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Deadbeat Source Localization from Range-only

Measurements: a Robust Kernel-based Approach
Peng Li, Gilberto Pin, Giuseppe Fedele, and Thomas Parisini

Abstract—This paper presents a novel framework for the
problem of target localization based on the range information
collected by a single mobile agent. The proposed methodology
exploits the algebra of Volterra integral operators to annihilate
the influence of initial conditions on the transient phase, thus
achieving a deadbeat performance. The robustness properties
against additive measurement perturbations are analyzed and
the bias caused by the time-discretization is characterized as
well. Extensive simulation results and comparisons are provided
showing the effectiveness of the proposed technique in coping
with both stationary and drifting targets.

I. INTRODUCTION

The problem of target localization represents one of the fun-
damental issues in several engineering fields such as aerospace,
military, wireless sensor networks, etc. Several methods and
tools have been developed targeting specific applications with
customized system architectures and algorithmic solutions.
Many recent works can be found in the literature and a com-
prehensive survey is out of the scope of the paper. Therefore,
in the following only a partial overview will be given. For an
expanded literature review, the reader is referred, for instance,
to the important recent paper [1].

The localization systems can be classified into two cate-
gories: the global positioning systems (GPS) and the local po-
sitioning system (LPS) [2]. GPS is the most obvious and easy
solution to the localization problem in an open environment.
However, due to the limited visibility of the satellites, there
are practical situations in which GPS cannot be used [3].

In the context of the local positioning for target pursuing,
usually it is possible to acquire only partial data related to
the coordinates of the target, such as distance, angle and
bears [4], which act as clues of the estimation. In this work,
only distance-based methods will be considered. Notably, the
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distance-based localization problem, also known as range-
based, has been widely investigated together with its appli-
cation to the case of underwater vehicles navigation (see [5],
[6], [7]). Among other range-based localization methods, the
algorithms proposed in [8], [9] calculate the coordinate of
the target by fusing the data collected by multiple agents.
All agents measure range information at the same time, and
the location is calculated off-line by exploiting geometric
constraints. These algorithms are not very well suited for real-
time target tracking problems and are sometimes not robust
with respect to the noise. Instead, continuous-time on-line
localization algorithms may outperform the off-line ones in
terms of robustness and tracking performance. In the literature,
a typical family of algorithms is the one in which multiple
distributed sensing agents cooperate in order to estimate the
source location (see, for instance, [10], [11]). These algorithms
are often characterized by the need of synchronization tools to
achieve consensus on the target location, at the cost of an
increased computational burden and stringent requirements on
the communication network.

Taking also computational and infrastructural complexity
into consideration, several single-moving-agent localization
systems have been proposed. In [12], 2D single-range-base
localization is formulated as a nonlinear system whose observ-
ability is studied resorting to an algebraic derivative estimator.
A single-agent 3D localization method is presented in [13] and
[14], where the position of the source together with its velocity
are regarded as the hidden states of a nonlinear system. To
estimate the states, the nonlinear system is transformed into a
linear time-varying (LTV) one. After a further transformation,
the LTV system is converted into a linear time invariant
(LTI) one, to which general-purpose state observers, e.g.,
Luenberger, Kalman or H∞ filters can be applied in order
to estimate the states. However, the computational burden is
significant. Moreover, the measurement of velocity is required
introducing additional difficulties of implementation and possi-
bly extra measurement errors. In [1], an alternative LTI system
with time-varying output mapping is formulated with compre-
hensive observability analysis. Moreover, a robust correction-
based state estimator is designed with the consideration of
disturbances on both the distance measurement and velocity.

Another family of approaches is based on regression for-
mulation derived from geometrical relationship (see [15],
[16], [17], [18]). Specifically, [15] presents a continuous-time
adaptive algorithm that is able to localize the target, which
can be either stationary or drifting. A set of linear filters
is used here to avoid the explicit calculation of the signal
derivatives in the differential equation. A similar approach
can be found also in [16]. Based on the aforementioned
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methods, [17] presents a least-square-based adaptive law with
a forgetting factor aiming at minimizing the cost function
with respect to the target location, which is proven to be
superior to the gradient algorithms due to higher convergence
rate and robustness. A discrete-time localization scheme with
fading memory is proposed in [18] with a velocity-related
identifiability condition guarantee the non-singularity of the
regression matrix.

All the above-mentioned approaches are shown to enjoy
exponentially stable convergence properties. However, in many
practical applications characterized by strict requirements on
the tracking speed, it is often desirable that the estimation
converge to the true location in finite-time. A novel kernel-
based approach is first proposed in [19] providing a deadbeat
parametric estimation method for continuous-time linear sys-
tems. By using Volterra integral operators, this method allows
to annihilate the effects of the unknown initial conditions of
the states. Volterra integral operators with a specific kernel
have been also used in [20] to obtain a finite-time convergent
observer for continuous-time SISO linear systems.

Besides the aforementioned linear estimation frameworks,
in our recent work [21], Volterra integral operators have been
applied to the nonlinear range-based localization problem,
yielding the position estimation of a fixed target in a deadbeat
manner in the ideal case. As an extension of this earlier work,
the present paper deals not only with the stationary target but
also with the localization problem in the presence of a persis-
tent drift on the target. Notably, the robust stability analysis
provides evidence that the estimation error remains bounded
in case of a persistently drifting target and measurement noise,
making the proposed algorithm a viable choice for the practical
implementation.

