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Predicting the mechanical behaviour and the failure mechanism of timber joints with dowel-type fasteners re-
quires consideration of several factors, including the geometrical and mechanical properties of the metal fas-
tener, the physical properties of timber and the interaction between such elements. This paper proposes a nu-
merical model where a joint is schematized as an elasto-plastic beam in a non-linear medium with a
compression-only behaviour. Unlike the differential approach adopted by most of the hysteresis models pub-
lished in literature, this model predicts the load-displacement response using simple mechanical relationships
and basic input parameters. Furthermore, the model is capable of reproducing the effect of the cavity formed
around the fastener by timber crushing, and simulates the hysteretic behaviour and the energy dissipation under
cyclic conditions. Shear tests are reproduced on nailed steel-to-timber joints in Cross-Laminated Timber and
results are compared to the experimental test data obtained on similar single fastener joints. Simulations lead to
accurate predictions of both the mechanical behaviour (initial stiffness, maximum load-carrying capacity, global
shape of the loading curve and of the hysteresis cycles) and the total energy dissipation observed in the tests.

1. Introduction

Timber structures are made of 1D (e.g. beams and studs) and 2D
elements (e.g. walls and floors) fastened together with mechanical
joints and connection systems that transmit the lateral shear and ten-
sion loads. Due to the high strength-to-weight ratio of timber and the
connections capacity to resist the load with ductile deformations and
little impairment of strength, these structures showed satisfactory per-
formances in seismic conditions [1-5].

Mechanical joints in timber structures are assembled using dowel-
type fasteners (nails, staples, screws, bolts, and dowels). Their load-
displacement response depends on several factors, including the
yielding moment and the withdrawal behaviour of the fastener, the
embedment behaviour of timber, and the interaction between fastener
shank and timber.

Eurocode 5 [6] defines the load-carrying capacity of joints with
dowel-type fasteners according to the European Yield Model (EYM),
originally proposed by Johansen [7]. The rope effect is included into
the design equations and some limiting factors, expressed at a max-
imum percentage of the lateral dowel capacity of the joint, are in-
troduced to avoid relying on the withdrawal of the fastener. Since the
EYM is developed based on a plastic limit analysis, it is suitable to
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determine collapse loads, while it cannot be used to predict the load-
displacement response under monotonic or cyclic conditions.

Alternative calculation methods were proposed since the early ’50s
to overcome the limitations of the EYM. Ivanov [8] developed an em-
pirical quadratic equation to relate the strength of a nailed joint to its
displacement. Mack [9] proposed a calculation model where the load-
displacement response is determined as product of a series of in-
dependent factors. Finally, Kuenzi [10] reproduced a single- or double-
shear joint as a beam on an elastic foundation. Using a fourth-order
differential equation, this model estimated the shear and deflection at
any point of the joint; however, it had limited applications since it could
be used only in the elastic range of the loading curve.

In recent years, many research projects focused on developing
hysteresis models able to predict both the elastic and inelastic response
of joints with dowel-type fasteners. Three approaches were followed:
the first one aimed at improving the results obtained with the beam on
an elastic foundation, by reproducing the embedment behaviour of
timber with non-linear springs [11-14]. In the second approach, the
non-linear response of the joint was concentrated into hysteretic springs
or simple elasto-plastic systems [15-21]. Generally, such models were
used to analyse the behaviour of light-frame shear walls or full-scale
timber structures, i.e. situations where computationally efficient
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algorithms are needed. Finally, the third one aimed at developing ac-
curate schematizations of the joints where the actual material proper-
ties are assigned to the elements of the models [22-26]. Regarding this
third approach, it should be noticed that significant efforts have been
devoted to develop material models capable of predicting the me-
chanical behaviour and the failure mechanisms of timber [27-29].

