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Abstract. A Collocation Meshless Method based on Radial Basis Function (RBF) interpo-
lation is employed to solve steady state heat conduction problems on 3D domains of arbitrary
shape. The set of points required by the numerical method is generated through a novel and
simple technique which automatically produces a distribution with variable point density and
which adapts to each specific geometry. Numerical results are systematically compared to the
corresponding analytical solutions considering several combinations of parameters; convergence
tests have also been carried out. The favorable properties that will be outlined suggest that this
approach can be an effective and flexible tool in the numerical simulation of heat conduction
problems with complex 3D geometries.
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1. Introduction
The simulation of engineering relevant problems with standard numerical approaches (Finite
Element and Finite Volume methods among all) requires a spatial discretization of the domain;
such phase, known as meshing, can require a valuable fraction of the entire simulation time,
especially when dealing with complex 3D geometries.

In recent years, several meshless approaches have been proposed [1–5] to avoid the need of a
mesh: only a set of points is required to approximate the unknown physical quantities and the
field equations, with slight constraints on the distribution of points; these approaches have been
successfully applied to a wide range of problems, from heat transfer to solid mechanics.

Meshless methods employing Radial Basis Function (RBF) interpolation [6–11] will be
considered; in particular, Hardy’s Multiquadric (MQ) [12] can be used as RBF; such MQ-RBF
meshless approaches are becoming more and more popular in the field of numerical simulations
because of their efficiency, accuracy and flexibility [13–16].

The original MQ-RBF method [13, 14] employed a global support for the RBF interpolation,
which leads to spectral convergence and insensitivity to point locations, at the price of dealing
with fully populated matrices [16]; this approach becomes clearly unfeasible as the number of
unknowns N grows, because of excessive time and memory consumptions. Futhermore the choice
of interpolation parameters had strong influence on the numerical results.

http://creativecommons.org/licenses/by/3.0


2

1234567890

35th UIT Heat Transfer Conference (UIT2017) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 923 (2017) 012034  doi :10.1088/1742-6596/923/1/012034

Instead of a globally supported interpolation, most of recent MQ-RBF meshless approaches
[17–21] use a local support for the RBF interpolation, which allows the use of efficient solvers
at the price of a loss of spectral convergence and greater sensitivity to point locations; for these
reasons a locally supported strategy will be employed in this work.

MQ-RBF meshless methods require a distribution of points which covers the whole domain
and its boundary; higher point density is required where the solution exhibit large gradients
because of the local support, as in a traditional mesh-based method, but without any other
constraint on the distribution. In this work the point distributions will be generated by a novel
and simple technique which is based on an Octree space partitioning algorithm [22] to obtain
a variable point density which mets a defined spacing function; then a refinement process is
employed to adapt the distribution to the domain boundaries. This refinement process also
smooths the local spacing discontinuities due to the Octree algorithm.

Several computations will be carried out considering two 3D geometries and various
combinations of parameters for a Poisson equation (steady state heat conduction) in order to
outline the properties of this numerical approach; computed solutions will be compared to the
corresponding analytical solutions and FEM solutions. These tests showed that this approach
can be an accurate and flexible tool in the numerical simulation of heat conduction problems on
complex-shaped 3D domains.

2. Governing equation and boundary conditions
Let us consider the following 3D Poisson equation in the unknown temperature field T :

−∇2T = q (1)

defined on the domain Ω; equation (1) is representative of steady state heat conduction problems
with internal heat generation q, in the case of a constant k = 1 thermal conductivity.

Two different kinds of boundary conditions (BC) will be considered; Dirichlet BC (prescribed
temperature) on the Dirichlet boundary ΓD:

T = T̄ (2)

and Neumann BC (prescribed heat flux) on the Neumann boundary ΓN :

∂T

∂n
= n · ∇T = f̄ (3)

where n is the exterior normal to the boundary Γ = ∂Ω; obviously we have ΓD ∪ ΓN = Γ.
Since the computed solution will be compared to the corresponding analytical solution Tan,

we will set T̄ = Tan and f̄ = n · ∇Tan; the domain Ω and the terms q and Tan will be defined
case by case.

3. Point distributions
A point distribution is defined as a set of N points xi ∈ Ω whose local spacing is weakly defined
as the mean distance from xi to its nearest neighbors.

