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Abstract

We describe the asymptotic behavior of small energy solutions of an NLS with a trapping
potential generalizing work of Soffer and Weinstein, and of Tsai and Yau. The novelty is that
we allow generic spectra associated to the potential. This is yet a new application of the idea of
interpreting the nonlinear Fermi Golden Rule as a consequence of the Hamiltonian structure.

1 Introduction
We consider the initial value problem
iuy = Hu + |ul®u, (t,x) € R*3 w(0) = ug (1.1)

where H = —A + V. For f,g: R> = C we introduce the bilinear form

(o) = [ f@aa)i. (1.2

We assume the following.
(H1) V € S(R3), where S(R?) is the space of Schwartz functions.

(H2) 0,(H) ={e1 < ez <ez--- < e, < 0}. Here we assume that all the eigenvalues have multiplicity
1. 0 is neither an eigenvalue nor a resonance (that is, if (—A 4+ V)u = 0 with u € C* and
lu(z)| < Clz|~! for a fixed C, then u = 0).

(H3) There is an N € N with N > |e;|(min{e; —e; : i > j})7! s.t. if p € Z" satisfies |u| < 4N + 8
and e := (eq,...,e,), then we have

p-e=pre;+ -+ ppe, =0 <= p=0.
(H4) The following Fermi Golden Rule (FGR) holds: the expression

> (6(H — L)GL(C), GL(C)),

LeA

which is defined in the course of the paper (for A C Ry see (6.25) and for G, see (6.44)) and
which is always nonnegative, satisfies formula (6.47).



To each e; we associate an eigenfunction ¢;. We choose them s.t. (¢;, b)) = jk- Since we can,
we also choose the ¢; to be all real valued. To each ¢; we associate nonlinear bound states.

Proposition 1.1 (Bound states). Fiz j € {1,--- ,n}. Then Jag > 0 s.t. Vz € Bc(0,aq), there is a
unique Q;, € S(R3,C) := Ny>0S+(R3,C) (where for the spaces ¥y see Sect. 2.1), s.t.

HQj: +1Q21°Qj2 = EjoQjz , Qjz = 265 + qjz, (42, 6,) =0, (1.3)
and s.t. we have for any r € N:

(1) (gjs, E;z) € C®(Bc(0,a0), - x R); we have g, = 2q;(|z*) , with §;(t*) = t2¢;(t?), q;(t) €
C>®((—ap?, ap?), 8- (R3 R)) and E;, = EJ(\Z|2) with E;(t) € C>®((—ao?, ap?),R);

(2) 3C >0 st lgj=|ls, <Ol |Ej. —e5] < CJz]?.
For the proof of Proposition 1.1 see Appendix A.

Definition 1.2. Let by > 0 be sufficiently small so that for z € Bgn(0,b0) and z = (21 -, 25),
Qj-, exists for all j € {1,---,n}. For such z and for D;; and D;g defined in Sect. 2.1, we set

Helz] :={n € L?: Re(in, D;jrQ;.,) =Re(i7,D;1Q;.,) =0V j}. (1.4)
In particular as an elementary consequence of (1.4) and Proposition 1.1 we have
He[0] = {neL? (M ¢;)=0forall j}. (1.5)
We denote by P. the orthogonal projection of L? onto H.[0].
A pair (p, q) is admissible when

2/p+3/q=3/2, 6>q>2, p>2. (1.6)
The following theorem is our main result.

Theorem 1.3. Assume (H1)—(H4). Then there exist eg > 0 and C > 0 such that for e = ||u(0)| g2 <
eo the solution u(t) of (1.1) can be written uniquely for all times as

)= Qjzye) +(t) with n(t) € Helz(t)), (1.7)

j=1

s.t. there exist a unique jo, a py € [0,00)™ with py; =0 for j # jo, s.t. |p4+]| < C||luw(0)|| g and an
Nt € HY with 04|z < Cllu(0)]|a, s.t.

t_lg{l In(t, ) — et4 Ny (@) =0 tl}gl 25 ()] = pj- (1.8)

Furthermore we have n =0+ A(t,x) s.t. for all admissible pairs (p,q)

2l @) + 17l o e, iy < Cllu@@)l .
12 + izl ey < Cllul0) 3

and s.t. A(t,-) € ¥y for allt >0 and

lim ||A(t,")||s, = 0. (1.10)

t—+oo



As an interesting corollary to Theorem 1.3 we show rather simply that the excited states are orbitally
unstable. We recall that e71Fi=Q,, is called orbitally stable in H'(R3) for (1.1) if

Ve>036>0st |lug— Qjsllm(rsy < 8 = sup inf [[u(t) — e Q|| pirsy < € (1.11)
teR VER :

and is orbitally unstable if (1.11) does not hold. We prove what follows.

Theorem 1.4. Assume (H1)—(H4). Then there exists g > 0 such that if j > 2 and for |z| < eg the
standing wave e~ 1*Fi=Q;, is orbitally unstable. Furthermore e~ *F1=Qy, is orbitally stable.

Notice that [29, 30, 31, 25, 12, 13, 18, 23] contain only very partial proofs of the instability of
the 2nd excited state. Theorem 1.4 will be proved in Sect.7 and until then, and in particular in the
sequel of this introduction, we will focus only on Theorem 1.3.

We recall that [17] proved Theorem 1.3, for |u|?u replaced by more general functions, in the
case when H has one eigenvalue (for the NLS with an electromagnetic potential we refer to [21]).
The case of two eigenvalues is discussed in the series [28, 29, 30] and in [25], under more stringent
conditions on the initial data, which are such that |ug| gr- is small for k& > 2 and some s large
enough in [25] and |luo||g1nr2.s small for s > 3 in [28, 29, 30] . A crucial restriction in these papers
is that 2e; > e;. They then prove versions of Theorem 1.3 involving also rates of decay of |z(t)|, of
1m()|| Lo 3y and of [|n(t)|| 2.+ sy for appropriate s > 0.

The ideas used in proofs such as in [28, 29, 30, 25] appear very difficult to extend to operators
with more than 2 eigenvalues, where only partial results like in [23] are known, and for initial data
small only in H'. On one hand, the Poincaré Dulac normal form argument in these papers seems not
suited to discuss the higher order FGR needed when 2e5 < e;. Furthermore, in these papers there is
a subdivision of the evolution in distinct phases, which the solution enters in a somewhat irreversible
fashion and which are considered one by one. This division in distinct phases might become unclear
in cases when u(t) oscillates from one phase to the other, as it is not unlikely to happen in the H*!
case, or when the passage from one phase to the other is very slow, as is certainly true in the H*!
case. Moreover, an increase in the number of eigenvalues of H increases also the number of distinct
phases that need to be accounted for and the complexity of the argument. So, any hope of proving
Theorem 1.3 should rely on an argument which yields the asymptotics in a single stroke and which
does not distinguish distinct cases. This is what we do, see for example in the second part of Sect.
6. We did not check if our method yields the decay estimates of [28, 29, 30, 25] under more stringent
conditions on ug.

In the present paper we give a yet new application of the interpretation of the FGR in terms of
the Hamiltonian structure of the equation. This interpretation was first introduced in [9] and was
then applied in [1] to generalize the result of [26]. It was later applied to the problem of asymptotic
stability of ground states of the NLS, first not allowing translation symmetries in [5], and then with
translation in [6], see also [4].

The link between FGR and Hamiltonian structure rests in the fact that the latter yields algebraic
identities between coefficients of different coordinates in the system (compare the r.h.s. in (6.13)
with the second line in (6.27)). These allow to show that some other coefficients in the equations of
the z;’s have a square power structure and have a fixed sign (in the case of the NLS), see Lemma 6.8.
This then yields decay of the z;’s, except at most for one of the j’s here. We refer to pp. 287-288
in [5] for the original intuition behind this approach to the FGR, which views the FGR as a simple
consequence of Schwartz’s Lemma on mixed derivatives, and which has made possible papers such
as [9, 1, 5, 6, 4], as well as others. For other applications of this theory we refer to the references in
[4], [10]. We refer also to [8], whose treatment of the FGR is similar to the one in this paper. Earlier
treatments of FGR, are in [28, 29, 30, 25] and, still earlier, in [3, 26], but they seem to work only



in relatively simple cases, because they run into trouble if the normal form argument requires more
than very few steps. For more references and comments see [5].

As we will see below, the FGR can be seen relatively easily after one finds an appropriate
effective Hamiltonian in the right system of coordinates. This coordinate system is obtained by a
normal form argument. Right from the beginning though, it is crucial to choose the right ansatz and
system of coordinates. For example, since H has eigenvalues, it would seem natural to split the NLS
(1.1) into a system using the coordinates of the spectral decomposition of H, see (4.2). However
this would not be a good choice for our nonlinear system. Following [17], it is better to pick as
coordinates the z;’s of Prop.1.1, complementing them with an appropriate continuous coordinate.
There is the natural ansatz (2.1) (the same used in [25]) which, following [17], can be used to obtain
the continuous coordinate, here denoted 7 and introduced in Lemma 2.4.

Once we have coordinates (z,1) with z = (21, ..., 2, ), where 27 is the ground state coordinate,
zj for j > 1 the excited states coordinates and 7 the radiation coordinate, Theor. 1.3 can be loosely
paraphrased as follows:

n(t) — 0 in H., and z;(t) — 0 except at most for one j. (1.12)
In particular, if z(t) — 0 the solution u(t) of (1.1) scatters like a solution of iz = —Awu in H®.
Otherwise there is one j such that u(t) scatters to a e’ @, , with () a phase term which we
do not control here. We have convergence by scattering to a ground state if j = 1, and to an

excited state if j > 1. The latter presumably occurs for the u(t) whose trajectory is contained in an
appropriate manifold, see [31, 2, 18].

It is not easy to see (1.12) in the initial coordinate system. So we need a Birkhoff normal
form argument to identify an effective Hamiltonian, like in [1]. Unlike [1] and like in [5], the initial
coordinates, while quite natural from the point of view of the NLS (1.1), are not Darboux coordinates
for the natural symplectic form € in the problem, see (4.1). Hence before doing normal forms, we
have first to implement the Darboux theorem to diagonalize the problem (of course the coordinates
arising from the spectral decomposition of H, see (4.2), are Darboux coordinates, but as we wrote
they are not suited for our nonlinear asymptotic analysis). So in this paper we need to perform a
number of coordinate changes: first a Darboux Theorem and then normal form analysis. At the end
of the process we get new coordinates (z1, ..., zn,7) where the Hamiltonian is sufficiently simple that
we can prove (1.12) relatively easily using the FGR (which tells us that all z;’s, except at most one,
are damped) and a semilinear NLS for n which shows scattering of 1 because of linear dispersion.
In the context of the theory developed in [1, 5] and other literature, the work in the last system of
coordinates, that is all the material in Sect.6, is rather routine.

Having proved (1.12) for the last system of coordinates (z,7), the obvious question is why
(1.12) should hold, as Theorem 1.3 is saying, also for the initial coordinates, which we now denote
by (2’,7), to distinguish them from the final coordinates (z,7). Keeping in mind that all coordinate
changes are small nonlinear perturbations of the identity, the only simple reason why this might
happen is that different coordinates must be related in the form

21 =121+ 0(zn) +O(n —l—ZOzzzj 21 =z, +0(zn) + O(n —‘rZOZZZ]

i#] i#] (1.13)
n =n+0(zn) + O(n +ZOZZZJ

i

This relation between any two systems of coordinates forbids relations like 2{ = 21 + 23 etc. Indeed,
with the latter relations it would not be true (except for the case z(t) — 0) that (1.12) for (z,7)
implies (1.12) for (z/,n"). So our main strategy is to prove (1.12) for the final (z,7) with some



relatively standard method using FGR and linear dispersion, and to be careful to implement only
coordinate changes like in (1.13). This latter point is the novel problem we need to face in this
paper. It is not obvious from the outset that (1.13) should hold.

As we wrote above, [17] suggests a very natural choice of functions z;, based on Proposition
1.1 which can be completed in a system of independent coordinates. Loosely speaking, the z;’s have
the problem that they are defined somewhat independently to each other. This shows up in the
expansion of the Hamiltonian in Lemma 3.1, with a certain lack of decoupling inside the energy
between distinct z;’s, see (3.9) and Remark 3.2. This leads in (3.3) (see the 2nd line) to terms whose
elimination in a normal form argument would seem incompatible with coordinate changes satisfying
(1.13). These bad terms of the Energy can be better seen in (4.45): they are the | = 0 terms in the
2nd line. Other additional bad terms arise in the course of the Darboux theorem transformation.
Bad terms in the differential form I" in (4.17) (used in the classical formula (4.40)) are those in I
in (4.22). Specifically they are the first term in the r.h.s. of (4.22). The r.h.s. of (4.28) is also filled
with bad terms in the sense that they yield a coordinate change § in Lemma 4.8 leading to more
[ =0 terms in the 2nd line in (4.45). Specifically, they originate from the pullback §* Z?Zl E(Qj;)
of the 1st term in the r.h.s. of (3.3) (more bad terms seem to arise if we use €, see (4.8) rather
than the slightly more complicated €, see (4.13), as local model of 2). In a somewhat empirical
fashion, for which we don’t have a simple conceptual reason, a plain and simple computation shows
that all the bad terms cancel out and that there are no I = 0 terms in (4.45). This is proved in the
Cancelation Lemma 4.11, which is the main new ingredient in the paper. This lemma proves that the
change of coordinates designed to diagonalize €2, is also decoupling the discrete coordinates inside
the Hamiltonian. From that point on, the structure (1.13) for the coordinate changes is automatic
and the various steps of the proof of Theorem 1.3 are similar to arguments such as [4, 8] which have
been repeated in a number of papers. So they are fairly standard, even though we are able to discuss
them only in a rather technical way. We have to go into the details of the proof, rather than refer to
the references, because of some technical novelties required by the fact that in general z /4 0, and
what converges to 0 is instead the vector Z introduced in Def.2.2, whose components are products
of distinct components of z.

In the second part of Sect. 6 the FGR and the asymptotics of the z;’s in the final coordinate
system are rather simple to see in a single stroke. Furthermore, Theorem 6.1 is more or less the
same of [5, 8].

One limitation in our present paper is that we do not generate examples of equations which
satisfy Hypothesis (H4). Notice though that our result, for solutions only in H', is new even in the
2 eigenvalues case of [28, 29, 30, 25] where our FGR is the same. Still, we believe that (H4) holds
for generic V. And even if it fails at one stage, this is not necessarily a problem: the strict positive
sign in the FGR is only an obstruction at performing further the normal form argument, so if there
is a 0, in principle it is enough to proceed with some further coordinate change until, after a finite
number of steps, there will finally be a positive sign in the FGR, and so the stabilization will occur,
just at a slower rate. And if the FGR is always 0, then maybe this is because the NLS has a special
structure, see p.69 [26] for some thoughts.

Prop. 2.2 [1] proves validity in general of the FGR. Transposing here that proof would require
replacing the cubic nonlinearity with a more general nonlinearity 3(|u|?)u. This seems rather simple
to do because the cubic power is only used to simplify the discussion in Lemma 3.1. But it is not so
clear how to offset here the absence of a meaningful mass term m?u, which in [1] pp. 1444-1445, by
choosing m generic, is used to move some appropriate spheres in phase space. Adding to the NLS
a term m?u would not change the spheres here.

We reiterate that Proposition 1.1 is valid for small z; € C. As z; increases there are inter-
esting symmetry breaking bifurcation phenomena, see [20, 19] and therein and see also [11, 15, 24|



and therein for the semiclassical NLS. Notice that Theorem 1.3 should allow to prove asymptotic
breakdown of the beating motion in the case fi0o = 0 in [15]. [14, 22] consider finite dimensional
approximations of the solutions at energies close to the symmetry breaking point of [20] and prove
the long time existence of interesting patterns for the full NLS. Unfortunately, it is beyond the scope
of our analysis, and it remains an interesting open problem, to understand the eventual asymptotic
behavior of the solutions in [14, 22].

2

2.1

Notation, coordinates and resonant sets

Notation

We denote by N = {1,2,...} the set of natural numbers and set Ny = NU {0}.
We denote z = (z1, ..., 2n), |2 1= /> 7, [2]*

Given a Banach space X, v € X and § > 0 we set Bx(v,d) :={z € X | |lv—2z|x < d}.

Let A be an operator on L?(R?). Then o,(A) C C is the set of eignvalues of A and o.(A) C C
is the essential spectrum of A.

For K = R, C we denote by ¥, = 3, (R? K) for r € NU {0} the Banach spaces defined by the
completion of C,(R? K) by the norms

lall%, = D (e ullfe sy + 105 ull s x)-

lee|<r

For m < 0 we consider the topological dual 3, = (X_,,)". Notice, see [6], that the spaces %,
can be equivalently defined using for » € R the norm ||u||s, := ||(1 — A + |2|?)Zul|L-.

S(R3?) = Ny>0Xy, is the space of Schwartz functions; S'(R3) = U,,<oX,, is the space of
tempered distributions.

We set z; = z;r +iz;1 for zjr, 251 € R.
For f:C" — C set Djrf(z) := azimf(z), Djrf(z) = azaﬂf(z).

We set 0; := 0,, and 0; := 05,. Here as customary 0, = %(DZRfiDU) and 0z, = %(DZR+1DU).

Occasionally we use a single index ¢ = j,j. To define ¢ we use the convention j = 7. We will
also write z; = Zj.

We will consider vectors z = (z1,...,2,) € C" and for vectors p,v € (NU {0})" we set
2HEY =gtz . We will set |u] = 30y

‘We have de = deR + ide[, Cﬁj = deR — ide].

We consider the vector e = (eq, ..., e,) whose entries are the eigenvalues of H.

P. is the orthogonal projection of L? onto H.[0].

Given two Banach spaces X and Y we denote by B(X,Y") the space of bounded linear operators
X — Y with the norm of the uniform operator topology.



2.2 Coordinates

The first thing we need is an ansatz. This is provided by the following lemma.

