,	 ICE;	Chao	&	Lee,	
1992;	Chazdon	et	al.,	1998),	the	T–S	curve	does	not	consider	the	pro-
portion	of	rare	and	common	species	within	the	investigated	area,	and	
is	likely	to	perform	better	when	the	probability	of	encountering	rare	
species	is	neither	high	nor	low	(Reichert	et	al.,	2010).	Corrections	to	
the	estimated	total	richness	are	difficult	to	be	carried	out	as	the	rate	
of	occupancy	of	rare	taxa	within	a	given	area	 is	generally	unknown,	
and	 its	 estimates	 largely	biased	unless	 an	extremely	 intensive	 sam-
pling	effort	 is	carried	out.	However,	partitioning	the	contribution	of	
common,	 intermediate,	and	rare	taxa	allows	amending	the	overesti-
mation	of	 the	 linear	extrapolation	 irrespective	of	patterns	of	spatial	
heterogeneity	(see	Appendix	S4),	at	least	for	common	and	intermedi-
ate	taxa	when	sampling	efforts	are	sufficient	to	allow	their	saturation,	
as	occurred	in	our	study	and	likely	the	case	in	most	of	current	biodi-
versity	assessments.

Improvements	deriving	from	family-	level	curves	to	species	accu-
mulation	led	to	estimate	a	total	of	562	species.	The	fact	that	the	spe-
cies	recorded	by	sampling	a	tiny	fraction	of	the	total	area	(0.000005%)	
were	>39%	of	the	estimated	number	seems	to	indicate	this	estimate	
as	 reasonable,	 also	 because	 it	 referred	 to	 a	 highly	 speciose	 phylum	
of	marine	 invertebrates	 from	 three	 different	 habitats,	 two	 of	 them,	
namely	coralligenous	outcrops	and	P. oceanica	meadows,	among	the	

F IGURE  4 Randomized	accumulation	
curves	of	common,	intermediate,	rare	
families	(a)	and	species	(b).	The	number	of	
common	(FCom

Obs
)	and	intermediate	(FInterm

Obs
)	 

families	and	species	(SCom
Obs
,	SInterm

Obs
)	at	

saturation	were	reported	along	with	the	
number	of	samples	to	achieve	saturation	
(respectively,	nCom and nInterm)

F IGURE  3 Extrapolation	of	total	family	richness	(̂FTot)	over	
the	total	area	(11	×	106	m2)	from	the	T–F	curves	(dotted	lines)	
accounting	for	spatial	heterogeneity	due	to	subareas	only	(orange	
triangles),	subareas	and	habitats	(blue	squares),	subareas,	habitats	and	
patchiness	(green	circles).	Note	that	x-	axis	is	log-	scaled
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most	diverse	in	the	Mediterranean	(Ballesteros,	2006),	within	a	region	
at	the	intersection	between	two	biogeographic	zones	(i.e.,	the	Adriatic	
and	the	Ionian	Sea).	The	number	of	species	estimated	using	the	classic	
approach	(945),	instead,	looks	excessive	and	would	imply	that	2/3	of	
all	species	of	marine	mollusks	known	for	the	whole	Italian	coast	were	
putatively	 present	 in	 the	 study	 area.	Although	 these	 considerations	
could	appear	rather	speculative	in	the	absence	of	reliable	information	
about	 the	 true	number	of	 species,	 evidence	 from	 family-	level	 accu-
mulation	curves	and	simulated	data	demonstrated	that	the	estimate	
from	the	classic	T–S	curve	was	largely	biased	toward	overestimation	
and	potentially	leading	to	estimate	>65%	more	species.	The	applica-
tion	of	other	estimators	to	our	data	produced	incongruent	estimates	
of	species	and	family	richness	that	were	unreasonably	high	for	nonas-
ymptotic	parametric	estimators	(e.g.,	power	law	model)	or	very	close,	
if	not	below,	to	the	observed	number	of	taxa	for	asymptotic	ones	(e.g.,	
negative	exponential	model),	and	only	nonparametric	estimators	(e.g.,	
Chao2)	predicted	acceptable	values	(see	Table	S5).	It	is	worth	stress-
ing	here	once	again,	however,	that	nonparametric	estimators	focus	on	
finding	how	many	species	may	have	been	in	a	set	of	samples	(Colwell	
&	Coddington,	1994),	thus	providing	a	conservative	estimate	that	pre-
dict	how	many	species	might	be	present	at	least.	Although	these	esti-
mators	account	for	spatial	heterogeneity	in	species	composition,	they	
do	not	operate	to	extrapolate	the	number	of	species	that	may	have	
been	if	the	whole	area	of	interest	would	have	been	sampled	or,	at	the	
best,	 they	allow	extrapolations	over	 two-	three	 times	 the	number	of	
original	samples	(e.g.,	Colwell	et	al.,	2004).	In	contrast,	fitting	a	given	
model	to	species	accumulation	allows	extrapolations	over	large	areas,	
but	 these	 estimators	 largely	 neglect	 spatial	 heterogeneity	 and,	 de-
pending	on	the	selected	model,	often	lead	to	severe	under-		or	overes-
timation	(Hortal	et	al.,	2006;	O’Dea	et	al.,	2006;	Reichert	et	al.,	2010;	
Ugland	et	al.,	2003).	Only	the	T–S	curve	combines	the	possibility	 to	
extrapolate	over	large	areas	with	an	accumulation	model	structured	to	
account	for	heterogeneity	among	samples	and	among	different	spatial	
units.