This paper is organized as follows. In the next section,
the localization problem is stated. In Section III some pre-
liminaries of the Volterra operator and the core properties
of non-asymptotic kernels are given. Section IV formulates
the continuous-time non-asymptotic algorithm based on the
Volterra operators. Section V analyzes the robustness of the
proposed algorithm under additive bounded noise, as well as
the characterization of the bias introduced by the discrete
implementation. In Section VI, the algorithm is shown to be
able to track a source drifting within a bounded range and with
bounded rate. Finally, Section VII presents numerical results
and comparisons with another continuous-time fast-converging
localization method in [17] showing the effectiveness of the
proposed algorithm.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a target positioned in a three-dimensional coordi-
nate system, the position of which is described in the form
of a vector x ∈ R

3. A mobile agent, whose coordinates at
time t is also a vector y(t) ∈ R

3, is moving according to a
preset trajectory and measuring, for any t ≥ 0, the distance
from the target. The source location x can be estimated based
on the knowledge of the agent position y(t) and the measured
distance d(t) according to:

d(t) = ‖y(t)− x‖ , (1)

where ‖·‖ denotes the Euclidean norm. We make the following
assumption on the boundedness of position, velocity and
acceleration of the agent [15].

Assumption 1: The agent trajectory described by the func-
tion y(t) is at least twice differentiable. Moreover the agent’s
trajectory function y(t) and its velocity d

dty(t) are bounded,
i.e. ∀t ≥ 0, there exists positive Mi (i = 1, 2), such that

‖y(t)‖ ≤ M1, (2)

∥

∥

∥

∥

d

dt
y(t)

∥

∥

∥

∥

≤ M2. (3)

Notice that (1) is a scalar algebraic constraint which is
not sufficient to retrieve the position of the agent. In order
to retrieve an estimate of the agents’s position by using the
kernel-based method, we need to transform (1) in a differen-
tial constraint and augment the scalar equation with further
dynamic equations.

Taking the first derivative of (1), one can obtain

d

dt
{d2(t)} = 2

d

dt
y(t)⊤(y(t)− x). (4)

Defining the signals

sd(t) , d2(t), (5)

sy(t) , y(t)⊤y(t), (6)

one can rewrite (4) as

d

dt
{sd(t)} =

d

dt
{sy(t)} − 2

d

dt
{y(t)⊤}x (7)

However, the only available quantities in (7) are d(·), y(·),
sd(·) and sy(·), while their derivatives are assumed not directly
accessible.

III. NON-ASYMPTOTIC VOLTERRA OPERATORS ALGEBRA

In the proposed approach, Volterra integral operators play
a key role in transforming a differential expression into a
sequence of algebraic equations. Basic concepts and algebra of
the Volterra operators (see [19], [22] and the reference therein)
are briefly reviewed and some notations are introduced in this
section for the reader’s convenience.

Let VK denote the bounded Volterra linear integral operator
induced by a given bivariate kernel function K(·, ·) mapping
within the Hilbert space L2

loc(R≥0) of locally square-integrable
functions with domain R≥0 and range R.1. Then, a function
u(·) ∈ L2

loc(R≥0) has the image function [VKu](·) through
VK defined as

[VKu](t) ,

∫ t

0

K(t, τ)u(τ) dτ, (8)

where the kernel function K(·, ·) : R × R → R is taken as a

Hilbert-Schmidt (HS) Kernel Function. The notation u(i)(t)

1For a given positive integer i and a function u(·), we introduce the follow-
ing definition: (u(·) ∈ Li

loc
(R≥0) ⇔ (u(·) : R≥0 → R) ∧ (

∫
B
|u(t)|idt <

∞, ∀ compact B ⊂ R≥0)
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will be used to address the i-th weak derivative of a function
u(t) defined as:

Definition 3.1: (Weak (generalized) derivative): Let u(·) ∈
L1
loc(R≥0). Then u(1)(·) is said to be a weak derivative of u(·)

if
∫ t

0

u(τ)(
d

dτ
φ(τ)) dτ = −

∫ t

0

u(1)(τ)φ(τ) dτ, ∀t ∈ R≥0,

for all φ ∈ C∞, with φ(0) = φ(t) = 0.

A. Dynamic implementation of Volterra operators

To realise the transformation of the signal u(t) through the
Volterra operator VK , a dynamic system having [VKu](t) as
output can be constructed, for t ≥ 0, as follows:















ξ(1)(t) = K(t, t)u(t) +

∫ t

0

(
∂

∂t
K(t, τ))u(τ) dτ

ξ(0) = ξ0 =

∫ 0

0

K(0, τ)u(τ) dτ = 0

,

[VKu](t) = ξ(t),

where ξ(1)(t) = d
dt [VKu](t) which is obtained according to

the Leibnitz integral rule.

By considering the image function of the time-derivatives
of the signal, the following characteristic can be derived by
applying integration by parts.

Lemma 3.1: Given an i ∈ Z>0, exploiting a signal u(·) ∈
L2
loc(R≥0) and a Volterra kernel function K(·, ·) ∈ HS which

is at least i-th order differentiable with respective to the second
argument, it holds that:

[VKu(i)](t) =

i−1
∑

j=0

(−1)i−j−1u(j)(t)K(i−j−1)(t, t)

+

i−1
∑

j=0

(−1)i−ju(j)(0)K(i−j−1)(t, 0)

+ (−1)i[VK(i)u](t), ∀t ∈ R≥0.

(9)

Lemma 3.1 indicates the non-anticipativity of the image
function [VKu(i)](t) with respect to the signal u(·) and its
lower-order derivatives u(1)(·), u(2)(·), ..., u(i−1)(·).

B. Kernel conditions for non-asymptoticity

Notice that, in general, terms of initial conditions u(0),
u(1)(0), ..., u(i)(0) are included in (9) when the auxiliary signal
[VKu(i)](t) is computed. The influence of the unknown initial
conditions is one of the factors that affect the convergence of
the estimation and theoretically avoids the possibility to obtain
a deadbeat performance in noise-free scenarios.