Lemma 2.1. There exists cg > 0 s.t. there exists a C > 0 s.t. for all u € H' with ||ul|z: < co,
there exists a unique pair (2,0) € C" x (H' NH.[2]) s.t.

w=3" Q. +© with |2 + 0] < Clufan. (2.1)

j=1
Finally, the map u — (2,0) is C>°(By1(0,¢p),C" x H') and satisfies the gauge property
z(e'Pu) = €V 2(u) and O(eVu) = ¢ O(u) . (2.2)

Proof. We consider the functions

n
Fia(u,z) = Re(u— Y Qiz,1D;4Q;z,) for A=R,I.

=1
We have Fjr(0,0) = F;;(0,0) = 0. These functions are smooth in L? x Ben(0,bg) for the by in
Def. 1.2. We have Fjr(0,2) = Imz; + O(23) and F;;(0,z) = Rez; + O(2%) by Proposition 1.1.
By the implicit function theorem there is a map v — z which is C*°(Brz2(0,¢g), C™) for a ¢y > 0
sufficiently small. Set © :=u —>7_| Qj.;. Then © € C=(By:1(0,¢o), H'"). The inequalities follow
from |z(u)| < C|jul| g2 which follows from z € C! and 2(0) = 0. Formula (2.2) follows from

n n
lu=>"e"Qj., + O =) Q. +¢70

Jj=1 Jj=1

and from the fact that © € H.[z] implies ¢?© € H.[2'] where 2’ = €!”2. This last fact is elementary.
Indeed, setting only for this proof z; = z; +iy; and z; = 2, + iy}, we have

Re (1676, 8y Qjr ) = Oy Re (1670, €70, Q) + Dy Re (1670, 670, Q;, ) = 0

if © € Hc[z]. Similarly, Re <i€w@7 Oy, sz;> = 0. Hence © € H,[z] implies V0 € H_.[e!Vz].
O

Definition 2.2. Given z € C", we denote by Z the vector with entries (ziZ;) with 4,75 € [1,n]
ordered in lexicographic order. We denote by Z the vector with entries (z;Z;) with i,5 € [1,n]
ordered in lexicographic order but only with pairs of indexes with i # j. Here Z € L with L the
subspace of C™ = {(a; ;)i j=1,..n ' # j} where ng = n(n — 1), with (a; ;) € L iff a; ; = @, ; for all

i,j. For a multi index m = {m;; € No : i # j} we set Z™ = [[(2;2;)™" and [m|:= 37, ;my;.

We need a system of independent coordinates, which the (z,©) in (2.1) are not. The following
lemma is used to complete the z with a continuous coordinate.
Lemma 2.3. There exists dg > 0 such that for any z € C with |z| < do there exists a R-linear
operator R[z] : H[0] — Hc[z] such that Pely [, = R[z]7Y, with P. the orthogonal projection of L*
onto H.[0], see Def. 1.2. Furthermore, for |z| < dy and n € H.[0], we have the following properties.

(1) R[z] € C*(Bcn(0,do), B(H', HY)), with B(H', H') the Banach space of R-linear bounded

operators from H?' into itself.



(2) For any r > 0, we have ||(R[z] — D)nlls, < clz|?|Inlls_, for a fized c,.
(3) We have the covariance property R[eVz] = e’ R[z]e™1".
(4) We have, summing on repeated indexes,
BRIzl = n+ (gl with sy = (B (2).m) + (C(2).7) (23)
where Bj(z) = EJ(Z) and C;(z) = ZiZgan(j), for B and @Zj smooth and the Z of Def. 2.2.
(5) We have for r € R with Z as in Def. 2.2

1B (2) + 8z,4;2, 2, + 1C5(2) — 95,455,

1@z | s, < o2, (2.4)

Proof. Summing over repeated indexes, we search for a map R[z] : L? — H.[z] of the form

R[2)f = f + (a5[z]f)8; with a;[z]f = (Bj(2), ) + (Cj(2), f)
such that R[z]f € H.[z] Vf € L?. The latter condition can be expressed as

Re <7, iDAQuz, + (65,1D14Q1=) B — (9, iDlA@lZL>C’j> — 0 forall fe L2
This and the following equalities

(0,iDiRQ1z,) = 1651 + (b5, iDiraiz,) »  (05,1DirQuz) = —051 + (¢5,1Dirqrz, ),

(67, 1DiRQy.,) = 10 + (95, 1DiRT,,,) 5 (05,1Du Q) = 05 + (b5,1Durdys,),

yield the equalities

DirQiz, + (01 + <¢j7DlRlel>>§; — (051 + (&5, Dirq;,,))C; = 0,
iDi1Quz, + (=051 + (¢, Dirqrz,)) By — (851 + (¢, Durdi,))Cs = 0.

They can be rewritten as

G+ iz, + (650 + (g, D)) By — (65, 0d1.,)C = 0,

H (2.5)
iz, + (94, 0@z ) By — (01 + (95, 974;,,))Cj = 0.

For 22 = {276;;} and z* = {Z}4;;} two n x n matrices, the solution of this system is of the form

— (oo} m
B\ _ m( A1 ZPA, (5
(C) - z_:o(_l) <22A3 Ay 22u2 (26)
where A; = A;(|21]?, ..., |2n]?) are n x n matrices and u; = u;(|21]?, ..., |2n]?) are n x 1 matrices for
[ =1 (resp. | = 2) with entries ¢; + 0;q;, (resp. 8;.(]]-2].) as j = 1,...,n. This yields the structure
B'(z) = B'(Z) and C}(2) = z2Ci;(Z).

Using (¢;,q;;) = 0, we can rewrite (2.5) in the form

By = —¢1 — iz, — Z(i<¢j>alcﬂzl>§; —(94,019,,,)C5),
J#l
-, B
Ci =0z + > _ (65,0012 ) B} — (5, 01.,))C;-
i



By Proposition 1.1 this implies

—

1B + ¢ills, + ICills, < Claf. (2.8)
Reiterating this estimate, from (2.7) and for B; defined by the following formula, we get

B,
1B+ & = Y ids, 012 ) 85 +0raiz Iz, < C|Z[
i
1Cr = & zP*.
This yields (2.4). Claim (3) follows by
a;[e?2]n = eV aj[z]e "V, (2.9)

which in turn follows by claim (4). Indeed

~ o~

a;le 2] = (Bj(Z),n) + (€2 220Cij (Z),7)
=" (B;j(Z),e" ") + € (2120Cit;(Z),e717n) = eV a;[z]e” .

O
We are now able to define a system of coordinates near the origin in L2
Lemma 2.4. For the dy > 0 of Lemma 2.3 the map (z,n) — u defined, by
u= Z Qj=, + R[z]n for (2,m) € Ben(0,do) x (H' NH.[0]) (2.10)

j=1

is with values in H* and is C®°. Furthermore, there is a di > 0 such that for (z,71) € Bcn(0,dp) x
(By1(0,d1) NH,[0]) the above map is a diffeomorphism and

2 + Il e ~ (lwllae (2.11)

v i

z,e'%n) = e%u(z,n) and

2(eu) = €V 2(u) and n(eVu) = eVn(u) . (2.12)

Proof. The smoothness follows from the smoothness in z in Proposition 1.1 and Lemma 2.3. Property

u(e?z, en) = e?u(z,n) and its equivalent formula (2.12) follow from (2.2) and claim (3) in Lemma
2.3. Notice that u = u(z,n) is the inverse of the smooth map u — (z,0) — (z, P.O). Formula (2.11)
follows by the estimates in Prop. 1.1 and by claim (2) in Lemma 2.3.

Finally, we have the gauge properties u(e'

O

2.3 Resonant sets

Definition 2.5. Consider the set of multiindexes m as in Def. 2.2 and for any k € {1,...,n} the set

M(r) ={m: ZZm” i) —er <0and m| <r}

=1 j5=1

" (2.13)
Mo(r) ={m: sz” =0 and jm| < r}.

=1 5=1



Set now

Mk(?“) = {(/1’7V) € Ng X Ng :dm € Mk:(?") s.t. zHz¥ = Eksz (2 14)
M(T) = U’Zlek(T‘) and M = M(2N+4) .

Lemma 2.6. Assuming (H3) we have the following facts.

(1) For Z™ = zVZ¥, then m € Mo (2N +4) implies p = v. In particular m € My(2N +4) implies
Z™ = |z 20|z, for some (I, ...,1,) € Ng.

(2) For |m| < 2N + 3 and any j we have )" ,(€q — ep)Map — € # 0.
Proof. First of all, if u = v then zMz¥ = [21]?#...|2,|?*#. So the first sentence in claim (1) implies
the second sentence in claim (1). We have

n n
n n
_ ) L M —> e My _
Zm I | (Zizl)m” | | ZiZl_l i Zizl_l i LMV

i,l=1 i=1

s

The pair (p,v) satisfies |u| = |v| < 2N +4 by
il => =" ma=|v.
1 il
We have (u—v)-e=0by m € My(2N +4) and

Zﬂiei - Zmez = Zmu(ei —e)=0.
[ l il

We conclude by (H3) that 4 — v = 0. This proves the 1st sentence of claim (1).
The proof of claim (2) is similar. Set

n n
m— = \Mils . DIHERE TH a Mii— sV
Zz]f”(zlzl)7zjf||zi Z; Z; =22

il=1 i=1

(w—v)-e= Z/,Liei - Zulel = Zmil(ei —e) —ej.
i 1 il

We have

We have

ul =D = ma=-1 (2.15)
/ il

If (w—v)-e=0then by |p—v| <4N +5 and by (H3) we would have p = v, impossible by (2.15).
O
Lemma 2.7. We have the following facts.

(1) Consider m = (mjj;) € Ng° s.t. 3, ;mij > N for N > |e|(min{e; —e; 1 j >i}) 7", see (H3).

Then for any eigenvalue e we have

Zmij(ei —ej) —ex <O. (2.16)

i<j

10



(2) Consider m € N(° with |m| > 2N + 3 and the monomial z;Z™. Then 3 a,b € Nj° s.t.

Zaij :N—Fl:wa,

i<j i<j (2.17)
Qij = bij =0 fO’I‘ all © > J and aij + bij < Mij + My, fOT’ all (Z,])

and moreover there are two indezes (k,l) s.t.

> aijlei—ej) —er <0 and Y bijle; —e;) — e, <0 (2.18)

i<j i<j

and such that for |z| <1
(212 < I3, 15420 |20, (2.19)

(8) For m with |m| > 2N + 3 there exist (k,1), a € My and b € M; s.t. (2.19) holds.

Proof. (2.16) follows immediately from
Zmij(ei —ej) —er < —min{e; —e; 1 j >IN —e; <0,
i<j

where the latter inequality follows by the definition of N.

Given a,b € N{° satisfying (2.17), by claim (1) they satisfy (2.18) for any pair of indexes
(k,1). Consider now the monomial z;Z™. Since |m| > 2N + 3, there are vectors ¢,d € N{° s.t.
lc| = |d| = N + 1 with ¢;; + d;; < m,; for all (4, j). Furthermore we have

2, Z™ = 2,277 Z°ZY with || > 0 and |v| > 0. (2.20)

So, for zj a factor of z# and Z; a factor of z¥, and for

= {S STy [t bor i (221)
for |z| <1 we have from (2.20)
1252 < |25 (2 Z°] | 229 = |25] |2 22| | 21ZP).
Furthermore, (2.17) is satisfied.
Since our (a, b) satisfy a € My, and b € M;, claim (3) is a consequence of claim (2).
O

We end this section exploiting the notation introduced in claim (5) of Lemma 2.3 to introduce
two classes of functions. First of all notice that the linear maps n — (1, ¢;) extend into bounded
linear maps Y, — R for any r € R. We set

ETC":{TIGET <7]7¢]>207]:177n} (222)

The following two classes of functions will be used in the rest of the paper. Recall that in Def. 2.2
we introduced the space L with dim L = n(n — 1). In Definitions 2.8-2.9 by Z we denote an auxiliary
variable independent of z which takes values in L

11



Definition 2.8. Let 8 be an open subset of a Banach space. We will say that F(¢,b,z2,7Z,n) €
CM(I x B x A,R), with I a neighborhood of 0 in R and A a neighborhood of 0 in C" x L x %¢ ..

is FF'= Ri[’({M(t, b, z,Z,n), if there exists a C' > 0 and a smaller neighborhood A’ of 0 s.t.
[E(t.0,2,Z,n)| < Cllnlls_x +1ZIY (Inlls_x +1Z] + |2])" in T x B x A". (2.23)
We will specify F' = R%M(t, b,2,Z) if
|F(t,b,2,Z,n)| < C|ZJ|z|" (2.24)

and F = R%M(t, b, z,n) if

|F(t,6,2,Z,)| < Cllall_, (Inlls_ +[=])". (2.25)

We will omit ¢ or b if there is no dependence on such variables. N
We write F = RZ’]OO if F= RZ’] for all m > M. We write F' = Rg’g’M if for all k > K the

above I is the restriction of an F'(t, b z,m) € CM(I x B x Ay, R) with Ay a neighborhood of 0 in
C" x L x ¢, and which is F' = R;”;,. Finally we write F' = RLI __if F = R, for all k.

00,00

Definition 2.9. We will say that an T'(¢,b,z,17) € CM(I x B x A, Tk(R3 C)), with the above
notation, is T = S’}’{J)M(t, b, z,7Z,n), if there exists a C' > 0 and a smaller neighborhood A’ of 0 s.t.

IT(t,6,2,2Z,0) 5, < Cllnllz s +1Z1 (Inlls_ i + Z] + |2])" in T x B x A, (2.26)

We use notations S5/, (t,b, 2, Z), 8%, (t, b, 2,1) etc. as above.
Notice that we have the elementary formulas
RS 0 =S4T and R RY = RS (2.27)

Remark 2.10. For functions F(¢,b,z,7n) and T(t, b, z,n) we write F(t,b,z,7n) = Ri’(J:M(t, b,2,7Z,m)
and T(t,b,2,n) = S%M(t,b,z,z,n) when the equality holds restricting the variable Z to Z =
(2iZ;)i,j=1,...n Where i # j, for symbols satisfying Definitions 2.8-2.9.

Furthermore, later, when we write RZK]M and 83/, /, we mean Ry ), (2,Z,n) and S§ (2, Z,n).
Notice that F' =Ry, (2,Z) or T =S¥/ ,,(2,Z) do not mean independence of the variable 7.

3 Invariants
Equation (1.1) admits the energy and mass invariants, defined as follows:
E(u) :== Ex(u) + Ep(u), where Ex(u) := (Hu,u) and

/|u Wz 5 Q(u) := (u,a). 3.1)

We have E € C*°(H'(R?,C),R) and Q € C>(L*(R?,C), R). We denote by dE the Frechét derivative
of E. We define VE € C*(H'(R3,C),H *(R3,C)) by dEX = Re(VE, X) for any X € H'. We
define also V,F and VzFE by

dEX = (V,E,X) + (VzE,X) that is V,E = 27'VFE and VzE = 27'VE.

12



Notice that VE = 2Hu + 2|u|?u. Then equation (1.1) can be interpreted as

i = VaE(u). (3.2)

Lemma 3.1. Consider the coordinates (z,m) — u in Lemma 2.4. Then there exists some functions
as in Definitions 2.8 and 2.9 s.t. for (z,m) € Bcn(0,dg) x (Bg1(0,do) N He[0]) we have for any
preassigned ro € N the expansion (where c.c. means complex conjugate)

n

E(U) = ZE(Q]Z7) + <H77377> R71"0200(Z7n)

j=1
+ ) [Eje, (Re(g)z, . Zrdr) + Re(qrz,, Z65)) + Re(| Qs [* Qs Z505)]
7k
n 2N+3
+ RN (2, 20+ Z > ZMajml|z) (3.3)
j=1 1=0 |m|=l+1
n 2N+43

+Re(S = 20+ Y Y Y (72 Garm|zP) ) + )+

Jok=1 1=0 |m|=l

Do > ZMGomis () W)+ D Y (Gaig(2), W )RY o (2,m) + Ep(n) where:

i+j=2 |m|<1 dtc=3i+j=d
o (ajm,Gjrm) € C>(Br(0,dp),C x %, (R?,C));
o (Gomij, Gaij) € C=(Bcn(0,dp), Xy (R, C) x X, (R, C));
o For |m| =0, where in particular we have G2g;;(0) = 0, we have

> (Ga0ii ()0 T) = {Qy=; P17 +2 ) Re(Qyz, Re(Qjz,1), 1) (3.4)

i+j=2 j=1 j=1

o R (€2,e"n) = RE2, (2,n) for all 9 € R for the 3rd term in the r.h.s. of (3.3).

Remark 3.2. In formula (3.3) the terms of the second line could potentially derail our proof. They
appear in (3.7)—(3.9). Similarly problematic is the first term in the r.h.s. in (4.18) later. All these
terms are tied up. Indeed, in Lemma 4.11 we will show that in a system of coordinates better suited
to search an effective Hamiltonian the problematic terms in the expansion of E cancel out.

In the proof of Lemma 3.1 we use the following lemma.

Lemma 3.3. For we have for j # k and 0E;., := Ej., —e;
B @z, 05) + (|Qrzy [*Qhzns 85) = Erzy (hozys 65) + 6Bz, (Qrozy» 05)- (3.5)
Proof. We apply ( , ¢;) to
Hazy, + Qi |* Qi = 260 Bz, &k + Bz Qi

to get the following equality which from e; = Ej., — 0E}.; yields (3.5):

€4 <Qk‘zk7¢j> + <|kak |2kak7¢j> = Ek:zk <kaka¢j> .