This paper proposes a numerical model able to predict the load-
displacement response and failure mechanisms of timber joints with
dowel-type fasteners. The model is capable of reproducing the effect of
the cavity formed around the fastener by timber crushing, allowing the
prediction of the hysteretic behaviour and the energy dissipation under
cyclic conditions. The joint is schematized as an elasto-plastic beam
embedded in a non-linear medium with a compression-only behaviour.
Unlike the differential approach adopted by most of the hysteresis
models published in literature, this model adopts simple mechanical
relationships and basic input parameters to reproduce the response of
the steel and timber components of the joint. In addition to the geo-
metrical data, the yielding moment and the withdrawal behaviour of
the fastener, and the embedment behaviour of timber are the required
input parameters. Such input values can be derived either from tests
(carried out, e.g., according to EN 409 [30], EN 383 [31] and EN 1382
[32]) or from the experimental results and analytical formulas pub-
lished in literature (e.g. [33-35]).

The model proposed in this contribution can be used to predict the
response of several types of joints. In fact, with minor modifications on
the boundary conditions, the response of a timber-to-timber, a steel-to-
timber, and a slotted-in steel plate joint can be simulated (Fig. 1). Re-
sults obtained on single fastener joints can be employed to analyse
systems where many of these elements are present. For instance, the
predicted load-displacement response of a nailed joint can be con-
centrated into a non-linear hysteretic spring and used to investigate the
mechanical behaviour of a metal connector (e.g. an angle bracket or a
hold-down) or of a light-frame shear-wall.

Shear tests are reproduced on steel-to-timber joints with annular-
ringed shank nails in Cross-Laminated Timber (CLT). Firstly, the me-
chanical behaviour of the nailed joints is validated by comparing the
numerical predictions of the lateral dowel capacity with the analytical
values assessed using a model proposed by Hilson [36]. The load-dis-
placement response under monotonic conditions is subsequently in-
vestigated by reproducing typical single fastener joints shear tests in
parallel and perpendicular to the face lamination of a CLT panel. Fi-
nally, the hysteretic behaviour and the energy dissipation under seismic
conditions are analysed by reproducing cyclic shear tests. Numerical
results are compared to recently obtained test data of nailed steel-to-
timber joints in CLT, and differences are discussed. All the simulations
are performed using ABAQUS software package [37].

2. Model description

The numerical model proposed herein schematizes a single fastener
joint as an elasto-plastic beam in a non-linear medium with a com-
pression-only behaviour. A key feature of this modelling technique is
the presence of non-linear springs capable of reproducing the hysteretic
behaviour of the steel and timber components of the joint (Fig. 1). In
this study, these springs are simulated with User Element Subroutines
(UELs) taken from Rinaldin et al. [20,38]. A preliminary version of this
model was presented by Rinaldin [39].

2.1. Fastener schematization

The fastener is modelled as an elastic system with concentrated
plasticity. The shank is discretized into a series of elastic beams inter-
connected with hinges (see the schematics of the numerical model in
Fig. 1 and the close-up given in Fig. 2). The presence of non-linear
rotational springs at the hinge locations ensures the transmission of the
bending moment between adjacent beams. Furthermore Moreover,
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Fig. 1. Schematics of a (a) timber-to-timber, (b) steel-to-timber, and (c) slotted-in steel
plate joint (left, according to Eurocode 5 [6]; right, according to the proposed numerical
model).

Elastic beam (fastener shank
Hinge connecting two beams
Bending behaviour of the fastener

Embedment behaviour of timber
Withdrawal behaviour of the fastener

Fig. 2. Close-up of the numerical model, with description of its components.

those springs control the bending behaviour once the fastener reaches
its plastic deformed configuration.

The bending behaviour of the fastener is simulated as follows: at
small displacement amplitudes (Fig. 3a), the deflections are due to the
bending deformations of the beams, while the springs transmit the
bending moment and prevent any rigid body rotation. Once the bending
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Fig. 3. Bending behaviour of the fastener: (a) at small displacement amplitudes, when the
deflections are due to the bending deformations of the elastic beams, and (b) when the
moment on the shank reaches the yielding value and the non-linear behaviour of the
rotational springs is activated.

moment reaches the yielding value (Fig. 3b), the non-linear behaviour
of the rotational springs is activated. In such situation, the moment
taken by those springs is kept constant regardless the rotation, and a
plastic behaviour is simulated.