A	major	problem	when	determining	the	reliability	of	species	rich-
ness	estimators	relies	on	the	fact	that	in	most	cases	neither	the	actual	
species	 richness	nor	 the	 species-	abundance	distribution	 in	 a	 given	
area	are	known,	 and	 the	best	 that	 can	be	done	 is	 to	obtain	upper	
and	lower	bounds	on	species	richness	(O’Hara	2005).	However,	if	the	
use	of	nonparametric	estimators	could	be	an	effective	solution	 for	
reliable	lower	bound	estimates	of	species	richness	(Gotelli	&	Colwell,	
2001),	 the	 identification	 of	 superior	 limits	 is	 more	 problematic	
(O’Hara	2005).	As	stated	by	the	statistician	I.	J.	Good,	and	reported	
in	Bunge	&	Fitzpatrick	(1993,	p.	370),	it	is	usually	not	possible	to	es-
timate	the	number	of	unseen	species,	as	there	is	nearly	always	a	very	
large	number	of	rare	species	and,	under	a	wide	range	of	models,	only	
lower	bounds	are	identifiable	(Mao	&	Lindsay	2007).	Attempts	to	use	
maximum	known	limits	to	set	upper	bound	estimates	has	been	per-
formed	in	other	field	of	research,	such	as	in	estimating	the	number	
of	archaeological	artefacts	(Eren	et	al.,	2012),	but	the	approach	is	not	
applicable	to	most	biodiversity	research	due	to	the	 lack	of	suitable	
references	 for	 the	maximum	 limits	 in	 species	 richness.	 In	 the	 gen-
eral	absence	of	 theoretical	and	empirical	bounds,	 the	use	of	upper	

limits	derived	from	higher	taxon	richness	could	represent	a	profitable	
strategy,	as	their	number	may	be	considered	almost	fixed	for	many	
groups	of	organisms,	at	 least	over	the	genus	 level	 (Mora,	Tittensor,	
Adl,	 Simpson,	 &	Worm,	 2011),	 and	merit	 further	 investigations	 to	
understand	 its	 potential	 application	 to	 a	wide	 range	of	 estimators.	
To	date,	 the	T–S	curve	 represents	a	unique	estimator	 in	which	 the	
abovementioned	 desirable	 properties	 add	 to	 the	 peculiarity	 of	 the	
accumulation	 coefficient	 to	 intimately	 relate	 across	 the	 taxonomic	
hierarchy	up	to	family	level	(Terlizzi	et	al.,	2009,	2014).	Such	prerog-
atives	make	 this	estimator	eligible	 to	explore	 refinements	 referring	
to	known	upper	limits	in	family	richness,	and	allow	assuming	that	the	
ensuing	estimates	could	be	more	aligned	with	realistic	upper	bounds	
also	at	species	level.