13



Proof of Lemma 3.1. First of all, we have the Taylor expansion

E(u) = E()_Qj,) +Re(VE()  Q;2,), RlzIn) (3.6)

j=1 j=1

+ 27" Re(V2E(Y Qs ) RIzln, RIDn) + Es(n) with Bs(n) =

1 n n
| 0= 0BV R (3 @y, + tRIaI) = VB (Y @y, ) Rl RET)

Step 1. We consider the expansion of the 1st term in the r.h.s of (3.6). We have

1 Qs * =D 1Q, [* +4)1Q4s, P Re(Q2, Q)

J#k
+23 1Q)z, P1Qks P+ Y. Re(Qyz, Qra ) Re(Qyrzy, Qprs ) +4 D QP Re(Qrz, Quy)-
i<k J#k, j'#K k<L, j#k,l

All terms are invariant by change of variable z ~ ¢/”z. The 2nd line is O(|Z|?). We conclude that

BC Y Qo) =3 HQu Q)45 [| 3 Quli= 3 E@u)+h

j=1,....n 7.k j=1,....,n j=1,....n
+ ) [Re(HQjz,, Q=) + 2Re(|Q2, 1 Qy, . Qi ), (3.7)
JF#k

where

Ry 522/ |sz_7‘|2‘kak|2 +% Z /Re(szjakzk)Re(lezj’@klzk’)

i<k ik, §EK
b2 Y (105 PRe(@ua @) = O(12).
k<l, j#k,l
By Prop. 1.1 and by (3.5) the summation in the last line of (3.7) equals
Z[Ejzj Re(Qij ) kak> + R’e<|Qj2j |2Qij 7kak>]
Jj#k
= Z[Ejz:j (Re(qjz, Zkdk) + Re(qrz, - Z505)) + Re(|Qrz, [*Qrzy Z505)] + Ra, (3.8)
7k
where
Ry = ZEij Re <quj7m> + Re <|kak ‘Qkawm> = O(|Z‘2)'
7k
The summation in (3.8) is O(|z|? |Z]) and not of the form O(]Z|?). Indeed, in the particular case
when 2, = pj, and z; = p; are real numbers, we have what follows, which is not O(pjp3),
Eij Re<Qij 7zk¢k> + Egz, Re<qkzk7§j¢j> + Re <|Qka |2Qka7§j¢j> (3 9)
= puPi[Ejp, 0505 (03): bk) + Enp, i (@), 05) + o (D1 + e (p7))?, 05)] -
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Finally, we observe that the Ry + Ry = O(]Z|?) summed up together yield the 3rd line of (3.3).
Indeed, since Ry + R is gauge invariant, by Lemma B.3 in Appendix B we have

n 2N+3

Rt Re=3Y 3 Y Zm(|z[?) + O(ZPY ). (3.10)

j=1 I=1 |m|=I+1

with O(]Z|?N*+5) smooth in z, independent of n and gauge invariant.

We have discussed the contribution to (3.3) of the 1st term in the expansion (3.6). Now we
consider the other terms in (3.6).

Step 2. We consider the expansion of the 2nd term in the r.h.s of (3.6).

By Re(VE(Qj-,), R[z]n) = 2Re E;. (Q;-,, R[z]n) = 0, which follows by R[z]n € H.[z] and by
iQjz, = —szDjRQj'Zj + 2;rD;j1Qj2;, see (11) in [17] (and which is an immediate consequence of
Qjz; = eiQQﬂzﬂ for z; = €!|z;]), we have

0
e(VE( ZQM R[2n) = Re(VE(Q12,), R[2]n)
j=1
/ O Re(VE(Qroy +1 3 Qy,), RNt = Re(VE(Y. Q52,), RIE)
j>1 j>1
+ /[0 7 10 Re(VEp(5Q1-, +t§@lm R[zn)dtds
_ Z / 0,0 Re(VEp(sQyz, + 1Y Quzy), RIIn)dtds, (3.11)
0,1]2 1>j

where the last line is obtained repeating the argument in the first three lines. For @j = Zl>j Q2
and by VEp(u) = 2|u|?u, the last line of (3.11) is, in the notation of Lemma 2.3,

QZRe<2Q]z7|QJ|2+2|Qm| Q;+Q%,Q;+Q,., Q% 1+ 6, ((By(2).m) + (z:2:Ciy (2),1))).

Jj=1

Further expanding QJ Zl>] Q12, and using Qy., = z1(¢1 + qi(]z1|?), the above term is of the form
> (Z,Z™(Gjm(Z),m) + c.c.).
As in Step 1, by Lemma B.4, this can be expanded into

Z > EGHZGirm(z) ) +ec) + Y (Z™(Gm(2),m) +ec). (3.12)

1<|m|<2N+3 |m|=2N+4

Thus the last line in (3.11) can be absorbed in the 4th line of (3.3).
Step 3. We consider the expansion of the 3rd term in the r.h.s of (3.6). Using V2Eg (u) = 2H
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and proceeding as for (3.6), we obtain

27 ' Re(V?E(D_ Qjz,)R[zIn, R[=In)

j=1

=27 'Re(V’Ex (> Qjz,)R[2In, R2In) + 27" > Re(V?Ep(Q;-,) R[zIn, R[z]n)

j=1 j=1

n—1 n
+271 ) / 0.0, Re(V’Ep(sQjz, +t > Quz)R[z]n, RlzIn)dtds.

j=1 [0,1]2 I=j+1

The 3rd line is absorbed in the Z™(Gami;(2), 0’7’ ) + RE2.o(2,n) with |m| = 1 terms in (3.3). From

70,00
the 2nd line, using (2.3)(2.4) and in particular a;[z]n = R}:' (2,7) for the last equality, we have

27 Re(V°Ex () Qy=,)RIzIn, R[2In) = (HR[z]n, R[2In) = (Hn,m) + 2> Re [(oy[2]n) (He;, )]
j=1 j=1

+ 3 ejlajlenl* = (Hn,m) + RL2(2.m),
j,k=1

which yield the 2nd and 3rd terms in the r.h.s. of (3.3). For

271N VEEp(Qiz)n =Y _1Qix 1" +2) Qj:, Re(Q):,7)

j=1 j=1 j=1

we have for Gag;;(2) as in (3.4)

271 Y Re(V2Ep(Qjz,) Rl RIen) = Ry (zm) + D (Gaoij(2),n'T). (3.13)
=1 itj=2

This RY2._(z,n) defines the 3rd term in the r.h.s. of (3.3). Notice that RL2 _(elz,elVn) =

70,00 70,00

RL2 _(z,m) because this invariance is satisfied both by the Lh.s. of (3.13) (by the invariance of

70,00

E, (2.2) and by Lemma 2.3) and by the last summation in the r.h.s. of (3.13), by formula (3.4).
Step 4. We now turn to the E3(n) term in (3.6). By elementary computations

Ey(n) = /[ LU= O Bp(Y Qe + Izl - (R dids = B (Rlzh)
AP i>1

+ /[0 s t(1— t)d4EP(TZ Qjz,; + stR[z]n) - (R[2]n)? Z Q). dtdsdr, (3.14)

Jjz1 Jz1
with d®Ep(u) - v3 the trilinear differential form applied to (v,v,v) and d*Ep(u) - v3w the 4-linear

differential form applied to (v,v,v,w). _
In particular we have used the fact that since d’ Ep(0) = 0 for 0 < j < 2 we have

Ep(R[z]n) = /[0 . t (1 —t)d*Ep(stR[z]n) - (R[z]n)>dtds. (3.15)
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For B(u) = |u|* and using the fact that d*3(u) € B*(C, R) is constant in u, the 2nd line of (3.14) is

1 4
1 [, T8 D?Y Qs (
j>1
and can be absorbed in the (Ggs;(2), 7’ )R%C ., (2,n) terms in (3.3). We expand Ep(R|[z]n) as a
sum of similar terms and of Ep(n). O

In order to extract from the functional in (3.3) an effective Hamiltonian well suited for the FGR
and dispersive estimates, we need to implement a Birkhoff normal form argument, see Sect.5. This
requires an intermediate change of coordinates, which will partially normalize the symplectic form
Q defined in (4.1) below, and diagonalize the homological equations. Notice that, as a bonus, this
change of coordinates erases the bad terms in the expansion of F in (3.3) discussed in Remark 3.2.

4 Darboux Theorem
System (3.2) is Hamiltonian with respect to the symplectic form in H!(R3 C)
QX,Y) = i(X,Y) — i(X,Y) = 2Im(X, V). (4.1)

In terms of the spectral decomposition of H (recall aj = ¢;)

X = ix% Vo, + P.X (4.2)
=1
QX Y) =1 (X, 6,0V, ¢5) — (X, 0;)(V, ¢3)) +i(PX, P.Y) = i(P.X, P.Y). (4.3)

j=1
However, in terms of the coordinates in Lemma 2.4, 2 admits a quite more complicated representa-
tion, as we shall see. This will require us to adjust these coordinates.

Our first observation is that for the coordinates in Lemma 2.4 we have the following facts.

Lemma 4.1. The Frechét derivative of n(u) and dz; is given by the following formula:

dn(“) = Z Z PCDqujzj dZJA + Pc; (44)
j=1,....n A=I,R

dzj =, ¢;) - Z Z (DraGrzy, ¢5)dzra — Z Z Dyac[z]ndza — ajz] o dn. (4.5)

kik#j A=I,R k=1 A=IL,R

Analogous formulas for dz;r and dz;; are obtained applying Re and Im to (4.5).

Proof. We start with (4.4). By the independence of z and 7, we have

0 0
dnaZJR azﬂ =0, (4.6)
where
0
87 —DJAQJZJ + ZD]A ak[ ]77) ¢k (47)
ZjA k=1
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Next, for { € H.[0] we have what follows, which implies dnR[2]P. = 1[4 [)*

d
dnR2\PE = 5

1(Qjz; + Rlz](n + 8§)) = €.

t=0

So dn =) (ajdzjr + bjdz;1) + P, where we used P.R[z] = 1. a; and b; can be computed applying
> (ajdzjr + bjdz;r) + P to the vectors (4.7) and using (4.6). Finally (4.5) follows by

2 () = (W= Grzy — RI2In, 65) = (w— D Gheyr ) — 2.
k=1

k:k#j
O

We consider the function 7j(u). Notice that di(u)X = 4£7(u + tX)—o = dn(u)X. Now we
introduce a new symplectic form. Notice that our final choice of symplectic form is not the €,
defined right here in (4.8), but rather the €y defined in (4.13) further down.

Lemma 4.2. Set .
Q=2 Zdsz Ndzjr +1i(dn,dn) —i(dnq,dn) and

j=1

. . (4.8)
i
By = (2jrdzj1 — 2j1dzR) — o (7, dn) — (1, dmp)).
j=1
Then dBy = and Q= Q) at w =0 for the Q of (4.1). Furthermore
®*B|, = B, for ®(u) = eu for any fized 9 € R. (4.9)

Proof. The equality dBj = €1 is elementary. Indeed d(z;rdz;; — zj1dzjr) = 2dz;r A dz;r and for a
pair of constant vectorfields X and Y, by d?n(X,Y) = d*n(Y, X), we have

This yields d (7, dn) = (dn, dn) — (dn, d7j) and also d (n, dn) = —d (), dn) = (dn, dn) — (dn, dn)
To compute Qf, at u = 0 we observe that by Lemma 4.1 we have dn = P, at u = 0, so that

i (dnX,dnY) —i(dnX,dnY) = i(P.X, P.Y) —i(P.X, P.Y) at u = 0. (4.10)

By Lemma 4.1 and Proposition 1.1, at u = 0 we have dzjr = Re( ,¢;) and dz;j; = Im( ,¢;).
Summing on repeated indexes, we have

1(<X7 ¢J><Y7 ¢]> - <Y7 ¢]><Y7 ¢J>) = —2Im (<X7 ¢]><?7 ¢J>) = (4'11)
2(R6<X7 ¢J>Im<Y> ¢j> - R6<Y7 ¢J>Im<X7 ¢j>) =
2Re< 7¢j> A Im( ,¢]>(X,Y) = QdeR A d2j1|u:0(X,Y).

By (4.10)—(4.11) we get Q = Qf at v = 0. Finally, (4.9) follows immediately by

n

Bj = Im(z;dz;) + Im (7, dn) . (4.12)

j=1
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O
Summing on repeated indexes and using the notation in Prop.1.1, we introduce the differential forms:

QO = 96 —+ 1’)/](‘2]|2)d2’] A dEj Where
%5(1231%) = (@ (1217, G (11%) + 2121 (@ (1217), G (1251%)) (4.13)
By := B) — Im <DjA§jzj,CIjzj > dzja.
with g;(t) = 473;. We have the following lemma.
Lemma 4.3. We have v;(|z;|*) = R2%..(12;]*). We have dBy = Qq and
®*By = By for ®(u) = e for any fized 9 € R (4.14)

Proof. v;(|z;]?) = RZ . (|z;]?) is elementary from Prop. 1.1 and Def. 2.8. dBy = Qg follows by
dBj = € and by

—dIm <Dqujzj 1 Gz > deA =Im <Dquij,Dqu]'zj > deA A deB =
2Im <DjRaij’Dqujzj> deR A de] = 2’y(|2j|2)deR AN de]
= 17;(|21*)dz; A dz;

where g;., = 205 (1z1%).
Turning to the proof of (4.14), we have

@ (175 (12j1%)dz; A dzs) = 1j(127)d (@7 25) A d (97%;5) = iy (|2 |*)dz; A dz;.

Lemma 4.4. We have dB = Q with B the differential form in the manifold H' defined by
B(u)X :=Im(z, X) (4.15)

Consider for uw € Bg1(0,do) for the dy > 0 of Lemma 2.3 the function ¢ € C*(By1(0,dp),R) and
the differential form T'(u) defined as follows:

OESD 9 ANIES 3 MICHETES (4.16)
T'(u) := B(u) — Bo(u) + d (). (4.17)

Then the map (z,m) — T'(u(z,n)), for u(z,n) the r.h.s. of (2.10), which is initially defined in
Ben (0,dg) x (HY N H[0]), extends to Ben(0,dg) x %€, for any v € N. In particular, we have
I' =Tadzja + (I'y,dn) + (I's, dn) with, in the sense of Remark 2.10,

Dja=Raloo(z Zn) and Te = Sy (2, Z,n) for € =n,7. (4.18)

Furthermore, T satisfies the invariance property in Bgi(0,dp):

O*T =T for ®(u) = ePu for any fized ¥ € R. (4.19)
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Proof. By the definition of the exterior differential, and focusing on constant vectorfields X and Y,
dB(X,Y)=XBu)Y —YB(u)X =Im(X,Y) - Im(Y, X) = Q(X,Y).

This is enough to prove dB = €. Next, using R[z]n = n+ >_; a;[z]n ¢;, we expand

= ZIm<@jzj7 )+ Im<m7 )= ZIm<zj¢jv ) +Im(7, )

J

(4.20)
+ZIH1 qu? +ZII’H aJ (rb]ﬂ >)
By the definition of By in (4.13) we have
B—By=I+L+I3+Y Im(D;ad;. . q5=)dza+ Y _ Im(@;.,, ), (4.21)

JA J
I ::ZIm[Ej (<¢j7 >_dzj)] ;I ::_Im<ﬁadn_Pc £ —ZIHI |:04J d)j? >:| .
J
We substitute dn with (4.4) and (¢;, ) with (4.5). For ¢;[z] o dnj the linear operator defined by
ajz] o dn(X) := a;[z]dn(X) we then get

I = Im(Djaqj-,;, Zedr)dzja + Im(Z; Dy acj[2]n)dzea + Im (Z05(2] o dn)
= R dzja +Im (Zj05(2] o d) (4.22)

where, as anticipated in Remark 2.10, here we set RK M= ’RK v (%, Z,n) and SK M= SK w2 Z,m),
where here Z = (2;Z;); j=1,...n With i # j.
The second term in the last line of the last formula is incorporated in (4.23). We have

IQ = Im(ﬁ, DjAQij>deA = ZRZéJl,oodZJA
JjA

Substituting with (4.5) we have

Iy = R dzja+ (Silac dn) + (S, ).

Hence we get

B~ By =Y Im(za;(z] o dn) (4.23)
J
+ ZRiﬁ,oodeA + (SL s dn) + (S&' o, dm) (4.24)
+ Z Im ]AQJZ aq]ZJ>deA + Z Im qu ? > N (425)
JjA J
Set now ) (u) := — > =1 Im(g;.,,u) . Then it is elementary that we have
=3 Im(g;.,,) = > Im(D;ad;., ¢z, )dzia + Y R dzia. (4.26)
j= JA 5A
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By the Leibnitz rule we have

Im (z;a5(z] 0 dn) = d1m (2,05[2] n) — Im (d(Z;05[2]) 7). (427)
The contribution to (4.23) of the last term in the r.h.s. of (4.27) can be absorbed in (4.24). Then

B =By +dp =2 RE odzja+ (Sl dn) + (Sklsc, dn).
jA

Here we have used: the first two terms in the r.h.s. of (4.26) cancel with (4.25); there is a cancelation
between the contribution to the r.h.s. of (4.23) of the first term on the r.h.s. of (4.27) and the
differential of the last term in (4.16). This yields (4.18).

Finally we consider (4.19). We have ®*By = By by (4.14), while ®*B = B follows immediately
from the definition of B in (4.15). Finally ®*¢ = 1 follows immediately from ®*(g;. ,u) = (g;.,, ),
which follows from g;., (¢"V2) = €"¢;., (), and from (2.9) and (2.12) which impy
! Walen = zjazn.

Q" (Zja(2]m) = el Zjajle

O

Lemma 4.5. Consider the differential form Q — Qq, which is defined in By1(0,dg) for the dy > 0
of Lemma 2.3. Then, summing on repeated indezxes, we have

O —Qp = ﬁijABdZiA N deB + Z dz;a N\ <§iA£,df> + Z <§§/§df, d€/> (4.28)
E=n,n &,.€'=nn
where, expressed as functions of (z,7), the coefficients extend into functions defined Ben (0, dp) x X .
for any r € N and in particular we have ﬁmg = S(lx’ffoo(z, Z,n), ﬁijAB =R (2, Z,n) in the sense
of Remark 2.10 and (ng/g = GESé;)lyoo(z,Z, n) — (5‘5/5(1);31,00(2, Z,n))* (with two distinct S’s). We
furthermore have
D (Q — Q) = Q — Qo for ®(z,n) = (2, €"n) for any fived 9 € R. (4.29)
Proof. We have
QO—-Qo=dl =dY R dzja+d) (8L, dE).
JA 3

Summing over k, B, £ we have

ARy odzja) = 0., RE odziep A dzja + (0eRY o, dE) A dzja

00,007

with the 9:RL! , € H.[0] defined, summing on repeated indexes and for F' with values in R, by
dFX =0

ZkB

F dzpX + (0cF,déX) for any X € L*(R*,C).
It is easy to see that J¢RL} = SO and Do s RY o =RY

00,00

Furthermore, summing on repeated indexes we have
(S5 oor dE) = dzip A (D25 S 5000, dE) + (S oodE!, dE) — (dE, DS o dE)
=dzkp N <8ZkBS(1>701,(X>’ d§> + <85'S<1>231,ood£/7 d€> - <(8€’S<1>é>17oo)*d£a d§/>’

where, for T' € C'(Upz, L?) for Ur2 open subset in L2, 9;T € B(H.[0], L?) is defined by
dTX = 0.,,T dzkpX + 9:TdéX for any X € L*(R3,C).