The hinges are modelled as pins using ABAQUS ‘multi-point con-
straints’ (MPC) [37]. The length of each beam ! depends on the fastener
discretization and is equal to the ratio of the penetration depth to the
number of beams. The mechanical behaviour of the beams is assumed
elastic, although two constitutive laws are adopted in the axial and
transversal direction. A very stiff elastic behaviour is adopted in the
axial direction, with stiffness K,y conventionally set to 10 times the
actual axial stiffness of the beams:

EA
Kaxial = IOT '6))

In Eq. (1), the symbol E denotes the stiffness of the steel material
(E = 210 GPa), while A represents the cross-section area of the shank
(A = nd?/4, being d the diameter of the shank). Furthermore, an elastic
behaviour is considered in the transversal direction, with bending
stiffness Kpending defined as shown in Eq. (2). In the equation below, J is
the moment of inertia of the beam cross-section (with J = nd*/4).

EJ
1 2

The uncoupled behaviour between axial and transversal direction is
necessary to keep the fastener length constant once the joint reaches its
plastic deformed configuration and is implemented in the analyses by
defining the cross-section properties using ABAQUS ‘beam general
section’ command [37].

As mentioned above, each rotational spring is connected to the ends

Kbending =
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Fig. 4. Piecewise-linear laws schematizing: (a) the bending behaviour and (b) the with-
drawal behaviour of the fastener, and (c) the embedment behaviour of timber (adapted
from Rinaldin et al. [20,38]).

of two consecutive beams and has an elasto-plastic moment-rotation
relationship with elastic stiffness Ko and yielding moment M.
Theoretically, the moment-rotation relationship implemented into the
rotational springs should be rigid-plastic. However, a rigid behaviour
cannot be modelled using spring elements and an elasto-plastic law
with very high elastic stiffness is used instead. In this study, the stiffness
Kg is determined by assuming that the yielding moment is attained at a
conventional rotation of 0.1°. The inelastic branch has a perfectly
plastic behaviour until the ultimate rotation Q,, which is set to 45°



M. Izzi et al.

[301.

The piecewise-linear law governing the rotational springs is dis-
played in Fig. 4a; the backbone curve (composed of branches #1, #2,
#10, and #20) is obtained as discussed above. If the springs are un-
loaded from a positive rotation, branch #3 is followed. On the contrary,
branch #40 is followed if the springs are unloaded from a negative
rotation. The slope of branches #3 and #30 is the same of #1 and #10
while the load at the transition point between branches #3 and #5 is
conventionally set to 2% of the load attained on the backbone curve at
the current hysteresis cycle. Finally, the transition point between #5
and #30 is located in the origin of the axis.

The presence of supplementary boundary conditions is taken into
account in the model by introducing additional spring elements. In a
steel-to-timber joint, the clamping of the fastener cap to the metal plate
is simulated with an additional spring located between the upper beam
and the metal member to which the cap is connected (Fig. 1b). In a
slotted-in steel plate joint, the clamping of the fastener shank to the
plate is simulated with two additional spring elements located between
the metal member and the connected beams (Fig. 1c).

2.2. Withdrawal behaviour of the fastener

The withdrawal behaviour of the fastener is simulated with a set of
non-linear hysteretic springs uniformly distributed along the fastener
shank (see general schematics in Fig. 1). Each spring is connected to a
master node, located in the centre of the beam where it is attached, and
to a fixed point of the surrounding space (see close-up in Fig. 2).

The withdrawal spring has a non-symmetric load-displacement re-
lationship. If loaded in tension, an elasto-plastic behaviour is adopted
with elastic stiffness K,x (in this study referred to as ‘withdrawal stiff-
ness’) and withdrawal capacity E,. The inelastic branch has a plastic
behaviour until the ultimate displacement V, ,¢, conventionally set to
10 mm. If the spring is loaded in compression, based on the schematics
of Fig. 1, the fastener cannot penetrate into the timber embedment and
a very stiff elastic behaviour is adopted (conventionally set to 10 times
the withdrawal stiffness K,y).