In this paper, the finite-time convergence will be realized
by rendering the transformed signal [VKu(i)](t) independent
from the unknown initial states u(0), u(1)(0), ..., u(i)(0), for
all t ∈ R≥0, by using kernel functions obeying the following
definition:

Definition 3.2: (i-th Order Non-asymptotic Kernel): Con-
sider a Volterra kernel function that subsumes the assumption
in Lemma 3.1, and for given i ∈ Z≥0, it verifies the condition

K(j)(t, 0) = 0, ∀t ∈ R≥0, ∀j ∈ {0, ... , i− 1},

then K(·, ·) is called an i-th order non-asymptotic kernel.
In this work, we exploit a kernel K(·, ·), satisfying more

stringent conditions, for given i ≥ 1
{

K(j)(t, 0) = 0,

K(j)(t, t) = 0

∀t ∈ R≥0 and ∀j ∈ {0, ..., i− 1}.
It can be immediately proved that the image of signal’s

derivatives no longer depend on the current value of the
derivatives of u(·) and (9) reduces to the simple expression:

[VKu(i)](t) = (−1)i[VK(i)u](t). (10)

IV. A KERNEL-BASED NON-ASYMPTOTIC LOCALIZATION

ALGORITHM

In this section, the deadbeat localization algorithm is pre-
sented.

Taking the transformation on both sides of the equation
through the Volterra operator (7), we will immediately obtain:

[VKsd
(1)](t) = [VKsy

(1)](t)− 2[VKy(1)](t)⊤x, (11)

which, according to (10), is equivalent to

[VK(1)sd](t) = [VK(1)sy](t)− 2[V
K

(1)y](t)⊤x. (12)

Please note that (12) no longer relies on the derivatives of
the measurements which cannot be exactly obtained due to
the unknown initial conditions, but relies on the derivatives
of the known kernel functions. Therefore, without the effect
of the unknown initial conditions, deadbeat estimation can be
achieved by solving the following linear equation for x:

r(t) = z(t)
⊤
x, (13)

where we have used the notation

r(t) =
−[VK(1)sd](t) + [VK(1)sy](t)

2
,

z(t) = [V
K

(1)y](t). (14)

Since the highest order of derivatives involved in the linear
differential equation (7) is one, then kernel functions with
order equal or higher than one are adequate to perform a non-
asymptotic identification. Therefore, as in [19], we choose the
following kernel function:

K(t, τ) , e−ω(t−τ)(1− e−ωτ )[1− e−ω(t−τ)]. (15)

In (15), the factor (1−e−ω(t−τ)) guarantees the causality of the
kernel function while the non-asymptotic condition is realized
by the term (1 − e−ωτ ). Both the factors contribute to the
boundedness of the kernel function.

From now on, we are presenting how the augmentation

works mapping the first order derivatives s
(1)
y (t), s

(1)
d (t) and
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y(1)(t) to the auxiliary signals [VK(1)sy](t), [VK(1)sd](t) and
[V

K
(1)y](t). Taking the first derivative of the kernel function

(15) with respect to the second argument τ , we get

K(1)(t, τ) = e−ωtfω,1(τ) + e−2ωtfω,2(τ), (16)

where

fω,1(τ) = ωeωτ ,

fω,2(τ) = ωeωτ − 2ωe2ωτ .

Define
Kj(t, τ) , e−ωjtfω, j(τ), j = 1, 2.

Due to the linearity of Volterra operators, it holds that

[VK(1)u](t) = [VK1u](t) + [VK2u](t). (17)

Noticing that

∂

∂t
Kj(t, τ) = −ωje−ωjtfω,j(τ) = −jωKj(t, τ),

and letting ξu,j(t) , [VKj
u](t), where u represents the signals

sd(t), sy(t) and y(t) with j ∈ {1, 2}, it follows that the
auxiliary signal vector can be expressed as:

ze(t) =
[

[VK(1)sd](t), [VK(1)sy](t), [VK
(1)y](t)⊤

]⊤
,

whose elements are needed to form r(t) and z(t) in the
constraint (13). The elements of the vector ze(t) can be
expressed as the output of a 10-dimensional linear time-varying
dynamic system

{

ξ(1)(t) = Gξξ(t) +Eξ(t)uξ(t)

ze(t) = Hξ(t)
, (18)

where ξ(t) ∈ R
10 is the overall state vector and ξ(0) = 0 with

ξ(t) = [ξsd,1(t), ξsd,2(t), ξsy ,1(t), ... ξy3,1(t), ξy3,2(t)]
⊤,

uξ(t) = ua(t)⊗ [1, 1]⊤ ∈ R
10,

ua(t) = [sd(t), sy(t),y(t)]
⊤ ∈ R

5,

Gξ = blockdiag(G,G,G,G,G),

G = diag(−ω,−2ω),

Eξ(t) = blockdiag(E(t),E(t),E(t),E(t),E(t)),

E(t) = diag(K1(t, t),K2(t, t)),

H = blockdiag(1⊤,1⊤,1⊤,1⊤,1⊤),

1⊤ ∈ R
1×2, (19)

with ⊗ denoting Kronecker product.
Up to now, all the values of the signals in the linear

constraint (13) are available thanks to (18).
By defining

S(t) , z(t)r(t) ∈ R
3×1,

R(t) , z(t)z(t)⊤ ∈ R
3×3, (20)

the problem becomes that of estimating x from:

S(t) = R(t)x. (21)

Noticing that rank[R(t)] = 1, it follows that the above
equation cannot be directly solved for x. To address this issue,
we resort to a filtered version of (21) which holds for all t ≥ 0.
Applying to both sides of (21) another Volterra operator VG,
with a simple kernel G(t, τ) = e−g(t−τ), g ∈ R>0, we have

[VGS](t) = [VGR](t)x, ∀t ∈ R≥0. (22)

Denoting Sf(t) , [VGS](t) and Rf (t) , [VGR](t), it
follows that

{

Ṡf (t) = −gSf(t) + S(t)

Ṙf (t) = −gRf (t) +R(t)
, (23)

where Sf (0) = 03×1, Rf (0) = 03×3.
Remark 4.1: Thanks to the exponential shape of the kernel

G(t, τ), the covariance filtering introduces a fading memory
mechanism. By tuning the forgetting factor g, the dependence
on the previous data can be adjusted, which allows the localiza-
tion scheme to face measurement noise and source drift. The
interested readers can get a deeper insight on how g affects
the performance of the estimator in [19].