ZkB

(4.30)

Summing on £ in (4.30) we get terms which are absorbed in the last two terms of (4.28).
Formula (4.29) follows from (4.19), Q¢ = dBj and 2 = dB. O
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Lemma 4.6. Consider the form Q; := Qo + t(Q — Qo) and set ixQ(Y) := U(X,Y). For any
preassigned v € N recall by (4.8), (4.13) and Lemmas 4.4 and 4.5 that (2 — Qo) and T extend to
forms defined in Bcn(0,dg) x X¢,. Then there is 09 € (0,dy) s.t. for any (t,z,m) € (—4,4) x
Ben (0,00) x Bse (0,00) there exists exactly one solution X*(z,m) € L* of the equation ix:Qy = —T.
Furthermore, we have the following facts.

(1) X'(z,m) € , and if we set Xf,(z,m) = dzjaX'(z,m) and X} (2,n) = dnX*(z,m), we have
Xiy(z,m) = REL (8 2, Z,m) and XL(z,m) = 835 (t, 2, Z,n) in the sense of Remark 2.10.

(2) For X} := dz; X' and X, := dnX"’, we have Xt(e z,el'n) = em)(f(z,n) and Xﬁ(emz,ewn) =
lﬁXt(Z 77)

Proof. We define Y such that iy, = —T', which yields Y;z = —1T;;, Yj; = 3Tz (both RU )
Y, = —il; and Y5 = il (both SL'.) . We use ig,x Q) = ix(Qo — Q) + ), where O := Q — Qq,
to define in L? the operator K; . We claim the following lemma.

Lemma 4.7. For appropriate symbols Ri&foo(t,z, Z,n) and S});Soo(t,z, Z,n) which differ from one
term to the other and for Z = (2,Z;); j=1,....n With i # j, we have

(K¢ X)ja= ZR «X1B + Z (Sl oes Xe

=11

(4.31)
(KtX)§ = Zséé?ooXlB + Z af’ oé,oo(tvza Z.n) — (8§Sc1>51,oo<t727 Z, n))*Xﬁ"
IB §'=nn
We assume for a moment Lemma 4.7 and complete the proof of Lemma 4.6. iy:Q, = —T

becomes Xt + K;X* =Y. Indeed, suppose X* + K;X* =Y holds. Then, by definition of K}, we have
ix, (U — Q) =ik, x,Q) and so iy, U =iy, Q) +ix,x, % =—T.

By Lemma 4.7, in coordinates and for £ = 7,7 the last equation is schematically of the form

Xy + ZR};O X+ Y (Shh.xh =REL (4.32)
&=n,m
th + Z Sl o XZB + Z 85’ (t’ z,Z,m) — (85Sc1>51,oo(t7 Z, Z,U))*th' = Si:;o
tB &'=n,n
Notice that (8581 ! 0)ShL is C° in (t,z,Z,n) with values in ¥,. We have
100855 0)S 150 12, < 110683 ol Bis—, 2 1Srals,
By (2.26) we have 9:S%' . (¢,0,0,0). This implies
10685 ccll s, 20 < Clinlls_ + 12| + ] (4.33)

and so

1082 0)S 5 I
=82L.

a Neumann expansion and formulas (2.27) yield claim (1) in Lemma 4.6.

< Clllnlls_x +12ZD(Inls_x + 12 +[2)™

So (08! )s

1
Inequality (4.3 )
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Claim (2) in Lemma 4.6 follows from
g1t @ = =@ = —T =iz =iig-1,,,

where ®*I' = T is (4.19) and we use (4.14) and (4.29) to conclude ®*Q; = Q. Then &;1X" = X7,
which is equivalent to ®,X* = X*. For the other formulas in claim (2) we have for instance

XLz, ) = XD (u)) = dz; (X (D)) = dz; (@, 2! (u)
=d(zj 0 ®)(X'(u)) = eiﬂX;(u).

This ends the proof of Lemma 4.6, assuming Lemma 4.7.

O
Proof of Lemma 4.7. By (4.13) and summing over the indexes (j, A, B) we can write
Qo — Q) =R dzja Ndzjp = ix (o — Q) = R X jrdzjr + R Xj1dzik. (4.34)
So if we define K'X setting ix/ x Q) = ix(Qo — ), by comparing (4.34) with
i x Q= 2(K'X)jrdzjr — 2(K'X)j1dzin +1((K'X)y, Xa) — 1({(K'X)7, Xy),
we obtain
(K'X)ja —R’ Xja and (K'X)e =0 for £ =n,7. (4.35)
Summing on (4,1, A, B, &£, £’) we have
0 = Rl ’ woldzja Ndzip +dzja A < oo, 007 d§) + t<[a§S (2, Z,m) — (aE’S;)l,oo(Z’ Z,n))"]d¢€, d£,>'
Hence
tixQ =R Xjadzp + (S0, Xe)dzja + X;ja(SL0, d€) + ([0SK) o — (9eSE )| Xe, dE).
So, if we define K" X setting ix»xQ =t ixﬁ, we obtain
(K"X)ja = ZR W Xep+ Y (S0 Xe
S (4.36)
(K" X )¢ Zs X+ Y [0S — (0S5 )X
§=n.m
Since K; = K’ + K", summing up (4.35) and (4.36) we get (4.31) and so Lemma 4.7.
O

Having established that X*(z,n) has components which are restrictions of symbols as in Definitions
2.8 and 2.9 we have the following result.

Lemma 4.8. Fiz anr € N and for the 5o > 0 and the X*(z,m) of Lemma 4.6, consider the following
system, which is well defined in (t,2,m) € (—4,4) x Bcn(0,00) X Bx: (0,00) for all k € Z N [~r,r]:

= Xj(z,1) and i = X;(2,7). (4.37)

Then the following facts hold.
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(1) For 61 € (0,60) sufficiently small system (4.37) generates flows
St € COO((—2, 2) X B(Cn (0, 51) X Bzz (07(51), B(cn (0,50) X Bzz (0, (50)) fO’f' all ke Zn [—’I“, ’I“]
§' € C%((—2,2) x Ben(0,61) X Brien, [0)(0,61), Ben (0,80) X By, o] (0, 6o)).- (4.38)
In particular for 2% := zj 0 §'(z,1) and n' :=noF*(z,n) we have
2 = 2j+ Sj(t,z,n) and ' = n+ Sy(t, z,1m) (4.39)
with S;(t,z,n) = REL,(t, 2, Z,n) and Sy(t, z,n) = S1 L (t,2,2Z,n) in the sense of Remark 2.10.
(2) § =3 is alocal diffeomorphism of H into itself near the origin s.t. F*Q = Qq.
(3) We have S;(t,eVz,e%n) = e?S;(t, z,n), Sy(t, ez, e%n) = €S, (t, z,n).

Proof. The first sentence has been established in Lemma 4.6. Elementary theory of ODE’s yields
(4.38). The rest of claim (1) is a special case of a more general result, see Lemma 4.9 below. We
get claim (2) by the classical formula, for Lx the Lie derivative,

(T ) = ™ (Lar Qe + 0,%) = F* (diatQy + dT') = 0. (4.40)

Notice that (4.40) is well defined here, while it has no clear meaning for the NLS with translation
treated in [4, 6], where the flows §* are not differentiable (see [4] for a rigorous argument on how to
offset this problem). The symmetry in claim (3) is elementary and we skip it.

O

Lemma 4.9. Consider a system
2j = Xj(tvzvn) and 1 = Xn(tvzvn)7 (441)

where X; = R“b b (t,z,Z,m) Y j and X, = S&& (t,2,Z,n), for fired pairs (r,m), (a,b) and (c,d).
Assume m,b,d > 1, with possibly m = oo, cmd r > 0. Then for the flow (2*,n) = F'(2,n) we have

zj =2+ 8;(t,z,n) and n' =n+ S,(t, z,1) (4.42)

for appropriate functions S; = R (t,2,Z,n) and S, = Sﬁ:fn(t, z,2,n) in the sense of Remark 2.10.

r,m

Proof. Consider the vectors Z = (2;Z;); j=1,..» with i # j. Notice that 7 = R;‘E"‘;nl’b(t, z,Z,1n), and
this equation can be extended to a whole neighborhood of 0 in the space L. Pairing the latter equation
with equations (4.42), a system remains defined which has a flow §¢(z, Z,n) which is C™ in (¢, z, Z,n)
and which reduces to the flow in (4.41) when we restrict to vectors Z € {(zzfj)l j=1,..n 0 #J}, by
construction. The inequalities (2.23) and (2.26), required to prove S; = R&} and S =8¢t ca

be obtained as follows. We have for all |k| <

t
E —z\</ RED (5, 2° zs,n5>|dssc/ (s, +1Z° D01 s, + |Z°] + |2°])°ds
0
t
I’ — alz, ,/ 1854 (s, 2° zamnzkdssc/ (7l + ZE DA s, + 1Z°] + |2°])°ds

—Z| </ R (s, 2%, 2%, ° )Id8<0/ (s, +1Z°D° (" ls_, +12°] + [2°))** ds. (4.43)
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By Gronwall inequality we get that |Z!| and ||n'||s_, are bounded by C(|Z| + ||n|ls_,). Plugging
this in the r.h.s. of (4.43), we obtain the last part of the statement.
O
We discuss the pullback of the energy E by the map § := §' in claim (2) of Lemma 4.8. We
set Ho(z,m) = Z;.l:l e;lzj|* + (Hn,m). Our first preliminary result is the following one.

Lemma 4.10. Consider the 61 > 0 of Lemma 4.8, the 5o > 0 of Lemma 4.6 and set r = ro with g
the index in Lemma 8.1. Then for the map § in claim (2) of Lemma 4.8 we have

§(Bcn(0,81) x (B (0,61) NH[0])) € Ben (0,80) x (B (0,60) N H[0]) (4.44)

and 3|Bcn(0,61)><(BH1(0,51)0HC[0]) s a diffeomorphism between domain and an open neighborhood of
the origin in C™ x (H* N*H.[0]). Furthermore, the functional K := E o § admits an expansion

K(z,m) = Ha(2,7) + Ai(l231)
Jj=1,....,n
2N+3 n 2N+3
PN 2l n B E Y Y Y EEE ) + ec)
=0 |m|=l+1 j=1 1=0 |m|=l
+ Rl (2 )+R212£+5<z z, n>+Re<89féi+4<z z n>,ﬁ>
1 % c
+ 2 > 2G5 + 30 Y G TR )+ Epn) . (445)
i+j=2|m|<1 d+c=3i+j=d
where: T = 19 — 2; G’ﬁ,)” Géln)u and G(l)' are 521000, (1)(|zl|2 znl?) = R (2); c.c. means
complex conjugate; \;(|z;]?) = Rgo(foo(\zﬂ ). For |m| =0, Gglmw(zm) = Gomij(2) is the same of

(3.4). Finally, we have the invariance RE2, (e z, e"n) = RE2 (2,7).

1,00

Proof. Consider the expansion (3.3) for E(u(z'7 1')), and substitute the formulas 2} = z; + S;(2,7)
and ' = n+ S,(z,n), with Se(z,n) = S¢(1,2,n) for £ = j,j,n,7, with Sy = Sy. By Si(z,m) =
REL (2,Z,n) and S, (2,1) = Si' (2,Z,n) it is elementary to see that the last three lines of (3.3)

70,00 70,00

yield terms that can be absorbed in last three lines of (4.45) (with [ > 1 in the 2nd line). Notice
that the z dependence of the al in terms of (|z11%, ..., |2n|?) follows by Lemmas 4.8 and B.3. The
z dependence of the Ggh)l is obtained by Lemma B.4. Notice also that if an R}% (z) depends only
on z, then it is an REY _(2).

We have R}afm( ' ') = R (2 Z777). Ngtice that by the invariance of R}, (z,1) and by
claim (3) in Lemma 4.8 we have R},O%Oo(elﬁz, Z,e"n) = RE2, (2,Z,7n). By Taylor expansion (using
the conventions under (3.14))

1
R (2,2,m) = Ry o (2,Z,0) + dy Ry oo (2, Z,0)n + /0 (1— 2R (2, Z, tn)dt - >, (4.46)

Each of the terms in the r.h.s. is invariant by change of variables (z,71) ~ (e!?z,€Vn). We have

1
Rioo(2 Zomly=0 = RE(2:2) = D HdpRIE (2,028 + RET(2,2) =

70,00
k<2N+4
2N+4 2N+4
RN (2,Z) + E g Z™cm(2) = RLS 2N+5 (2,Z) E g z E cjm(|2; %)
1=2 |m|=l+1 =2 |m|=l+1
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where, as in step 1 in Lemma 3.1, the last equality is obtained by the invariance w.r.t (z,n) ~~

(€2, 6“9’17) and by smoothness. We have proceeding like above

1
d R71~020<>(Z> Z, 0)77 = Re<svl~oloo(z> Z)’ ﬁ> = Z k <dk S}‘oloo(zﬁ O)a ﬁ>Zk
E<2N+3

n

2N+3
+Re(S3,20 (2, 2,m),7) = Re(SE2N (2, Z,m), M + > Y Y (ZZ™(Ajm(l51%),m) + e.c),
Jj=1 I=1 |

m|=I

Finally, for a RL2._(e'z,e'"n) = RL2._(z,1) we have, see Definition 2.8,

70,00 70,00

1
/ (1 - DRRL2 (2. Z, t)dtnf? = RY2(=,1).
0

By (4.46) and the subsequent formulas we see that R}%, (2',7) is absorbed in last three lines
of (4.45) (with I > 1 in the 2nd line). The term (H7/, n} (Hn,m) + RTO 2.00(%, Z,1n) behaves
similarly, recalling that 71 = rqg — 2. Here too we have RTO 9 OO(emz, Z,en) = Ri{;"’_m(z,z,n).
This function can be treated like the R},oz,oo(z, Z,7) discussed carlier.
The terms E(Qj.,) and, for j # k, Re(qjz;, Zxdr) = RL' oo (2, Z) can be expanded similarly.
But this time we need ! = 0 in the 2nd line.
O
The expansion in Lemma 4.10 is too crude. We have the following additional and crucial fact.

Lemma 4.11 (Cancellation Lemma). In the 2nd line of (4.45) all the terms with | =0 are zeros.

Proof. We first observe that the terms in the 2nd line of (4.45) with [ = 0 can be written as

SN S abiiale) + 3 RelA(). 7). (4.47)
k=1

k=1j#k A=R,I

Indeed they are
ST 27D (1) o 2l + GG (12512 m) + e, (4.48)
|m|=1 j=1

and it is obvious that the 2nd term of (4.48) is the second term of (4.47). Arguing as in Lemma
3.1, the first term of (4.48) can be written as

Z > zZmap) (=)
k=1|m|=1

Further, for Z™ = 2,;Z;, we can assume that ¢ or j must equal to k, because if not, it can be absorbed
in the terms with [ > 1. Set N}, :={m | |m| =1, m, ; = 0if ¢ # k and j # k}. We have

n

Z ST zma (2 =Y Y Z™a) (12 ZZ zznap, (2l + 2Ziaf) (1261%).

k=1|m|=1 k=1 meN} k=1 j#k

So, we can write the term in the form of the first term of (4.47).
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Next, notice that for pp = (0,---,0, 2, ---,0;0),
brja(zr) = (’LJ.AK(Z,?])’pk and Ag(zi) = Vo K(pr). (4.49)

Therefore, it suffices to show the r.h.sides in (4.49) are both zero. Recall u(z,n) = >7_; Q;z; +R[2]1.
We have

00 K (21|, = 0 u E(u(2' (2,m),0'(z,m)]
= Re(VE(u(2'(pr), 7 (px))), Oz, au(2 (2,m), 77 (2,m)) |, )-

By Lemma 4.8 we have
('(pr)s ' (pr)) = pr- (4.50)

So
VE(U(ZI(pk)777/(pk)>) = vE(kak) = 2Ekszk:zk~

By Prop. 1.1 and by (4.50), for z; = €'V* p;, we have

b PR ) o
- lg*aimbk = _18719]@(; sz]’. + R[Z/]n/”pk = _I%kak = _18719]66 ﬂkQ’ka = kak’

where the 1st equality follows by definition of push forward, the 2nd by (4.50) and the 3rd by
Prop.1.1. Similarly, by the definition of push forward, we have

Ozl (), (2o, = e Oaal, -
Therefore byja(zr) = 0 follows by

3szK(Z,77)‘pk = 2Ekrzk Im<&*aﬁk|pk7§*asz ‘pk> = _Ek:zk QO(aﬁkaazj,Aﬂ =0.