The withdrawal stiffness of a spring and its capacity are defined
based on the fastener shank discretization, as shown in Egs. (3) and (4).

Kax,fastener

Ky =

n 3

Eix fastener

E, = astener
= n @

In the equations above, n is the number of beam elements used to
discretize the shank, while Ky fastener @d Fix fastener T€present the with-
drawal stiffness (measured in N/mm) and capacity (expressed in N) of
the entire fastener, respectively.

The piecewise-linear law of the withdrawal springs should be spe-
cifically calibrated for the analysed joint. For instance, Fig. 4b shows
the typical hysteretic behaviour of a steel-to-timber joint under with-
drawal loads. The backbone curve (composed of branches #1, #2, and
#10) is obtained as discussed above. Once extracted, the steel plate is
not able to push the fastener backwards inside the timber element.
Therefore, under cyclic loading conditions, branch #3 simulates the
sudden reduction in load-carrying capacity due to the gap formed be-
tween the metal plate and the fastener cap. If the spring is reloaded
(branch #4), the bearing mechanism under withdrawal loads is not
activated until the gap between the metal plate and the fastener cap is
closed. According to this behaviour, the slope of branches #3 and #4 is
conventionally set to 5K, .

2.3. Embedment behaviour of timber

The embedment behaviour of timber in compression is simulated
with a set of non-linear hysteretic springs uniformly distributed along
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the fastener shank (Fig. 1). Each spring is connected to a master node
located in the centre of the corresponding beam and to a fixed point of
the surrounding space (Fig. 2). To limit the computational effort, the
embedment behaviour in front of and behind a beam is simulated with
a unique spring.

Each non-linear spring has an elasto-plastic load-displacement re-
lationship with elastic stiffness Kj, (in this study referred to as ‘em-
bedment stiffness’) and embedment capacity F;,. The inelastic branch
simulates the crushing of the fibres underneath the fastener and the
associated densification of timber in the contact area [40]; it has a
plastic behaviour until the ultimate displacement V;;,, conventionally
set to 15 mm.

The embedment stiffness of a non-linear spring and its capacity
depend on the fastener shank discretization and are proportional to the
tributary area of each beam (d-l). In this study, those properties are
determined using a foundation modelling approach, as shown in Egs.
(5) and (6).

Ky = ky(d-D) (5)

Fr=f,(d-D) (6)

In the equations above, k is the modulus of subgrade reaction
(measured in MPa/mm) and f; is the embedment strength of timber
(expressed in MPa). Usually, the embedment behaviour of timber de-
pends on the relative orientation of the applied load with respect to the
grain direction. Fasteners loaded parallel to the grain exhibit a high
initial stiffness and a plastic plateau, while fasteners loaded perpendi-
cular to the grain are less stiff at low loads but have a continuous load
increase before failure [41-44]. However, according to Zhou and Guan
[45] and Hong and Barrett [24], the embedment capacity is in-
dependent of the load-to-grain angle if the fastener diameter is smaller
than or equal to 8 mm.

The model is also capable of reproducing the effects of a layered
timber embedment. For instance, the layup of a CLT element can be
simulated by defining specific values of K, and F;,, depending on the
load-to-grain direction and the spring position along the fastener shank.

The piecewise-linear law governing the non-linear springs is dis-
played in Fig. 4c; the backbone curve (composed of branches #1, #2,
#10, and #20) is obtained as discussed above. If the springs are un-
loaded from a positive displacement, branch #3 is followed until the
attainment of zero load. On the contrary, branch #40 is followed if the
unloading starts from a negative displacement. Branches #5 and #50
simulate the gap between the supporting medium and the fastener,
caused by the cavity formed by timber crushing. Finally, branches #30
and #4 take to the opposite side of the backbone curve and simulate the
embedment behaviour at increased displacement levels, when the
shank comes again into contact with the surrounding timber. The slopes
of branches #3 and #4 are defined based on the tests performed by
Chui and Ni [46] and are expressed as functions of the embedment
stiffness Kj,: the first one is set to 5K;, while the latter one to 2.5K;,. The
transition point between branches #3 and #5 (and between #50 and
#4) depends on the load reached on the backbone curve and is updated
at every hysteresis cycle.