In order to prove the stability of the estimator, we introduce
the following Assumption which ensures the invertibility of
the filtered covariance matrix Rf (t).

Assumption 2: (Persistency of Excitation) The norm of z(t)
is persistently exciting (PE) in the sense that there exists
constant α > 0 and tα > 0 such that ∀t ≥ tα

∫ t

t−tα

z(τ)z(τ)⊤dτ ≥ αI > 0. (24)

Therefore, the non-singularity of Rf (t) can be guaranteed
due to the fact that ∀t ≥ tα

Rf (t) ≥

∫ t

t−tα

e−g(t−τ)z(τ)z(τ)⊤dτ

≥ e−gtα

∫ t+tα

t

z(τ)z(τ)⊤dτ ≥ e−gtααI.

In this case, the filtered auto-covariance matrix Rf (t) charac-
terizes a sufficiently informative output signal at time t ≥ tα,
such that an estimate x̂(t) of the location can be obtained by

x̂(t) = Rf (t)
−1Sf (t). (25)

Moreover, to avoid the large overshoot in the initial phase
of estimation which is caused by inverting a nearly singular
matrix Rf (t), the inversion in (25) will be performed only
when the smallest singular value of Rf (t) is greater than a
given threshold θ̄ > 0, to be chosen according to the required
numerical accuracy.

Remark 4.2: The P.E. condition (see (24)) depends only
upon the trajectory of the sensing agent y(t), which is pre-
determined. Moreover, recall the definition of z(t) in (14) and
(10), condition in (24) is equivalent to there exist σ > 0 and
tσ > 0,

∫ t

t−tσ

d

dt
y(τ)

d

dt
y(τ)⊤dτ ≥ σI, ∀t > tσ. (26)
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Therefore in order to guarantee persistency of excitation, the
motion of the agent should span the 3D space.

Remarkably, thanks to the linearity of the Volterra integral
operators and recalling the equivalence between (11) and
(12), the estimates x̂(t) provided by (25) will converge, non-
asymptotically, to the true source position x as long as the
persistency of excitation condition (24) or (26) is satisfied.

V. ROBUSTNESS ANALYSIS

In this section, the performance of the algorithm in pres-
ence of bounded measurement perturbations is analyzed and,
moreover, the bias introduced by time-discretization in imple-
mentation is addressed.

A. Stability analysis

In order to characterize the robustness of the algorithm
in facing measurement perturbations, the stability analysis is
performed under the assumption that both d(t) and y(t) are
affected by bounded additive disturbances:

d̂(t) = d(t) + ηd(t),

ŷ(t) = y(t) + ηy(t), (27)

where |ηd(t)| ≤ ηd, ηy = [ηy,1, ηy,2, ηy,3]
⊤ and |ηy(t)| ≤ ηy .

Recalling (18) and accounting for the exogenous perturba-
tion we get:

ξ̂
(1)

(t) = Gξξ̂(t) +Eξ(uξ(t) + η(t)), (28)

where η(t) =
[

ηsd(t), ηsd(t), ηsy(t), ηsy(t),ηy(t)⊗ [1, 1]
]⊤

is a column vector with 10 entries with definitions

ηsd(t) , 2dηd + η2d
≤ 2(M1 + ‖x‖)η̄d + η̄2d , η̄1 = η̄2.

ηsy(t) , 2y1ηy,1 + η2y,1 + 2y2ηy,2 + η2y,2 + 2y3ηy,3 + η2y,3

≤ 6M1η̄d + 3η̄2d , η̄3 = η̄4.

The dynamics of the state error ξ̃(t) = ξ̂(t) − ξ(t) can be
expressed as:

ξ̃(1)(t) = Gξξ̃(t) +Eξη(t). (29)

Since the matrix Gξ is Hurwitz and Eξη(t) is bounded,

then ξ̃(t) is bounded. Each element of the error vector

ξ̃(t) , [ξ̃1(t), ξ̃2(t), ...ξ̃10(t)]
⊤, verifies the norm-inequality:

∣

∣

∣
ξ̃2i+k(t)

∣

∣

∣
≤ e−kωtξ̃2i+k(0)

+
1− e−kωt

kω
sup

0≤τ≤t
Kk(τ, τ)η2i+k

≤ e−kωtξ̃2i+k(0)

+
1

kω
sup

0≤τ≤t
Kk(τ, τ)η2i+k

,
¯̃
ξ2i+k, ∀i ∈ {0, 1, 2, 3, 4}, k ∈ {1, 2}

where ηi represents the upper bound of the i-th element of
the disturbance vector η(t).

Therefore, the auxiliary-signal error ze due to the measure-
ment disturbances:

z̃e(t) = Hξ̃(t)

is bounded, too.
It follows that the error on r(t) and z(t) in (14) in turn

verifies the inequalities:

|r̃(t)| ≤
¯̃
ξ3 +

¯̃
ξ4 +

¯̃
ξ1 +

¯̃
ξ2

2
,

|z̃(t)| ≤
[

¯̃
ξ5 +

¯̃
ξ6,

¯̃
ξ7 +

¯̃
ξ8,

¯̃
ξ9 +

¯̃
ξ10

]⊤
, (30)

that imply the boundedness of r̃(t) and z̃(t), as well as of r̂(t)
and ẑ(t).

Moreover, according to the definition (20), one can obtain

∣

∣

∣
Ŝ(t)

∣

∣

∣
∈

[

inf
0≤τ≤t

ẑ(t)r̂(t), sup
0≤τ≤t

ẑ(t)r̂(t)

]

,

∣

∣

∣
R̂(t)

∣

∣

∣
∈

[

inf
0≤τ≤t

ẑ(t)ẑ(t)⊤, sup
0≤τ≤t

ẑ(t)ẑ(t)
⊤
]

. (31)

The proven boundedness of Ŝ(t) and R̂(t) implies that their
filtered versions defined in (22) are bounded for all t ≥ 0 due
to the BIBO property of (23). Moreover, the position estimate
x̂(t) is guaranteed to belong to the compact region:

x̂(t) ∈

[

inf
ta≤τ≤t

R̂f (t)
−1Ŝf (t), sup

ta≤τ≤t
R̂f (t)

−1Ŝf(t)

]

,

for all t ≥ ta, where ta denotes the activation time, i.e. the
first time instant that all singular values of R̂f (t) exceed the
singularity threshold θ̄.