Pk
To get Ag(z) =0, fix E € H,[0] and set pr=(t) :==(0,---,0, 2x,0,---,0;t=). Then VE

Re(VK (pi),E) = a4 K(prz(t)|—o = %

o E(u(z/(pkﬁ(t))a77’(1%,5@)))”,5:0

= Re(VB(Qis,), - (= (=), (e =(1)) o)

0 — 0 _
= 2Ekzk_ Im<3*8719k|pk73*:> = 7Ek»zk Qo(aiﬂk, .:) = 0 = Ak(Zk) = O
Pk

5 Birkhoff normal form

In this section, where we search the effective Hamiltonian, the main result is Theorem 5.9.
We consider the symplectic form Qg introduced in (4.13). We introduce an index ¢ = j, j, for j = j

with j = 1,...,n. We write ; = 0., and 9; = Jz;, z; = Z;. With this notation, summing on j, by

(4.8) and (4.34) for v;(|z;]?) = R22.(|z;]?) we have

Qo = i(1+ (12 *)dz; A dz; + 1 (dn, d) — i (dm, i) (5.1)
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Given F € CY(U,R) with U an open subset of C* x ¢, its Hamiltonian vector field X is defined
by ix,0 = dF. We have summing on j
ixpQ0 =11+ ;|2 *) (Xp);dz; — (Xp)3dz;) + 1 ((Xp)y, d) — i (Xp)s, dn)
= 9;Fdz; + 8;Fdz; + (V,F, dn) + (Vo F, d7j).
So comparing the components of the two sides we get for 1 + @, (]z;|*) = (1 + v;(|2|?)) ™! where
@;(|2*) = R% oo (|2) -
(Xp); = —i(1+@;(|)05F ,  (Xp); =i(1+@;(]2]*)0; F

(Xp)y = —iVaF, (Xp)g=iV,F. (5.2)

Given G € C1(U,R) and F € C*(U,E) with E a Banach space, we set {F,G} := dF Xg.

Definition 5.1 (Normal Form). Recall Def. 2.5 and in particular (2.13). Fix r € Ny. A real valued
function Z(z,n) is in normal form if Z = Zy + Z; where Zy and Z; are finite sums of the following
type for 1 > 1 and for Z = (2;Z;); j=1,....n Where i # j:

n

Zi(zZ) = Y (HZ™Gm(z]%)m) + c.c.), where Gim(|z]%) = SY%(I12°)  (5.3)

j=1 |m|=1
meM; (1)
and where c.c. means complex conjugate; for am(|z1]?, ..., [2a]?) = RY% (|21]2, ..., |2n]?)
Zo(2,Z) = Z A (PR PR (5.4)
|m|=1+1
meMo(1+1)

Remark 5.2. By Lemma 2.6, Z™ = |21 ™1 ...|2,,[*™" V m € Mo(2N +4) for an m € N§ with 2|m| =
|m|. By Lemma 2.6 for |m| < 2N +3 either ) ,(eq —ep)map—€; > 001 Y, (eq —€p)may —e; < 0.

For 1 < 2N + 4 we will consider flows associated to Hamiltonian vector fields X, with real
valued functions x of the following form, with by, = R2% (|21]%, ..., |2n|?) and Bjm = SP3, (|z;]?) for
some r € N defined in Bcr(0,d) for some d > 0:

|m|=1+1 j=1 |m|=1
mgMo(1+1) m¢gM,; (1)

The Hamiltonian vector field X, can be explicitly computed using (5.2). We have

(Xy)j = (Yy); + (Y/x)j v (X = _iZ Z ijmﬁjm(‘zj|2)7 (5.6)
" A
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where

(Yi(zm) = =il + () Do bml(al’ - |zal?)o5z™

|m|=1+1
+Z > ((Brm(l2k]*), m)05(Z2™) + (Bim(|26?), m)05(Z))],
k=1 |m|=1 (57)
(f’x)j(z,n) =—i(1 4 w,( |zj\ Z 0|z, 12bm (|21]?, 7\zn|2)szm
|m| =141
+ 3 (B2, 02 PZ™ + (Bl (l22), ) 2727

|m[=1
Notice that (Yy); = REL, (Yy); = Ryttt and (X,), = SEhL,. We introduce now a new space.
Definition 5.3. We denote by X, (1) the space formed by
{(6, B) :== ({bm}meaq), {Bin}jet, . nnes,1)) : bm € C, Bjn € ¥
and x(b, B) is real valued for all z € Ben(g,a)}, where
A :={m: jm|=1+1, m& Mo(l+1)},
Bi(l) = {n: [l =1, n¢M1+1)},

where we have assigned some order in the coordinates and where
x(b,B) = Z VAR Z Z (Z;Z™(Bjm,n) +c.c.) .
meA(l) J=1meB;(1)
We provide X, (1) with the norm
16 Bl = D bl 4D > [Bjmlls.
meA(l) J=1meB;(1)

Set 0(z) = (01(2), ..., 0n(2)) With gj(2) = |2;]?.

Lemma 5.4. Consider the x in (5.5) for firxedr > 0 and1 > 1, with coefficients (b(o(z)), B(o(z))) €
C?(Bcn (0,d), X (1)) and with Bjm(0(2)) = Bjm(0;(2)). Consider the system

z; = (Xy)j(z,m) and 1) = (X )y(2,m),

which is defined in (t,z) € R X Ben(0,d) and n € 3¢ for all k € Z N [—r,r] (orn € H' NH[0]) .
Let § € (0,min(d, 61)) with &1 the constant of Lemma 4.8. Then the following properties hold.

(1) If the following inequality holds,
41+ 1)6[[(b(o(2)), B(o(2))) w2 (Ben (0,0), %, (1)) < 1, (5.8)
then for all k € Z N [—r,x| for the flow ¢'(z,m) we have

¢' € C=((—=2,2) x Ben(0,6/2) x Bxe(0,6/2), Ben (0,6) x B (0,6)) and (5.9)
¢' € C%((~2,2) x Bcn(0,6/2) X Brirs,(0)(0,0/2), Ben (0,6) X Brria,0(0,9)).-
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In particular for 2% = zj 0 ¢'(z,m) and n* := 1o ¢'(2,n) and in the sense of Remark 2.10

25 = zj + 8;(t, z,m) and n' = n+ Sy(t, z,m)

) 11 11 (5.10)
with Sj(t, z,n) = Ry (t, 2, Z,m) and Sy (t,2,m) = S0 (t, 2, Z,n).

(2) We have S;(t, eV z,ei%n) = P S;(t,2,n), Sy(t, ¥z, e%n) = €S, (t, 2,7).
(8) The flow ¢' is canonical, that is ¢"*Qo = Qg in Ben(0,6/2) X By, 0)(0,6/2).

Proof. Claim (2) is elementary. The same is true for (3) given that ¢’ is a standard sufficiently
regular flow. In claim (1), (5.10) and the following sentence are a consequence of Lemma 4.9. The
first part of claim (1) follows from elementary estimates such as

[(X30); (zm)| = (1 + @ (12])05x(2,m)]
< (1 [l ]l oo (Be (0,50)) A+ DB, B) w0 (Ben (0.80). . 1)

for (z,m) € Bcn(0,9) x Bse (0,6). Notice that taking dp sufficiently small in Lemma 4.6, we can
arrange ||, || Lo (Bc(0,50)) < 1. We also have

1(X)n (2ol < 100, B)l 2= (Ben (0,60), %)%

Then if (5.8) holds we obtain (5.9). O
The main part of ¢* will be given by the following lemma.

Lemma 5.5. Consider a function x as in (5.5). For a parameter o € [0,00)™ consider the field W,
defined as follows (notice that Wy (z,1, 0(2)) = Yy (2,1)):

(Wx)j(zvnu 0) = (1+wj Qj Z bm

|m|=1+1
(Wy)n(z,m,0) : Z Z 2 Z Brm(0k).

k=1 |m|=1
Denote by (w',o') = ¢k (z,n) the flow associated to the system
Wy = (Wy)j(w,0,0(2)),  w;(0) =z,
&= (Wy)o(w,0,0(2)), o(0)=n.
Let § € (0,min(d, 61)) like in Lemma 5.4. Then the following facts hold.
(1) If (5.8) holds, then, for B(o(2)) = (Bjm(2j(2))jm,
w; = zj + Tj(t,b(e(2)), Be(2)), z,n) and 0" = n+ T, (t,b(e(2)), B(e(2)), 2,7) (5.13)

T; (resp. T;) C for (t,b,B,z,m) € (=2,2) x Bx,(0,¢) x Ben(0,6) x By__(0,06)
with values in C (resp. ¥y).

(5.12)

(5.14)

Furthermore, we have
T;(t,b, B, 2, RUL(t,0,B,2,Z
i( n) = = oo ) (5.15)
T,(t, b, B,z,m) = Syoo (8,6, B, 2, Z, 7).
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(2) We have the gauge covariance for any fixred ¥ € R

Tj(t,b,B,e" 2, e"'n) = e”T;(t,b, B, z,1)

. . . 5.16
T,(t,b, B, ez, 6“977) = e“ng(t, b,B,z,m). ( )

(8) Consider the Hamiltonian flow (zt,nt) = ¢*(2,n) associated to x, see Lemma 5.4. Then

2w =Ryt 2, Zm) 0t =o' =SSPtz Z,n) (5.17)

Proof. We have (5.13)-(5.14) by standard ODE theory. For W = (w;w,);; like the Z in (2.2)

t
wh = z; —i(1+ @;(0;(z Z bm /0 (O;W™) ds+
m|=1
izt ) (5.18)
3 Y (Bmlenl2) /S@MWWW$HEMmmJo%@WW%ﬂ
k=1 |m|=1 0
where (O;W™)* = ;W™ |, —,:. Similarly we have
o _77—12 > Biml(on(z / wi,(W™)*ds. (5.19)

k=1 |m|=1

Like in Lemma 4.9, we have also W' = Z + fo Ribo(s,b(0(2)), B(o(2)), z,Z,n)ds. We can apply
Gronwall inequality like in Lemma 4.9 on these formulas to obtain (5.15). This yields claim (1).
(W57, 00, 0(2)) = e (Wy)(w,a, 0(2)) and (Wy)y(ew, e, o(z)) = e (W) (w, 0, o(2)
yield claim (2).

Consider claim (3). Observe that (5.17) holds replacing 1+ 1 by 1. By (5.6), we have for a fixed C

|2 — | < |(Wy);(z,m) — (Wy)j(w, o) + [Resd  (t, 2, Z,m)
<C|Z*UJ|+CH77*UHE_ +|R11+1(t7zazvn)|'

Similarly we have
I = olle, < [(Wy)y(2,m,0(2)) = (Wy)n(w,0,0(2))]s, < Clz —w|+Clln—0ols_,.
We then conclude by Gronwall’s inequality
2" = w'| + 0" = o' lls, < RyE(E, 2, Z, )]

which, along with (5.17) with 14 1 replaced by 1, yields (5.17) ending Lemma 5.5.
O

Using Lemma 5.5, we expand ¢! given in Lemma 5.4.

Lemma 5.6. Let (2/,n') = ¢'(z,n), where ¢' is the canonical flow given in Lemma 5.4. We have:

(1) for Tj(b, B, z,m) = RELT, Ty(b, B, z,m) = SE2" and T, Ty smooth in (b, B, 2,1),
2 = zj+ (Yy)j(zm) + T;(b(o(2)), Be(2)), 2,m) + Ryttt

5.20
0 =04 (X )n(2,n) + Ty(b(e(2)), B(o(2)), 2:m) + Spiad s 20
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(2) for ﬁ(b,B,z,n) =RL2 smooth in (b, B, z,7),

|23‘2 = |Zj|2 +2zj (YX)j(Zv 77) + 25 (Yx)j (zv 77) + ﬁ(b(g(z)), B(Q(Z)), 2, 77) + R11~72é+1 (5'21)

Remark 5.7. For 1 > 2, T; and 7, are absorbed in R},:Egl and S,};éjl and do not appear in the
homological equations in Theorem 5.9. But if 1 = 1 they do, although as small perturbations.

Proof. First of all by (5.7) and by Definition 5.3 we have Z,(Y); + 2;(Yy); = 2Re (Ej(ffx)j) = 0.

So, using the following formula to define V;, we have

d _ _
%|Zj|2 =7Z(Xy); + 2 (Xy); = Z(Ya)s + 2 (Ya); =: j(z,m). (5.22)
Notice that ) is Rg:};gl. Therefore, we have
1257 — |2 = ROE (5.23)
This implies
bo(2°)) — blo(2)) = Ryt and B(o(2*)) — Blo(2)) = Sk (5.24)
Similarly, see right before (5.2), we have
@;(1251%) = w;(l25*) = REL! (5.25)
Now we show (1). By (5.6) and (5.11), using (5.24) and (5.25), we have
(Y2);(2°,m°) = (W) (2°,71°, 0(2)) = RS (5.26)

By (5.6), (5.10), (5.17) and (5.26), we have

4=+ | (W (o of2))ds + / () — (W) o)) ds + / ($0, (s
=zj + /O 1(Wx)j(ws +REEL 0%+ S 0(2)) ds + RS
==+ [ (W5, 0%, 0(2)) ds + REEY = 25 1 (Wy)y (20, 0(2)) + T + REMY,

where T; = fol(WX)j (w®, 0%, 0(2)) ds—(Wy); (2,1, 0(z)) and the last RLL! in the 2nd line is different
from the RELS! in the 3rd line. Finally, by (1) of Lemma 5.5 and the fact (W, ); = Ry:h,, we have

r,00’

7, = Ry:2! with 7; smooth in (t,b, B, z,77). The argument for 7’ is similar.
We next show (2). Set V; (2,1, 0) := Z;(Wy); (2,1, 0) + 2;(Wy), (2,7, 0). As in (5.23)~(5.24) we have

j
57;‘(257778, Q(Z)) - yj(zs,ﬂs) = Rg:z<13+2
where Y; is defined in (5.22). So we have

1 1
22 = |22 + / Vi) ds = | + / V(2" 0l2)) ds + RO
0 0

1
- |zj|2 —|—/ Yj(w®,0°, 0(2))ds + Ri:gl“ = |zj|2 +Vi(z,n) + T, —|—Ri:§l+1,
0

where T; = fol Vi(w®, 0%, 0(2)) ds—Y;(z,n). Asin (1), we see T; = Ri:2! and T is C> for (b, B, z, 7).
O
After a coordinate change ¢ = ¢! as in Lemma 5.4 the Hamiltonian expands like in (4.45).
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Lemma 5.8 (Structure Lemma). Consider a function K which admits an expansion as in (4.45)
defined for (z,m) € Ben(0,0) x (By1(0,0)NH[0]) for some small § > 0 and with r1 is replaced by a1’
Suppose also that the l = 0 terms in the first two lines are zero. Consider a function x such as in (5.5)
with 1 <1< 2N +4 with ||(b, B)|lw1. (Ben (0,6),x,.(1)) < C and with C' a preassigned number. Suppose
also that 2co(2N +4)0C < 1 with ¢y the constant of Lemma 5.4. Denote by ¢ = ¢* the corresponding
flow Then claims (1)-(5) of Lemma 5.4 hold and for (z,m) € Ben(0,6/2) x (Bg1(0,/2) N H,[0])
and for r =1 —2 for Z = (2;Z;)i j=1,..n where i # j we have an expansion

Ko ¢(Za77) = HZ(Zvn) + Z)‘J(|ZJ|2)

j=1
2N+3 n 2N+3

T2 ) Zlaw(alnlm) ) > X EENGma )+ ee) (5,27
=1 |m|=i+1 J=1 1=1 |m|=l ’

FRIZ (2 m) + RN (2, Z,1) + Re( 89242, Z,1),7)
+Z ZZmG2mzjzn 7777 Z Zdezn 7777>R06(277)+EP()7

i+j=2|m|<1 d+c=31i+j=d

where Gjm, Gami; and Ggq;; are S?.’OO and the a,, are Roo w- Furthermore, for |m| = 0 we have
Gomij(2,m) = Gamij(2) are the functions in (3.4) and the A; (|z]| ) are the same of (4.45). Further-
more the st function in the 3rd line of (5.27) satisfies R} 5 2(e"z,e"n) = RE2Z (2,m).

Proof. Like in Lemma 4.10 we consider the expansion (4.45) for K (z’,7'), and substitute the formulas
2 = zj + Sj(2,n) and ' = n + S, (2,n). Proceeding like in Lemma 4.10 we have

RYZ () = R (o) + RE (2, Z) + Re(S)22 (2. Z.).7)

(5.28)
+ terms like in the 2nd line of (5.27),

Similarly we have

(Ho', 7y = (Hy, ) + RET (2.2,0) = (Hn,7) + RES, (1) + REY, (2, 2)
+Re(SHL, (2, Z,n),7) = <Hn,ﬁ> + R (zn) + RN (2,2, ) + Re(SHN T2 (2, Z,m), 1)

' —2,00 T’ —2,00 r’'—2,00

+ terms like in the 2nd line of (5.27) (5.29)
Consider an \;(|z;|?) in (4.45). Then by (5.21) we have
MIZR) = A (15 + RO 2 Zm) = ) + RS 2, Z,m). (5.30)

The latter admits an expansion like in and below formula (4.46).
The term R} (z,1) in the 3rd line of (5.27) is either the first in the r.h.s in (5.28) for [ > 1

in Lemma 4.8, or the sum of the latter with the R} "1 (z,n) originating from (5.29)—(5.30) for

—2,00
I =1 in Lemma 4.8. In either case it satisfies R,-2 (6“92 eVn) = RLZ (z,n). Other terms in (4.45)
computed at (z',n) and by similar elementary expansmns are similarly absorbed in (5.27). O

All of the above lemmas are preparatory for the following result, which will give us an effective
Hamiltonian by picking ¢« = 2N + 4.