2.4. Embedding of the timber fibres into the fastener thread

Laterally loaded joints assembled with profiled fasteners exhibit
embedding of the timber fibres into the thread of the shank. According
to Dominguez et al. [47], three stages can be identified. The first one
takes place at small displacement amplitudes, when the bearing me-
chanism is associated to bending of the fastener shank together with
compression of the timber fibres. In such situation, the contact between
shank and timber occurs only at the pitch of the thread, on a sig-
nificantly smaller surface compared to the case of smooth fasteners
(Fig. 5a). The second stage takes place when the joint attains its lateral
dowel capacity. Here, the deformed fastener has no displacement along
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Fig. 5. Embedding of the timber fibres into the fastener thread: (a) prior to load appli-
cation, (b) crushing without displacement along the fastener axis, and (c) crushing with
displacement along the fastener axis (adapted from Dominguez et al. [47]).

its axis and the crushed timber embeds in the thread of the shank
(Fig. 5b). Finally, the third stage takes place when the joint is subjected
to higher lateral displacements and the fastener slips over the crushed
timber. In such situation, the axial displacement of the fastener causes
one side of the timber inside the thread to be subjected to embedding
against a flank of the thread while the other side loses contact (Fig. 5c).
Consequently, the timber fibres surrounding the thread resist the slip of
the fastener and increase its withdrawal stiffness.

As recommended also by Dominguez et al. [47], the model simu-
lates the embedding of the timber fibres into the fastener thread by
increasing the stiffness of the withdrawal springs. In particular, the
same authors suggest increasing the withdrawal stiffness so that the
maximum withdrawal capacity of the fastener is attained once the axial
displacement exceeds values around the pitch of the thread.

3. Model calibration

The model proposed in this paper is calibrated considering a nailed
steel-to-timber joint in CLT (Fig. 6). The model is assembled according
to the schematic shown in Fig. 1b. Analyses considered typical annular-
ringed shank nails with diameter d = 4.0mm, threaded length
Iy = 44 mm and pointside penetration depth 4 = 54 mm [48] (Fig. 7).

174

Engineering Structures 157 (2018) 170-178

Fig. 6. Schematic of the nailed steel-to-timber joint considered in the simulations.

Fig. 7. Annular-ringed shank nails (reproduced from Izzi et al. [49]).

As mentioned in the introduction, the input parameters required by
the model can be assessed using either experimental approaches or the
information available in literature. In the first case, specific tests should
be performed according to the reference standards (EN 409 [30], EN
383 [31] and EN 1382 [32]), leading to an accurate definition of those
properties. However, this method is time consuming and requires the
execution of a large number of tests. On the contrary, in the second
case, the input parameters are determined based on the experimental
results and general formulas published in literature. One of the major
advantages of this second method, which was adopted in the following
study, is the possibility of extending the test results available for a joint
to other configurations of technical interest (e.g., varying the diameter
of the fastener, the density of timber, and the load-to-grain angle).

3.1. Strength capacities

In the following, analyses are performed by defining the yielding
moment of the nail M, as the plastic moment capacity of the circular
cross-section (Eq. (7). The yielding strength of the nail f, which is an
input parameter needed by the model, is determined according to
Sandhaas and Mergny [33] as shown in Eq. (8).

1
My = he? @

5= 1154d-929 8)

Similarly, the withdrawal capacity of the nail Fy is defined
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according to Eq. (9), following an analytical formula proposed by Blaf}
and Uibel [34]. In the equation below, Iy, denotes the threaded length
of the shank and p the average density of timber.