An	 upper	 bound	 should	 be	 (1)	 greater	 than	 or	 equal	 to	 the	
true	 value,	 but	 it	 should	 be	 (2)	 lower	 than	 or	 equal	 to	 the	 max-
imum	 possible	 value	 of	 richness,	 including	 its	 confidence	 interval.	
Nonasymptotic	 parametric	 estimators,	 such	 as	 the	T–S	 curve,	 are	
intrinsically	prone	to	overestimate	the	true	richness	although,	as	oc-
curs	for	the	other	estimators,	a	negative	bias	is	possible	for	hyper-	
diverse	communities	with	many	rare	species,	or	when	the	region	of	
interest	is	severely	under-	sampled.	This	issue	was	analyzed	in	detail	
by	Reichert	et	al.	 (2010),	showing	that	the	T–S	curve	will	underes-
timate	only	when	the	probability	of	being	kept	 is	vanishingly	small	
for	a	very	large	portion	of	species	or,	in	other	words,	when	most	of	
species	 in	 the	community	under	 study	are	extremely	 rare.	Despite	
no	univocal	consensus	has	been	achieved	around	the	general	model	
best	fitting	species-	abundance	distributions,	it	is	nevertheless	quite	
clear	that	this	model	in	real-	world	communities	is	likely	to	be	a	sym-
metrical	one	 (e.g.,	 log-	normal;	Alroy,	2015;	Ulrich,	Ollik,	&	Ugland,	
2010),	 implying	 that	 extremely	 rare	 species	 are	 equally	 numerous	
as	 less	 rare/common	 species.	Also,	 even	 in	 presence	 of	 truly	 left-	
skewed	 species-	abundance	 distributions,	 the	 portion	 of	 extremely	
rare	species	(one	or	few	individuals)	is	a	relatively	minor	component	
of	the	total	number	of	species	(e.g.,	McGill	et	al.,	2007).	In	the	other	
cases,	skewness	of	the	left	side	of	species-	abundance	distributions	
is	only	apparent,	due	to	Preston’s	veil	line	(Preston,	1948)	or	pecu-
liar	conditions,	such	as	high	immigration	rates,	or	presence	of	tran-
sient	 species	 (McGill	 et	al.,	 2007).	The	 tendency	 of	 the	T–S	 curve	
to	 exceed	 the	 true	 values	was	 also	 empirically	 showed	 in	 several	
studies	where	 the	 true	 richness	was	 actually	 known	 (Hortal	 et	al.,	
2006;	O’Dea	et	al.,	 2006;	Reichert	 et	al.,	 2010),	 and	 confirmed	by	
our	simulations.	Thus,	 is	reasonable	to	assume	that	estimates	from	
the	T–S	curve	may	be	often	higher	than	or	equal	to	the	true	richness	
in	real-	world	communities.

We	 have	 to	 remark	 that	 as	 for	 most	 of	 models,	 a	 theoretical	
definition	of	upper	bounds	for	the	T–S	curve	is	impossible,	and	evi-
dence	from	simulated	and	case	study	data	cannot	be	considered	as	
exhaustive	proofs	that	the	ensuing	estimates	are	true	upper	bounds,	
as	they	cannot	cover	all	possible	real-	world	scenarios.	However,	our	
approach	is	the	first	attempt,	to	our	knowledge,	allowing	a	context-	
specific	assessment	of	estimates	when	information	on	true	species	
richness	 lacks	 and	 that,	 by	 exploiting	 the	 properties	 of	 the	 T–S	
curve	and	known	higher	taxon	richness,	may	lead	to	identify,	if	not	
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“true,”	at	 least	plausible	upper	limits	in	species	richness	over	large	
areas.
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