33



Theorem 5.9 (Birkhoff normal form). For any ¢ € NN [2,2N + 4] there are a 6, > 0, a polynomial
X, as in (5.5) withl=1,d =6, andr =71, =r9g—2(t + 1) s.t. for allk € ZN[—r(t),r()] we have
for each x, a flow (for 61 > 0 the constant in Lemma 4.10)
¢r € C=((=2,2) x Bcn(0,6,) x B (0,6,), Ben (0,8,-1) x Bye (0,6,-1)) and (5.31)
¢f S COO((—2, 2) X B(C” (07 (SL) X BHlﬂ’HC[O] (0, 5L), B(Cn (0,(5L,1) X BHlﬂ’HC[O] (0, 5L,1))
and s.t..for §¥ == Fo gy o..0¢,, F the transformation in Lemma 4.8 and ¢; = ¢r, then for
(2,m) € Ben(0,0,) X (By1(0,0,) NH[0]) and for Z = (2,Z;)i j=1,...n, Where i # j, we have

n

H(L)(Zﬂ?) =Fo S(L)(Zan) = H2(2777) + Z)‘J“Zj‘g) + Z(L)(Z7 Z777)

j=1
2N+3 n 2N+43
+ Z Z Z’naL |Zl|2 7|ZTL| +Z Z Z Z] G(L) |ZJ|2)?77>+CC) (5 32)
I=¢ |m|=I+1 j=1 =1 |m|=l ’
—|—R1’2 (2, )+RO’2N+5(2 Z,n) +Re<50’2N+4(z Z,n), 7>
S S 2T+ Y 3 (G e IR ) + Bl
i+j=2|m|<1 d+c=3 i+j=d

where, for coefficients like in Def. 5.1 for (r,m) = (r,,0),

ZW = 3" ZMam(|nf ) D (Y 2G|z ) ) + ec). (5.33)
meMog(e) Jj=1 meM;(t—1)
We have R}%,, = RL2 and RE2, (€2, eVn) = R}«f (z,m).
In particular we have for §¢ := 62N+4 and for the dy in Lemma 4.6,
SN (Ben (0,65) x (B (0,85) NH,[0])) € Ben(0,80) x (B (0,380) N H[0]) (5.34)

with 3|Bcn(0,6f)x(BH1(O,Sf)ﬂHc[O]) a diffeomorphism between its domain and an open neighborhood of
the origin in C"™ x (H* NH.[0]).
Furthermore, for r =rg — 4N — 10 there is a pair RLL, and SpL) s.t. for (2/,1') = FONH (2, 1)

Z*Z‘FRll(ZZ?]) n*77+S (2, Z,m). (5.35)

Furthermore, by taking all the §, > 0 sufficiently small, we can assume that all the symbols in the
proof, i.e. the symbols in (5.35) and the symbols in the expansions (5.32), satisfy the estimates of

Definitions 2.8 and 2.9 for |z| <4, and ||n||s_,,, < d. for their respective vs.

Proof. Notice that the functional K in Lemma 4.10 satisfies case ¢+ = 1. The proof will be by
induction on t. We assume that H() satisfies the statement for ¢ > 1 and prove that there is a ¢,11
such that HH+Y .= HWog,,; satisfies the statement for 1 +1. We consider the representation (5.27)
for H®), which is guaranteed by the Structure Lemma 5.8. Using (5.27) we set h = H(")(2,Z,n)
interpreting (z,Z,n) as independent variables. Then we have for 1 =

1
al (1212, ..., |za)?) = —8'Znh| GnZ)=(200) s |m| < 2N +4, (5.36)
2G5 ) = —a'z“v B (2 . 2)=(0....5.0,.0:0,0) »  |m| < 2N +3. (5.37)
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The inductive hypothesis on H®) is a statement on the Taylor coefficients in (5.36)—(5.37), that is
that, for 1 = ¢ (see Def. 2.5 and Remark 5.2)

0z 0| (. n.7)=(2;0,0) = 0 for all m & My(1), (5.38)
0z’ Voh|:n.2)=,.. .0;0,0) = 0 for all (j,m) with m & M;(1—1). (5.39)

5- 7Zj7 5

We consider now a yet unknown x as in (5.5) with 1 = ¢+, r = r, and a yet to be determlned
d =0 >0. Set ¢ := @', where ¢ is the flow of Lemma 5.4. We are seeking y such that H® o ¢
satisfies the conclusions of Theorem 5.9 for ¢ + 1, i.e. that using again Lemma 5.8 and settmg this
time h = (H® o ¢)(2,7,Z), we will have (5.38)7(5.39) for 1 =+ + 1. Notice that for any x, (5.38)—
(5.39) are automatically true for 1 = ¢. This because H®(z,1,Z) and (H" o ¢)(z,7,Z) have same
derivatives in (5.36) for jm| < ¢ and in (5.37) for |m| < ¢ — 1. So it is enough to consider (5.38) for
Im| = ¢+ 1 and (5.39) for |[m| = «. This will be true for a specific choice of x whose coefficients
solve the Homological Equations, which we set up in the sequel.
By (5.20) and by Gégij(zm) = G'20i;(z) we have

HO( ) = Ha(2' ') + D N(12517) + 2920 + REZ () + Y (Gaois (), 1 717)
j=1 i+j=2

D+ > 2™l () +Z S EZMGL (D)) + e, (5.40)

jm|=¢+1 J=1|ml|=¢

where h := (x)(z,n,Z) satisfies (5.38)—(5.39) for 1 = ¢ + 1. In the sequel we will use (%) with this
meaning. Let (2/,7') = ¢(z,n). We have

< (Ej(Y )j(2.m) +Zj(Yx)7(z,77)> = Y e (p(m) = v(m)bm (|21, s [2] 1) 27
|m[=c+1 (5.41)

Z > (e — 75(m)) (Bjm(125]2),n) 5,2 + c.c.) for

J |ml|=

RINGE

Zm _ Zp(m)zu(m)7 szm _ Zﬂj(m)gﬂj(m)’

_ 9 ) (5.42)
e(z) := (er(1 + @1(|21]%)), s enl(l + @n(|2n]%))),
and, summing on repeated indexes,
(Hn, (X )n(z,m) + (H(Xy)n(2,0),7) = i2,Z% (HBjm(|2]%),m) +cc. . (5.43)

So, by Lemma 5.6, (5.41)—(5.43) and using the notation in(5.42), we have

n

Hy (') = ejl2jP + (Hy',0) = Ha(z,m) + Y i€~ (u(m) = v(m))bm(|21 [, . |20 )2

Jj=1 |m|=1+1
mgMg(141)
+Z Z fij(m) — 7;(m)) + H) Bjm(|2;[*),n) Z,Z™ + c.c.) (5.44)
i |m|=1
mgM; (1)

R22L(szZ77)+()
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where c.c. refers only to the second line and in the last line
RY3(0, B2, Z,m) = e T+ (Hn, Ty) + (HT, 1) + (HTy, Ty)
j=1
where here and in the sequel of this proof we abuse notation denoting by (b, B) the element in X,.(¢),
see Def. 5.3, with entries by (|21]?, ..., |2n[?) and Bjm(|z;]?). R22 (b, B, z,Z,n) can be absorbed in
(%) if « > 2 but if ¢ = 1 needs to be considered explicitly. By X;(|z;]?) = R%%, and (5.21) we have

00,00
Ni(I125%) = X (125%) + RS (b, Bo 2, Zym) + (+). (5.45)

Next, we claim
282 ) = 292, Zn) + RS (b0, B, 2, Zyn) + (%) (5.46)

Let us take a term Z™am(0(2)) in the sum (5.33). Notice that by Lemma 2.6 we have necessarily
lm| > 2. Furthermore, by (5.21) it is easy to see that we can omit the factor am(o(z)). For
definiteness let Z™ = |21]?|22]? (so |m| = 2; the case |m| > 2 is simpler). By (5.21) we have

21225 = (a1 + REE) (122 + RELY) = |21 Pleaf® + RELH (b, B, 2, Z, m),

where we used information such as 7~; = R,lrgé contained in Lemma 5.6 and the fact, easy to check,
that z;(Yy);(2,m) + 2z (Yy)5(2,m) = Ry (D, B, 2, Z, 7).
To complete the proof of (5.46) let us take now a term of the form z,Z™(G(|22]?),n). Here we can
write G = G(|22|?) ignoring the dependence on |z2|? and we can focus on |m| = 1. For definiteness
let Z™ = 21Z5. By Lemma 5.6
A(Z)*(G, ) = (21 + Res) (Z2 + Res)*(Gon + St
which for ¢ > 1 is of the form z;Z3(G, n) + (x) and for ¢ = 1 using formula (5.20) yields (5.46).
By claim (1) in Lemma 5.4 and d,R;72 (2,1) - Si:go(b,B,z,n) =Ry (b, B, 2, Z,1) we get
Ryso(2' ) = Ry (z,n) + (%) = RyZ(2,1) + ()
1
+ / ARy % (2,1 + 78250 (b, By 2,m)) - Selto (b, B, 2, m)dr (5.47)
0
= Ry (2,m) + dyRy3(2,1) - Syt (b, B, 2,m) + (+).

Like in (5.47) and using (5.20) and Gao;(z) = R22, (2), see (3.4), we have

Z (Ga0ij ('), n''7) = Z (G20i5(2), 1" 77) + (¥)

i+j=2 i+j=2

= > (Ga20i(2), W) + REL (b, B, 2, Z,m) + (+).
i+j=2

(5.48)
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Therefore, we seek x, s.t. the following holds, with o(z) = (|z1]?, ..., |2, |?) and the notation in (5.42):

()= > e (u(m)—v(m)bm(e(z)Z™

mgn/\‘/lz(f(jil)
+ Z > (1{(e- (nj(m) = v;(m)) + H) Bjm(|2;]%),n) Z,Z™ + c.c.) (5.49)
" N0
FRES0,B, 52 Y 2@+ Y Y GECL SR + .
Mo 41) " min o

By a Taylor expansion we can write

RESNbB 2 Zm) = () + Y, ZMam(b B, o(2))
jml=+1
mgM(t+1)

Y0 ) EGHZ im0, s |25[%,0, ..., 0), B(O, ..., |2]%,0, ..,0), |2 *), m) + c.c.)
j=1 |m|=.
m¢gM; ()

where am(b, B, 0(2)) = RE5, (b, B, o(z)) and
where T'jm (b(0, ..., |z;[%,0, ..., 0), B(0, ..., |2;|%,0, ..., 0), |2;]?)
=549 (0, ..., z*,0,...,0), B(0, ..., |2;]%,0, ..., 0), |2 ?).
Furthermore, by (5.42) and w@;(|z;]?) = R, (|2;|%) the 2nd line of (5.49) has an expansion

Z ST (e (g (m) — vy (m)) + REC(12[2) + H) Bim(|2[?),n) Z,2™ + c.c.) + ().
j |m|=.
m¢gM; ()

Then we reduce to the following system:
bon(2(2) = 5oy iy 9 (€0)) + (B2 (B2 ()
Bjm(|2i[*) = iR (e (15 (m) — v (m)) + R} (121°))[Gan (125]*)
+ Djm (b(0, ..., |2, 0, ..., 0), B(O, ..., |2, 0, ...,0), |2;]?)
The bm(0(2)), Bjm(|2;]?) can be found by implicit function theorem for |z| < &/ for &, sufficiently
small. This gives us the desired polynomial x yielding H“+1). Formulas (5.31) for the flow ¢* of

X are obtained choosing 6, > 0 sufficiently small by claim (1) in Lemma 5.4. For the composition
FCN+Y) we obtain (5.34) as a consequence of (5.31) and of (4.44).

i

(5.50)

O
6 Dispersion
We apply Theorem 5.9, set % = HZN+4 g0 that
H(zm) = Ha(z,n) + Y Ni(lz*) + 20V (2, 2,m) + R (6.1)

j=1
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R = Ry2(z,1) + REZNT (2, Z,n) + Re(Sy2V (2, Z,m),7)
+ 33 2 Comis ) )+ Y (Gai(zm), iP)RES (2,0) + Ep(n). (02)

i+j=2|m|<1 d+c=3 i+j=d

Using formula (5.33) for ¢ = 2N + 4 we have

SN (15 P) + 2N (2,2, ) = Zo(= +Z S 2G5 ) + e,
i=1 j=1 meM;(2N+3) (6:3)

n

Zo(z) =Y Nzl + D 2wl lzal?) = 2ol f2af),

j=1 meM(2N+4)
where the last equality holds for some Zo(|21|?, ..., |2,|?) by Lemma 2.6.

Theorem 6.1 (Main Estimates). There exist ¢ > 0 and Cy > 0 s.t. if the constant 0 < € of
Theorem 1.3 satisfies € < €g, for I =[0,00) and C = Cy we have:

Hn||Lf(17W;,q) < Ce for all admissible pairs (p,q), (6.4)
12;Z™ || 21y < Ce for all (j,m) with m € M;(2N +4), (6.5)
sz||Wt1,oo(I) < Ce forallje{l,...,n}.

Furthermore, there exists py € [0,00)" s.t. there exist a jo with p; =0 for j # jo, and there exists
ny € H' s.t. |py — |2(0)|] < Ce and ny € H' with ||ny||g < Ce, such that

lim |n(t,z) — "0y ()| g =0 lim |z ()] = p+;- (6.7)

t—+o0 t—+

Proof that Theor.6.1 implies Theor.1.3. Denote by (z’,n') the initial coordinate system. By (5.35)
=24 R (2Z,m), 0 =0+ Sp(2,2,1).
Notice that (6.7) and lim;—, 4o Z(¢) = 0 and that by standard arguments for s > 3/2 we have

i eS| g2 e mo) = 0 for any 7y € L2, (6.8)

These two limits, Definitions 2.8-2.9 and (6.7) imply
hmR o(2,Z,m) =01in C" and thl(zZn)—Oan

t——+oo t—+o00

This means that

lim [l (f,2) — "2 (@)l =0 . Jim_ |(0)] = paye (6.9)

t—+o0 t—+

so that (1.8) is true. Notice also that if we set 77 = n and A(t,z) = SpL (2,Z,n) we obtain the
desired decomposition of i’ satisfying (1.9) and (1.10). Finally we have

d
%R}":éo(‘%zan) Rl ! (Z Z 77) O( 2)7

where % + iejz; = O(e?) by (6.27) below, RLL (2,Z,n) = O(e?) by (2.23) and 4RL1 (2,Z,n) =
O(€?). To check the latter, we write (it is easy ‘that d wRES (2, 2,m) =R (2,2 17) for w = z, Z)

Z +1ejz

= 25 +1ejz; +

th“ (2,Z,m) = Rlo (2, Z 17)2+R10 (2,Z,m)Z +d, Rll (2,Z,m) -7
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with d,,Ri;;o the partial derivative in 7. By a simple use of Taylor expansions and Def. 2.8
ldy Ry 50 (2, Z,m) 22 sme < Cll2] + [Inlls_,)-

Then by equations (6.12) and (6.27) below, we have tRLL (2,Z,n) = O(e?). This yields the
inequality claimed in the second line in (1.9).

O
By a standard argument (6.4)—(6.6) for I = [0, 00) are a consequence of the following Proposition.

Proposition 6.2. There exists a constant cg > 0 such that for any Cy > co there is a value
€0 = €0(Co) such that if the inequalities (6.4)—(6.6) hold for I =[0,T] for some T > 0, for C = Cy
and for 0 < € < €g, then in fact for I =[0,T) the inequalities (6.4)—(6.6) hold for C' = Cy/2.

6.1 Proof of Proposition 6.2
Lemma 6.3. Assume the hypotheses of Prop. 6.2 and take the M of Def. 2.5. Then 3 a fized ¢ s.t.

Il e 0,1, w0y < ce+c Z 122" | 2(0,1) for all admissible pairs (p, q). (6.10)
(p,v)eM

Proof. First of all, for |z| < 0y and |[n|| 1Az o) < d5 defining the domain of the Hamiltionian #(z,7)
in (6.1), we will pick ¢y € (0,d) sufficiently small. Let € € (0,¢€p), where € = ||u(0)| g:. By (2.11)
we have |2/(0)] + |7’ (0)]|x < c1€e, where (2/(0),7(0)) are the coordinates in the initial system of
coordinates introduced in Lemma 2.4. Let (2(0),7(0)) be the corresponding coordinates in the final
system of coordinates. Then by the relation (5.35), if € is sufficiently small we conclude that

|2(0)] + [[n(0) | i+ < cie (6.11)
for some other fixed constant ¢j. We now turn to the equation of . We have for Gjm = Gjm(0)

n 2N+3

in=i{n,H} = Hn+ Z Z Z zjzméjm + A where

j=1 1=1 |m|=I

(6.12)
n 2N+3 o B
A= > %Z7Gim(1%]%) — Gim] + VAR
j=1 I=1 |m|=l
We rewrite
n 2N-+3 o o
> S 4Z"Cim= Y. 72Gu. (6.13)
j=1 I=1 |ml|=l (p,v)eM
Notice that (6.5) is the same as
242" 21y < Ce for all (u,v) € M . (6.14)
Suppose we can show that for I := [0, 7
IA L2 (17, 519) 4 L1 (17, 51y < C(S, Co)é’. (6.15)

6

Then, if ¢ is small enough and € € (0,¢), we obtain (6.10) by H*(R3) — W5 (R?), by (6.11),
(6.14) and (6.15) and by the Strichartz estimates, which, for P. the orthogonal projection of L? onto
H[0], are valid for P.H by [33] (here notice that all the terms in (6.12) belong to #][0]).
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So now we prove (6.15). We have for r — 1> 5 > 9/2

1227 [Cim(1231*) = Gimlll2r a5y < 1227 227,01 Gim(1251) = Gimll oe (1, 1199 (6.16)
< Coesup{[|Gm (|2l : 2] < do}|27 | Lo (1.0) < CCFe® < ce.
We have for a fixed ¢; > 0
IN0Ep(l Lt (zr.m0y = 201010l 1 (0. my < el o ez 101172 (1, 16y < 1CG€%. (6.17)
We finally show that for an arbitrarily preassigned S > 2
Rl 210,115y < C(S, Co)€® for Ry = V(R — Ep(n)). (6.18)
R; is a sum of various term obtained from the expansion (6.2). Let us start by showing
||vﬁR7]:‘:gO(Z7n)”Lz(IT,HLS) < C(S,Co)é. (6.19)
Recalling (2.25), it is elementary to show that VzR Y2 (z,n) = S;:4 (2,1) and
1S8:20 (2 M 21,1115y < Cull(Illss—, + 12D (2o 1l 221 5
< Coll(Imll e + 12Dl poe 2oy 10 2 (2, 16y < C(S, Co)€>.
We next show
IVaRY2 2 (2, Zo )| 2 (1, 115y < O(S, Co)e®. (6.20)

We have, for a reminder [|O(|[n]|3_ )lls, < C|nl3_ easily shown to satisfy an inequality like (6.20),
VaRYa (2, 2,m) = SP3(=,Z,1)
= SPANNZ) + dySYE (2,00 -+ Ol ).