Ey = 0.1550%8d%0Ly,, 9)

Finally, the embedment strength of timber f is determined ac-
cording to an analytical model proposed by Uibel and Blaf [35] and
presented in Eq. (10).

fh — 0.13P1'05d_0'53 (10)

3.2. Stiffness properties

Calculation methods capable of predicting the modulus of subgrade
reaction of timber k;, and the withdrawal stiffness of a nail K,, have not
yet been derived. In this study, those stiffness properties are determined
based on the test data published in literature.

The modulus of subgrade reaction k;, depends on the diameter of the
fastener and the load-to-grain angle [40,41,46]. Values of k, may de-
pend also on the average density of the timber panel; however, very few
research projects focused on the modulus of subgrade reaction of timber
and limited experimental evidence exists. Consequently, the influence
of this last parameter is neglected. In this study, the following values
are adopted: if d is greater than or equal to 12 mm, k;, = 25 MPa/mm
parallel to grain and k;, = 10 MPa/mm in the orthogonal direction are
assumed. If d is smaller than 12mm (e.g. a nail), reduced values of
15 MPa/mm and 10 MPa/mm can be assumed, respectively.

The withdrawal stiffness of a nail K, is determined based on the
experimental results published by Izzi et al. [49] and is set to 1250 N/
mm. Such stiffness property depends on both the average density of CLT
and the diameter of the fastener. However, due to the lack of analytical
expressions capable of predicting it, the experimental value is adopted
and its influence on the load-displacement response of the joint is ex-
amined.

4. Numerical analyses

Simulations focus on the mechanical behaviour of laterally loaded
steel-to-timber joints with annular-ringed shank nails in CLT (Fig. 6).
Analyses are carried out in two phases: firstly, the behaviour of the
model is validated by comparing the numerical predictions of the lat-
eral dowel capacity to the analytical values assessed using the Hilson
[36] model. The mechanical behaviour under monotonic and cyclic
conditions is analysed afterwards; shear tests are reproduced in parallel
and perpendicular to the face lamination of a CLT panel and results are
compared to the test data obtained by Izzi et al. [49] on similar joints.

The discussion presented below considers nailed joints with thick
plates. According to Eurocode 5 [6], the situation of ‘thick plate’ is
achieved when the thickness of the metal member is greater than the
diameter of the nail. However, annular-ringed shank nails have a con-
ical-shaped cap (Fig. 7) that enforces a failure mechanism with two
plastic hinges even with thinner plates [49].

4.1. Mechanical validation of the model

The mechanical behaviour of the proposed model is validated by
comparing the numerical predictions of the lateral dowel capacity to
the analytical values determined according to the Hilson [36] model
(Eq. (11)). Eq. (11) is based on a plastic limit analysis and is derived
assuming that the joint transfer solely shear, neglecting any other
parameter as the deformations. Based to this simplification, the with-
drawal behaviour of the fastener and the embedding of the timber fibres
into the thread are disregarded.
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Table 1
Typical input parameters used to model the bending behaviour of the
nail (obtained assuming d = 4 mm).

Input parameter

M, [Nmm] 8235
Kq [Nmm/"] 82,350
Slope #1, #10 Ko
Slope #3, #4 Ko
Separation #3-#5 2% x My
Separation #5-#30 0

futd ()

4M
F'lal:min filtld[ 2+Vlzyd—1:| (b)
20 M fd ©

Simulations consider the reference nail introduced in Section 3 and
two additional nails with d = 6.0 mm and d = 8.0 mm, respectively.
The pointside penetration depth is kept constant in all the systems
analysed (4 = 54 mm). The nails are assumed embedded in the first two
board layers of a CLT element, as schematized in Fig. 6.

Analyses are performed by varying the discretization of the nail
shank and the average density of CLT. Firstly, a coarse discretization is
considered, with the nail shank divided into six beams of length
| = 9mm: three beams are located into the upper board layer and the
other three into the lower one. A finer discretization is taken into ac-
count afterwards, with the shank divided into nine beams (I = 6 mm):
five beams are located into the upper board layer and four in the lower
one, respectively. In both cases, the average density of CLT is varied
between 360 kg/m> and 500 kg/m?>, with 20 kg/m?> steps. Tables 1 and
2 list the typical input parameters used in the analyses; values are ob-
tained considering the finer discretization (I = 6 mm), a nail with
d = 4.0mm and an average density p = 480 kg/m>.