The point distribution process is composed by two consecutive phases:

• Octree phase: an Octree algorithm is used to generate a distribution of points whose
local spacing is close to a prescribed spacing function s̄(x); starting from the smallest
box bounding Ω, the algorithm recursively partitions the space in 8 octants till the local
partitioned box, centered in xi, has a size l ≤ s̄(xi): this point is then inserted if xi ∈ Ω;
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• Refinement phase: since the Octree algorithm produces a distribution inside Ω but not on
its boundary Γ, a simple point refinement process is employed to move the points near
Γ onto it; this is accomplished moving the points according to the reciprocal repulsion of
points: each point is subjected to the radial repulsion force of the closest 14 points.
The repulsion force magnitude is chosen to be the following:

F (r) = ωs̄

[
4
(r
s̄

)2
+ 1

]−2

(4)

where r is the distance between the points and ω = 0.5 is a relaxation parameter.
This refinement phase is iterated 30 times over the whole point set, and whenever the
distance from a point xi to the boundary is less than the local spacing s̄(xi), the point
is projected onto Γ; 30 iterations are typically enough to obtain a boundary distribution
whose local spacing is comparable to s̄ (there are no “holes” or clustered patches on the
boundary). The refinement phase also smooths the local spacing discontinuities inside Ω
due to the Octree algorithm.

4. Numerical method
4.1. Local RBF interpolation
RBF interpolation approximates the field T around x through the following expansion [9]:

T (x) =
∑

j∈Jn(x)

ajϕ(‖x− xj‖) + b · x + c (5)

where Jn(x) represents the indices j of the n points xj closest to x in the usual Euclidean norm.
T (x) is therefore a linear combination of n radial functions ϕ centered at the n field points xj

plus a linear polynomial in x.
There are many possible choices for ϕ [10]; Hardy’s Multiquadric (MQ) has been chosen since

it seems to offer the better results if an appropriate shape factor ε is employed [15, 16]:

ϕ(r) =
√

1 + (εr)2 (6)

The coefficients aj , b and c can be formally computed writing equation (5) for the m ≤ n
closest points xi, i ∈ Jn(x) which do not lie on the Neumann boundary ΓN :

T (xi) = Ti (7)

where Ti is the unknown temperature in xi.
The following additional relations are needed [3] because of the linear polynomial in (5):

n∑
j=1

aj = 0 ,
n∑

j=1

xjaj = 0 ,
n∑

j=1

yjaj = 0 ,
n∑

j=1

zjaj = 0 (8)

If any of the neighbor points xi, i ∈ Jn(x) lies on the Neumann boundary, for each of these
n−m Neumann points the corresponding BC (3) must be satisfied:

n · ∇T (xi) = f̄i (9)

where ∇T (·) is given by the gradient of equation (5) with ∇ϕ(rj) = ε2rj/ϕ(rj), rj = x− xj .
Collecting the n coefficients ai, the m unknown values Ti and the n−m Neumann boundary

contributions f̄i in column vectors a, T and f̄ , respectively, the interpolation system, in compact
form, is the following:
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G

a
b
c

 =

T
0
f̄

 (10)

4.2. Rescaled Multiquadrics
For each local MQ-RBF interpolation, the shape parameter has been rescaled as ε = s̄maxε̄/dk
to avoid ill-conditioned interpolation matrices where the prescribed spacing function s̄ is small;
ε̄ is the modified shape parameter (called shape parameter from now on), s̄max is the maximum
spacing within the domain and dk is the local subdomain size, defined as the maximum distance
between the points xi, i ∈ Jn(xk) near xk.

4.3. Collocation
Equation (1) with RBF approximation (5) becomes:

∇2T (x) =
∑

j∈Jn(x)

aj∇2ϕ(‖x− xj‖) = −q(x) (11)

where the 3D Laplacian of the RBF ϕ is ∇2ϕ(rj) = [2ϕ(rj) + 1/ϕ(rj)][ε/ϕ(rj)]
2, rj = ‖x−xj‖.

Writing equation (11) for a generic point xk near x gives:

aTL(xk) = −q(xk) (12)

where L(xk) is the column vector of the Laplacian of the RBF ϕ evaluated in xk for each of the
n neighbors xj . Finally, recalling aT from equation (10) we have:{

TT 0 f̄
T
}

[GT ]−1
a L(xk) = −q(xk) (13)

where [GT ]−1
a is the left (n + 4)× n submatrix of [GT ]−1. Writing equation (13) for each point

xk which does not lie on the boundary gives the following linear system:

AIITI = −(q + AIDTD + f̄N ) (14)

where the subscripts I, D, and N refer to Internal, Dirichlet and Neumann contributions,
respectively; since AII is nonsymmetric, sparse and very large, an iterative solver has to be used.
The biconjugate gradient stabilized method (BiCGSTAB) [23] with diagonal preconditioning has
been employed with a relative tolerance of 1E-8, which converged in less than 150 iterations for
each case that has been considered.

4.4. Error norm and FEM results
The comparison between the computed solution Tcomp and the corresponding analytical solution
Tan will be done computing the normalized root-mean-square norm of the error (NRMSE):

NRMSE =

√
1

V (Ω)

∫
Ω

(
Tcomp − Tan

Tmax − Tmin

)2

dΩ (15)

where V (Ω) is the volume of Ω; the 3D integral has been approximated by numerical quadrature
using the prescribed spacing function s̄3 as quadrature weight.