We have by Lemma 2.7

182584 (2, Z) | 21,105y < Crsup (18723 (2, Z) 2, 21 | 211

|z|<Coe
< Co|lzl|pee(r) Z Z 122" || oo (1) 1272 | L2 (1) < C(S, Co)é€’.
J (m,v)EM;(N+1)
We have
1S3 (2, Z,0) - nll 215y < Cr(S) 1l 2,y sup (|dy S+ (2, 2,0) 5,55,

|z]<Coe
< Ca(9)|Inll L2 (1r, L) ‘ ‘Sug |Z]*N T3 < C(S, Co)é?
z|<Cpe

Hence (6.20) is proved. Other terms in R; can be bounded with similarly elementary arguments,
yielding (6.18). Then (6.16), (6.17) and (6.18) imply (6.15).
O
Setting M = M (2N + 4), see Def. 2.5, we now introduce a new variable g setting

g=n+Y withY := > z*’Rji(e (8- 0a))Gap. (6.21)
(a,8)EM
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Lemma 6.4. Assume the hypotheses of Prop. (6.2) and fiz S > 9/2. Then there is a ¢1(S) > 0 s.t.
for any Cy there is a g = €0(Co, S) > 0 such that for € € (0,€g) in Theor.1.3 we have

l9ll 20,171,025y < c1(S)e. (6.22)
Proof. We have
ig=Hg+A+T where T := Y [0. Y (i%; — ¢;2)) + 05, Y (iZ; + ¢;%;)] . (6.23)
J
We then have
g(t) = e 'n(0) + e 'y (0) —i /O t e HIE=9)(A(s) + T(s))ds. (6.24)

We have for fixed constants by (6.11) and (6.15) the following inequalities:
e n(0) | 20,7, L2-5) < ealle™ (0| L2 (o,7),L0) < e3]n(0)] 22 < ese
¢
I / e_lH(t_s)A(S)dSHLQ([O,T]7L2,—S) < CQ||AHL2([07T]7H1,S)+L1([07T],H1) < C(Cy, 5)62.
0

For a proof of the following standard lemma see for instance to the proof of Lemma 5.4 [7].

Lemma 6.5. Let A be a compact subset of (0,00) and let S > 9/2. Then there exists a fized (S, A)
s.t. for everyt >0 and A € A

”e_thRJgr()\)Pc'UO|‘L21*5(R3) < C(S, A)<t>_% ||PCUO||L2vS(R3) fO’/‘ all Vg € L27S(R3).

O
By Lemma 6.5, by (6.11) and by Gog = P.Gqp we have
le Y ()|l 2o ry.L25) < Y 12%(0)2°(0)] e Rz (e (B — @) GagllL2 (o1, -5)
(a,B)eM
< (1M)c2é? || (t) 3|12 (0,18, M) [Gapll L2 < C(N, Co, S)é?
with M the cardinality of M and a fixed co and where the following set A is as in Lemma 6.5,
A={(v—p)-e:(uv)e M} (6.25)
We finally consider, for definiteness (the term 8z, Y (iZ; + €;%;) can be treated similarly)
t
[ e R e (5 - a))Gasd, (22N (5)55 — e3) (5)dsl oo
0
¢ _3.2%(s8)28(s) ..
<c(S,A) Y ||Gaf3||L2,55jH/O {t—s) ZIW(I% —¢;2j)(s)lds| L2(0,1) (6.26)
(a./)EM !
z%(s)28 ..
(S, Nea Y Bill——(% —¢jz)llL20m);
J

(a,8)eM
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for fixed c3. We have
iz; = (L+w;(|2*)(e;2 + a%J-ZO(|21|27 o lznl?) + %R)
z =
+ 1+l D v, 2 n.Guw)+ > u — (7, G|
(mv)eM (W v')eM

LA+ mlml S |zj|2zm<c;;.m,n>+zz <Gjm,n>]
meM,; (2N+3)

(6.27)

To bound (6.26) we substitute (iZ; —e;z;) by the other terms in (6.27) in the last line of (6.26) . So
for example we have 9z, Zo(|21]%, ..., |2n|*) ~ 2;0(€) which by (6.14) yields

5JH ‘ zjzo(\zll2 NznP)z20,m) < C(Co)el|z%27|| 20,y < C(Co)Coe®.
For (u,v) € M we have in (0,7

ZO B phzY 700 phzv
Bivill— === Gz < Bivill———— ez Gunll g Inll oo < C(Co)é?
Zj J

A similar argument works for the terms in the 2nd summation in the 2nd line of (6.27). Finally

B
| o (0,7 102, Rl 20,7y < C(Co)e®

7%2P 7%z
5]'”7‘ 9z, Rll20,1) < Byl
Zj Zj
is a consequence of the bound
10z, R Le0,1) < C(Cy)e? for any p € [1,00]. (6.28)

Here we need to check (6.28) term by term for the sum in the r.h.s. of (6.2). This is stralghtforward
using (2.23), (2.25) and (2.26) and the fact, stated in Lemma 5.8, that Gom,; and Gg;; are S 9

D
We turn now to the Fermi Golden Rule (FGR). We substitute (6.21) in (6.27) getting
iz = (1+@;(1%1%))(ej25 + 05, Zo(|21]%, ..y [20] )
SutBzrta N .
= > v (Rfile- (8- a)Gas, Gu)
(wv)eM /
(nB)EM (6.29)
2V "+a ZH "+’ o
- Z Wy ————— = (Ry(e- (B —a)Gup,Guw) + Fj, where
(! vheM “
(., YeM
2 z“ _
Frim U520 R+ 20500 Y nie G+ Y i = (7,Gon)]
(1 V)eM Zi (W' ,v"YeM
zHzZY 2
+ Y vi— (9, Gpv) + > Wy =3, Gu) (6.30)
(n,v)eM J (' )M
At o) Y P2 (Cen) + 22 <G3m,n>]

meM,; (2N+3)
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We now introduce the new variable ¢ defined by

p o TBzvta o
E A . —(Rfy(e (5~ ))Gap, G
J J (#§M((H_V)'e—(a—ﬁ)'e)zj< H( ( )) B u>
(e.B)EM
M/ oz e zu’+5’ / / B (631)

- — R_ e /B — GO/ /’G Iyt

(ﬂ/;):eM ((O/ _ 5/) _ (Nl _ 1/) -e)zj< H( ( )) B o >

(«'.8)eM

where we are summing only on pairs where the formula makes sense (i.e. only on pairs not in a same
set My, for an L € A, see (6.33) below). It is easy to see that

1€ = 2ll 22 (0.7 < e(N, Co)e? and [|¢ = z[| oo 0,7y < ¢(IN, Co)e®. (6.32)
Recall now the set A = {(v — p) - e: (u,v) € M} defined in (6.25). For any L € A set
My :={(p,v)eM:(v—pu)-e=L}. (6.33)
We then get

i¢j = (L+@(l2*)(e;G + 852010, o0 1Gal))

C/H-ﬁ(:u'i_a .
- v (Rfj(e (8 — a))Gag, Gu)
LeA (pv)eMy, CJ
(nB) €My, (6.34)
CU "o C” "+8 B ) ) o
_Z Z szi<RH(e(B _a))Ga’ﬁ'vGu’u’>+gj,
LeA (u' v )eMy, J
(o ,BYEM,

where for some Apaguy, Bragus We have

G; = Fi+ (1 +w(2)) 020121, .. [2al?) = 3520(ICLI, -0 [Gal )]

l/j z“+'32”+0‘

— ejw(|z;]%) —(Ri(e- (B —a))Gap, Gu)
J ’ (l"yVZ)GJ\/[ ((Milj)ei(aiﬂ)e)z‘] H B ”w
(a,8)eM
2V e ) B

+ —(Ry(e- (B —a)Guapr, G (6.35)

(HI§EM (' =p)-e—(w—1) ez H g,Gp

(o ,8"YeM

zu+ﬂzl’+a _ uwtpgrta
+ Z Z IZk — eka Akaﬁm/ + (lzk — ekzk)*Bmgw.
k (pv)eM %
(a,8)eM

Lemma 6.6. There are fized c4 and eg > 0 such that for € € (0,¢p) we have

1Gi¢5llzt 0,7 < (1 + Co)eac®. (6.36)
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Proof. We consider separately the terms in the r.h.s. of (6.35) and (6.30). By (6.6), (6.28) (6.32)
102, RC; || 10,77 < C(Co)€’
For fixed constants ¢z and c3, by (6.4) and (6.22), we have

42 Z“?Z -

209, G Loy < e LN 2o, llgllz2or,02.-5) < c3Coe’. (6.37)

]

To get (6.37) we exploit Lemma 6.4 and the following bound:

L\ p2porr < vill2"2” |l p2porm + Vy|| ||L<>° 0.711¢5 — Zjll 20,17

(6.38)
S CQCOG + C(Co)G

for fixed ca, where we used (6.14) and (6.32). Terms such as (6.37), that is the terms from the 2nd
term in the r.h.s. of (6.30), are the ones responsible for the Cpcae? in (6.36), where Cp could be
large. The other terms are O(e?) with fixed constants, if g is small enough.

By (6.4) and (6.5), for m € M;(2N + 4) we have

12 P Z™ (Gl m) Gl pr0,m) < callziilloe 12 2% [ 2o,z 0l 22 0. 71.22-5) < C(Co)et. (6.39)
It is easy to see by (6.32) that
IC;(2nd-6th line of r.h.5.(6.35))| £2j0.7) < C(Co)e®, (6.40)
see Lemma 4.11 [8],
110520(1211, s [2a?) = 05201112, .., [Gal®)Cs  £210,7) < C(Co)e?, (6.41)

see Lemma 4.10 [8]. Finally we have for (u,v) € M

ZHZY
llo; (1231%)v; ——(m, Gu)Gllns < llwi(lz*)v242 (0, Gl s
J

ZHzv
+ I\wj(\zjl2)vj7<n,GW>(Cj —2zj)lley < C(Co)e®
J

by @;(|z;]?) = O(|z[?), (6.4)-(6.6) and (6.32). This completes the proof of Lemma 6.6. O
We now consider
0
. d
i ol 61 == S s Il (5Pl + 2 2ol a6 -3 G
J J
Ty Il 3 vee ¢ R (L)Gop G (6.42)
LeA (p,v)EMy,
(e,B)EML,
vV +a +ﬁ — al
Y W e B (LG, G
(/,L',V’)GML
(«',8")eML,

We can now substitute Ry (L) = P.V.ztr +irdé(H — L).
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Lemma 6.7. The contributions to (6.42) from the P.V..7-+ cancel out:

Im| Z V~eC“+ﬁzy+a< V;Galg,Guﬁ

(s V;E]\/[L H-L
(a,B)eMy,
6.43
v 4o FH +6 1 Val _ ( )
+ Z we ¢ (P V.mGalg/,G#/,,/” =0.
(M,:V,)EML
(«',8)eMy,

Proof. We set (o/,8") = (u,v) and (¢, ") = (o, §) in the 2nd line of (6.43). With these choices

u eCV "o Cu '+ <PVﬁG ’6’76H'V'> :a-e<#+ﬁzu+a<

Then 2 times the 1.h.s. of (6.43) becomes

1 —
PV.—— y
Vigg— Gap G

+BpFvta I = _ +B87 V+oc
2Im[ Y (a+tv)-e (" (P.V.r— Gap, Gu)] = > Im[(a+v)-e "
(n,v)EMp (n,v)EML
(a,B)eEML, (a,8)eML,
1 b8 vt 1
<PVﬁG(xﬁ7Gul/>+(M+ﬁ)e< C + <PVH GHV7G >}
v+
= Im| Z (a+v)- <CM+B< <PV LGQB, Gu) + c.c.)] =0
(p,v)EMy,
(e,B)EM,

where we exploited the fact that if (i, v) and (o, 8) both belong to My, then (a+v)-e = (u+6)-e. O
Lemma 6.8. Set for any L € A
GLQ)=va > G (6.44)
(Hv”)EML
Then we have

mfir Y v-e ¢*FCTNS(H ~ L)Cag, G )

(n,v)EMp,
(a,B)eML,

—ir Y e ¢S — )G G = LOG(H — L)GL(C), GL(Q)) > 0.
(w'v')eMy,
(a/,ﬁ,)EML

(6.45)

Proof. First of all the last inequality is a consequence of the formula

1 ~ =
2\7@ =V F(§)G(&)da(€)

with F and G the Fourier transforms of F and G associated to H, see Prop. 2.2 Ch. 9 [27].
To prove the first equality in (6.45) set (¢/, ') = («, ) and (u',v') = (i, v) in the 2nd line of
(6.45). Then the Lh.s. of (6.45) equals

L
7Rel Y (w—p)-e (" NS(H — L)Gap, Guu)] = LIS(H — L)GL(C), GL(0)).

(m,v)eEMy,
(a,B)eML,

(F,6(H — L)G) =
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From (6.42) and Lemmas 6.7-6.8 we obtain

23" LG~ D)GL(0),GL(Q)) = 5 Y lesl 16 +2 3 e tmlg, . (6.46)

LeA

We are able to restate, precisely this time, hypothesis (H4).

(H4) We assume that for some fixed constants we have:

> (S(H - L)GL(Q),GL))y ~ Y [¢" forall ¢ € C™ with [¢| < 1. (6.47)

LeA (pn,v)eM

We now complete the proof of Prop. 6.2. We claim we have for a fixed ¢

IZ les (16 (O = 16 (0)])] < ee. (6.48)

Indeed, first of all we have |(;(0)] < e by € := ||uo|/g:. Observe that for (2’,n) the initial
coordinates in Lemma 2.4, by Proposition 1.1 and Lemma 2.3 it is easy to see that we have

€ > Jluollz> = [lu(®)l|Z> = II( Zz )é; +n'(t quz @ + (RIZ'(O] = 1) (1) |17

= Z 25O + 7 @)1172 + 02" O + 12/l (D]1Z2).

This gives the following version of (2.11):

n

Z O + |17 ()22 < 262 (6.49)

This yields an analogous formula for the last system of coordinates (z,7) in (5.35). Finally, this
yields the following inequality for the variables ¢ introduced in (6.31):

Z G ()] < 3¢, (6.50)

Hence the claim (6.48) is proved. By Lemma 6.6, by the hypothesis (6.47), by (6.32) and by (6.48),
for € € (0, €p) with €y small enough we obtain for a fixed ¢

Do 1N < e+ cCoe. (6.51)
(n,v)eM

(6.51) tells us that ||z"+”|\%2(07t) < C2e? implies ||z”+”||%2 0.4) = €2 + Cye? for all (u,v) € M. This
means that we can take Cy ~ 1. This completes the proof of Prop. 6.2.
O
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6.2 Proof of the asymptotics (6.9)
We write (6.12) in the form i) = —An + Vi + B. Then 9;(e"*4ty) = —ie 4t (5 4+ B) and so
t2
e IBty(ty) — eTIB () = —i/ e IA V(L) + B(t))dt for t; < to.
t1

Then for a fixed ¢y by the Strichartz estimates

—iAt —iAt
||€ 277(t2) —¢€ 177(t1)||H1 < 02(||77||L2(]R+,W1~5) + HB(t)”Ll([tl,tz],Hl)JrLz([tl,tz],W%)))'

Since we have

B= > 7%Gu +A,
(p,v)eM

and by (6.14) and (6.15), valid now in [0, 00), for a fixed C' we have

el 2
I > 2 Cuwlag, wet) <O 1, ity enm, < OF
(n,v)eM

we conclude that there exists an n, € H' with

lim e A(t) =ny in H with ||n(t) — 2, |g1 < Cefor all t >0 .

t——+oo

So we have the first limit in (6.7) and the inequality |94 | g < C|lu(0)]| g in Theorem 6.1.
We prove now the existence of z; and the facts about it in Theorem 6.1. First of all, from (6.27)

72 |Z]|2 Zlm O;RzZ; + Z vizt'z"(n, Gu) + Z wiz" (7, G )

(n,v)EM (n',v')eM
Since the r.h.s. has L'(0,00) norm bounded by Ce? for a fixed C, we conclude that the limit

im ([21(D)], s [20(®)]) = (041, s pin) extists with [p4] < Cllu(0)]|r:-

t——+oo

By lim;—, 4 Z(t) = 0 we conclude that all but at most one of the py; are equal to 0.

7 Proof of Theorem 1.4

The stability of e~#£12Q, is known. By Theorem 1 [16] the stability of e*#12Q, ., or equivalently
of e 1tE1e Q1, for p > 0, is a consequence of the following two points.

(1) Thf self;fdjoint operator L_, := H — E1, 4 |Q1,|* has kernel ker L_, = {Q1,} and L_, > 0
n le .

(2) The self-adjoint operator Ly, = H — Ey, 4+ 3|Q1,|? is strictly positive: Ly, > 0.

If |Qp(x)] > 0V x, then (2) is an immediate consequence of (1). The fact that ker L_, = {Q1,}
follows by the fact that @1, € ker L_, and by the fact that for |p| < € with ¢g > 0 small, the
number Ey, ~ e; is the smallest eigenvalue of H + |Q1p|2 since e; is the smallest eigenvalue of H.
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We recall that [29, 30, 31, 25, 12, 13, 18, 23] give partial proofs of the instability of the 2nd
excited state, and only for 2e5 > e;. We now prove the instability of the excited states.
Fix a j > 1 and assume that @Q);, is orbitally stable. Then @), is asymptotically stable by Theorem
1.3. So if [[u(0) — Qjr || < 1 then |Ju(t) — Q;z, — €'ny|[g — 0 for ¢ — oo and |z;(t)| — p with
p # 0 and close to r. In this case we have
. . iAt

B(u(0)) = Jim E(u(t) = lim B(Qyu) + '),

() = Jim [Qyey + a3
Since ||e!At Aty

N+llzzre < lIm+llz2 there exists t,, — oo s.t. [le'"n|lLs — 0. So, since lleftnAny||pe — 0,

[ V]eltnAn,|?dz — 0 and the cross terms in (3.3) disappear, we have

E(u(0) = lim E(Qjsy,) + 1) = E(Qsp) + IV 132,

iAt

[u(0) 2 = T [1Qy, vy + €213 = 1Qupll3a + 1 32

We claim that for j > 2 we can construct a curve on H' with the following property.