Results of this parametric study are summarized in Fig. 8. Simula-
tions are carried out in displacement control, parallel to the superficial
lamination of the panel. The lateral dowel capacity is equal to the load
attained by the nailed joint when the plastic deformed configuration is
reached. Numerical predictions (red markers) provide a good match
with the analytical values determined using Eq. (11) (black lines with
markers), especially when the finer discretization is adopted (Fig. 8b).
Analyses with d = 4.0mm exhibit a failure mechanism where the
bending capacity of the nail is attained with two plastic hinges together
with embedding of timber. Simulations performed with larger dia-
meters lead to a failure mechanism where only one plastic hinge is
attained.

11

4.2. Simulations under monotonic loading conditions

The load-displacement response of the nailed steel-to-timber joint
schematized in Fig. 6 is analysed. Monotonic shear tests are reproduced

Table 2

Typical input parameters used to model the withdrawal behaviour of
the nail (obtained assuming d = 4 mm, p = 480 kg/m®, I, = 44 mm,
n =9, and ! = 6 mm).

Input parameter

Kax fastener [N/mm] 1250
Fax,fastener [N] 2188
Kax [N/mm] 139

Fax [N] 243
Slope #1 Kax
Slope #10 10 X Kay
Slope #3, #4 5 X Kax
Separation #3-#5 2% X Fay
Separation #5-#10 0
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discretized into nine beams of length | = 6 mm. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

in parallel and perpendicular to the face lamination of a CLT panel and
results are compared to the envelope curves extracted from thirty cyclic
shear tests carried out by Izzi et al. [49] (fifteen tests parallel to the face
lamination of a CLT panel and fifteen perpendicular, respectively).

Analyses are carried out by assuming that the nail is embedded into
the first two board layers of a CLT element with 30 mm thick boards.
The average density of the CLT panel, acquired from the tests, is
o = 480 kg/m?>.

Based on the model validation (Section 4.1), the nail shank is di-
vided into nine beams of length | = 6 mm: five beams are located in the
upper board layer and four in the lower one. The input parameters used
in the analyses are listed in Tables 1, 2 and 3.

Table 3
Typical input parameters used to model the embedment behaviour of timber (obtained
assuming d = 4mm, p = 480 kg/m3, and | = 6 mm).

Input parameter

Parallel grain Perpendicular grain

kn [MPa/mm] 10 15

Fy, [MPa] 41 41

Kp, [N/mm] 240 360

Fy [N] 984 984
Slope #1, #10 Ky Ky
Slope #3 5 %X Ky 5 %X Ky
Slope #4 2.5 X Ky, 2.5 X Ky,
Separation #3-#5 2% x Fy 2% X Fy
Separation #50-#4 2% X Fy 2% X Fy
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The first set of simulations neglects the embedding of the timber
fibres into the thread of the nail. Analyses are subsequently repeated
and this effect is introduced by increasing the withdrawal stiffness of
the nail. Consequently, according to Dominguez et al. [47] and based
on the profile of the shank, the withdrawal stiffness is doubled up.

The outcome of this study is shown in Fig. 9, where experimental
results (grey solid lines) and numerical predictions determined con-
sidering the original withdrawal stiffness (dark grey dashed line) and
the doubled one (red line) are compared. Simulations show that the
lateral dowel capacity of the joint controls the bearing mechanism up to
3mm of displacement, while the withdrawal behaviour of the nail is
activated afterwards. Results obtained with the doubled withdrawal
stiffness lead to slightly better performances after the attainment of the
lateral dowel capacity, even though the maximum load-carrying capa-
city is similar to the original simulations. Based on this behaviour, the
embedding of the timber fibres into the thread of the shank is neglected
in the cyclic simulations.