Finite Element results have been obtained using COMSOL Multiphysics R© FEA software
using tetrahedral meshes with linear elements (4 nodes); the number of mesh nodes is kept
closest possible to the number of unknowns N of the corresponding meshless solution, as well as
the element sizing which is chosen to be closest possible to the prescribed spacing function s̄(x).
Dirichlet BC have been prescribed, while different BC had negligible influences on the error.
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Figure 1. Test case A: geometry. Figure 2. Test case A: boundary point
distribution with N ≈ 40k points.

Figure 3. Test case A: surface plot
of the solution.

5. Numerical results and discussion
5.1. Test case A: 1/8 of a spherical shell
The geometry of the problem is reported in Figure 1 where the center of the spherical shell is
also the origin for the spherical r coordinate; the ratio Ri/Re is chosen to be 0.25.

The chosen analytical solution is the following:

Tan = Re/r (16)

which is harmonic: q = −∇2Tan = 0; the prescribed spacing function is chosen to be s̄ ∝ r2.
A surface plot of this solution is reported in Figure 3, while a boundary point distribution for
N ≈ 40k points can be seen in Figure 2.
Boundary conditions

• A1: Dirichlet BC on the whole boundary;
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Figure 4. Test case A1: error vs shape
parameter with Dirichlet BC, N ≈ 100k.
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Figure 5. Test case A4: error vs shape
parameter with Mixed BC, N ≈ 100k.
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Figure 6. Test case A: error vs shape
parameter with n = 14, N ≈ 100k.
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Figure 7. Test case A: convergence curves
with n = 12 and ε̄ = 5.

• A2: Neumann BC on one flat face, Dirichlet BC elsewhere;

• A3: Neumann BC on two flat faces, Dirichlet BC elsewhere;

• A4: Neumann BC on three flat faces, Dirichlet BC elsewhere.

First of all we investigated the influence of the shape parameter ε̄ in the range [1, 100] on the
error, considering three cases with n=12, 14 and 16 local interpolation points and two different
BC, A1 and A4, Figures 4 and 5, with N ≈ 100k points. These figures show that with Dirichlet
BC, for each n there exists a value of the shape parameter which minimizes the error; for n = 16
the error has a local minimum which is not global in the considered range. For all the values of
n, there exists a value of ε̄ below which the error is lower than the FEM. With Mixed BC, Figure
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Figure 8. Test case A: convergence curves
with n = 14 and ε̄ = 5.
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Figure 9. Test case A: convergence curves
with n = 16 and ε̄ = 5.

5, an irregular and peaked behaviour is observed, except for the n = 14 case; this undesired
feature is therefore due to the imposition of Neumann BC on a portion of the boundary: further
analyses have to be carried out in order to understand the influence of local point distribution
and shape factor when dealing with Neumann BC within the local MQ-RBF interpolation. In
addition to this irregular behaviour, the errors are comparable with FEM only for small ranges
of ε̄ around 10.

Figure 6 shows the influence of ε̄ on the error for all the considered BC with n = 14 and
N ≈ 100k points: a behaviour with minimum error around ε̄ = 10 is visible for all the curves,
with growing error passing from Dirichlet BC (A1) to Mixed BC (A4); the errors for this case
with n = 14 are comparable with the FEM for a wide range of ε̄ and for each BC.

Figures 7-9 show convergence curves for three cases with n=12, 14 and 16 local interpolation
points with ε̄ = 5. We first note that for every n there is a difference of one order of magnitude
in the error passing from Dirichlet BC (A1) to Mixed BC (A4), while the irregular behaviour of
the curves is probably due to the nature of the point distribution process (Octree phase) which
has discontinuous dependence from the prescribed spacing function s̄. In particular the case
n = 12 presents strong discontinuities, while the cases n = 14 and n = 16 have a similar and
more regular behaviour with estimated order of accuracy1 p varying from 2.5 to 3.3.

5.2. Test case B: hemisphere with cylindrical through hole
The geometry of the problem is reported in Figure 10 where r is the distance from the vertical
axis and z starts from the center of the hemisphere; the ratio Ri/Re is chosen to be 0.5.

The chosen analytical solution is the following:

Tan = exp

(
kz

( z

H
− 1
))

exp

(
kr

Ri − r

Re −Ri

)
(17)

with kz = 1.5 and kr = 1.0; Tan has therefore exponential growth in the direction of the upper

circular edge located at z = H =
√
R2

e −R2
i , as can be seen in the surface plot of Figure 12.