Therefore, the estimation error x̃(t) = x̂(t)−x is bounded
with respect to bounded disturbances ηd(t) and ηy(t), ∀t ≥ ta.

B. Analysis of the bias introduced by the time-discretization
of the algorithm

In the following, the asymptotic bias on the estimates due
to time-discretization will be characterized by considering the
discrete counterpart of (18) for t → ∞ (i.e., when (18) tends to
a LTI dynamical system). The discrete-time auxiliary signals
can be considered produced by the linear filters:

ry(k) , F (z)y(k),

rsd(k) , F (z)sd(k),

rsy (k) , F (z)sy(k), (32)

where the transfer function F (z) is given by

F (z) = F1(z) + F2(z), (33)

and where F1(z) and F2(z) are obtained by a backward Euler
discretization approach:

Fi(z) =
Ei

s−Gi
|s=(z−1)/(Tz) =

EiT
(1−GiT )z

z − 1
1−GiT

=
zĒi

z − Ḡi
, i = 1, 2, (34)
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where Gi = −iω, Ei = lim
t→∞

Ki(t, t), Ēi = EiT
(1−GiT ) and

Ḡi =
1

1−GiT
.

We assume that the measurement noises are additive on y(k)
and d(k).

d̂(k) = d(k) + v(k),

ŷ(k) = y(k) +w(t), (35)

where v(t) ∈ R and w(t) ∈ R
3 are zero-mean white noises

with respective variances σ2
v and σ2

w = [σ2
w1, σ

2
w2, σ

2
w3]

⊤.
Thus, by defining

ŝd(k) , d(k)2 + 2d(k)v(k) + v(k)2,

ŝy(k) , y(k)⊤y(k) + 2y(k)⊤w(k) +w(k)⊤w(k), (36)

the auxiliary signals produced by the discretized filter become:

r̂sd(k) = F (z) · ŝd(k) = rsd(k) + e2dv(k) + ev2(k),

r̂sy (k) = F (z) · ŝy(k) = rsy (k) + e2yw(k) + eww(k),

r̂y(k) = F (z) · ŷ(k) = ry(k) + ew(k), (37)

with

e2dv(k) = F (z) · 2d(k)v(k),

ev2(k) = F (z) · v(k)2,

e2yw(k) = F (z) · 2y(k)⊤w(k),

eww(k) = F (z) ·w(k)⊤w(k),

ew(k) = F (z) ·w(k).

The location of the source is estimated based on the equation

r̂sd(k)− r̂sy (k) = −2r̂y(k)
⊤x̂. (38)

Replacing the expressions in (38) with the terms in (37) and
left-multiplying by ry(k), we obtain

ry(k)rsd(k) + ry(k)e2dv(k) + ry(k)ev2(k)

− ry(k)rsy (k)− ry(k)e2yw(k)− ry(k)eww(k)

= −2[ry(k)ry(k)
⊤ + ry(k)ew(k)

⊤]x̂. (39)

Applying the E[·] expectation operator to both sides of (39),
after some algebra, we get

Rryrsd
+Rrye2dv +Rryev2

−Rryrsy

−Rrye2yw −Rryeww
= −2Rry x̂, (40)

where Rab , E[ab] and Ra , E[aa⊤]. Comparing (40) to
the following equation, that expresses the relation between
covariances in the absence of the measurement noise

Rryrsd
−Rryrsy = −2Rryx, (41)

it is straightforward to obtain the estimation bias

E[△x] = E[x̂− x]

= −(2Rry )
−1[Rryrsd

+Rryev2
−Rryrsy −Rryeww

],

where

Rrye2dv = 0,

Rrye2yw = 0,

Rryev2
= [

Ē1

(1 − Ḡ1)
+

Ē2

(1− Ḡ2)
]2ȳσ2

v ,

Rryeww
= [

Ē1

(1− Ḡ1)
+

Ē2

(1− Ḡ2)
]2ȳE[w⊤w], (42)

with E[w⊤w] = (σ2
w1 + σ2

w2 + σ2
w3), and ȳ denoting the

expected value of y(k). See the Appendix for the proof of
(42).

VI. DRIFTING TARGET

The analysis in the previous sections is based on the
constraint (7), which assumes that the target is stationary
with respect to the reference frame that encodes the known
trajectory y(t) of the agent, i.e. x is a constant vector. From
now on we are trying to exploit the possibility of relaxing
the stationary constraint by assuming a persistent drift on the
source. All the aforementioned conditions remain unchanged
except the motion of the source, which subsumes the following
assumption.

Assumption 3: The target trajectory x(t) is differentiable
and there exist M3 > 0 and ǫ > 0, such that for all t ≥ 0,

‖x(t)‖ ≤ M3, (43)

‖ẋ(t)‖ ≤ ǫ. (44)

(43) implies that the drift is within a bounded range which
avoids collinear measurements. Moreover, the velocity of the
drift is also assumed to be bounded.

In this regard, the counterpart of constraint (4) which
governs the drifting source localization problem becomes:

d

dt
{d2(t)}=2

d

dt
y(t)⊤

(

y(t)−x(t)
)

−2
d

dt
x(t)⊤

(

y(t)−x(t)
)

.

(45)
The following intermediate result will be instrumental to

characterize the robustness of the method in facing a persistent
drift.