Lemma 7.1. For sufficiently small §, there exists a map [0,8) > e+ ¥(e) € H! s.t.
o V(0) = Qjr,
o [¥(E)II72 = 1Qsrl1Z:,
o B(V(E) < B(Qy) if > 0.

Before proving the lemma we show that the assumption that Q. is asymptotically stable and the
existence of U lead to a contradiction.

Proof of instability. Since ||Q;||3. = r*+O(r%) by Proposition 1.1, |Q;||3, is strictly increasing in
r for r small. By Proposition 1.1 we have E'(Q;,.) = (e; + O(r?))Q’(Q;). This implies that F(Q;,)
is a strictly decreasing function of r. Setting u(0) = ¥(¢e), we have

1QirlZ2 = 1T (e)IZ2 = 1QspllZ2 + lIn+ ]I

Therefore we have [|Q;, |22 > [|Qpl|32. This implies r > p and so E(Q,,) > E(Q,). But looking
at the energy we get the following contradiction which ends the proof of Theorem 1.4:

E(Qjr) > E(¥(¢)) = E(Qjp) + |Vni |72 > E(Qjp) > E(Qjr).
‘We now construct the curve W.

Proof of Lemma 7.1. We set ¥(g) = 3(€)Qj,» + e¢1 and choose B() to make ||U(e)[|2, = ||Q;r[|2.:

1Qjr|728% + 26 (Qjr, d1) B+ % — ||Qjr|/32 = 0.
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So, we have

(Qjr,P1) €+ \/<er,¢1>2 €2 — Qi ll72(e2 = [1Qjr 1132

) = V1—g1(r)e? + g2(r)e,

o 1Qjr 112

— 1 ‘ 0. 2y _ 1 A o ,
901 = 7 (1l = (@0r 00°) = e (1€ = (o0
g2(r) = (Qir¢1) _ (gjr, 1)

1Qirl7= QI

We now show E(¥(¢)) < E(Qj,r) for € > 0. It suffices to show Sg,, (¥(¢)) < SE,, (Q;r), where
Sg,, (u) = E(u) — Ejr||ul|Z-.
Notice that we have Sp, (Q;r) = 0. Therefore, setting y(c) = A(¢) — 1, we have
Sk, (¥(e)) = Sg;, (Qjr +7(€)Qjr +€¢1)
= 55, (Qur) + 5 (S, (@) (1)@ +201) 1@ + 201 ) + 0 (IN(E)Qyr + 261 30)
If g2(r) = 0 we have v(¢) = O(e?r~2) and we conclude

SEN(\II(ED = SEj'r'(er) + e <SEj'r'(Q.jr)¢17 ¢1> + 0<52)
= S5, (Qjr) +€%(e1 = ¢) + O(e?r) + 0(e?) < Sp,, (Qj1r)-
If g2(r) # 0 we have (g) = O(re) and
Sk, (U(€)) = Sk, (Qjr) + (€1 — ;) + O(re®) < Sg,, (Qjr).

Therefore Lemma 7.1 is proved. This also completes the proof of Theorem 1.4.

O
A Appendix: a generalization of Proposition 1.1
For the reference purposes we generalize (1.1) as
iuy = —Au+V(z)u+B(u®u, (tz) € R xR?. (A1)

and assume that 8(0) = 0, 8 € C*°(R,R) and further, there exists a p € (1,5) such that for every
k > 0 there is a fixed C}, with

dk )
Wﬂ(lﬁ) < Cilv|P~F=1 if |u| > 1.

Proposition A.1. Fiz j € {1,--- ,n}. Then 3ap > 0 s.t. Vz; € Bc(0,a0) there is a unique
Qjz, € S(R?,C) :=Ny»oX:(R3,C) s.t.

(=A+V)Qjz, + B(1Qj2,1*)Qj2, = Ej2,Qj-,,
Qjz; = 2%j + ajzys (a5, 05) =0,

and s.t. we have for any r € N:

(A.2)
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(1) (quj7Eij) € COO(BC(ao)vzr X R); we have Qjz; = ZJ@(|ZJ|2) , with Eij(t2) = t2zjj(t2)7 q~](t) €
COO((—GO2,CL02),ET(R3,R)> and Ejzj = Ej(|2j|2) with Ej(t) S C“((—a02,a02),R);

(2) 3C>0 st g,

s, <Oz, |Ej., — 5] < Clz*.

The rest of this section is devoted to the proof of Prop. A.1.
The first step is the following lemma, which follows by a direct computation.

Lemma A.2. Let m € Ny and k € {1,2,3}. Then, we have

[*A, |x|2m] — 72m(2m + 1)|x|2m*2 _ 4m|x|2m’2x v

A3
[A, |[z)*"xy] = —2m(2m + 3)|z|*™ 2xy — dmay|x[*™ %z - V — 2|z*™0,, (4.3)

O
Our second step is the following lemma.

Lemma A.3. The eigenfunctions ¢; of —A+V satisfy ¢; € S(R?).
Proof. First, ¢; € L*(R?), so we have ¢; € H*(R3) by
(—A —ej)¢; = =V

Furthermore, if we have ¢; € H?™(R3), then we have ¢; € H?*""2(R3). This implies ¢; € N_, H™.
Next, by Lemma A.2; we have

(—A —¢j)arg; = =202, ¢;5 — Vard;,
for k = 1,2,3. Therefore, we have zy¢; € H*(R?). Again, by Lemma A.2, we have
(—A —¢))|z|?¢; = —6¢; — 4z - Vo; — Vg,

So, by x - V¢; = V(zp;) — 3p; € L*(R3), we have |z|*¢; € H2
Now, suppose |z|*™¢; € H*(R?). By Lemma A.2, we have

(=A —e))|z|*"zrd; = — 2m(2m + 3)|z|*"2apd; — dmay|z P2 - Vo,
—202|?™ 0, 05 — V][ ar ;.

Since
|22 0y bj = Oy, (|72 ;) — Am|z|*™ 2205 € L*(R?),

we have |z|*"zy¢; € H*(R?). Finally, by
(—A — e[z 2¢; = — 2(m + 1)(2m + 3)|z[*"¢; — A(m + 1)[a|* "z - Vg; — V|z[*"2¢;,

and [22"2 - Vé; = V - (|22mag;) — (4m + 3)[af2™¢; € L2(R), we have [z2+2¢, € H2(R?). By
induction we have ¢; € Xy, for any m > 1. O

The next step is the following lemma.

Lemma A.4. Fizj € {l,--- ,n} andr € N with r > 2. Then 36, > 0 s.t. Vz; € Bc(0,6,) there is
a unique Qj-, € X,(R?,C) satisfying (1.3) and claims (1) and (2) in Prop. 1.1.
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Proof. In this proof we write g(u) := 8(Jul?)u. Notice that it suffices to show the claim of Lemma
A4 for z; € R with R valued Q) ;. Indeed, if we define

Qjz; = €°Qjpy  Ejzy = By (A4)

for 2 = e%p, Q;. and E;, satisfies (1.3) if Q;, and Ej;, satisfy (1.3). Further, if Bg(0,d) 3 z —
(Qjz, Ej.) € p x Ris C*°, then by (A.4), we have Bc(0,0) 3 2z — (Qj.2, Ej.) € X x Ris C.
Fix j € {0,1,--- ,n}. For simplicity we set z; = z, e; = e and ¢; = ¢. Set

Qjz=2(¢+12"(2), Ej.=e+|l*f(2).
We solve (1.3) under the above ansatz. Substituting the ansatz into (1.3), we have
Hyp+27%9(2(6 + 2%0)) = ey + fo + 2 f. (A.5)
Set Pu = u — (u, ¢)¢. Then, we have
Hyp+27°Py(2(d + 2°¢9)) = et + 2°f, (z7%g(2(6 +2°0)),6) = [.
Therefore, it suffices to solve
(H —e)p = =z Pg(2(p + 2°9)) + 2~ Hg(2(¢ + 2%0)), ). (A.6)
Now, set ¢(z) := ¢ + 2%¢)(z). Then,

1
9(z0) = B(z%p)zp = z3/o B (s2%¢%) ds¢>.

So, (A.6) can be rewritten as

w—cp=-r( [ ' p(s28%) 3 ) + (612806, (A7)

To show that z — (z) € X, exists and is C*°, we use the inverse function theorem. Set

1 ~ ~ ~ ~
D(z) = —(H — &) 'P ( /0 B/(s226?) ds¢3) {B(200)8,6) (H — o),

and
F(va) = ’l/} - (I)(Za’l/])
Then, F' : R x PY,. — PX, is C*°. Next, since
F(0,9) = ¢+ B'(0)(H — €)' P¢°,

we have

F(0,—p'(0)(H —¢)~ P¢*) = 0.
We now compute Fy(z,1).
1 1
By (z,0)h = —22*(H —e)"'P (/0 B"(s22¢%)s dsq~54h> —32%(H —e)”'P (/0 B (s22¢?) dsq~52h>
+224(8'(z20%)9%h, ¢) (H — e)yp + 2*(B(z*9%)h, ) (H — e)¢ + (B(z°0%), ¢)(H — e)h.

So, we have
Fy(0,9)h = h.

Therefore, by the inverse function theorem we have the conclusion of the Lemma. O
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The final step is that the §, > 0 can be chosen independent of 7.
Lemma A.5. Consider the Q;., in Lemma A.4. Then 3 a 0 >0 s.t. Q;., € S(R?) for |z;]| <.

Proof. We use a bootstrap argument similar to the proof of Lemma A.3. We can consider the Q;.
given in Lemma A.4 with » = 4. Tt is enough to consider z = p € (0,6) with 6 < §4. For 6 > 0
sufficiently small we also have E;, < 2e; < 0. By (A.2) we have

1
(A= E;,)Q5p = —VQjp— / B(sQ2,) ds@?,. (A8)

We proceed as in Lemma A.3. Since the commutator term and —V' @, are the same as in A.3,c we
conclude that Lemma A.5 is a consequence of the following two simple facts for m > 2.

(i) If Qj, € H™, then B(Q?,)Q;, = N ) dsQ3 € H™.
(ii) If [2[*Q;, € L*(R?), then |z|>"+? J’J /a'<sc2§ )ds@?, € L2.

(i) follows from the fact that H™(R?) is a ring for m > 2. We now look at (ii). Since Q,, is a
continuous function with Q;,(z) — 0 as |z| — oo, the range of Q;, (i.e. {Qj,(z) € R |z € R3}) is

relatively compact. So, since ¢t — fo B'(st?) ds is a continuous function from R — R, the range of

fo B'( st ) ds is relatively compact. Therefore, we have fo SQ )ds € L*°. On the other hand,
by Q;, € X4 we have |z|Q;, € X3 — L. Therefore, we have

1
|gg|2m+2/0 ﬂ/(SQ?p)dSQJ / g SQ )ds ( |$|QJP) 2" Q;, € L*(R?).

This proves (ii) and completes the proof of Lemma A.5. O

Finally, Proposition A.1 is a consequence of Lemmas A.2-A.5.

B Appendix: expansions of gauge invariant functions

We prove here (3.10) and (3.12), which are direct consequences of Lemmas B.3 and B.4.

Lemma B.1. Let a(z) € C*®(Bc(0,6),R) and a(e®z) = a(z) for any 6 € R. Then there eists
a € C>®([0,6%);R) s.t. a(|z]?) = a(2).

Proof. For z = rel? we have a(z) = a(r + i0). Since  — a(x + i0) is even and smooth, we have
a(r +10) = a(z?) with a(x) smooth, see [32]. So a(z) = a(|2]?). O

Lemma B.2. Let § > 0. Suppose a € C°°(Bcn(0,6);R) satisfies a(€®zy,--- ,€%2,) = a(z1, -, 2n)
for all @ € R and a(0,--- ,0) = 0. Then, for any M > 0, there erists by, s.t.

a(zlv te ,Zn) - ZOIJ‘(‘ZJ-F) + Z Zmbm(zla to 7Zn) + RO’M(Zv Z)a (Bl)
j=1

|m|=1

where a;(|zj?) = a(0,---,0,2;,0,---,0). Furthermore, by € C*(Bcx(0,6);R) and satisfies
bm(e¥21, - ,€%2,) = bm (21, -+, 2) for all § € R.
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Proof. First, we expand a as

n

1
a(zi, -+ ,zn) = a(z1,0, - ,0)+/ (Zﬁja(zl,t22~~ 2075 +6j—-a(zl,t22~~ ,tzn)Ej) dt.
0

Jj=2

Then, by
a(0,z9, ++ ,2p) = /01 (2”: 0;a(0,tze - ,tzn)z; + 87@(07 tzg -+ ,tzn)Ej) dt,
j=2
we have
a(zi, -+ ,2zn) = a(z1,0,---,0) +a(0, 29, -, 2,)
/ Z (0ja(z1,tze -+ ,tzn) — 05a(0,tz9 - -+ ,t2,)) 25
+ (%a(zl,tzg s tzg) — %Q(O,tZQ _ ,tzn)) Ej] dt = a(z1,0,--+,0) +a(0, 22, -+, z,)

11
+Z/ /o [(&E)ja(szl,tzz... Jtzn)) 2125 + (070ja(sz1,tzg -+ t2,)) Z1 2

+ (8187a(sz1, tzg - ,tzn)) Z12j + (&Bj—a(szl, tzg - ,tzn)> ?12]} dsdt.
Iterating this argument first for a(0, 22, - - - , 2z,) and then for a(0, ..., 0, zx, - - - , 2z, ), we have

(217"' Zn):a’(zlaov"'ao) (Oa22707"'10)+"'+a(07"'aoazn)
—|—Z Z // [(010;a(0,- -+ ,0, 825, tzpt1 -+ ,t2n)) 212

+ (agaja’(oa <, 0, 82, tzk:+1 T 7tzn>) EkZ] + (akyaj-a(o, -0, 82, tZk;+]_ s ,tzn)) Z]CZ
+ (aE&JCL(O, T 707 SZk,tZk+1 o ,th)) EkE]] dsdt.

By Lemma B.1, there exist smooth a; s.t. a;(]z;|?) = a(0,---,0,2;,0,---,0). Furthermore, the 3rd
line of (B.2) has the same form as the 2nd term in the r.h.s. of (B.1). So, it remains to handle the
terms in the 2nd and 4th lines of (B.2). Since they can be treated similarly, we focus only the 2nd
line of (B.2). Set

1,1
5jk(zk7"' ,Zn) = / / (akaja(oa a07szk7tzk+1"' ,th)) deta
0 Jo

with j > k+ 1. Notice that 8"‘55(1(0, ...,0) # 0 by the gauge invariance of a is easily shown to imply
|a| = |B|. This in particular implies 8;,(0,---,0) = 0. So as in (B.2) we have

Bjk(zky"' Zn):Bjk(Zk7O7"' )+Bjk(07zk+1u07"' 70)++ﬁjk(07 7O7Z’n)
+ Z Z / / [(OmO1Bk(0,- -+ ,0,82m, t2my1 -+ ,t2n)) Zm2l (B.3)
m==kl>m+1

(aﬁalﬁjk(07 e aov SZmy tzm—i-l th)) z + (amalﬁjk((L o 707 SZm, tzm—i—l e 7t2n)) Zm?Zl
+ (%&@»k(o, o, 0,8Zm, tomapr - ,tzn)) ZmZi ] dsdt.
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Since zfﬂjk(Q -++,0,2,0,---,0) is gauge invariant by Lemma B.1 we have
2Bk (0,++,0,21,0, -+ ,0) = Bjr(|zi]*) = Bkt (0) + B (0)|ze]* + vjke(|2e]*) ||,
for some smooth Bjkl and 7;x;. By the smoothness of 5, we have @kl(O) = B}kl(O) = 0. Therefore,
Bix(0,---,0,2,0,---,0)z,2; = yjkl(|zl|2)zkzj212 with k& < min{j,{}.

This can be absorbed in the 2nd term of the r.h.s. of (B.1). The same is true of the contribution of
the last 2 lines of (B.3). The term

1 1
/ / (arrLal/Bjk(O; <, 0, 82m, tZmat1 - ,th)) ZmRlZj 2k dsdt (B4)
0 0

does not have as factors components of Z = (z;Z;);»; but it is O(|Z|*). Treating (B.4) the way
we treated the 2nd line of (B.2). and repeating the procedure a sufficient number of times, we can
express (B.4) as a sum of a summation like the 2nd in the r.h.s. of (B.1) and of a O(|Z|M) for
arbitrary M. Furthermore, notice that since we can think of the dependence on Z = (2;Z;);; to be
polynomial, and so the remainder term R%™(z,Z) in (B.1) can be thought to depend polynomially
on Z = (%Z;)i+j, it can be thought as the restriction of a function in Z € L. O]

Lemma B.3. Take a(z1,--- ,2y) like in Lemma B.2. Then, for any M > 0, there exist smooth a,
and bjm s.t. for a;(|z;]*) = a(0,---,0,24,0,---,0) we have

a(zi,z) = Doz + Y 2wz + ROM (2, 2). (B.5)
j=1 1<|m|<M—1
Proof. To prove (B.5) one only has to repeatedly use Lemma B.2. O

Lemma B.4. Suppose that a : C* — S is smooth from Bgz.(0,0,) to X, for arbitrary r € R and
satisfies a(ezy,--- ,e%2,) = a(z1, -+ ,2n), a(0,---,0) = 0. Then, for any M > 0, there exist

smooth aj and bjm s.t. for a;(|z;]?) = a(0,---,0,2;,0,---,0) we have
n
a(z1, ) =Y o157+ Y ZGm(l3)%) + 8M (2, 2). (B.6)
=1 1<|m|<M—1
Proof. The proof is same as the proof of Lemmas B.1-B.3 O
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