1 For 3D cases the order of accuracy p is defined by: NRMSE ∼ N−p/3.
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Figure 10. Test case B: geometry. Figure 11. Test case B: boundary point
distribution with N ≈ 50k points.

Figure 12. Test case B: surface
plot of the solution.

The prescribed spacing function is chosen to be s̄ ∝ T−1
an : a boundary point distribution for

N ≈ 50k points can be observed in Figure 11.
The internal heat generation q is therefore:

q = −∇2Tan = −
[
(C2

z + C2
r ) + Cr/r

]
Tan (18)

where Cz = kz/H and Cr = −kr/(Re −Ri).

Boundary conditions

• B1: Dirichlet BC on the whole boundary;

• B2: Neumann BC on the spherical surface, Dirichlet BC elsewhere.

Again, we first investigated the influence of the shape parameter ε̄ in the range [1, 100] on the
error, considering three cases with n=12, 14 and 16 local interpolation points and two different
BC, B1 and B2, Figures 13 and 14, with N ≈ 100k points. Dirichlet BC error curves have very
similar behaviour for different n, with no local minimal points in the considered range for ε̄;
below ε̄ = 10 the error is lower than the FEM, even one order of magnitude less than FEM error
for ε̄ around 1. With Mixed BC, Figure 14, the error curves have shifted towards large errors,
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Figure 13. Test case B1: error vs shape
parameter with Dirichlet BC, N ≈ 100k.

100 101 102

7"

10!5

10!4

10!3

10!2

10!1

N
R

M
S
E

B2: n=12
B2: n=14
B2: n=16
FEM

Figure 14. Test case B2: error vs shape
parameter with Mixed BC, N ≈ 100k.
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Figure 15. Test case B: error vs shape
parameter with n = 14, N ≈ 100k.
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Figure 16. Test case B: convergence
curves with n = 12 and ε̄ = 5.

while a peak is observed for the n = 16 case around ε̄ = 1.3; for n = 12 and 14 the errors are
lower than FEM only for ε̄ < 5.

Figure 15 shows the influence of ε̄ on the error for both Dirichlet and Mixed BC with n = 14
and N ≈ 100k points: a decreasingly error for small ε̄ is visible for both curves, with growing
error passing from Dirichlet BC (B1) to Mixed BC (B2); the errors for this case n = 14 are
comparable to the FEM for a wide range of ε̄ and for both BC.

Figures 16-18 show convergence curves for three cases with n=12, 14 and 16 local interpolation
points with ε̄ = 5. Again we note that for every n there is a difference of a factor 5 in the error
passing from Dirichlet BC (B1) to Mixed BC (B2), while the irregular behaviour of the curves is
less evident than the test case A. Furthermore for large N the convergence curves become more
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Figure 17. Test case B: convergence
curves with n = 14 and ε̄ = 5.
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Figure 18. Test case B: convergence
curves with n = 16 and ε̄ = 5.

and more regular, allowing an estimation of the order of accuracy p between 2.0 and 2.3.

5.3. CPU times
Among all phases of the proposed approach, the point distribution process is the most time
consuming; its cost is approximately 1 second/50k points2 and its complexity is linear in N .
The local interpolation phase has a cost which is the half of the previous phase, approximately
1 second/100k points in the case of n = 14 and is again linear in N ; the solution phase
through BiCGSTAB algorithm took the same amount of time of the local interpolation phase
for N around 500k and n = 14. We remark that the point distribution process and the
local interpolation phase are not parallelized in any way, while BiCGSTAB is automatically
parallelized on multicore architectures within MATLAB R©.

6. Conclusions and future work
In this work a Collocation Meshless Method, based on Multiquadric Radial Basis Function
interpolation, is used for the numerical simulation of steady state heat conduction problems
(Poisson equation) on complex-shaped 3D domains. A simple and flexible process is employed
to generate a distribution of points with a prescribed spacing; points are automatically generated
inside the domain and on its boundary.

Two test cases of practical relevance have been considered, and for each case several
computations are carried out for various combinations of parameters (total number of points N ,
shape factor ε̄, number of local interpolation points n, boundary conditions). Most of these tests
revealed good accuracy (comparable with linear FEM) and good convergence properties (more
than second order in space); excellent results are obtained with n = 14 (the asymptotic number
of edges per node in a tetrahedral mesh with recursive baricentric partitioning is exactly 13 [24],
corresponding to the choice n = 14).

These positive results confirm that the coupling of the local RBF meshless discretization with
the point generation process here presented can therefore be extremely effective in the numerical
simulation of heat conduction problems on general-shaped 3D domains of engineering relevance.

2 On a modern laptop (quad-core IntelR© i7 2.6GHz).
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Further investigations will be conducted considering a variable number of local interpolation
points n and a variable shape factor ε̄, different strategies for shape factor rescalation and
improved point distribution techniques.
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