Lemma 6.1: Under the Assumptions 1 and 3, there exist a
k1 > 0 depending on M1, M2 (defined in Assumption 1), M3

and ω (tuning parameter of the kernel), verifying:
∣

∣

∣
[VKs

(1)
d ](t)− [VKs(1)y ](t) + 2[VKy(1)](t)⊤x(t)

∣

∣

∣
≤ k1ǫ.

Proof: By exploiting the notations defined in (5), we can
rewrite (45) as

s
(1)
d (t) = s(1)y (t)− 2y(1)(t)⊤x(t)− 2x(1)(t)⊤[y(t)− x(t)].

(46)
Applying the Volterra operator to both side of (46), one can
obtain

[VKs
(1)
d ](t) =[VKs(1)y ](t)− 2[VKy(1)⊤x](t)

− 2[VKx(1)⊤(y − x)](t), (47)
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where

[VKx(1)⊤(y − x)](t)=

∫ t

0

K(t, τ)x(1)(τ)⊤[y(τ)−x(τ)]dτ

≤

∫ t

0

K(t, τ)dτ (M1 +M3)ǫ

= [P1(t) + P2(t)](M1 +M3)ǫ, (48)

and

P1(t) = e−2ωt

(

eωt − 1

ω
−

e2ωt − 1

2ω

)

,

P2(t) = e−ωt

(

eωt − 1

ω
− t

)

.

Moreover,

[VKy(1)
⊤
x](t) =

∫ t

0

K(t, τ)y(1)(τ)
⊤
x(τ)dτ

= e−2ωt

∫ t

0

eωτy(1)(τ)⊤x(τ)dτ

− e−2ωt

∫ t

0

e2ωτy(1)(τ)⊤x(τ)dτ

+ e−ωt

∫ t

0

eωτy(1)(τ)⊤x(τ)dτ

− e−ωt

∫ t

0

y(1)(τ)⊤x(τ)dτ. (49)

In view of the rule of integration by parts, (49) writes

[VKy(1)
⊤
x](t) = e−2ωt

[

(
∫ τ

0

eωsy(1)(s)ds

)⊤
x(τ)

]t

0

− e−2ωt

[

(
∫ τ

0

e2ωsy(1)(s)ds

)⊤
x(τ)

]t

0

+ e−ωt

[

(
∫ τ

0

eωsy(1)(s)ds

)⊤
x(τ)

]t

0

− e−ωt

[

(
∫ τ

0

y(1)(s)ds

)⊤
x(τ)

]t

0

− f(t)

= [VKy(1)](t)⊤x(t)− f(t),

where

f(t) = e−2ωt

∫ t

0

(
∫ τ

0

eωsy(1)(s)ds

)⊤
x(1)(τ)dτ

− e−2ωt

∫ t

0

(
∫ τ

0

e2ωsy(1)(s)ds

)⊤
x(1)(τ)dτ

+ e−ωt

∫ t

0

(
∫ τ

0

eωsy(1)(s)ds

)⊤
x(1)(τ)dτ

− e−ωt

∫ t

0

(
∫ τ

0

y(1)(s)ds

)⊤
x(1)(τ)dτ.

Moreover

|f(t)| ≤

∣

∣

∣

∣

e−2ωt

[

(eωt − 1)

ω2
+

t

ω

]∣

∣

∣

∣

M2ǫ

+

∣

∣

∣

∣

−e−2ωt

[

(e2ωt − 1)

4ω2
+

t

2ω

]
∣

∣

∣

∣

M2ǫ

+

∣

∣

∣

∣

e−ωt

[

(eωt − 1)

ω2
+

t

ω

]∣

∣

∣

∣

M2ǫ

+

∣

∣

∣

∣

−e−ωt

(

t2

2

)∣

∣

∣

∣

M2ǫ. (50)

Thus, there exists a k1 > 0 satisfying
∣

∣

∣
[VKs

(1)
d ](t)− [VKs(1)y ](t) + 2[VKy(1)](t)⊤x(t)

∣

∣

∣

=
∣

∣

∣
−2[VKx(1)⊤(y − x)](t) + 2f(t)

∣

∣

∣
≤ k1ǫ.

According to the Lemma 6.1, we have the following result:
Theorem 6.1: Under Assumptions 1 and 3, there exists a

k2 > 0 determined by M1, M2, M3, ω and g (the time con-
stant of covariance filter), such that the localization error sub-
sumes the asymptotic bound lim

t→∞
sup ‖x(t)− x̂(t)‖ = k2ǫ.

Proof: By applying covariance filtering to (47), we obtain
the augmented vector equation:

[VGP ](t) + [VGQ](t) = [VGTx](t),

where

[VGP ] (t) =

∫ t

0

e−g(t−τ)P (τ)dτ = Sf(t),

P (t) = [VKy(1)](t)
[VKs

(1)
d ](t)−[VKs

(1)
y ](t)

−2
=S(t),

[VGQ] (t) =

∫ t

0

e−g(t−τ)Q(τ)dτ,

Q(t) = [VKy(1)](t)
(

−[VKx(1)⊤(y−x)](t)+f(t)
)

,

[VGTx] (t) =

∫ t

0

e−g(t−τ)T (τ)x(τ)dτ = Rf (t),

T (t) = [VKy(1)](t)[VKy(1)](t)⊤ = R(t).

By the same line of reasoning, from (49) and (50), we have

[VGTx] (t) = [VGR](t)x(t) − Te(t).

Moreover, there exist a k3 ∈ R
3
>0 such that |Te(t)| ≤ k3ǫ.

Therefore, the estimation error caused by the drift is

‖x̃(t)‖=‖x(t)− x̂(t)‖=
∥

∥

∥
Rf (t)

−1
(

[VGQ](t)+Te(t)
)
∥

∥

∥
.

In the light of the BIBO-stability and the linearity properties
of the Volterra kernel VG in covariance filtering, and thanks
to (48) and (50), under the P.E. condition (24), the estimation
error of the proposed algorithm for tracking drift is bounded
and, meanwhile, its upper bound is proportional to the upper
bound of the drift rate, i.e. there exist a k2 > 0 obtained
from M1, M2, M3, ω and g, such that for time t → ∞,
sup ‖x̃(t)‖ = sup ‖x(t)− x̂(t)‖ = k2ǫ.