4.3. Simulations under cyclic loading conditions

The hysteretic behaviour and the energy dissipation of the joint
schematized in Fig. 6 are analysed. Cyclic shear tests are reproduced in
parallel and perpendicular to the face lamination of a CLT panel and
numerical results are compared to two tests carried out by Izzi et al.
[49]. Analyses considered the same input parameters adopted in Sec-
tion 4.2 and the displacement histories of the tests.

The outcome of this study is shown in Fig. 10, where experimental
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(black solid line) and numerical results (red solid line) are compared.
Analyses provide a good match with the reference test results in terms
of both global shape of the hysteresis cycles and total energy dissipa-
tion, leading to a final difference lower than 5%. However, there are
small discrepancies that might be minimized by further refining the
mechanical calibration of the embedment behaviour of timber. This
applies to both the reloading stiffness (the slope of branch #4 in Fig. 4c)
and the lack of impairment of mechanical properties due to cyclic
loading. The reloading stiffness is determined based on the results of
Chui and Ni [46] (Section 2.3), which were obtained employing nails
with diameter smaller than the those considered in this numerical
study. The strength and stiffness degradations, although implemented
into the subroutine used in the simulations, have not been considered
since require the assessment of additional input parameters for which
no experimental evidence exists. Therefore, to improve the reliability of
the results, the future developments of this study should overcome this
lack of knowledge and perform cyclic embedment tests using nails with
diameter greater than or equal to 4 mm.

5. Conclusions

This paper proposes a numerical model capable of predicting the
hysteretic behaviour and failure mechanisms of timber joints with
dowel-type fasteners. A key feature of the model is the use of simplified
mechanical relationships and basic input parameters that can be as-
sessed using either experimental approaches or the information avail-
able in literature. This allows performing parametric numerical studies
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where the type and diameter of the fastener, the density of timber, and
the load-to-grain angle are varied.

The model schematizes a timber joint as an elasto-plastic beam in a
non-linear medium with a compression-only behaviour. The behaviour
of the steel and timber components of the joint is modelled using non-
linear springs, characterized by elasto-plastic constitutive laws.
Moreover, the model is capable of simulating the effect of the cavity
formed around the fastener by timber crushing, and predicts both the
hysteretic behaviour and the energy dissipation under cyclic loading
conditions.

Shear tests are reproduced on steel-to-timber joints with annular-
ringed shank nails in CLT and results are compared to the experimental
test data obtained on similar elements. Analyses conducted under
monotonic conditions highlighted that the bearing mechanism is gov-
erned by the lateral dowel capacity of the joint up to 3mm of dis-
placement, while the withdrawal behaviour of the nail is activated
afterwards. Simulations carried out under cyclic conditions lead to
sufficiently accurate predictions of the mechanical behaviour (in terms
of elastic stiffness, maximum load-carrying capacity, and energy dis-
sipation), even though the reloading branches of the hysteresis cycles
exhibited small discrepancies with the reference tests. Differences can
be attributed to the simplifications introduced in the analyses to model
the embedment behaviour of timber under cyclic loads.

The numerical model proposed in this paper represents a sound
basis to investigate the hysteretic behaviour of joints with dowel-type
fasteners. Nevertheless, future research is required to further verify and
improve this predictive model. Extending the knowledge on the em-
bedment behaviour of timber under cyclic loads represents a matter of
primary importance to improve the reliability of the numerical results.
Most of the results currently available in literature are obtained under
monotonic conditions and considering fasteners with diameter greater
than 10 mm. To this aim, it would be useful to design and perform test
programmes considering fastener with smaller diameters (with d
smaller than 8 mm). A second recommendation for future developments
deals with the extension of the current numerical study to other con-
figurations of technical interests. The study presented in this paper
focused on the mechanical behaviour of nailed joints for CLT structures;
however, the method proposed in Section 2 and 3 might be used to
develop numerical models that reproduce sheathing-to-framing joints
for light timber-frame structures, as well as timber-to-timber and
slotted-in steel plate joints in solid wood.
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