Theorem 6.1 indicates that the proposed algorithm is able to
track the location of a drifting source with tunable accuracy.
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Stationary target position x

Agent trajectory y(t)

Fig. 1: Positional relationship of the stationary target and the
agent trajectory considered in Example VII-A (stationary target
in noise-free conditions).

VII. SIMULATION RESULTS AND COMPARISONS

In this section, the proposed method is compared with a
continuous-time recursive least-square-based (CT-RLS) adap-
tive estimator presented in [17] and a discrete-time recursive
(DT-R) method [18], which are range-based single-agent lo-
calization algorithms with fading memory mechanism char-
acterized by remarkable immunity to measurement noise and
drifts. The simulation is carried out in Matlab/Simulation
environment, with a sampling time Ts = 10−3s.

The algorithm is simulated for localizing both a stationary
source position x = [2, 3, 2]⊤ (m) and a drifting source
x(t) = [2 + sin 0.01t, 3 + cos 0.01t, 2]⊤ (m) in four different
scenarios taking the measurement noise into consideration.
For all t ≥ 0, the agent moves along the trajectory y(t) =
[2+2 sin t, 2 sin (2t+ π

2 ), 2 sin 0.5t]
⊤ (m). We set the tuning

parameters of the kernel-based algorithm as ω = 1, g = 1
and the threshold θ̄ = 10−15, while the other two estimators
are tuned by α = 1, β = 1, P (0) = 106 · I3×3, all other
initial values involved are set to zero for [17] and ρ2l = 0.5,
β = 0.99, Ts = 0.5s and ǫ = 10−6 for [18].

A. Stationary target: estimation under noise-free condition

The positional relationship of the stationary target x and the
trajectory of the agent y(t) are described by Fig. 1.

In Fig. 2, the results are shown in the noise-free scenario.
Activated at around t = 0.2s, the kernel-based estimator shows
a very fast convergence rate and high accuracy.

B. Stationary target: estimation in noisy scenario

In this example, an additive measurement noise simulated
as a uniformly distributed random signal within the range of
[−0.5, 0.5] affects the distance d(t) with SNR = 23.36, as
depicted in Fig. 3.

As reported by Fig. 4, in spite of the high-rate conver-
gence, the proposed method also shows absolute advantages
in terms of robustness against measurement noise. In steady
state, 10001 samples of the estimates within the time interval

0 1 2 3 4 5 6 7 8 9 10
Time[s]

-4

-2

0

2

x̂
1 Method in [17]

Method in [18]

Kernel-based method

True source location x1

(a)

0 1 2 3 4 5 6 7 8 9 10

Time[s]

0

1

2

3

4

5

x̂
2

Method in [17]

Method in [18]

Kernel-based method

True source location x2

(b)

0 1 2 3 4 5 6 7 8 9 10

Time[s]

0

2

4

6

8

x̂
3

Method in [17]

Method in [18]

Kernel-based method

True source location x3

(c)

0 1 2 3 4 5 6 7 8 9 10
Time[s]

0

5

10

‖
x̃
‖

Method in [17]

Method in [18]

Kernel-based method

(d)

Fig. 2: (a)-(c): Time behavior of the two methods in estimating
a stationary target location x = [2, 3, 2]⊤ (m) with the agent
location y(t) = [2 + 2 sin(t), 2 sin(2t+ π

2 ), 2 sin(0.5t)]
⊤ (m)

under a noise-free condition. (d): Norms of the estimation
errors.

0 5 10 15 20 25 30

Time[s]

0

2

4

6

8

d̂
(t
)

Measured d̂(t)

True value d(t)

Fig. 3: Measured distance signal d̂(t) and pure signal d(t) with
stationary target

t ∈ [20, 30] are taken to calculate the Root Mean Square Error
(RMSE) defined as

RMSE =

√

∑30001
i=20001 ‖x̃(i)‖

2

10001
.
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Fig. 4: (a)-(c): Time behavior of the two methods in estimating
a stationary source location x = [2, 3, 2]⊤ (m) with the agent
location y(t) = [2+ 2 sin(t), 2 sin(2t+ π

2 ), 2 sin(0.5t)]
⊤ (m)

under a uniformly distributed measurement noise ranging from
[−0.5, 0.5]. (d): Norms of the estimation errors.

and variance of the estimation error (see Table I), which
intuitively illustrate the noise immunity of the three position
estimators.

C. Drifting target: estimation under noise-free condition

In this case, a source which has small drift around
the original position [2, 3, 2]⊤, namely ∀t ≥ 0,
x(t) = [2 + sin 0.01t, 3 + cos 0.01t, 2]⊤ (m), is considered.
As shown in the 3-D map of the trajectories in Fig. 5, the drift
is added on the first two elements of x(t) with a relatively

small rate with an upper-bound of
√
2

100 . On the other hand, the
drift is bounded, which verifies (43). Applying the algorithms
with the same parameters, we can obtain the tracking results
shown in Fig. 6. Notice that in [18], the problem of localizing
a persistent drifting source is not addressed, therefore, only

4
-2

4

-1

23

0

2

1

1

2

0
-1 0-2

Drifting target trajectory x(t)
Agent trajectory y(t)

Fig. 5: Positional relationship of the drifting target and the
agent trajectory considered in Example VII-C (drifting target
in noise-free conditions).

the performance of the CT-RLS method in [17] will be
compared with.

According to the Fig. 5-6, the kernel-based estimation,
activated at around 1.4s, performs a fast and smooth tracking
of the drifting source location. The estimation error is bounded
and fluctuates around 0.05m after reaching the steady state
according to Fig. 6d.

D. Drifting target: estimation in noisy scenario

In this scenario we analyze the behavior of the estimator in
presence of a uniformly distributed noise signal which adds

to the distance measurements d̂(t) (SNR = 24.36). The
measured noisy distance signal is shown in Fig. 7 and the
corresponding estimation results are shown in Fig. 8.

Compared to the noise-free scenario, the algorithm takes
longer time (around 3s in this case) in the initial phase to track
the drifting source. Also in this final simulation run, the kernel-
based method has shown a superior immunity to measurement
noise, and the estimation error reaches a steady level with the
value of approximately 0.05m. Similarly with example VII-B,
the steady state RMSEs and variances of the estimation error
(t ∈ [150, 200]s, 50001 points are taken) are listed in Table II.

VIII. CONCLUDING REMARKS

In this paper, a single-agent range-based localization algo-
rithm arising from the algebra of Volterra operators has been
proposed. The advantage of the devised algorithm is that the
source location can be determined in finite-time. The kernel-
based methodology is capable to track also a drifting target
with a bounded estimation error. Simulation results show a
good immunity with respect to bounded measurement noise.

Further research efforts will be made to optimize the choice
of the tuning parameters trading off the convergence rate,
the estimation error and the bias caused by discretization.
Moreover, another direction of research will be on adaptive
laws specific for the on-line localization of a mobile source.
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TABLE I: RMSE and variance of three localization algorithms Example VII-B

Methods Kernel-based method CT-RLS method [17] DT-R method [18]

RMSE 0.0310 0.0553 0.2381

σ2 1.35 × 10−4 1.10 × 10−3 8.80 × 10−3

TABLE II: RMSE and variance of two localization algorithms in Example VII-D

Methods Kernel-based method CT-RLS method [17]

RMSE 0.0600 0.0723

σ2 3.93 × 10−4 1.20 × 10−3
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Method in [17]

Kernel-based method

0
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Fig. 6: (a)-(c): Time behavior of the two methods in esti-
mating three elements of a drifting source location x(t) =
[2 + sin 0.01t, 3 + cos 0.01t, 2]⊤ (m) with the agent location
y(t) = [2 + 2 sin(t), 2 sin(2t+ π

2 ), 2 sin(0.5t)]
⊤ (m) under a

no-noise condition. (d): Norms of the estimation errors.

APPENDIX

PROOF OF (42)

Rrye2dv = E [ry · e2dv]

= E





2
∑

i=1

2
∑

j=1

ry,i(k)e2dv,j(k)



 , (51)
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Time[s]
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d̂
(t
)

Measured d̂(t)

True value d(t)

Fig. 7: Noisy distance signal d̂(t) and pure signal d(t) in
drifting source case.

where ry,i(k) = Fi(z) · y(k) and e2dv,j(k) = Fj(z) · e2dv(k)
with j = 1, 2 or equivalently,

ry,i(k) = Ḡiry,i(k − 1) + Ēiy(k), (52)

e2dv,i(k) = Ḡie2dv,i(k − 1) + Ēi[2d(k)v(k)]. (53)

Therefore,

E[ry,1(k)e2dv,1(k)] =

E
[

Ḡ2
1ry,1(k − 1)e2dv,1(k − 1)

]

+ E
[

Ē2
1y(k)2d(k)v(k)

]

+ E
[

Ḡ1Ē1ry,1(k − 1) · 2d(k)v(k)
]

+ E
[

Ḡ1Ē1y(k) · e2dv,1(k − 1)
]

. (54)

From (54) one can obtain

(

1− Ḡ2
1

)

E[ry,1(k)e2dv,1(k)] = Ḡ1Ē1E[y(k)]E[e2dv,1(k − 1)].

Notice that, due to (53), E[e2dv,1(k − 1)] = 0, thus
E[ry,1(k)e2dv,1(k)] = 0. In the same way, one can
obtain E[ry,2(k)e2dv,1(k)] = 0, E[ry,1(k)e2dv,2(k)] =
0, E[ry,2(k)e2dv,2(k)] = 0, and as a result Rrye2dv = 0.
By the same line of reasoning it follows that Rrye2dv = 0.

Since that the auxiliary sequence ry(k) is independent with
ev2(k) and eww(k), it also holds that

Rryev2
= E[ry(k)] · E[ev2(k)],

Rryeww
= E[ry(k)] · E[eww(k)],



11

0 20 40 60 80 100 120 140 160 180 200

Time[s]

-4

-2

0

2

x̂
1

Method in [17]
Kernel-based method
True source location x1

(a)

0 20 40 60 80 100 120 140 160 180 200

Time[s]

0

1

2

3

4

5

x̂
2

Method in [17]

Kernel-based method

True source location x2

(b)

0 20 40 60 80 100 120 140 160 180 200

Time[s]

0

2

4

6

8

x̂
3

Method in [17]
Kernel-based method
True source location x3

(c)

0 20 40 60 80 100 120 140 160 180 200
Time[s]

0

2

4

6

8

10

‖
x̃
‖

Method in [17]

Kernel-based method

0

0.1

0.2

(d)

Fig. 8: (a)-(c): Time behavior of the two methods in esti-
mating three elements of a drifting source location x(t) =
[2 + sin 0.01t, 3 + cos 0.01t, 2]⊤ (m) with the agent location
y(t) = [2 + 2 sin(t), 2 sin(2t + π

2 ), 2 sin(0.5t)]
⊤ (m) un-

der a uniformly distributed measurement noise ranging from
[−0.5, 0.5]. (d): Norms of the estimation errors.

where

E[ry(k)] =

[

Ē1

(1− Ḡ1)
+

Ē2

(1 − Ḡ2)

]

ȳ,

E[ev2 ] =

[

Ē1

(1− Ḡ1)
+

Ē2

(1 − Ḡ2)

]

σv2 ,

E[eww] =

[

Ē1

(1− Ḡ1)
+

Ē2

(1 − Ḡ2)

]

E
[

w⊤w
]

,

and E
[

w⊤w
]

= (σ2
w1 + σ2

w2 + σ2
w3).
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